Probabilistic Aspects of Voting

UUGANBAATAR NINJBAT

DEPARTMENT OF MATHEMATICS THE NATIONAL UNIVERSITY OF MONGOLIA SAAM 2015

Outline

- 1. Introduction to voting theory
- 2. Probability and voting
- 2.1. Aggregating noisy signals: The Condorcet Jury Theorem
- 2.2. Let's calculate probability: Bertrand's Ballot Theorem
- 2.3. Probability is a richer language: Gibbard's random dictator theorem
- 3. Final remarks

1.What is voting theory?

- In the end democracy pins down to voting!
- Then, how should we organize voting properly? i.e. What is a good voting procedure? and Which voting system is the best? etc.
- As a byproduct of developments in the age of enlightenment a formal approach to this question is emerged with contributions of
- Marquis de Condorcet (1743-1794)
- Jean Charles de Borda (1733-1799)
- Joseph Bertrand (1822 - 1900)
- Charles Dodgson (1832 - 1898), etc.
- The formal approach is based on the following analysis:
- Which voting scheme has which property?

1.Voting Schemes

- A general rule: When we have two alternatives the simple majority rule does the job!
- What if we have more than two alternatives?
- Firstly, the simple majority does not work!
- Condorcet paradox: Suppose there are 3 voters and 3 alternatives, A, B, C and the rankings are $(A B C),(B C A),(C A B)$, respectively. Then majority prefers A to B, B to C and C to A.
- Yet Condorcet proposed the following method: Collect the ballots (i.e. the rankings and ties are allowed), and apply majority rule on all pairwise comparisons of alternatives. If there is a winner, it must be chosen. (If not, then use the Kemeny-Young extension!)

1.The Condorcet vs. Borda

- Suppose after collecting ballots outcome is as follows:

\# of voters	2	2	3	2
Ballots	$(B>C>A)$	$(B>A>C)$	$(A>B>C)$	$(C>A>B)$

- The Condorcet winner is A.
- But one can argue that B is not inferior to A. Indeed that is what Borda rule says: In case of $m \in \mathbb{N}$ alternatives assign the score of $m-i$ to the i 'th ranked alternative in every ballot and rank alternatives according to their total scores.
- The Borda winner is B.
- Both methods are known to have some drawbacks! ...

2.1. The Condorcet's jury theorem

- Motivation: When is a group decision better than individual decision? What is the optimal size of a committee?
- Problem: Consider a jury with three members each of which has the probability p of making the right decision, and $1-p$ of getting the wrong. Assume also that the probabilities are independent. If the committee outcome is based on the majority rule, what is the probability of jury getting the right decision?
- Answer: $P_{3}=p^{3}+3 p^{2}(1-p)$ and $P_{3}>p$ iff $p>\frac{1}{2}$

2.1. The Condorcet's jury theorem

- Theorem (Condorcet, 1785): Suppose there are $n \in \mathbb{N}$ (assume n is odd) jurors and their votes are i.i.d draws from the Bernoulli distribution with success probability p. Let P_{n} be the probability that the majority of the jury members vote for success. Then,
- If $0.5<p<1$ and $n \geq 3$, then $P_{n}>p, P_{n}$ increases with n and $P_{n} \rightarrow 1$ as $n \rightarrow \infty$;
- If $0.5>p>0$ and $n \geq 3$, then $P_{n}<p, P_{n}$ dicreases with n and $P_{n} \rightarrow 0$ as $n \rightarrow \infty$; and
- If $0.5=p$, or $p=1$, then $P_{n}=\mathrm{p}$ for all $n \in \mathbb{N}$.
- Proof: Notice that $P_{n}=\sum_{x=\frac{n+1}{2}}^{n} f(x)$ where $f(x)=$ $\binom{n}{x} p^{x}(1-p)^{n-x}$ and recall the LLN.

2.1. The Condorcet's jury theorem

- CJT is nice in the sense that it gives a formal basis for group action (i.e. democracy).
- From voting theory perspective, it is a theorem about majority rule. Indeed one can further show that majority rule is the best estimator in this context (Proof by the Neyman-Pearson lemma!).
- It allows for many extensions. For example, Owen et al., (1989) shows that when jurors have different levels of competence each greater than 0.5 , or any case, its average is greater than 0.5 , group deciding via majority rule is better than average member, and its competence increases with group size and approaches to 1.
- REF: Owen G., Grofman B. and S.L.Feld (1989) Proving distribution free generalization of the CJT, Math. Soc. Sciences, 17: 1-16

2.2. Bertand's Ballot Theorem

- Theorem (Bertrand, 1887): Suppose there are $n+m$ voters and two candidates A, B receiving n, m votes respectively with $n>m$ (so A is the winner). If voters cast their ballots in a random order the probability that A has more votes than B at all times during the election is $\frac{n-m}{n+m}$.
- Proof: Let X_{i} be the random variable that takes value 1 if i 'th voter votes for A and -1 , if otherwise. Consider the sum $S_{k}=X_{1}+\cdots+X_{k}$ and clearly $S_{n+m}=n-m$. On a two dimensional grid consider points
$\left(0, S_{0}\right),\left(1 S_{1}\right), \ldots,\left(n-m, S_{n+m}\right)$ and we call the line connecting these points as a path.

2.2. Bertand's Ballot Theorem

- Then our problem reduces to counting the number of paths that lie strictly above X-axis (except the origin), and that of all paths, and finding their ratio.
- Counting the latter is easy: $\binom{n+m}{n}$.
- Count the former as follows: First count the number of paths that intersect with X-axis and then subtract it from $\binom{n+m}{n}$.

