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0.1 Basic Notions

Definition. A Galton-Watson process is a Markov chain {Z(n),n =0,1,2,..}
on nonnegative integers. Its transition function is specified by a probability law
{pr,k =0,1,..}, pr > 0,> pr = 1 with

pitif 21,720

Pl.j:P{Z(n-i-l):jZ("):i}:{ bo; if i=0,5>0.

where 4
p;‘% = Z Pj1Pjz---Pji;
Jit...+ji=j
Generating functions.
It is usually denoted by F' and is viewed as a function of a real variable
s €[0,1]:

F(s) =E[s°] = Z]P’({ =k)s* = Zpksk,O <s<1, (1)
k=0 k=0

in terms of a random variable £ giving the offspring of an individual, or in terms

of its distribution pg, p1, pe, - - . . For geometric offspring size distribution we have
- q
F(s) = ksk = .
(s) kgo ap T s



It is not difficult to understand that
Zn+1) =&+ ... +&zm),
where &,; 4 ¢ are iid. Iterations
Fo(s) = s, Fry1(s) = F, (F(s)).

In particular, given Z(0) =1

F(n+1,s) : =Es?0+) _E {E [SZ<”'+1)|Z(n)H
- E [E [S£W,1+...+£n2(n)} Z(n)}
= E(Es)" = F(n, F(s) = .. = Fu 1 (9).

0.2 Classification
A=Et=EZ(1)=F (1).

The process is called subcritical if A < 1, critical, if A = 1 and supercritical, if
A>1.

The expacted number of individuals and the second factorial moment for the
number of particles at the n-th generation can be calculated by

EZ(n) = (Bs”®) i1 = (Fa(s)) oo = (F (1) = A"
and
B[Z(n)(Z(n) - 1) = AB[Z(n — 1)(Z(n — 1) — 1)] + F"(1) A"V,
Hence, given Z(0) = 1 we get

AP (A™ — 1)

B[Z(n)(Z(n) - 1] = F'(1) =5,

if A#1and E[Z(n)(Z(n) —1)] = F"(1)n in the critical case. Consequently
with 02 = Var[¢] = F"(1) — A(A — 1) and Z(0) = 1 it follows that

QAT G gt

o’n if A=1. @

Var|Z(n)] = {



0.3 Calculation of iterations for the pure geometric repro-
duction law

oo
q
F(s)= quksk =13
k=0 p

Clearly, F/(l) = A = p/q. Further we have

p(l—s
1-F(s)= 1(—p8)
and
1 1
1—F(s) A(l—s)
- 1o 4
p(l—s) p(l—s)
Thus,
1 1 B 1 - 1 _,
1= Fu(s)  AQ-Foi(s) 1= F(Fri(s) A= Foi(s))
S S S i
1—Fu(s) Al — F,-1(9)) A A%2(1 — F,_5(s))
The end of this is a simple closed form,
%Fn(s) L (1A) + (A2 £+ (1A 4 1/A™(1 — s)

A" — .
{ An—l(A1—1) + A"(i—s) if A#1

n+ it A=1.

1-s

Therefore,if A # 1 then

_ AA-Da-s)
L) = I - — s AT ®)

and if A =1 then

1
1-F(s) = ————.
() n+(1—s)"1
Survival probability: if A =p/q # 1 then
P(Z(n)>0) = 1-F,(0)
B A"(A-1) AT (1 —-1/4)
 AA 1)+ A1 Antl ]

(5) 0

P n+1 7
- (2)
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if A =1 then

P (Z(n) >0) = —.

In particular, if A > 1 then

A1 — 1/A)

lim P(Z(n)>0) = lim Antl —q
- T

0.4 Extinction probability
Fo(s) = Es”" =3 " P (Z(n) = k) s",
k=0
Fu(0) = P(Z(n) = 0) < P(Z(n +1) = 0) = Fuy1(0).
It follows that the sequence
P(n) = P( extinction by generation n) = P(Z(n) =0) = F,,(0),n=1,2...
must increase to the extinction probability, which we denote by P,
lim P(n) =P.

Since F(0) <7 = F(r)

P(n)=F,(0)=F(F,-1(0))=F(P(n—1)) < F(r)=r

and the function F is continuous, it follows that P = F(P). Hence P = r.
Thus, the subcritical and critical processes die with probability 1 while su-
percritical with probability P < 1 being the smallest root of F'(s) = s, s € [0,1).

1 Asymptotic behavior of the survival probabil-
ity for subcritical processes

Theorem 1 If A <1 then
P(Z(n)>0)=Q(n) ~KA"(1+0(1)), K >0,
if and only if

E¢log™ ¢

EZ(1)log™ Z(1)

o0

= Zpkk‘logk‘ < 0.
k=1



Note that this theorem implies

A" EZ(n) N Zin P
o) " PZm o) PEMIZm) >0~ KT .

