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1 Branching processes in random environment

In this lecture fundamental properties of branching processes in a random envi-
ronment are developed. In such a process individuals reproduce independently
of each other according to random offspring distributions which vary from one
generation to the other. To give a formal definition let P = {π} be the space of
probability measures on N0 = {0, 1, ..., }:

π = (π(0), π(1), ...),

∞∑

i=0

π(i) = 1, π(i) ≥ 0.

Equipped with the metric of total variation P becomes a Polish space.
With each π we assiciate the respective probability generating function

f(s) =

∞∑

i=0

π {i} si (1)

and let F be the set of such generating functions.
Let Π be a random variable (probability distribution) taking values in P ,

or, what is the same, a random probability generating function F. Then, an
infinite sequence Π̄ = (Π0, Π1, . . .) of i.i.d. copies of Π (or, what is the same,
an infinite sequence F̄ = (F0, F1, . . .) of i.i.d. copies of F ) is said to form a
random environment. A sequence of N0-valued random variables Z(0), Z(1), . . .
is called a branching process in the random environment (BPRE) Π̄, if Z(0) is
independent of Π̄ and given Π̄ the process Z = (Z(0), Z(1), . . .) is a Markov
chain with

L
(
Z(n + 1) | Z(n) = zn, Π̄ = (π0, π1, . . .)

)
= L (ξn1 + · · · + ξnzn

) (2)

for every n, zn ∈ N0 and π0, π1, . . . ∈ P , where ξn1, ξn2, . . . are i.i.d. random
variables with distribution πn.

In the language of branching processes Zn is the nth generation size of the
population and Πn is the distribution of the number of children of an individual
at generation n. Thus, letting
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fn (s) =
∞∑

i=0

Πn {i} si (3)

we get the offspring generating function of the individuals of the (n)th genera-
tion. Given the environment the evolution of the standard BPRE is described
by the relations

Z (0) = 1, E
[
sZ(n)| f0, ..., fn−1; Z(0), Z(1), ..., Z(n− 1)

]
= (fn−1 (s))

Z(n−1)
.

From here it is not difficult to see that

EπsZ(n) := E
[
sZ(n)| f0, ..., fn−1

]

= Eπ (fn−1 (s))Z(n−1) = f0(f1(...(fn−1(s))...)) := f0,n(s).

In view of the equality

Z(n) = ξn−1,1 + · · · + ξn−1,Zn−1 (4)

and the Wald identity we get for the standard BPRE

a(n) := EπZ(n) = Eπ[ξn−1,1 + · · · + ξn−1,Zn−1 ]

= EπZ(n − 1)Eπξn−1,1 = f ′
n−1(1)EπZ(n − 1)

=

n−1∏

i=0

f ′
i(1).

As it turns out the properties of Z are first of all determined by its associated
random walk S = (S0, S1, . . .). This random walk has initial state S0 = 0 and
increments Xn = Sn − Sn−1, n ≥ 1 defined as

Xn := log

∞∑

y=0

y Πn−1({y}) = log f ′
n−1(1),

which are i.i.d. copies of the logarithmic mean offspring number

X := log
∞∑

y=0

y Π({y}) = log f ′(1).

We assume that X is a.s. finite. In view of (2) the conditional expectation of
Z(n) given the environment Π̄

a(n) := Eπ[Z(n) | Z(0) = 1]

can be expressed by means of S as

a(n) = eSn P–a.s.
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According to fluctuation theory of random walks (compare Feller, Volume 2,
Chapter XII) one may distinguish three different types of branching processes in
random environment (BPRE). First, S can be a random walk with positive drift,
which means that limn→∞ Sn = ∞ a.s. Second, S can have negative drift, i.e.,
limn→∞ Sn = −∞ a.s. Finally, S may be an oscillating random walk meaning
that lim supn→∞ Sn = ∞ a.s. and at the same time lim infn→∞ Sn = −∞
a.s. There exists one more, degenerate possibility Sn = 0 with probability 1.
However, in general, we do not require that the expectation of X exists.

