
Random walks on
percolation clusters

Ben Hambly

Mathematical Insitute

University of Oxford

Random walks onpercolation clusters – p. 1



Random motion in random media

The study of random media originates in models from
the physical sciences where there is interest in their
transport properties. In particular how is diffusion
affected by the presence of microscopic random
irregularities?
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The study of random media originates in models from
the physical sciences where there is interest in their
transport properties. In particular how is diffusion
affected by the presence of microscopic random
irregularities?

In the 1970s De Gennes proposed that percolation
clusters, and in particular those arising at criticality,
would provide a canonical model for a random medium.
Physicists have looked in great detail at the random
walk on critical percolation clusters through heuristic
arguments and numerical experiment.
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Random motion in random media

The study of random media originates in models from
the physical sciences where there is interest in their
transport properties. In particular how is diffusion
affected by the presence of microscopic random
irregularities?

In the 1970s De Gennes proposed that percolation
clusters, and in particular those arising at criticality,
would provide a canonical model for a random medium.
Physicists have looked in great detail at the random
walk on critical percolation clusters through heuristic
arguments and numerical experiment.

Mathematicians are just developing the tools to start
thinking about such questions!
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Percolation

Introduced by Broadbent and Hammersley (1957).

Euclidean lattice Zd, edges (bonds) Ed.

Fix p ∈ [0, 1]. For x ∼ y, let µxy be independent random
variables with P(µxy = 1) = p, P(µxy = 0) = 1 − p.
The bonds (edges) such that µxy = 1 are called open

bonds. Let O be the set of open bonds.

The connected components of the graph (Zd,O) are
called (open) clusters.

There exists pc ∈ (0, 1) such that, a.s.,
-if p < pc, all clusters are finite,
-if p > pc, then there exists a unique infinite cluster, C∞.
-if p = pc, no infinite cluster for d = 2, d ≥ 19, believed ∀d.
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p = 0.2
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p = 0.2, largest cluster marked
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p = 0.4
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p = 0.4

Random walks onpercolation clusters – p. 4



p = 0.4
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p = 0.5
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p = 0.5
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p = 0.5
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p = 0.6
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p = 0.6
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p = 0.6
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p = 0.8
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p = 0.8
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Graphs

Let Γ = (G,EΓ) be an infinite connected locally finite
graph. Define weights or conductances µxy = µyx for
x ∼ y. We allow µxx > 0. Let µxy = 0 if x 6∼ y. Set

µx =
∑

y

µxy,

and extend µ to a measure on G. The volume of B(x, r),
a ball in the graph of radius r at x, is
V (x, r) =

∑

y∈B(x,r) µy.

Discrete Laplacian:

∆f(x) =
1

µx

∑

y

µxy(f(y) − f(x)). (1)
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Random walks

Continuous time random walk Y = (Yt, t ∈ [0,∞)) on
(Γ, µ). If Yt = x, then the probability of a jump to y ∼ x in
(t, t + δ] is ≈ δµxy/µx.

Let qt(x, y) be the transition density of Y (w.r.t. µ), i.e.

Px(Yt = y) = qt(x, y)µx.

Then qt(x, y) = qt(y, x) satisfies the discrete heat
equation (time continuous, space discrete)

∂

∂t
u(x, t) = ∆u(x, t).
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The discrete random walk X = (Xn, n = 0, 1, . . . ) on
(Γ, µ). If Xn = x, then the probability of a jump to y ∼ x
is µxy/µx.

Let pn(x, y) be the transition density of Y (w.r.t. µ), i.e.

Px(Xn = y) = pn(x, y)µx.

Then pn(x, y) = pn(y, x) satisfies the discrete heat
equation (discrete time and space):

u(x, n + 1) − u(x, n) = ∆u(x, n).

Note that to deal with bipartite graphs we use
p̂n(x, y) = pn+1(x, y) + pn(x, y).
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Random walk onC∞

We work in the supercritical case p > pc. Fix a
percolation configuration ω. Let G = C∞(ω), E be the
open bonds in C∞(ω). This defines an (infinite,
connected) weighted graph. Let Yt be the continuous
time random walk on (C∞(ω), µ(ω)). Its transition density
is

qω
t (x, y)µy(ω) = P x

ω (Yt = y).

The discrete version was called the ‘ant in the labyrinth’
by De Gennes 1976.

We can consider myopic ants - for which µxx = 0 and
blind ants for which µxx = 2d −

∑

y 6=x µxy.

