MODERN ASPECTS OF BRANCHING PROCESSES:
 Lecture 1 (Edinburgh): Galton-Watson processes and random walk

V.Vatutin
Department of Discrete Mathematics
Steklov Mathematical Institute
Gubkin street, 8
119991 Moscow
RUSSIA
e-mail: vatutin@mi.ras.ru

June 19, 2006

0.1 Basic Notions

Definition. A Galton-Watson process is a Markov chain $\{Z(n), n=0,1,2, .$. on nonnegative integers. Its transition function is specified by a probability law $\left\{p_{k}, k=0,1, \ldots\right\}, p_{k} \geq 0, \sum p_{k}=1$ with

$$
P_{i j}=\mathbf{P}\{Z(n+1)=j \mid Z(n)=i\}=\left\{\begin{array}{ccc}
p_{j}^{* i} & \text { if } & i \geq 1, j \geq 0 \\
\delta_{0 j} & \text { if } & i=0, j \geq 0
\end{array}\right.
$$

where

$$
p_{j}^{* i}=\sum_{j_{1}+\ldots+j_{i}=j} p_{j_{1}} p_{j_{2}} \ldots p_{j_{i}}
$$

Generating functions.

It is usually denoted by F and is viewed as a function of a real variable $s \in[0,1]:$

$$
\begin{equation*}
F(s)=\mathbb{E}\left[s^{\xi}\right]=\sum_{k=0}^{\infty} \mathbb{P}(\xi=k) s^{k}=\sum_{k=0}^{\infty} p_{k} s^{k}, 0 \leq s \leq 1 \tag{1}
\end{equation*}
$$

in terms of a random variable ξ giving the offspring of an individual, or in terms of its distribution $p_{0}, p_{1}, p_{2}, \ldots$. For geometric offspring size distribution we have

$$
F(s)=\sum_{k=0}^{\infty} q p^{k} s^{k}=\frac{q}{1-p s}
$$

It is not difficult to understand that

$$
Z(n+1)=\xi_{n 1}+\ldots+\xi_{n Z(n)}
$$

where $\xi_{n i} \stackrel{d}{=} \xi$ are iid. Iterations

$$
F_{0}(s)=s, F_{n+1}(s)=F_{n}(F(s))
$$

In particular, given $Z(0)=1$

$$
\begin{aligned}
F(n+1, s) & : \quad=\mathbf{E} s^{Z(n+1)}=\mathbf{E}\left[\mathbf{E}\left[s^{Z(n+1)} \mid Z(n)\right]\right] \\
& =\mathbf{E}\left[\mathbf { E } \left[s^{\left.\left.\xi_{n 1}+\ldots+\xi_{n Z(n)}\right] Z(n)\right]}\right.\right. \\
& =\mathbf{E}\left(\mathbf{E} s^{\xi}\right)^{Z(n)}=F(n, F(s))=\ldots=F_{n+1}(s)
\end{aligned}
$$

0.2 Classification

$$
A=\mathbf{E} \xi=\mathbf{E} Z(1)=F^{\prime}(1)
$$

The process is called subcritical if $A<1$, critical, if $A=1$ and supercritical, if $A>1$.

The expacted number of individuals and the second factorial moment for the number of particles at the n-th generation can be calculated by

$$
\mathbf{E} Z(n)=\left.\left(\mathbf{E} s^{Z(n)}\right)^{\prime}\right|_{s=1}=\left.\left(F_{n}(s)\right)^{\prime}\right|_{s=1}=\left(F^{\prime}(1)\right)^{n}=A^{n}
$$

and

$$
\mathbf{E}[Z(n)(Z(n)-1)]=A \mathbf{E}[Z(n-1)(Z(n-1)-1)]+F^{\prime \prime}(1) A^{2(n-1)}
$$

Hence, given $Z(0)=1$ we get

$$
\mathbf{E}[Z(n)(Z(n)-1)]=F^{\prime \prime}(1) \frac{A^{n-1}\left(A^{n}-1\right)}{A-1}
$$

if $A \neq 1$ and $\mathbf{E}[Z(n)(Z(n)-1)]=F^{\prime \prime}(1) n$ in the critical case. Consequently with $\sigma^{2}=\operatorname{Var}[\xi]=F^{\prime \prime}(1)-A(A-1)$ and $Z(0)=1$ it follows that

$$
\operatorname{Var}[Z(n)]=\left\{\begin{array}{lc}
\sigma^{2} \frac{A^{n-1}\left(A^{n}-1\right)}{A-1} & \text { if } A \neq 1 \tag{2}\\
\sigma^{2} n & \text { if } A=1
\end{array}\right.
$$