We say that a BPRE is

subcritical if

lim
n→∞

Sn = −∞ a.s.;

degenerate critical if X = 0 with probability 1;

nondegenerate critical if

lim sup
n→∞

Sn = +∞, lim inf
n→∞

Sn = −∞ a.s.

and

supercritical if
lim

n→∞
Sn = +∞ a.s.

Clearly, if EX exists then the process is subcritical if EX < 0 is critical if
EX = 0 and is supercritical if EX > 0 (by LLN and CLT).

Lemma 1 If the process is either subcritical or critical then

lim
n→∞

Pπ (Z(n) = 0) := lim
n→∞

P
(
Z(n) = 0|Π̄

)
= 1 a.s.

Proof. If P (X 6= 0) > 0 we have

Pπ (Z(n) > 0) ≤ EπZ(n) = eSn

and
Pπ (Z(n) > 0) ≤ min

0≤k≤n
Pπ (Z(k) > 0) ≤ emin0≤k≤n Sk → 0 a.s.

The case P (X = 0) = 1 needs additional arguments.
In this case we have for

qπ(n) = Pπ (Z(n) = 0) = f0(f1(...fn−1(0)...))

and
qπ = qπ(∞)
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that is
qπ = f0(qTπ)

where T means the shift transformation Tπ = (π1, π2, ...).
The event {qπ = 1} is shift invariant that is,

{ω : qπ = 1} = {ω : qTπ = 1}

with probability 1. Hence, by ergodic theorem

P (qπ = 1) = 1 or 0.

Let now log f ′
i(1) = 0 with probability 1 and assume the contrary, that is that

qπ < 1 with probability 1. Observe that in this case

1 − qπ = 1 − f0(qTπ) ≤ 1 − qTπ.

Denote
0 ≤ hπ = − log (1 − qπ) < ∞ a.s.

and

rπ = − log
1 − f0(qTπ)

1 − qTπ

= − log
1 − qπ

1 − qTπ

≥ 0.

Then
hπ = rπ + hTπ

or
hπ = rπ + rTπ + ... + rT nπ + hT n+1π.

By ergodic theorem

1

n + 1
hπ ≥

1

n + 1
hπ −

1

n + 1
hT n+1π

=
1

n + 1

n∑

i=0

rT iπ → Erπ ≥ 0

Clearly,

lim
n→∞

1

n + 1
hπ = 0.

This implies Erπ = 0 and rπ = 0 with probability 1 leading to

qTπ = f0(qTπ) a.s.

that is qTπ = 1.
Now we would like to recall a natural correspondence between the branch-

ing processes in random environment and the simple random walk in random
environment. The construction below is a natural extension of the construction
given by Harris in [13] for the ordinary inhomogeneous Galton-Watson processes.

Let Gr, r = 0, 1, 2, ..., be a discrete-time simple random walk in random
environment on the real line (see, for instance, [14] or [16]) specified by a tuple
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of independent and identically distributed nonnegative random vectors (pn, qn) ,
n ∈ Z = {0,±1,±2, ....}, with pn + qn = 1, pnqn > 0 with probability 1. In the
other words, if a walking particle is at point Gr at moment r then at the next
step it moves to the state Gr + 1 with probability pGr

and to the state Gr − 1
with probability qGr

. Assume now that G0 = 0 and let θ = min {r : Gr = −1} .
Denote by G∗

r the random walk stopped at moment θ : G∗
r = Gr∧θ, r ≥ 0.

Suppose that P (θ < ∞) = 1, that is our random walk in random environment
is either recurrent or drifts to −∞ with probability 1 (this is true, for instance,
if E log(pn/qn) ≤ 0, see [16]). Let a realization Πr.env. = {pn, qn, n ∈ Z} of the
environment for our random walk in random environment be fixed and let

Y (n) = #
{
r ∈ N0 : G∗

r = n, G∗
r+1 = n − 1

}
(5)

be the number of jumps of the stopped random walk from level n to level n− 1.
It is not difficult to understand that if P (θ < ∞) = 1 then the number of visits
of the random walk {G∗

r}r≥0 to a state n ∈ N0, i.e., the local time `(n) of G∗
r

at n, is
`(n) := # {r ∈ N0 : G∗

r = n} = Y (n + 1) + Y (n) (6)

for almost all realizations Πr.env.. According to the definition of the stopped
random walk Y (0) = 1, while the assumptions above show that the random
variable Y (1) = #

{
r ∈ N0 : G∗

r = 1, G∗
r+1 = 0

}
has a geometric distribution

with
P (Y (1) = j | Πr.env.) = P

(
η(0) = j | Πr.env.