Grimmett, Kesten, Zhang, 1993: Y is transient iff d ≥ 3.
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Problems for the random walk Y on C∞:
(1) Gaussian bounds (GB) on qω

t (x, y).
(2) Central limit theorem/ Invariance principle for Y .
(3) A local limit theorem for Y .

CLT for Zd. Let Y
(n)
t = n−1Yn2t. Then

P0(Y
(n)
t ∈ U) →

∫

U
(2πCdt)

−d/2 exp(−
|x|2

2Cdt
)dx

Invariance principle for Zd (Donsker 1951):

(Y
(n)
t , t ≥ 0) ⇒ (C

1/2
d Wt, t ≥ 0)

where W is Brownian motion.
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The critical case

In the critical case there is no infinite cluster with probability
1 (at least for d = 2, d ≥ 19). In this case we must define an
‘Incipient infinite cluster’ (IIC). This critical cluster should
have fractal structure. For d = 2 it can be described via an
SLE.

Kesten (1986): random walk on the IIC in d = 2 is
subdiffusive.

Barlow & Kumagai (2006): random walk on the IIC on a
tree (‘d = ∞’) has sub-Gaussian heat kernel estimates.
Croydon (2006), the scaling limit is Brownian motion on
the continuum random tree.

Barlow, Jarai, Kumagai and Slade (2007), random walk
on high dimensional spreadout oriented percolation.
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Two types of invariance principle

Y is a RW in a random environment C∞(ω).
Let P be the probability measure for the percolation
configuration C∞.
Let P x

ω be the probability measure for Y on C∞(ω)
starting at x ∈ C∞.

Quenched or almost sure. The Invariance principle for Y
holds (w.r.t. P x

ω ) for a set of environments ω with P

probability 1.

Averaged, or ‘annealed’. The Invariance principle for Y
holds w.r.t. P × P x

ω .

De Masi, Ferrari, Goldstein, Wick 1989: The averaged
invariance principle holds for processes in stationary
ergodic random environments. In particular, this holds
for Y on C∞.
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Delmotte’s theorem

Theorem (T. Delmotte, 1999). Let (Γ, µ) be a weighted graph. (Assume

Γ locally finite, µxy ∈ [C−1, C] whenever x ∼ y.) The following are
equivalent:
(a) Solutions of the heat equation on G satisfy a Parabolic Harnack
inequality (PHI).
(b) (Γ, µ) satisfies volume doubling (VD) and a Poincare inequality (PI).
(c) qt(x, y) satisfies Gaussian bounds :

c1e
−c2d(x,y)2/t

V (x, t1/2)
≤ qt(x, y) ≤

c3e
−c4d(x,y)2/t

V (x, t1/2)
,

if t ≥ max(1, |x − y|).

Random walks onpercolation clusters – p. 12



Poincare inequality for graphs

Let B = B(x, r), f : B → R. Then
∑

x∈B

(f(x) − f)2µx ≤ CP r2
∑

x,y∈B

(f(y) − f(x))2µxy

= CP r2EB(f, f).

As usual f is the real number which minimises the LHS.
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Poincare inequality for graphs

Let B = B(x, r), f : B → R. Then
∑

x∈B

(f(x) − f)2µx ≤ CP r2
∑

x,y∈B

(f(y) − f(x))2µxy

= CP r2EB(f, f).

As usual f is the real number which minimises the LHS.

An example of a graph for which the PI fails is two
copies of Zd (d ≥ 3) connected at their origins.
If f = 1 on one copy, f = −1 on the other and
B = B(x, r) then LHS ≈ rd while the RHS ≈ r2.
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Bounds onqt

The natural idea is to try to apply Delmotte’s theorem.

However, neither VD nor PI hold for C∞. The reason is
that if we look far enough we can find arbitrarily large
‘bad regions’.

Random walks onpercolation clusters – p. 14



Bounds onqt

The natural idea is to try to apply Delmotte’s theorem.

However, neither VD nor PI hold for C∞. The reason is
that if we look far enough we can find arbitrarily large
‘bad regions’.

Random walks onpercolation clusters – p. 14



Obtaining Gaussian bounds forC∞

For the on-diagonal bound isoperimetric or Nash
inequality ideas lead to (Mathieu and Remy (2004))

sup
y

qω
t (x, y) ≤ ct−d/2,

for t ≥ Sx(ω).
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Obtaining Gaussian bounds forC∞

For the on-diagonal bound isoperimetric or Nash
inequality ideas lead to (Mathieu and Remy (2004))

sup
y

qω
t (x, y) ≤ ct−d/2,

for t ≥ Sx(ω).