2.2. Bertand's Ballot Theorem

- Reflection principle: The number paths that intersect with Xaxis is twice the number of paths starting at $(-1,-1)$ and ends ($n-m, n+m$).

- Thus, $p=\frac{\binom{n+m}{n}-2\binom{n+m-1}{n}}{\binom{n+m}{n}}=\frac{n-m}{n+m}$.

2.2. Bertand's Ballot Theorem

- This problem quite delicate and relevant for both combinatorics and probability theory. Thus, elections can lead to interesting problems!
- It also allows for various generalizations including continuous versions (see REF below).
- From the point of voting the reverse problem sounds also interesting: Given the past history, what is it chance of a candidate (a party) winning in the next?
- REF: Addario-Berry L. and B.A.Reed (2008) Ballot theorems, old and new. In Horizons of Combinatorics, Bolyai Soc. Math. Stud. Vol. 17: 9-35.

2.3. Gibbard's Random Dictatorship Theorem

- Setting: N is the set of voters, and \mathbf{A} is the set of alternatives with n and $m>2$ elements, respectively. Voter $i=1, \ldots, n$ has a strict preferences ordering over \mathbf{A}. Let $L(\mathbf{A})$ is the set of all possible strict orderings on \boldsymbol{A} and $\boldsymbol{P}(\boldsymbol{A})$ be the set all probability distributions over \boldsymbol{A}.
- A decision scheme is a mapping $f: \boldsymbol{L}(\boldsymbol{A})^{n} \rightarrow \boldsymbol{P}(\boldsymbol{A})$.
- Payoff (or utility): Given f, at any profile $l \in \boldsymbol{L}(\boldsymbol{A})^{n}$ voter $i \in N$ receives
- $U_{i}(f(l), l)=\sum_{j=1}^{m} u_{i}\left(x_{j}, l\right) \cdot p\left(x_{j}, l\right)$ where $u_{i}(.,):. \boldsymbol{A} \times \boldsymbol{L}(\boldsymbol{A})^{n} \rightarrow \mathbb{R}$ is a nonrandom utility representation.
- Axioms:

Strategy Proof: Take any pair $l, l^{\prime} \in \boldsymbol{L}(\boldsymbol{A})^{n}$ which are identical except voter i 's ranking. If for some $u_{i}(.,$.$) representing i$'s ranking we have $U_{i}\left(f\left(l^{\prime}\right), l\right)>U_{i}(f(l), l)$ then f is manipulable for her at $l \in \boldsymbol{L}(\boldsymbol{A})^{n} . f$ is STP if it is never manipulable.

- (Ex post) Pareto: For any $x, y \in A$ and any $l \in L(A)^{n}$ if every voter prefers x to y at l, then $p(y, l)=0$.

2.3. Gibbard's Random Dictatorship Theorem

14

- Randomly dictatorial decision scheme: A dictatorial decision scheme is the one that picks one voter and always chooses her best alternative as an outcome. $f: \boldsymbol{L}(\boldsymbol{A})^{n} \rightarrow \boldsymbol{P}(\boldsymbol{A})$ is r.d. if it is a convex combination of some dictatorial decision schemes.
- Theorem (Gibbard, 1977):

Let $m>2$. Then $f: \boldsymbol{L}(\boldsymbol{A})^{n} \rightarrow \boldsymbol{P}(\boldsymbol{A})$ satisfies STP and Pareto iff it is randomly dictatorial.

- Proof: See

Gibbard A. (1977) Manipulation of schemes that mix voting with chance, Econometrica 45: 665-681
${ }^{2}$ Tanaka Y. (2003) An alternative proof of Gibbard's random dictatorship theorem, Rev. Econ. Design 8: 319-328.

2.3. Gibbard's Random Dictatorship Theorem

- It is an extension of the so called GibbardSatterhwaite impossibility theorem (see the REF below).
- Thus, it is a theorem about the notion of STP.
- A continuous analog of this theorem is yet to be formulated!
- REF:

Ninjbat U. (2012) Another direct proof for the GibbardSatterthwaite theorem, Econ. Letters 116(3): 418-421.
*Ninjbat U. (2015) Impossibility theorems are modified and unified, to appear in Soc. Choice Welf.

3. Final comments

- Diversity and unity are equally important in doing research!
- Accordingly, we presented three results in voting theory with elements probability in it which suggest that voting and probability are mutually relevant:
- Probability is relevant for voting (see CJT)
- Voting is relevant for probability (see Ballot theorem)
- Its likely that the most of classical results admit a probabilistic version (see Gibbard's RDT)
- There is not much stochastic analysis (explicit) in here! But there certainly is a room for it!
- It makes sense to think ballots as realizations of some random variables
- Idea of conditioning also makes lots of sense in this context, etc.

Some more references

General introduction:

- Wallis W.D. (2014) The Mathematics of Elections and Voting, Springer.
- Nitzan S. (2010) Collective Preferences and Choice, CUP.

Statistical approach:

- Balinksi M., R.Laraki (2011) Measuring, Ranking and Electing, MIT Press.
- Pivato M. (2013) Voting rules as statistical estimators, Soc. Choice Welf. 40(2): 581-630.
- Häggström O., Kalai G., Mossel E. (2006) A law of large numbers for weighted majority, Advances in applied mathematics 37(1): 112 - 123.