0.3 Calculation of iterations for the pure geometric reproduction law

$$
F(s)=\sum_{k=0}^{\infty} q p^{k} s^{k}=\frac{q}{1-p s}
$$

Clearly, $F^{\prime}(1)=A=p / q$. Further we have

$$
1-F(s)=\frac{p(1-s)}{1-p s}
$$

and

$$
\begin{aligned}
& \frac{1}{1-F(s)}-\frac{1}{A(1-s)} \\
= & \frac{1-p s}{p(1-s)}-\frac{q}{p(1-s)}=1
\end{aligned}
$$

Thus,

$$
\frac{1}{1-F_{n}(s)}-\frac{1}{A\left(1-F_{n-1}(s)\right)}=\frac{1}{1-F\left(F_{n-1}(s)\right)}-\frac{1}{A\left(1-F_{n-1}(s)\right)}=1
$$

or

$$
\frac{1}{1-F_{n}(s)}=1+\frac{1}{A\left(1-F_{n-1}(s)\right)}=1+\frac{1}{A}+\frac{1}{A^{2}\left(1-F_{n-2}(s)\right)}=\ldots .
$$

The end of this is a simple closed form,

$$
\begin{aligned}
\frac{1}{1-F_{n}(s)} & =1+(1 / A)+(1 / A)^{2}+\ldots+(1 / A)^{n-1}+1 / A^{n}(1-s) \\
& =\left\{\begin{array}{ccc}
\frac{A^{n}-1}{A^{n-1}(A-1)}+\frac{1}{A^{n}(1-s)} & \text { if } A \neq 1 \\
n+\frac{1}{1-s} & \text { if } & A=1
\end{array}\right.
\end{aligned}
$$

Therefore, if $A \neq 1$ then

$$
\begin{equation*}
1-F_{n}(s)=\frac{A^{n}(A-1)(1-s)}{A\left(A^{n}-1\right)(1-s)+A-1} \tag{3}
\end{equation*}
$$

and if $A=1$ then

$$
1-F_{n}(s)=\frac{1}{n+(1-s)^{-1}}
$$

Survival probability: if $A=p / q \neq 1$ then

$$
\begin{aligned}
\mathbf{P}(Z(n)>0) & =1-F_{n}(0) \\
& =\frac{A^{n}(A-1)}{A\left(A^{n}-1\right)+A-1}=\frac{A^{n+1}(1-1 / A)}{A^{n+1}-1} \\
& =\frac{\left(\frac{p}{q}\right)^{n}\left(1-\frac{p}{q}\right)}{1-\left(\frac{p}{q}\right)^{n+1}}
\end{aligned}
$$

if $A=1$ then

$$
\mathbf{P}(Z(n)>0)=\frac{1}{n+1}
$$

In particular, if $A>1$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbf{P}(Z(n)>0) & =\lim _{n \rightarrow \infty} \frac{A^{n+1}(1-1 / A)}{A^{n+1}-1} \\
& =1-\frac{1}{A}
\end{aligned}
$$

0.4 Extinction probability

$$
\begin{gathered}
F_{n}(s)=\mathbf{E} s^{Z(n)}=\sum_{k=0}^{\infty} P(Z(n)=k) s^{k} \\
F_{n}(0)=\mathbf{P}(Z(n)=0) \leq \mathbf{P}(Z(n+1)=0)=F_{n+1}(0)
\end{gathered}
$$

It follows that the sequence
$\mathbf{P}(n)=\mathbf{P}($ extinction by generation $n)=\mathbf{P}(Z(n)=0)=F_{n}(0), n=1,2 \ldots$
must increase to the extinction probability, which we denote by P,

$$
\lim _{n \rightarrow \infty} \mathbf{P}(n)=P
$$

Since $F(0)<r=F(r)$

$$
\mathbf{P}(n)=F_{n}(0)=F\left(F_{n-1}(0)\right)=F(P(n-1))<F(r)=r
$$

and the function F is continuous, it follows that $P=F(P)$. Hence $P=r$.
Thus, the subcritical and critical processes die with probability 1 while supercritical with probability $P<1$ being the smallest root of $F(s)=s, s \in[0,1)$.

