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A Brownian path with positive drift
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from a path with negative drift
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Notation:
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First half of David Williams’ theorem.

Theorem. Let X = (Xt) be a BM starting at 0 with negative
drift, say −b, and let

T := sup{t ≥ 0 : Xs < Xt for all s < t}
be the moment, when it takes its maximum.

Also let X ′ = (X ′
t) be a BM starting at 0 with positive drift b

and let E′ be an independent exponential random variable with
expectation 1/2b. Define the hitting time of E′

τ ′ := inf{t ≥ 0 : X ′
t = E′}.

Then

(Xt)t<T and (X ′
t)t<τ ′

are equal in distribution.
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A generalization.

Let the stochastic process X with values in S ⊂ Rd start at
X0 = x and obey the equation

dX = dW + b(X) dt ,

where W is a d-dimensional standard BM. Let

h : S → R+

be harmonic, i.e. solve the equation

∇h · b +
1

2
∆h = 0 .

Let

T := sup{t ≥ 0 : h(Xs) < h(Xt) for all s < t}

be the moment, when h(Xt) takes its maximum for the first time.
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Continuation.

Also consider the process X ′ given by

dX ′ = dW +
[
b(X ′) +

1

h(X ′)
∇h(X ′)

]
dt

and the hitting time

τ ′ := inf
{
t ≥ 0 : h(X ′

t) =
h(x)

U

}
,

where U is an independent r.v. with uniform distribution in [0,1].

Theorem.

(X)t<T and (X ′
t)t<τ ′

are equal in distribution.
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The second half of the process.

Also consider the process

dX ′′ = dW +
[
b(X ′′)−

1

m− h(X ′′)
∇h(X ′′)

]
dt .

Theorem. Given h(XT ) = m and X ′′
0 = XT

(Xt+T )t≥0 and (X ′′
t )t≥0

are equal in distribution.

Thus:

X is first pushed into the direction, where h takes its supremum,

and then with a sudden kick into the opposite direction.
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Doob-transforms.

Now let X = (Xt)t<ζ denote a strong Markov process with life-

time ζ, right continuous paths in a locally compact state space

S with countable base and probabilities Px. For convenience let

ζ = ∞ Px-a.s.

Further let

h : S → R+

be such that h(Xt) is cadlag. The Doob-transform is the collec-

tion of measures given by

Qx{A} :=
1

h(x)
Ex[h(Xt);A] with A ∈ σ(Xx, s ≤ t) ,

provided that h is an exzessive function.
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Harmonic functions.

h is called harmonic, if it fulfils for all t, C the mean value property

h(x) = Ex[h(Xt∧σ(C))] ,

where σ(C) denotes the exit time of X from the compact subset
C ⊂ S. Let ∂ denote a coffin state.

Proposition. Let h be excessive. Then the following statements
are equivalent:

i) h is harmonic,
ii) Xζ− = ∂ Qx-a.s. on the event ζ < ∞ for all x.

Thus:

h is harmonic, iff killing of X cannot occur by a jump to ∂ under
Qx.

10



Processes with continuous paths.

Again let

T := sup{t ≥ 0 : h(Xs) < h(Xt) for all s < t}
and

τ := inf
{
t ≥ 0 : h(Xt) =

h(X0)

U

}
with independent U , uniform in [0,1].

Theorem. Let X have continuous paths (or more generally h(X)
upwards skipfree), then

LPx

[
(Xt)t<T

]
= LQx

[
(Xt)t<τ

]
.

In particular, T coinsides in distribution with a hitting time.
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Example: Brownian Bridge (space-time harmonic function).

h(x, t) :=
√

1− t exp
(
x2/2(1− t)

)
Levellines:
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Choose a random levelline according to h(x, t) = 1/U . Start with

a standard BM, till it hits the line.
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Markov chains.

Let (Xn) be a discrete time Markov chain with general state

space S and transition kernel P (x, dy), and let

h : S → R+

be harmonic, i.e. Ph = h. Then the h-transform is given by the

kernel

Q(x, dy) :=
1

h(x)
P (x, dy)h(y) .

Matters seem easier.
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Why not replace τ here by

τw := min
{
n ≥ 0 : h(Xn) ≥

h(x)

U

}
?

But: τw = τwrong !

Namely with this choice:

Qx

{
h(Xτw) ≥ y

}
≥ Qx

{
h(x)

U
≥ y

}
=

h(x)

y

whereas by Doob’s inequality

Px{h(XT ) ≥ y} = Px{h(Xτw) ≥ y} ≤
h(x)

y
.
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The right choice:

-

6

h(x)
U

τ

h(Xt)
h(x) @

@
@

@
@

@
@

@
@���

���
���

�
�

�
�

�
�

�
�
�

````````̀ �
�

�
�

�
�

�
��@

@
@

@
@

@
@

@
@

16



Thus choose τ as the moment, when h(Xn) reaches its maximum

(for the first time), before h(x)/U is surpassed,

τ := max
{
n ≥ 0 : h(Xm) < h(Xn) <

h(x)

U
for all m < n

}
Then

Theorem. For a Markov chain

LPx

[
(Xn)n≤T

]
= LQx

[
(Xn)n≤τ

]
.
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The general result for cadlag paths.

Here we have to consider

T := sup{t ≥ 0 : h(Xs) < h(Xt) ∨ h(Xt−) for all s < t}

and,

τ := sup
{
t ≥ 0 :

h(Xs) < h(Xt) ∨ h(Xt−) <
h(X0)

U
for all s < t

}
This is the time of last maximum, before h(X0)/U is surpassed.

Note that in contrast to T the value of τ may be settled in finite

time.
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Millar’s theorem

Theorem. Given (Xt)t≤T and given that h(XT ) ∨ h(XT−) = m,

the process (XT+t)t>0 is strong Markov under Px. Its marginal

distributions form an entrance law on {x ∈ S : h(x) ≤ m} with

respect to the transition kernel

Qm
t (x, dy) := Px{Xt ∈ dy| sup

s
h(Xs) ≤ m}.

The statement seems obvious, but the proof is profound.
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