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0.1 Basic Notions

Definition. A Galton-Watson process is a Markov chain {Z(n), n = 0, 1, 2, ..}
on nonnegative integers. Its transition function is specified by a probability law
{pk, k = 0, 1, ...}, pk ≥ 0,

∑

pk = 1 with

Pij = P {Z(n + 1) = j|Z(n) = i} =

{

p∗i
j if i ≥ 1, j ≥ 0

δ0j if i = 0, j ≥ 0.

where
p∗i

j =
∑

j1+...+ji=j

pj1pj2 ...pji
.

Generating functions.
It is usually denoted by F and is viewed as a function of a real variable

s ∈ [0, 1]:

F (s) = E[sξ ] =

∞
∑

k=0

P(ξ = k)sk =

∞
∑

k=0

pksk, 0 ≤ s ≤ 1, (1)

in terms of a random variable ξ giving the offspring of an individual, or in terms
of its distribution p0, p1, p2, . . . . For geometric offspring size distribution we have

F (s) =

∞
∑

k=0

qpksk =
q

1 − ps
.
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It is not difficult to understand that

Z(n + 1) = ξn1 + ... + ξnZ(n),

where ξni
d
= ξ are iid. Iterations

F0(s) = s, Fn+1(s) = Fn(F (s)).

In particular, given Z(0) = 1

F (n + 1, s) : = EsZ(n+1) = E
[

E
[

sZ(n+1)|Z(n)
]]

= E
[

E
[

sξn1+...+ξnZ(n)
]

Z(n)
]

= E
(

Esξ
)Z(n)

= F (n, F (s)) = ... = Fn+1(s).

0.2 Classification

A = Eξ = EZ(1) = F
′

(1).

The process is called subcritical if A < 1, critical, if A = 1 and supercritical, if
A > 1.

The expacted number of individuals and the second factorial moment for the
number of particles at the n-th generation can be calculated by

EZ(n) =
(

EsZ(n)
)′

|s=1 = (Fn(s))
′
|s=1 =

(

F
′

(1)
)n

= An

and

E[Z(n)(Z(n) − 1)] = AE[Z(n − 1)(Z(n − 1) − 1)] + F ′′(1)A2(n−1).

Hence, given Z(0) = 1 we get

E[Z(n)(Z(n) − 1)] = F ′′(1)
An−1(An − 1)

A − 1
,

if A 6= 1 and E[Z(n)(Z(n) − 1)] = F ′′(1)n in the critical case. Consequently
with σ2 = V ar[ξ] = F ′′(1) − A(A − 1) and Z(0) = 1 it follows that

V ar[Z(n)] =

{

σ2 An−1(An−1)
A−1 if A 6= 1,

σ2n if A = 1.
(2)
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0.3 Calculation of iterations for the pure geometric repro-

duction law

F (s) =
∞
∑

k=0

qpksk =
q

1 − ps
.

Clearly, F
′

(1) = A = p/q. Further we have

1 − F (s) =
p(1 − s)

1 − ps

and

1

1 − F (s)
−

1

A(1 − s)

=
1 − ps

p(1 − s)
−

q

p(1 − s)
= 1.

Thus,

1

1 − Fn(s)
−

1

A(1 − Fn−1(s))
=

1

1 − F (Fn−1(s))
−

1

A(1 − Fn−1(s))
= 1

or

1

1 − Fn(s)
= 1 +

1

A(1 − Fn−1(s))
= 1 +

1

A
+

1

A2(1 − Fn−2(s))
= . . . .

The end of this is a simple closed form,

1

1 − Fn(s)
= 1 + (1/A) + (1/A)2 + . . . + (1/A)n−1 + 1/An(1 − s)

=







An−1
An−1(A−1) + 1

An(1−s) if A 6= 1

n + 1
1−s

if A = 1.

Therefore,if A 6= 1 then

1 − Fn(s) =
An(A − 1)(1 − s)

A(An − 1)(1 − s) + A − 1
. (3)

and if A = 1 then

1 − Fn(s) =
1

n + (1 − s)−1
.

Survival probability: if A = p/q 6= 1 then

P (Z(n) > 0) = 1 − Fn(0)

=
An(A − 1)

A(An − 1) + A − 1
=

An+1(1 − 1/A)

An+1 − 1

=

(

p
q

)n

(1 − p
q
)

1 −
(

p
q

)n+1 ,
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if A = 1 then

P (Z(n) > 0) =
1

n + 1
.