1 Asymptotic behavior of the survival probability for subcritical processes

Theorem 1 If $A<1$ then

$$
\mathbf{P}(Z(n)>0)=Q(n) \sim K A^{n}(1+o(1)), K>0
$$

if and only if

$$
\begin{aligned}
\mathbf{E} \xi \log ^{+} \xi & =\mathbf{E} Z(1) \log ^{+} Z(1) \\
& =\sum_{k=1}^{\infty} p_{k} k \log k<\infty
\end{aligned}
$$

Note that this theorem implies

$$
\frac{A^{n}}{Q(n)}=\frac{\mathbf{E} Z(n)}{\mathbf{P}(Z(n)>0)}=\mathbf{E}[Z(n) \mid Z(n)>0] \approx K^{-1}, n \rightarrow \infty
$$

Theorem 2 If $A<1$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}(Z(n)=k \mid Z(n)>0)=P_{k}^{*}, \sum_{k=1}^{\infty} P_{k}^{*}=1
$$

and

$$
F^{*}(s)=\sum_{k=1}^{\infty} P_{k}^{*} s^{k}
$$

satisfies

$$
1-F^{*}(F(s))=A\left(1-F^{*}(s)\right)
$$

2 Branching processes and simple random walk

Branching process: Consider a branching process with geometric probability generating function for the offspring number:

$$
\begin{equation*}
F(s)=\frac{q}{1-p s}=\mathbf{E} s^{\xi}, p+q=1, p q>0 \tag{4}
\end{equation*}
$$

It follows from the consideration above that the probability of extinction of this process, being a solution of $F(P)=P$, is

$$
P=\min \left\{\frac{q}{p}, 1\right\}
$$

and, besides the standard recurrence relation

$$
\begin{equation*}
Z(n+1)=\xi_{n 1}+\ldots+\xi_{n Z(n)} \tag{5}
\end{equation*}
$$

is valid, where $\xi_{n i}$ are iid, $\xi_{n i} \stackrel{d}{=} \xi$ with $\mathbf{P}(\xi=j)=q p^{j}, j=0,1, \ldots$.
Random walk: Consider a random walk

$$
S_{0}=0, S_{k}=X_{1}+\ldots+X_{k}
$$

with

$$
\mathbf{P}\left(X_{i}=1\right)=p, \quad \mathbf{P}\left(X_{i}=-1\right)=1-p=q .
$$

Let S_{k}^{*} be the random walk stopped at zero at moment $\tau=\min \left\{k: S_{k}=-1\right\}$. It is known that

$$
\mathbf{P}(\tau<\infty)=\min \left\{\frac{q}{p}, 1\right\}
$$

Set

$$
Y(n)=\text { the number of } k \text { such that } S_{k}^{*}=n, S_{k+1}^{*}=n-1
$$

Then the random variable

$$
Y(1)=\text { the number of } k \text { such that } S_{k}^{*}=1, S_{k+1}^{*}=0
$$

has the following probability law:

$$
\mathbf{P}(Y(1)=0)=q, \mathbf{P}(Y(1)=1)=p q
$$

and, in general, the Geometric distribution with

$$
\mathbf{P}(Y(1)=j)=\mathbf{P}(\eta=j)=q p^{j}
$$

Besides,

$$
Y(n+1)=\eta_{1}^{(n)}+\ldots+\eta_{Y(n)}^{(n)}
$$

where $\eta_{i}^{(n)} \stackrel{d}{=} \eta$.
Thus, we get the same stochastic process as in (5).
If $p \leq 1 / 2$ then the branching process dies out and if T is the moment of extinction then

$$
\sigma=Z(0)+Z(1)+\ldots+Z(T-1)
$$

is the total number of particles in the process and

$$
\sigma=2 \tau-1
$$

2.1 Local time of the simple random walk

Consider again a simple random walk

$$
S_{0}=0, S_{k}=X_{1}+\ldots+X_{k}
$$

with

$$
\mathbf{P}\left(X_{i}=1\right)=p, \quad \mathbf{P}\left(X_{i}=-1\right)=1-p=q, p<q
$$

Let S_{k}^{*} be the random walk stopped at zero at moment $\tau=\min \left\{k: S_{k}=-1\right\}$. It is known that

$$
\mathbf{P}(\tau<\infty)=\frac{p}{q}
$$

Set

$$
Z(n)=\text { the number of } k \text { such that } S_{k}^{*}=n, S_{k+1}^{*}=n-1
$$