Theorem 2 If A <1 then

lim P(Z(n) =k|Z(n) >0) =P, ) Pr=1
k=1

n—oo

and

satisfies
1—F*(F(s)) = A(1 = F*(s)).

2 Branching processes and simple random walk

Branching process: Consider a branching process with geometric probability
generating function for the offspring number:
q

(s) [ ps B pta=1pa> (4)

It follows from the consideration above that the probability of extinction of this
process, being a solution of F(P) = P, is

P:min{g,l}
p

and, besides the standard recurrence relation

is valid, where &,; are iid, &,; £ Ewith P(¢E=j)=qp’, 1=0,1,....
Random walk: Consider a random walk
So0=0,5=X1+..+ X
with
P(X,=1)=p, PX,=-1)=1-p=gq.

Let S} be the random walk stopped at zero at moment 7 = min {k : S, = —1}.
It is known that

P(T<oo):min{]%,1}.

Set
Y (n) = the number of k such that S;; =n, S}, =n—1.



Then the random variable
Y (1) = the number of k such that Sy =1,5;,, =0
has the following probability law:
P(Y(1)=0) =g P(Y(1)=1) = pg
and, in general, the Geometric distribution with
P(Y(1)=j)=Pn=j)=a

Besides,

Y(n+1)=n" + ..+l

where 771(") 4 n.

Thus, we get the same stochastic process as in (5).
If p < 1/2 then the branching process dies out and if T is the moment of
extinction then

o=Z0)+Z(1)+..+Z(T-1)

is the total number of particles in the process and

o=21—1.

2.1 Local time of the simple random walk

Consider again a simple random walk

So=0,5.=X1+..+ X
with
P(X;,=1)=p, PX;=-1)=1-p=¢q, p<q.

Let S} be the random walk stopped at zero at moment 7 = min {k : S, = —1}.

It is known that

P(T<OO)=]—).

q
Set
Z(n) = the number of k such that Sy =n, S;,; =n—1.

This is a branching process with geometric offspring distribution. Then for the
local time £(t) of the stopped random walk at level ¢ :

£(t) = the number of k such that S} =1t
= (the number of k such that S;_; =¢—1and S}, =)
+ (the number of k such that S;_; =¢t+ 1 and S} = t)
= (the number of k such that S;_; =t and S; =t—1)
+ (the number of k such that S;_; =¢t+ 1 and S; = t)
= ZMO)+Z(t+1), t=0,1,2, ..,



where Z(t) is the number of particles at moment ¢ in a branching process with
offspring generating function F(s) = ¢(1—ps)~!. Hence, to find the distribution
of £(t) it is necessary to study the joint distribution of (Z(t), Z(t + 1)) for the
processes with geometric probability generating functions. In fact, we establish
the desired result in the general situation.

Theorem 3 If A <1 then for any fired m = 0,1, ...

F* (51F(s2)) — F* (s1F(s2F,(0)))
Am+1 ’

nlLr{:OE {slz(nfmfl)sg(nfm)w(n) > 0} =
Proof. We have
E {slz(nfmfl)SQZ(nfm); Z(n) > O}

= E {slz(nfmfl)SQZ(nfm)} —E [Slz(nfmfl)sgz(nfm); Z(n) = O} .

Now
E [slz(nfmfl)sg(nfm)} = E {E [slz(nfmfl)sg(nfm)} |[Z(n—m — 1)}
= E [slz("_m_l)E {SQZ(n_m”Z(n —m — 1)”
- E {312(”*’”*1)1:2("*%1)(32)} = Fyn1(s1F(52))
while
E _slz("_m_l)sg(n_m); Z(n) = 0}
= E E [slz("_m_l)sf("_m); Z(n) = 0} |Z(n—m—1);Z(n— m)]
= B[ SR {Z(0) = 0412 (0 - m))|
= E[Z0m0Z0mmp 7 (0) = 01Z(n — m))}
- E 'sfm—m—”522("—“)1?5(”%)(o)} = Fom_1(s1F(s2F(0))).
As a result

E [312(”*’”*1)55("*””; Z(n) > o} = Fym1(51F(52))— Fonrm—1 (51 F (52 F (0))).

