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1.What is voting theory? 

y In the end democracy pins down to voting!  
y Then, how should we organize voting properly? i.e. What 

is a good voting procedure? and Which voting system is 
the best? etc. 

y As a byproduct of developments in the age of 
enlightenment a formal approach to this question is 
emerged with contributions of 
{ Marquis de Condorcet (1743 − 1794) 
{ Jean Charles de Borda (1733 − 1799) 
{ Joseph Bertrand (1822 − 1900) 
{ Charles Dodgson (1832 − 1898), etc. 

y The formal approach is based on the following analysis: 
{ Which voting scheme has which property?  
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1.Voting Schemes 

y A general rule: When we have two alternatives the 
simple majority rule does the job!  

y What if we have more than two alternatives? 
y Firstly, the simple majority does not work! 
{ Condorcet paradox: Suppose there are 3  voters and 3 

alternatives, 𝐴, 𝐵, 𝐶 and the rankings are 𝐴𝐵𝐶 , 𝐵𝐶𝐴 , (𝐶𝐴𝐵), 
respectively. Then majority prefers 𝐴 to 𝐵, 𝐵 to 𝐶 and 𝐶 to 𝐴. 

y Yet Condorcet proposed the following method: 
Collect the ballots (i.e. the rankings and ties are 
allowed), and apply majority rule on all pairwise 
comparisons of alternatives. If there is a winner, it 
must be chosen. (If not, then use the Kemeny-Young 
extension!) 
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1.The Condorcet vs. Borda 

y Suppose after collecting ballots outcome is as 
follows:  
 

 
y The Condorcet winner is 𝐴. 
y But one can argue that 𝐵 is not inferior to 𝐴. Indeed 

that is what Borda rule says: In case of 𝑚 ∈ ℕ 
alternatives assign the score of 𝑚 − 𝑖  to the 𝑖 ’th 
ranked alternative in every ballot and rank 
alternatives according to their total scores.  

y The Borda winner is 𝐵. 
y Both methods are known to have some drawbacks! … 
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# of voters 2 2 3 2 

Ballots (𝐵 ≻ 𝐶 ≻ 𝐴) (𝐵 ≻ 𝐴 ≻ 𝐶) (𝐴 ≻ 𝐵 ≻ 𝐶) (𝐶 ≻ 𝐴 ≻ 𝐵) 



2.1. The Condorcet’s jury theorem 
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y Motivation: When is a group decision better than 
individual decision? What is the optimal size of a 
committee?  

y Problem: Consider a jury with three members each 
of which has the probability 𝑝 of making the right 
decision, and 1 − 𝑝 of getting the wrong. Assume also 
that the probabilities are independent. If the 
committee outcome is based on the majority rule, 
what is the probability of jury getting the right 
decision?  
{ Answer: 𝑃3 = 𝑝3 + 3𝑝2(1 − 𝑝) and 𝑃3 > 𝑝 iff 𝑝 > 1
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2.1. The Condorcet’s jury theorem 
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y Theorem (Condorcet, 1785): Suppose there are 𝑛 ∈ ℕ 
(assume 𝑛 is odd) jurors and their votes are 𝑖. 𝑖. 𝑑 draws 
from the Bernoulli distribution with success probability 
𝑝. Let 𝑃𝑛 be the probability that the majority of the jury 
members vote for success. Then, 
{ If 0.5 < 𝑝 < 1 and 𝑛 ≥ 3, then 𝑃𝑛> p, 𝑃𝑛 increases with 𝑛 and 𝑃𝑛 → 1 

as 𝑛 → ∞; 
{ If 0.5 > 𝑝 > 0 and 𝑛 ≥ 3, then 𝑃𝑛< p, 𝑃𝑛 dicreases with 𝑛 and 𝑃𝑛 → 0 

as 𝑛 → ∞; and 
{ If 0.5 = 𝑝, or 𝑝 = 1, then 𝑃𝑛= p for all 𝑛 ∈ ℕ. 

y Proof: Notice that 𝑃𝑛 =  𝑓(𝑥)𝑛
𝑥=𝑛+12

 where 𝑓 𝑥 =
𝑛
𝑥 𝑝𝑥(1 − 𝑝)𝑛−𝑥 and recall the LLN.  