This is a branching process with geometric offspring distribution. Then for the local time $\ell(t)$ of the stopped random walk at level t :

$$
\begin{aligned}
\ell(t)= & \text { the number of } k \text { such that } S_{k}^{*}=t \\
= & \left(\text { the number of } k \text { such that } S_{k-1}^{*}=t-1 \text { and } S_{k}^{*}=t\right) \\
& +\left(\text { the number of } k \text { such that } S_{k-1}^{*}=t+1 \text { and } S_{k}^{*}=t\right) \\
= & \left(\text { the number of } k \text { such that } S_{k-1}^{*}=t \text { and } S_{k}^{*}=t-1\right) \\
& +\left(\text { the number of } k \text { such that } S_{k-1}^{*}=t+1 \text { and } S_{k}^{*}=t\right) \\
= & Z(t)+Z(t+1), t=0,1,2, \ldots,
\end{aligned}
$$

where $Z(t)$ is the number of particles at moment t in a branching process with offspring generating function $F(s)=q(1-p s)^{-1}$. Hence, to find the distribution of $\ell(t)$ it is necessary to study the joint distribution of $(Z(t), Z(t+1))$ for the processes with geometric probability generating functions. In fact, we establish the desired result in the general situation.

Theorem 3 If $A<1$ then for any fixed $m=0,1, \ldots$

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} \mid Z(n)>0\right]=\frac{F^{*}\left(s_{1} F\left(s_{2}\right)\right)-F^{*}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)}{A^{m+1}}
$$

Proof. We have

$$
\begin{aligned}
& \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} ; Z(n)>0\right] \\
= & \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)}\right]-\mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} ; Z(n)=0\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)}\right] & =\mathbf{E}\left[\mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)}\right] \mid Z(n-m-1)\right] \\
& =\mathbf{E}\left[s_{1}^{Z(n-m-1)} \mathbf{E}\left[s_{2}^{Z(n-m)} \mid Z(n-m-1)\right]\right] \\
& =\mathbf{E}\left[s_{1}^{Z(n-m-1)} F^{Z(n-m-1)}\left(s_{2}\right)\right]=F_{n-m-1}\left(s_{1} F\left(s_{2}\right)\right)
\end{aligned}
$$

while

$$
\begin{aligned}
& \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} ; Z(n)=0\right] \\
= & \mathbf{E}\left[\mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} ; Z(n)=0\right] \mid Z(n-m-1) ; Z(n-m)\right] \\
= & \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} \mathbf{E}[I\{Z(n)=0\} \mid Z(n-m)]\right] \\
= & \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} \mathbf{P}(Z(n)=0 \mid Z(n-m))\right] \\
= & \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} F_{m}^{Z(n-m)}(0)\right]=F_{n-m-1}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right) .
\end{aligned}
$$

As a result
$\mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} ; Z(n)>0\right]=F_{n-m-1}\left(s_{1} F\left(s_{2}\right)\right)-F_{n-m-1}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)$.
Therefore

$$
\begin{aligned}
\mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} \mid Z(n)>0\right] & =\frac{F_{n-m-1}\left(s_{1} F\left(s_{2}\right)\right)-F_{n-m-1}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)}{1-F_{n}(0)} \\
& =\frac{1-F_{n-m-1}(0)}{1-F_{n}(0)} \frac{F_{n-m-1}\left(s_{1} F\left(s_{2}\right)\right)-F_{n-m-1}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)}{1-F_{n-m-1}(0)}
\end{aligned}
$$

Now

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1-F_{n-m-1}(0)}{1-F_{n}(0)}=\lim _{n \rightarrow \infty} \frac{1-F_{n-m-1}(0)}{1-F_{m+1}\left(F_{n-m-1}(0)\right)}=\frac{1}{F_{m+1}^{\prime}(1)}=\frac{1}{A^{m+1}} \tag{6}
\end{equation*}
$$

while as $n \rightarrow \infty$

$$
\begin{align*}
& \frac{F_{n-m-1}\left(s_{1} F\left(s_{2}\right)\right)-F_{n-m-1}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)}{1-F_{n-m-1}(0)} \\
= & \frac{\left(F_{n-m-1}\left(s_{1} F\left(s_{2}\right)\right)-F_{n-m-1}(0)\right)-\left(F_{n-m-1}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)-F_{n-m-1}(0)\right)}{1-F_{n-m-1}(0)} \\
\rightarrow & F^{*}\left(s_{1} F\left(s_{2}\right)\right)-F^{*}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right) . \tag{7}
\end{align*}
$$

Combining (6) and (7) proves the theorem.
Corollary 4 If $A<1$ and $\mathbf{E} \xi \log ^{+} \xi<\infty$ then

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbf{E}\left[s_{1}^{Z(n-m-1)} s_{2}^{Z(n-m)} \mid Z(n)>0\right]=\frac{s_{1} s_{2} F^{* \prime}\left(s_{1} F\left(s_{2}\right)\right) F^{\prime}\left(s_{2}\right)}{A} K
$$

where K is the same as in the theorem describing the asymptotic behavior of the survival probability of a subcritical process.