In particular, if A > 1 then

lim
n→∞

P (Z(n) > 0) = lim
n→∞

An+1(1 − 1/A)

An+1 − 1

= 1 −
1

A
.

0.4 Extinction probability

Fn(s) = EsZ(n) =

∞
∑

k=0

P (Z(n) = k) sk,

Fn(0) = P(Z(n) = 0) ≤ P(Z(n + 1) = 0) = Fn+1(0).

It follows that the sequence

P(n) = P( extinction by generation n) = P(Z(n) = 0) = Fn(0), n = 1, 2 . . .

must increase to the extinction probability, which we denote by P ,

lim
n→∞

P(n) = P.

Since F (0) < r = F (r)

P(n) = Fn(0) = F (Fn−1(0)) = F (P (n − 1)) < F (r) = r

and the function F is continuous, it follows that P = F (P ). Hence P = r.
Thus, the subcritical and critical processes die with probability 1 while su-

percritical with probability P < 1 being the smallest root of F (s) = s, s ∈ [0, 1).

1 Asymptotic behavior of the survival probabil-

ity for subcritical processes

Theorem 1 If A < 1 then

P (Z(n) > 0) = Q(n) ∼ KAn(1 + o(1)), K > 0,

if and only if

Eξ log+ ξ = EZ(1) log+ Z(1)

=

∞
∑

k=1

pkk log k < ∞.
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Note that this theorem implies

An

Q(n)
=

EZ(n)

P (Z(n) > 0)
= E [Z(n)|Z(n) > 0] ≈ K−1, n → ∞.

Theorem 2 If A < 1 then

lim
n→∞

P(Z(n) = k|Z(n) > 0) = P ∗
k ,

∞
∑

k=1

P ∗
k = 1

and

F ∗(s) =
∞
∑

k=1

P ∗
k sk

satisfies

1 − F ∗(F (s)) = A(1 − F ∗(s)).

2 Branching processes and simple random walk

Branching process: Consider a branching process with geometric probability
generating function for the offspring number:

F (s) =
q

1 − ps
= Esξ, p + q = 1, pq > 0. (4)

It follows from the consideration above that the probability of extinction of this
process, being a solution of F (P ) = P, is

P = min

{

q

p
, 1

}

and, besides the standard recurrence relation

Z(n + 1) = ξn1 + ... + ξnZ(n) (5)

is valid, where ξni are iid, ξni
d
= ξ with P (ξ = j) = qpj , j = 0, 1, ....

Random walk: Consider a random walk

S0 = 0, Sk = X1 + ... + Xk

with
P (Xi = 1) = p, P (Xi = −1) = 1 − p = q.

Let S∗
k be the random walk stopped at zero at moment τ = min {k : Sk = −1} .

It is known that

P (τ < ∞) = min

{

q

p
, 1

}

.

Set
Y (n) = the number of k such that S∗

k = n, S∗
k+1 = n − 1.
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Then the random variable

Y (1) = the number of k such that S∗
k = 1, S∗

k+1 = 0

has the following probability law:

P (Y (1) = 0) = q, P (Y (1) = 1) = pq

and, in general, the Geometric distribution with

P (Y (1) = j) = P (η = j) = qpj .

Besides,

Y (n + 1) = η
(n)
1 + ... + η

(n)
Y (n)

where η
(n)
i

d
= η.

Thus, we get the same stochastic process as in (5).
If p ≤ 1/2 then the branching process dies out and if T is the moment of

extinction then
σ = Z(0) + Z(1) + ... + Z(T − 1)

is the total number of particles in the process and

σ = 2τ − 1.

2.1 Local time of the simple random walk

Consider again a simple random walk

S0 = 0, Sk = X1 + ... + Xk

with
P (Xi = 1) = p, P (Xi = −1) = 1 − p = q, p < q.

Let S∗
k be the random walk stopped at zero at moment τ = min {k : Sk = −1} .

It is known that
P (τ < ∞) =

p

q
.

Set
Z(n) = the number of k such that S∗

k = n, S∗
k+1 = n − 1.