The next, and hardest, step in controlling qt(x, y) is to
obtain ‘off-diagonal’ bounds, i.e.

qω
t (x, y) ≤ θ(t, |x − y|),

where θ(t, r) → 0 as r → ∞.
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Gaussian bounds

Theorem 1. (Barlow, 2004) Let p > pc. For each x ∈ Zd there exist r.v.
Sx with Pp(Sx ≥ n) ≤ c exp(−nεd) and (non-random) constants

ci = ci(d, p) such that the transition density of Y satisfies,

c1

td/2
e−c2|x−y|21/t ≤ qω

t (x, y) ≤
c3

td/2
e−c4|x−y|21/t, (GB)

for x, y ∈ C∞(ω), t ≥ max(Sx(ω), 1).

Note. The randomness of the environment is taken care of
by the Sx(ω), which will be small for most points, and large
for the rare ‘bad points’.
The same bounds hold for the discrete transition density.

Random walks onpercolation clusters – p. 16



Quenched invariance principles

Theorem 2. (Sidoravicius and Sznitman, 2004 (d ≥ 4), Berger and
Biskup, 2005, Mathieu and Piatnitski, 2005). A quenched or a.s.
invariance principle holds for Y .

The BB, MP papers used the corrector. This is a
(random) function χ(ω, x) : C∞(ω) → Rd such that
h(x) = x + χ(x) is harmonic.

This implies that if q
(n,ω)
t (x, y) = ndqω

n2t(bnxc, bnyc), then
for f ∈ CK(Rd), with P-probability 1,

∫

q
(n,ω)
t (x, y)f(y)dy →

∫

kt(x, y)f(y)dy

where, kt(x, y) = (2πD)−d/2 exp(−|x − y|2/2Dt), D > 0.
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PHI and Local Limit Theorem

The Gaussian bounds for qω
t (x, y) lead to a Parabolic

Harnack inequality. This gives Hölder continuity of qω
t (x, y),

and will allow us to replace the integrals by pointwise
expressions.

We say a Ball B(x,R) in the graph is good if it has a PI and
a C such that µ(B(x,R)) ≥ CRd. It is very good if all balls of
a reasonable size in B(x,R) are good.
We prove our PHI for very good balls.
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Parabolic Harnack inequality

Let
Q(x,R, T ) = [0, T ] × B(x,R),

and
Q−(x,R, T ) = [14T, 1

2T ] × B(x, 1
2R),

Q+(x,R, T ) = [34T, T ) × B(x, 1
2R).

We say that a function u(n, x) is caloric on Q if u is defined on
Q = ([0, T ] ∩ Z) × B(x,R), and

u(n + 1, y)− u(n, y) = ∆u(n, y) for 0 ≤ n ≤ T − 1, y ∈ B(x,R).
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We say the parabolic Harnack inequality (PHI) holds with
constant CH for Q = Q(x,R, T ) if whenever u = u(n, x) is
non-negative and caloric on Q, then

sup
(n,x)∈Q

−

û(n, x) ≤ CH inf
(n,x)∈Q+

û(n, x). (1)

Q
−

Q
+

R

T0
−R

x

inf u(n,y)sup u(n,x)
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The PHI

We assume that the conductivities µxy are bounded away
from 0 and ∞ (µxx can be 0) and µ(B(x, r)) ≤ crd for r > 1.
Bounds on the heat kernel can be used to establish the PHI
via a balayage argument.
Theorem 3.
Let x0 ∈ G. Suppose that R ≥ 16 and B(x0, R) is very good. Let
x1 ∈ B(x0, R/3), and R1 log R1 = R. Then there exists a constant
CH such that the PHI (in both discrete and continuous time settings)

holds with constant CH for Q(x1, R1, R
2
1).

By applying this PHI on a nested set of cubes we can
control the oscillation in caloric functions.
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Hölder Continuity

Let x0 ∈ G. Suppose the PHI (with constant CH) holds for
Q(x0, R,R2) for R ≥ s(x0). Let θ = log(2CH/(2CH − 1))/ log 2,
and

ρ(x0, x, y) = s(x0) ∨ d(x0, x) ∨ d(x0, y).