Proof. As $m \rightarrow \infty$

$$
\begin{aligned}
& \frac{F^{*}\left(s_{1} F\left(s_{2}\right)\right)-F^{*}\left(s_{1} F\left(s_{2} F_{m}(0)\right)\right)}{A^{m+1}} \\
\approx & s_{1} s_{2} F^{* \prime}\left(s_{1} F\left(s_{2}\right)\right) F^{\prime}\left(s_{2}\right) \frac{1-F_{m}(0)}{A^{m+1}} \rightarrow \frac{s_{1} s_{2} F^{* \prime}\left(s_{1} F\left(s_{2}\right)\right) F^{\prime}\left(s_{2}\right)}{A} K .
\end{aligned}
$$

We know that for the geometric case

$$
F^{*}(s)=\frac{(1-A) s}{1-A s}=\frac{(q-p) s}{q-p s}
$$

From here by direct calculations we get

Corollary 5 If the offspring generating function is geometric then for $A=$ $p / q<1$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbf{E}\left[s^{\ell(n-m-1)} \mid \max _{k} S_{k}^{*}>n\right] \\
= & \lim _{n \rightarrow \infty} \mathbf{E}\left[s^{Z(n-m-1)+Z(n-m)} \mid Z(n)>0\right]=\frac{F^{*}(s F(s))-F^{*}\left(s F\left(s F_{m}(0)\right)\right)}{A^{m+1}} \\
= & \frac{(1-A)^{2} p q s^{2}}{A(1-2 p s)\left(1-A^{m+1}-p\left(2-A^{m+1}-A^{m}\right) s\right)} .
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& \frac{F^{*}(s F(s))-F^{*}\left(s F\left(s F_{m}(0)\right)\right)}{A^{m+1}} \\
= & \frac{1}{A^{m+1}}\left(\frac{(1-A) q s}{1-2 p s}-\frac{(1-A) q s}{1-p\left(1+F_{m}(0)\right) s}\right) \\
= & \frac{(1-A) q s}{A^{m+1}}\left(\frac{1}{1-2 p s}-\frac{1}{1-p\left(1+F_{m}(0)\right) s}\right) \\
= & \frac{(1-A) p q s^{2}\left(1-F_{m}(0)\right)}{A^{m+1}(1-2 p s)\left(1-p\left(1+F_{m}(0)\right) s\right)} \\
= & \frac{(1-A)^{2} p q s^{2}}{A(1-2 p s)\left(1-A^{m+1}\right)\left(1-p\left(1+F_{m}(0)\right) s\right)}
\end{aligned}
$$

and since

$$
1+F_{m}(0)=2-\frac{A^{m}(1-A)}{1-A^{m+1}}=\frac{2-A^{m+1}-A^{m}}{1-A^{m+1}}
$$

this changes to

$$
\frac{(1-A)^{2} p q s^{2}}{A(1-2 p s)\left(1-A^{m+1}-p\left(2-A^{m+1}-A^{m}\right) s\right)}
$$

Letting $m \rightarrow \infty$ we get the following statement.
Corollary 6 If the offspring generating function is geometric then for $A=$ $p / q<1$

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbf{E}\left[s^{\ell(n-m)} \mid \max _{k} S_{k}^{*}>n\right] \\
= & \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbf{E}\left[s^{Z(n-m-1)+Z(n-m)} \mid Z(n)>0\right]=\frac{s^{2} F^{* \prime}(s F(s)) F^{\prime}(s)}{A} K \\
= & \frac{(1-A)^{2} p q s^{2}}{A(1-2 p s)^{2}}=\frac{(q-p)^{2} s^{2}}{(1-2 p s)^{2}}
\end{aligned}
$$