This is a branching process with geometric offspring distribution. Then for the
local time `(t) of the stopped random walk at level t :

`(t) = the number of k such that S∗
k = t

= (the number of k such that S∗
k−1 = t − 1 and S∗

k = t)

+
(

the number of k such that S∗
k−1 = t + 1 and S∗

k = t
)

= (the number of k such that S∗
k−1 = t and S∗

k = t − 1)

+
(

the number of k such that S∗
k−1 = t + 1 and S∗

k = t
)

= Z(t) + Z(t + 1), t = 0, 1, 2, ...,
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where Z(t) is the number of particles at moment t in a branching process with
offspring generating function F (s) = q(1−ps)−1. Hence, to find the distribution
of `(t) it is necessary to study the joint distribution of (Z(t), Z(t + 1)) for the
processes with geometric probability generating functions. In fact, we establish
the desired result in the general situation.

Theorem 3 If A < 1 then for any fixed m = 0, 1, ...

lim
n→∞

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 |Z(n) > 0

]

=
F ∗ (s1F (s2)) − F ∗ (s1F (s2Fm(0)))

Am+1
.

Proof. We have

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 ; Z(n) > 0

]

= E
[

s
Z(n−m−1)
1 s

Z(n−m)
2

]

−E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 ; Z(n) = 0

]

.

Now

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2

]

= E
[

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2

]

|Z(n − m − 1)
]

= E
[

s
Z(n−m−1)
1 E

[

s
Z(n−m)
2 |Z(n − m − 1)

]]

= E
[

s
Z(n−m−1)
1 F Z(n−m−1)(s2)

]

= Fn−m−1(s1F (s2))

while

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 ; Z(n) = 0

]

= E
[

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 ; Z(n) = 0

]

|Z(n − m − 1); Z(n − m)
]

= E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 E [I {Z(n) = 0} |Z(n − m)]

]

= E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 P(Z(n) = 0|Z(n − m))

]

= E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 F Z(n−m)

m (0)
]

= Fn−m−1(s1F (s2Fm(0))).

As a result

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 ; Z(n) > 0

]

= Fn−m−1(s1F (s2))−Fn−m−1(s1F (s2Fm(0))).

Therefore

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 |Z(n) > 0

]

=
Fn−m−1(s1F (s2)) − Fn−m−1(s1F (s2Fm(0)))

1 − Fn(0)

=
1 − Fn−m−1(0)

1 − Fn(0)

Fn−m−1(s1F (s2)) − Fn−m−1(s1F (s2Fm(0)))

1 − Fn−m−1(0)
.

Now

lim
n→∞

1 − Fn−m−1(0)

1 − Fn(0)
= lim

n→∞

1 − Fn−m−1(0)

1 − Fm+1(Fn−m−1(0))
=

1

F ′
m+1(1)

=
1

Am+1
(6)
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while as n → ∞

Fn−m−1(s1F (s2)) − Fn−m−1(s1F (s2Fm(0)))

1 − Fn−m−1(0)

=
(Fn−m−1(s1F (s2)) − Fn−m−1(0)) − (Fn−m−1(s1F (s2Fm(0))) − Fn−m−1(0))

1 − Fn−m−1(0)

→ F ∗ (s1F (s2)) − F ∗ (s1F (s2Fm(0))) . (7)

Combining (6) and (7) proves the theorem.

Corollary 4 If A < 1 and Eξ log+ ξ < ∞ then

lim
m→∞

lim
n→∞

E
[

s
Z(n−m−1)
1 s

Z(n−m)
2 |Z(n) > 0

]

=
s1s2F

∗′ (s1F (s2)) F ′(s2)

A
K

where K is the same as in the theorem describing the asymptotic behavior of the

survival probability of a subcritical process.

Proof. As m → ∞

F ∗ (s1F (s2)) − F ∗ (s1F (s2Fm(0)))

Am+1

≈ s1s2F
∗′ (s1F (s2)) F ′(s2)

1 − Fm(0)

Am+1
→

s1s2F
∗′ (s1F (s2)) F ′(s2)

A
K.

We know that for the geometric case

F ∗ (s) =
(1 − A)s

1 − As
=

(q − p)s

q − ps
.

From here by direct calculations we get

Corollary 5 If the offspring generating function is geometric then for A =
p/q < 1

lim
n→∞

E

[

s`(n−m−1)|max
k

S∗
k > n

]

= lim
n→∞

E
[

sZ(n−m−1)+Z(n−m)|Z(n) > 0
]

=
F ∗ (sF (s)) − F ∗ (sF (sFm(0)))

Am+1

=
(1 − A)2pqs2

A (1 − 2ps) (1 − Am+1 − p(2 − Am+1 − Am)s)
.

