Path Decomposition of Markov Processes

Götz Kersting

University of Frankfurt/Main

joint work with Kaya Memisoglu, Jim Pitman

A Brownian path with positive drift

from a path with negative drift

Notation:

First half of David Williams' theorem.

Theorem. Let $X=\left(X_{t}\right)$ be a BM starting at 0 with negative drift, say $-b$, and let

$$
T:=\sup \left\{t \geq 0: X_{s}<X_{t} \text { for all } s<t\right\}
$$

be the moment, when it takes its maximum.
Also let $X^{\prime}=\left(X_{t}^{\prime}\right)$ be a BM starting at 0 with positive drift b and let E^{\prime} be an independent exponential random variable with expectation $1 / 2 b$. Define the hitting time of E^{\prime}

$$
\tau^{\prime}:=\inf \left\{t \geq 0: X_{t}^{\prime}=E^{\prime}\right\}
$$

Then

$$
\left(X_{t}\right)_{t<T} \quad \text { and } \quad\left(X_{t}^{\prime}\right)_{t<\tau^{\prime}}
$$

are equal in distribution.

A generalization.
Let the stochastic process X with values in $S \subset \mathbb{R}^{d}$ start at $X_{0}=x$ and obey the equation

$$
d X=d W+b(X) d t
$$

where W is a d-dimensional standard BM. Let

$$
h: S \rightarrow \mathbb{R}^{+}
$$

be harmonic, i.e. solve the equation

$$
\nabla h \cdot b+\frac{1}{2} \Delta h=0 .
$$

Let

$$
T:=\sup \left\{t \geq 0: h\left(X_{s}\right)<h\left(X_{t}\right) \text { for all } s<t\right\}
$$

be the moment, when $h\left(X_{t}\right)$ takes its maximum for the first time.

Continuation.

Also consider the process X^{\prime} given by

$$
d X^{\prime}=d W+\left[b\left(X^{\prime}\right)+\frac{1}{h\left(X^{\prime}\right)} \nabla h\left(X^{\prime}\right)\right] d t
$$

and the hitting time

$$
\tau^{\prime}:=\inf \left\{t \geq 0: h\left(X_{t}^{\prime}\right)=\frac{h(x)}{U}\right\}
$$

where U is an independent r.v. with uniform distribution in $[0,1]$.

Theorem.

$$
(X)_{t<T} \quad \text { and } \quad\left(X_{t}^{\prime}\right)_{t<\tau^{\prime}}
$$

are equal in distribution.

The second half of the process.
Also consider the process

$$
d X^{\prime \prime}=d W+\left[b\left(X^{\prime \prime}\right)-\frac{1}{m-h\left(X^{\prime \prime}\right)} \nabla h\left(X^{\prime \prime}\right)\right] d t .
$$

Theorem. Given $h\left(X_{T}\right)=m$ and $X_{0}^{\prime \prime}=X_{T}$

$$
\left(X_{t+T}\right)_{t \geq 0} \quad \text { and } \quad\left(X_{t}^{\prime \prime}\right)_{t \geq 0}
$$

are equal in distribution.

Thus:

X is first pushed into the direction, where h takes its supremum, and then with a sudden kick into the opposite direction.

Doob-transforms.

Now let $X=\left(X_{t}\right)_{t<\zeta}$ denote a strong Markov process with lifetime ζ, right continuous paths in a locally compact state space S with countable base and probabilities \mathbf{P}_{x}. For convenience let $\zeta=\infty \mathrm{P}_{x-}$ a.s.

Further let

$$
h: S \rightarrow \mathbb{R}^{+}
$$

be such that $h\left(X_{t}\right)$ is cadlag. The Doob-transform is the collection of measures given by

$$
\mathrm{Q}_{x}\{A\}:=\frac{1}{h(x)} \mathbf{E}_{x}\left[h\left(X_{t}\right) ; A\right] \quad \text { with } \quad A \in \sigma\left(X_{x}, s \leq t\right)
$$

provided that h is an exzessive function.

Harmonic functions.
h is called harmonic, if it fulfils for all t, C the mean value property

$$
h(x)=\mathbf{E}_{x}\left[h\left(X_{t \wedge \sigma(C)}\right)\right]
$$

where $\sigma(C)$ denotes the exit time of X from the compact subset $C \subset S$. Let ∂ denote a coffin state.

Proposition. Let h be excessive. Then the following statements are equivalent:
i) h is harmonic,
ii) $X_{\zeta-}=\partial \mathrm{Q}_{x}-a . s$. on the event $\zeta<\infty$ for all x.