3 Unconditional limit theorem for the supercritical case

Theorem 7 If $A>1, \sigma^{2}<\infty$ then there exists a random variable W such that, as $n \rightarrow \infty$

$$
W_{n}=\frac{Z(n)}{A^{n}} \rightarrow W \quad \text { a.s. }
$$

and
1)

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left(W-W_{n}\right)^{2}=0
$$

2)

$$
\mathbf{E} W=1, \quad \operatorname{Var} W=\sigma^{2} /\left(A^{2}-A\right)
$$

3)

$$
\mathbf{P}(W=0)=P=\mathbf{P}(Z(n)=0 \text { for some } n)
$$

Proof. Clearly, $\mathbf{E} W_{n}=1$ and

$$
\begin{aligned}
\mathbf{E}\left[W_{n} \mid W_{n-1}\right] & =\mathbf{E}\left[\frac{Z(n)}{A^{n}} \left\lvert\, \frac{Z(n-1)}{A^{n-1}}\right.\right]=\frac{1}{A^{n}} \mathbf{E}[Z(n) \mid Z(n-1)] \\
& =\frac{1}{A^{n}} \mathbf{E}\left[\sum_{k=1}^{Z(n-1)} \xi_{k}^{(n-1)} \mid Z(n-1)\right]=\frac{Z(n-1)}{A^{n}} \mathbf{E} \xi=W_{n-1}
\end{aligned}
$$

and, therefore, $\left\{W_{n}\right\}_{n \geq 1}$ form a non-negative martingale. Hence, there exists a random variable W such that as $n \rightarrow \infty$

$$
W_{n}=\frac{Z(n)}{A^{n}} \rightarrow W \quad \text { a.s. }
$$

From the previous results

$$
\mathbf{E} W_{n}^{2}=\frac{\mathbf{E} Z^{2}(n)}{A^{2 n}}=\frac{\sigma^{2}\left(1-A^{-n}\right)}{A^{2}-A}+1
$$

and, therefore,

$$
\sup _{n} \mathbf{E} W_{n}^{2}=\lim _{n \rightarrow \infty} \mathbf{E} W_{n}^{2}=\frac{\sigma^{2}}{A^{2}-A}+1<\infty
$$

Now by properties of martingales we have according to the Doob theorem (Doob, 1953, p.319) that 1) and 2) are valid.

If $r=\mathbf{P}(W=0)$ then $\mathbf{E} W=1$ implies $r<1$ and

$$
\begin{aligned}
r & =\sum_{k=0}^{\infty} \mathbf{P}(W=0 \mid Z(1)=k) \mathbf{P}(Z(1)=k)= \\
& =\sum_{k=0}^{\infty} \mathbf{P}^{k}(W=0 \mid Z(1)=1) \mathbf{P}(Z(1)=k)=F(r)
\end{aligned}
$$

Hence, $r=P$.
We see also that

$$
\mathbf{E} e^{-\lambda W_{n}}=F\left(\mathbf{E}\left[e^{-\lambda A^{-1} W_{n-1}}\right]\right)
$$

or, passing to the limit as $n \rightarrow \infty$, we see that $\varphi(\lambda)=\mathbf{E} e^{-\lambda W}$ satisfies

$$
\begin{equation*}
\varphi(\lambda)=F\left(\varphi\left(\frac{\lambda}{A}\right)\right) \tag{8}
\end{equation*}
$$

If

$$
F(s)=\frac{q}{1-p s}=\frac{1}{1+A(1-s)}
$$

with $A=p / q>1$, then

$$
F_{n}(s)=1-\frac{A^{n}(A-1)(1-s)}{A\left(A^{n}-1\right)(1-s)+A-1}
$$

and

$$
\begin{aligned}
\mathbf{E} e^{-\lambda W_{n}} & =1-\frac{A^{n}(A-1)\left(1-e^{-\lambda A^{-n}}\right)}{A\left(A^{n}-1\right)\left(1-e^{-\lambda A^{-n}}\right)+A-1} \\
& \rightarrow 1-\frac{\lambda(A-1)}{\lambda A+A-1}=\frac{1}{A}+\left(1-\frac{1}{A}\right) \frac{\left(1-\frac{1}{A}\right)}{\lambda+1-\frac{1}{A}}
\end{aligned}
$$

and the limiting distribution is

$$
\mathbf{P}(W \leq x)=\frac{1}{A}+\left(1-\frac{1}{A}\right)\left(1-e^{-\left(1-\frac{1}{A}\right) x}\right) .
$$