Let r0 ≥ s(x0), t0 = r2
0, and suppose that u = u(n, x) is

caloric in Q = Q(x0, r0, r
2
0). Let x1, x2 ∈ B(x0,

1
2r0), and

t0 − ρ(x0, x1, x2)
2 ≤ n1, n2 ≤ t0 − 1. Then

|û(n1, x1) − û(n2, x2)| ≤ c
(ρ(x0, x1, x2)

t
1/2
0

)θ
sup
Q+

|û|.
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Let k
(D)
t (x) be the Gaussian heat kernel in Rd with diffusion

constant D > 0 and let X
(n)
t = n−1/2Xbntc. For x ∈ Rd, set

H(x, r) = x + [−r, r]d, Λ(x, r) = H(x, r) ∩ G. (2)

In general Λ(x, r) will not be connected. Let

Λn(x, r) = Λ(xn1/2, rn1/2).

For x ∈ Rd let gn(x) be a closest point in G to n1/2x, in the
| · |∞ norm.

Random walks onpercolation clusters – p. 23



Assumption 1 There exists a constant δ > 0, and positive
constants D,CH , Ci, aG such that the following hold.
(a) (CLT for X). For any y ∈ Rd, r > 0,

P 0(X
(n)
t ∈ H(y, r)) →

∫

H(y,r)
k

(D)
t (y)dy. (3)

(b) There is an upper heat kernel bound

pk(0, y) ≤ C2k
−d/2, ∀y ∈ G, k ≥ C3.

(c) For each y ∈ G there exists s(y) < ∞ such that the PHI
holds with constant CH for Q(y,R,R2) for R ≥ s(y).
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(d) For any r > 0

µ(Λn(x, r))

(2n1/2r)d
→ aG as n → ∞. (4)

(e) For each r > 0 there exists n0 such that, for n ≥ n0,

|x′ − y′|∞ ≤ d(x′, y′) ≤ (C1|x
′ − y′|∞) ∨ n1/2−δ,

for all x′, y′ ∈ Λn(x, r).

(f) n−1/2+δs(gn(x)) → 0 as n → ∞.

Random walks onpercolation clusters – p. 25



Local version

Theorem 4
Let x ∈ Rd and t > 0. Suppose Assumption 1 holds. Then

lim
n→∞

nd/2p̂nt(0, gn(x)) = 2a−1
G k

(D)
t (x). (5)

Proof idea: Let Λn = Λn(x, κ) = Λ(n1/2x, n1/2κ) and recall

X
(n)
t = n−1/2Xbntc. Let

J(n) = P 0
(

X
(n)
t ∈ Λ(x, κ)

)

+ P 0
(

X
(n)
t+1/n

∈ Λ(x, κ)
)

−2

∫

Λ(x,κ)
kt(y)dy.
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Then

J(n) =
∑

z∈Λn

(

p̂nt(0, z) − p̂nt(0, gn(x))
)

µz

+µ(Λn)p̂nt(0, gn(x)) − µ(Λn)n−d/2a−1
G 2kt(x)

+2kt(x)
(

µ(Λn)n−d/2a−1
G − 2dκd

)

+2

∫

H(x,κ)
(kt(x) − kt(y))dy

We want the second term and deal with the rest by our
assumptions.
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Uniform version

Assumption 2
(a) For any compact I ⊂ (0,∞), the CLT in Assumption 1 (a)
holds uniformly for t ∈ I.
(b) There exist Ci such that

p̂k(0, x) ≤ C2k
−d/2 exp(−C4d(0, x)2/k), for k ≥ C3 and x ∈ G.

(c) We have a PHI as in Assumption 1 (c).
(d) Let h(r) be the size of the biggest ‘hole’ in Λ(0, r). More
precisely, h(r) is the supremum of the r′ such that
Λ(y, r′) = ∅ for some y ∈ H(0, r). Then limr→∞ h(r)/r = 0.
(e) There exist constants δ, C1, CH such that for each
x ∈ Qd Assumption 1 (d), (e) and (f) hold.
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We now state a uniform version of our local limit result.

Theorem 5
Let T1 > 0. Suppose Assumption 2 holds. Then

lim
n→∞

sup
x∈Rd

sup
t≥T1

|nd/2p̂nt(0, gn(x)) − 2a−1
G k

(D)
t (x)| = 0. (6)
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Application to Percolation

With some work we can show that for supercritical
percolation clusters the assumptions of Theorem 5 hold.

Theorem 6
Let T1 > 0. Then there exist constants a, D such that P0-a.s.,

lim
n→∞

sup
x∈Rd

sup
t≥T1

|nd/2p̂ω
nt(0, g

ω
n (x)) − 2a−1k

(D)
t (x)| = 0. (7)

This result holds for both blind and myopic ants as well as
continuous time walks on C∞.
The earlier theorems can be used to prove local limit
theorems for random walks in a bounded random
conductance model.
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