Therefore
—m— — Fn—m— F - Fn—m— F Fm
E [Slzm m=1) Zn=m)| 7y o} I e G (82))1 e 1(51F(52Fm(0)))
1—- Fn—m—l(o) Fn—m—l(le(SQ)) - Fn—m—l(le(SQFm(O)))
1 - F,(0) 1—F,_n-1(0) ’
Now
. 1- anmfl(o) . 1- anmfl(o) 1 1
1 _— =1 = =
nse 1 — Fp(0) 100 1= Fr1(Fpm1(0))  Fly(1)  Amet (6)



while as n — oo

Frm-1(s1F(82)) = Frm-1(s1F (s2F(0)))
1- anmfl(o)

(Fn—m-1(51F(s2)) = Fn-m-1(0)) — (Fnm-1(51F(52Fm(0))) — Frn—m-1(0))

1-— Fn—m—l(o)
i F* (SlF(SQ)) —F* (SlF(SQFm(O)))

Combining (6) and (7) proves the theorem.
Corollary 4 If A <1 and E€¢log’ ¢ < oo then

Slng*/ (SlF(SQ)) F/(Sg)

K
A

lim lim E[s?"*m*”sf(”*mMZ(n)>0 -

m—00 N—00

where K is the same as in the theorem describing the asymptotic behavior of the
survival probability of a subcritical process.

Proof. As m — oo

F* (s1F(s2)) — F* (s1F(s2F,,(0)))
Am+1

1—F,(0)  s1s2F* (s1F(s2)) F'(s2)

~  s159F" (s1F(s2)) F'(s2) Am+l A

K.

We know that for the geometric case

1— As q — ps

From here by direct calculations we get

Corollary 5 If the offspring generating function is geometric then for A =
p/a<1

n—oo

lim E [se(”’_m_1)| max S > n}

F (sF(s)) = F* (sF(sFn(0)))
Am+1

= lim B [sZ0 DR 70 > 0] =

(1 - A)*pgs?
A(1—2ps) (1 — Am+l — p(2 — Am+l — Am)g)’

(7)



Proof. We have
F* (sF(s)) — F* (sF(sF(0)))

Aerl
_ 1 <(1 —Ags (1— A)gs )
Am+l \ 1 —2ps 1—p(1+ Fn(0))s
(1—-A)gs 1 1

T Amtl (1 —2ps  1—p(l+ Fm(O))s>
(1 = A)pgs*(1 — Fn(0))
AmFL (1= 2ps) (1 = p(1+ Fn(0))s)
(1 - A)*pgs®
A(1—=2ps) (1 — Am+1) (1 = p(1 + Fn(0))s)

and since . it .
1+ Fp,(0)=2— ‘411 _(z;ﬁ) _2 _1A_ Am;A
this changes to
(1 - A)*pgs?

A(1—2ps) (1 — Amtl — p(2 — Am+l — Am)g)’
Letting m — oo we get the following statement.

Corollary 6 If the offspring generating function is geometric then for A =
p/a<1

lim lim E {se("_m” max Sp > n}

m—0o0 N—00

s2F* (sF(s)) F'(s)
A

— lim lim E [sﬂ"—m—””("—m)w(n) > 0} -

m—0o0 N—00

(1—A)?pgs®  (q—p)*s?

A(l— 2ps)2 - (1- 2ps)2.

K

3 Unconditional limit theorem for the supercrit-

ical case

Theorem 7 If A > 1,02 < oo then there exists a random variable W such
that, as n — 0o

— W a.s.

and



lim E (W —W,)* =0,

2)
EW =1,  VarW =0?/(A%> - A)
3)
P(W =0) =P =P(Z(n) =0 for some n).
Proof. Clearly, EW, =1 and
B Z(n) Zn—1)] 1
Bl = B|ZZESY] - Leizize - 1)
Z(n—1)
1 (n— 1) Z(n - 1)
= =B Z & —-1) =— 5 Bt=Wna

and, therefore, {W,}, -, form a non-negative martingale. Hence, there exists a
random variable W such that as n — oo

Z
W, = é:b) — W a.s.
From the previous results
2 2 _ A—n
EWﬁzEZ(n)zo(l A )+1

A2n A2 A

and, therefore,

sup EW? = lim EW? = 7 —|— 1 < 0.

n— o0 A2

Now by properties of martingales we have according to the Doob theorem (Doob,
1953, p.319) that 1) and 2) are valid.
If r =P(W =0) then EW =1 implies r < 1 and

ﬁ
I

ZP =0/Z(1)=k)P(Z(1) =k) =

Zpk =01Z(1) =1)P(Z(1) = k) = F(r).

Hence, r = P.
We see also that

Ee W = p (B o247 W ])

or, passing to the limit as n — oo, we see that ¢(\) = Ee~*W satisfies

e =r(2(3)): ®)

10



If
_ 4 _ 1
S l-ps 1+ A(1-s)

F(s)
with A =p/q > 1, then

AMA—1)(1—s)
AA" D)1 -s) + A1

F.(s)=1-

and

AT(A—1)(1—e M)
AAT 1)1 —e M)+ A1
AA-1) 1 ( 1) (1-%)
+(1 AL

M+ A-1 A A+1-1

Ee M = 1-

A
and the limiting distribution is

POV <o) = ¢+ (- )1 —e 00,
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