2.1. The Condorcet’s jury theorem 
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y CJT is nice in the sense that it gives a formal basis for 
group action (i.e. democracy). 

y From voting theory perspective, it is a theorem about 
majority rule. Indeed one can further show that 
majority rule is the best estimator in this context 
(Proof by the Neyman-Pearson lemma!).  

y It allows for many extensions. For example, Owen et al., 
(1989) shows that when jurors have different levels of 
competence each greater than 0.5 , or any case, its 
average is greater than 0.5, group deciding via majority 
rule is better than average member, and its competence 
increases with group size and approaches to 1. 
{ REF: Owen G., Grofman B. and S.L.Feld (1989) Proving distribution 

free generalization of the CJT, Math. Soc. Sciences, 17:  1 − 16 



2.2. Bertand’s Ballot Theorem 
9 

y Theorem (Bertrand, 1887): Suppose there are 𝑛 +𝑚 
voters and two candidates 𝐴, 𝐵 receiving 𝑛,𝑚 votes 
respectively with 𝑛 > 𝑚 (so 𝐴 is the winner). If voters 
cast their ballots in a random order the probability 
that 𝐴 has more votes than 𝐵 at all times during the 
election is 𝑛−𝑚𝑛+𝑚. 
{ Proof: Let 𝑋𝑖 be the random variable that takes value 1 if 𝑖’th 

voter votes for 𝐴 and −1, if otherwise. Consider the sum 
𝑆𝑘 = 𝑋1 +⋯+ 𝑋𝑘 and clearly 𝑆𝑛+𝑚 = 𝑛 −𝑚. On a two 
dimensional grid consider points 
0, 𝑆0 , 1 𝑆1 , … , 𝑛 − 𝑚, 𝑆𝑛+𝑚  and we call the line connecting 

these points as a path. 



2.2. Bertand’s Ballot Theorem 
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{ Then our problem reduces to counting the number of paths 

that lie strictly above X-axis (except the origin), and that of all 
paths, and finding their ratio. 

{ Counting the latter is easy: 𝑛+𝑚
𝑛 . 

{ Count the former as follows: First count the number of paths 
that intersect with X-axis and then subtract it from 𝑛+𝑚𝑛 . 



2.2. Bertand’s Ballot Theorem 
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{ Reflection principle: The number paths that intersect with X-
axis is twice the number of paths starting at (−1,−1) and ends 
(𝑛 − 𝑚, 𝑛 +𝑚). 
 
 
 

 
 

{ Thus, 𝑝 =
𝑛+𝑚
𝑛 −2 𝑛+𝑚−1

𝑛
𝑛+𝑚
𝑛

= 𝑛−𝑚
𝑛+𝑚. 



2.2. Bertand’s Ballot Theorem 
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y This problem quite delicate and relevant for both 
combinatorics and probability theory. Thus, 
elections can lead to interesting problems! 

y It also allows for various generalizations including 
continuous versions (see REF below). 

y From the point of voting the reverse problem sounds 
also  interesting: Given the past history, what is it 
chance of a candidate (a party) winning in the next? 
{ REF: Addario-Berry L. and B.A.Reed (2008) Ballot theorems, 

old and new. In Horizons of Combinatorics, Bolyai Soc. Math. 
Stud. Vol. 17:  9 − 35.  