8



Proof. We have

F ∗ (sF (s)) − F ∗ (sF (sFm(0)))

Am+1

=
1

Am+1

(

(1 − A)qs

1 − 2ps
−

(1 − A)qs

1 − p(1 + Fm(0))s

)

=
(1 − A)qs

Am+1

(

1

1 − 2ps
−

1

1 − p(1 + Fm(0))s

)

=
(1 − A)pqs2(1 − Fm(0))

Am+1 (1 − 2ps) (1 − p(1 + Fm(0))s)

=
(1 − A)2pqs2

A (1 − 2ps) (1 − Am+1) (1− p(1 + Fm(0))s)

and since

1 + Fm(0) = 2 −
Am(1 − A)

1 − Am+1
=

2 − Am+1 − Am

1 − Am+1

this changes to

(1 − A)2pqs2

A (1 − 2ps) (1 − Am+1 − p(2 − Am+1 − Am)s)
.

Letting m → ∞ we get the following statement.

Corollary 6 If the offspring generating function is geometric then for A =
p/q < 1

lim
m→∞

lim
n→∞

E

[

s`(n−m)|max
k

S∗
k > n

]

= lim
m→∞

lim
n→∞

E
[

sZ(n−m−1)+Z(n−m)|Z(n) > 0
]

=
s2F ∗′ (sF (s)) F ′(s)

A
K

=
(1 − A)2pqs2

A (1 − 2ps)
2 =

(q − p)2s2

(1 − 2ps)
2 .

3 Unconditional limit theorem for the supercrit-

ical case

Theorem 7 If A > 1, σ2 < ∞ then there exists a random variable W such

that, as n → ∞

Wn =
Z(n)

An
→ W a.s.

and
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1)

lim
n→∞

E (W − Wn)2 = 0,

2)
EW = 1, V arW = σ2/(A2 − A)

3)
P(W = 0) = P = P(Z(n) = 0 for some n).

Proof. Clearly, EWn = 1 and

E [Wn|Wn−1] = E

[

Z(n)

An
|
Z(n − 1)

An−1

]

=
1

An
E [Z(n)|Z(n − 1)]

=
1

An
E





Z(n−1)
∑

k=1

ξ
(n−1)
k |Z(n − 1)



 =
Z(n − 1)

An
Eξ = Wn−1

and, therefore, {Wn}n≥1 form a non-negative martingale. Hence, there exists a
random variable W such that as n → ∞

Wn =
Z(n)

An
→ W a.s.

From the previous results

EW 2
n =

EZ2(n)

A2n
=

σ2(1 − A−n)

A2 − A
+ 1

and, therefore,

sup
n

EW 2
n = lim

n→∞
EW 2

n =
σ2

A2 − A
+ 1 < ∞.

Now by properties of martingales we have according to the Doob theorem (Doob,
1953, p.319) that 1) and 2) are valid.

If r = P(W = 0) then EW = 1 implies r < 1 and

r =

∞
∑

k=0

P (W = 0|Z(1) = k)P(Z(1) = k) =

=
∞
∑

k=0

Pk (W = 0|Z(1) = 1)P(Z(1) = k) = F (r).

Hence, r = P.
We see also that

Ee−λWn = F
(

E
[

e−λA−1Wn−1

])

or, passing to the limit as n → ∞, we see that ϕ(λ) = Ee−λW satisfies

ϕ(λ) = F

(

ϕ

(

λ

A

))

. (8)
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If

F (s) =
q

1 − ps
=

1

1 + A(1 − s)

with A = p/q > 1, then

Fn(s) = 1 −
An(A − 1)(1 − s)

A(An − 1)(1 − s) + A − 1

and

Ee−λWn = 1 −
An(A − 1)(1 − e−λA−n

)

A(An − 1)(1 − e−λA−n) + A − 1

→ 1 −
λ(A − 1)

λA + A − 1
=

1

A
+

(

1 −
1

A

)

(1 − 1
A

)

λ + 1 − 1
A

and the limiting distribution is

P (W ≤ x) =
1

A
+ (1 −

1

A
)(1 − e−(1− 1

A
)x).
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