Thus:

h is harmonic, iff killing of X cannot occur by a jump to ∂ under Q_{x}.

Processes with continuous paths.
Again let

$$
T:=\sup \left\{t \geq 0: h\left(X_{s}\right)<h\left(X_{t}\right) \text { for all } s<t\right\}
$$

and

$$
\tau:=\inf \left\{t \geq 0: h\left(X_{t}\right)=\frac{h\left(X_{0}\right)}{U}\right\}
$$

with independent U, uniform in $[0,1]$.
Theorem. Let X have continuous paths (or more generally $h(X)$ upwards skipfree), then

$$
\mathcal{L}_{\mathbf{P}_{x}}\left[\left(X_{t}\right)_{t<T}\right]=\mathcal{L}_{\mathbf{Q}_{x}}\left[\left(X_{t}\right)_{t<\tau}\right]
$$

In particular, T coinsides in distribution with a hitting time.

Example: Brownian Bridge (space-time harmonic function).

$$
h(x, t):=\sqrt{1-t} \exp \left(x^{2} / 2(1-t)\right)
$$

Levellines:

Choose a random levelline according to $h(x, t)=1 / U$. Start with a standard BM, till it hits the line.

Markov chains.

Let $\left(X_{n}\right)$ be a discrete time Markov chain with general state space S and transition kernel $P(x, d y)$, and let

$$
h: S \rightarrow \mathbb{R}^{+}
$$

be harmonic, i.e. $P h=h$. Then the h-transform is given by the kernel

$$
Q(x, d y):=\frac{1}{h(x)} P(x, d y) h(y) .
$$

Matters seem easier.

Why not replace τ here by

$$
\tau_{w}:=\min \left\{n \geq 0: h\left(X_{n}\right) \geq \frac{h(x)}{U}\right\} ?
$$

But: $\tau_{w}=\tau_{\text {wrong }}$!

Namely with this choice:

$$
\mathbf{Q}_{x}\left\{h\left(X_{\tau_{w}}\right) \geq y\right\} \geq \mathbf{Q}_{x}\left\{\frac{h(x)}{U} \geq y\right\}=\frac{h(x)}{y}
$$

whereas by Doob's inequality

$$
\mathbf{P}_{x}\left\{h\left(X_{T}\right) \geq y\right\}=\mathbf{P}_{x}\left\{h\left(X_{\tau_{w}}\right) \geq y\right\} \leq \frac{h(x)}{y} .
$$

The right choice:

Thus choose τ as the moment, when $h\left(X_{n}\right)$ reaches its maximum (for the first time), before $h(x) / U$ is surpassed,

$$
\tau:=\max \left\{n \geq 0: h\left(X_{m}\right)<h\left(X_{n}\right)<\frac{h(x)}{U} \text { for all } m<n\right\}
$$

Then

Theorem. For a Markov chain

$$
\mathcal{L}_{\mathbf{P}_{x}}\left[\left(X_{n}\right)_{n \leq T}\right]=\mathcal{L}_{\mathbf{Q}_{x}}\left[\left(X_{n}\right)_{n \leq \tau}\right] .
$$

The general result for cadlag paths.

Here we have to consider

$$
T:=\sup \left\{t \geq 0: h\left(X_{s}\right)<h\left(X_{t}\right) \vee h\left(X_{t-}\right) \text { for all } s<t\right\}
$$

and,

$$
\begin{aligned}
\tau:=\sup \{ & t \geq 0: \\
& \left.h\left(X_{s}\right)<h\left(X_{t}\right) \vee h\left(X_{t-}\right)<\frac{h\left(X_{0}\right)}{U} \text { for all } s<t\right\}
\end{aligned}
$$

This is the time of last maximum, before $h\left(X_{0}\right) / U$ is surpassed. Note that in contrast to T the value of τ may be settled in finite time.

Millar's theorem

Theorem. Given $\left(X_{t}\right)_{t \leq T}$ and given that $h\left(X_{T}\right) \vee h\left(X_{T-}\right)=m$, the process $\left(X_{T+t}\right)_{t>0}$ is strong Markov under \mathbf{P}_{x}. Its marginal distributions form an entrance law on $\{x \in S: h(x) \leq m\}$ with respect to the transition kernel

$$
Q_{t}^{m}(x, d y):=\mathbf{P}_{x}\left\{X_{t} \in d y \mid \sup _{s} h\left(X_{s}\right) \leq m\right\}
$$

The statement seems obvious, but the proof is profound.