2.3. Gibbard’s Random Dictatorship Theorem 
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y Setting: N is the set of voters, and 𝐀 is the set of alternatives 
with 𝑛 and 𝑚 > 2 elements, respectively. Voter 𝑖 = 1, … , 𝑛 has 
a strict preferences ordering over 𝐀. Let 𝑳(𝐀) is the set of all 
possible strict orderings on 𝑨  and 𝑷(𝑨)  be the set all 
probability distributions over 𝑨. 

y A decision scheme is a mapping 𝑓: 𝑳(𝑨)𝑛 → 𝑷(𝑨).  
y Payoff (or utility): Given 𝑓, at any profile 𝑙 ∈ 𝑳(𝑨)𝑛 voter 𝑖 ∈ 𝑁 

receives 
{ 𝑈𝑖 𝑓 𝑙 , 𝑙 =  𝑢𝑖(𝑥𝑗, 𝑙) ∙ 𝑝(𝑥𝑗, 𝑙)𝑚

𝑗=1  where 𝑢𝑖 . , . : 𝑨 × 𝑳(𝑨)𝑛 → ℝ is a non-
random utility representation. 

y Axioms:  
{ Strategy Proof: Take any pair 𝑙, 𝑙′ ∈ 𝑳(𝑨)𝑛 which are identical except 

voter 𝑖’s ranking. If for some 𝑢𝑖(. , . ) representing 𝑖’s ranking we have 
𝑈𝑖 𝑓 𝑙′ , 𝑙 > 𝑈𝑖 𝑓 𝑙 , 𝑙  then 𝑓 is manipulable for her at 𝑙 ∈ 𝑳(𝑨)𝑛. 𝑓 is 
STP if it is never manipulable. 

{ (Ex post) Pareto: For any 𝑥, 𝑦 ∈ 𝑨 and any 𝑙 ∈ 𝑳(𝑨)𝑛 if every voter prefers 
𝑥 to 𝑦 at 𝑙, then 𝑝 𝑦, 𝑙 = 0. 



2.3. Gibbard’s Random Dictatorship Theorem 
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y Randomly dictatorial decision scheme: A dictatorial 
decision scheme is the one that picks one voter and 
always chooses her best alternative as an outcome. 
𝑓: 𝑳(𝑨)𝑛 → 𝑷(𝑨) is r.d. if it is a convex combination 
of some dictatorial decision schemes. 

y Theorem (Gibbard, 1977):  
 Let 𝑚 > 2. Then 𝑓: 𝑳(𝑨)𝑛 → 𝑷(𝑨) satisfies STP 
 and Pareto iff it is randomly dictatorial. 
{ Proof: See 

Ù Gibbard A. (1977) Manipulation of schemes that mix voting with 
chance, Econometrica 45:  665 − 681 

Ù Tanaka Y. (2003 ) An alternative proof of Gibbard’s random 
dictatorship theorem, Rev. Econ. Design 8:  319 − 328. 

 



2.3. Gibbard’s Random Dictatorship Theorem 
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y It is an extension of the so called Gibbard-
Satterhwaite impossibility theorem (see the REF 
below). 

y Thus, it is a theorem about the notion of STP. 
y A continuous analog of this theorem is yet to be 

formulated! 
{ REF:  

Ù Ninjbat U. ( 2012 ) Another direct proof for the Gibbard-
Satterthwaite theorem, Econ. Letters 116(3):  418 − 421.  

Ù Ninjbat U. ( 2015 ) Impossibility theorems are modified and 
unified, to appear in Soc. Choice Welf. 



3. Final comments 
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y Diversity and unity are equally important in doing 
research! 

y Accordingly, we presented three results in voting theory 
with elements probability in it which suggest that voting 
and probability are mutually relevant:  
{ Probability is relevant for voting (see CJT) 
{ Voting is relevant for probability (see Ballot theorem) 
{ Its likely that the most of classical results admit a probabilistic 

version (see Gibbard’s RDT) 

y There is not much stochastic analysis (explicit) in here! 
But there certainly is a room for it! 
{ It makes sense to think ballots as realizations of some random 

variables 
{ Idea of conditioning also makes lots of sense in this context, etc. 
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