)
= q0p

j
0

a.s. and, moreover,

Y (n) = η1,n−1 + ... + ηn−1,Y (n−1), n ≥ 1, (7)

where ηin
d
= η(n), i = 1, 2, ..., are independent identically distributed random

variables with
E [sη(n) | Πr.env.] =

qn

1 − pns
. (8)

Consider now a branching process in random environment the support of the
measure P of which is concentrated on the environments with reproduction
generating functions of the form

fn(s) =
qn

1 − pns
= Eπ

[
sξ(n)

]
, n ∈ N0, (9)

where the pairs (pn, qn) are distributed the same as above for the case of random
walk in random environment. Thus,

Z(n) = ξ1,n−1 + ... + ξn−1,Y (n−1), n ≥ 1, (10)

Clearly, EX = E log f ′
n(1) = E log(pn/qn) (if exists). Comparing (7) and (8)

with (10) and (9) we see that these relations specify one and the same stochastic
process. Thus, one can define on a common probability space the random walk
{G∗

r}r≥0 and the respective branching process Z(n), n = 0, 1, ..., in random
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environment in such a way that {Z(n)}n≥0 = {Y (n)}n≥0 with probability 1.
Hence, for this particular case of possible reproduction laws we can reformulate
all results of our future lectures established for branching processes in random
environment into the respective results for stopped random walks in random
environment {G∗

r}r≥0 and vice versa. In particular, for almost all realizations
of the environment we have for k ∈ N

{`(k) = j} = {Z(k + 1) + Z(k) = j} , {Z(k) > 0} =

{
max
r≥0

G∗
r > k

}
. (11)

These relations allow us to make conclusions about the distribution of vari-
ous characteristics of the local lime of the first excursion of the random walk
in random environment. In this course of lectures we will use the described
correspondence to study, in particular, the distribution of `(·) at the levels cor-
responding to the sequential moments of minima of the random walk

S0 = 0, Sn = log(p0/q0) + log(p1/q1) + ... + log(pn−1/qn−1), n ≥ 1,

given {maxr≥0 G∗
r > n}

Our results will cover the so-called Sinai case E log(pn/qn) = 0 (see the
classical paper [14] related to this subject) and the natural generalization of the
Sinai case to the case when the random variables log(pn/qn) have no expectation
(for instance, for any random walk in random environment whose distribution
of log(pn/qn) is symmetric).

2 Random walk and Spitzer’s condition

From now on we consider the NONDEGENERATE CRITICAL processes only
and let S = {Sn}n≥0 be it’s associated random walk. It happens that the
associated random walk plays a crucial role in our subsequent arguments and
for this reason we first study properties of such random walk under rather weak
assumptions. Let

γ0 := 0, γj+1 := min(n > γj : Sn < Sγj
), j ≥ 0,

and
Γ0 := 0, Γj+1 := min(n > Γj : Sn > SΓj

), j ≥ 0,

be the strict descending and ascending ladder moments of {Sn}n≥0. Introduce
the renewal functions (PICTURE!!!)

V (x) :=
∞∑

j=0

P(Sγj
≥ −x), x > 0, V (0) = 1, V (x) = 0, x < 0,

and

U(x) :=

∞∑

j=0

P(SΓj
< x), x > 0, U (0) = 1, U(x) = 0, x < 0.
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We suppose that the random walk satisfies the Spitzer-Doney condition:
Condition A1. There exists 0 < ρ < 1 such that

1

n

n∑

m=1

P(Sm > 0) → ρ, n → ∞,

or, what is the same
P(Sn > 0) → ρ, n → ∞.

Set

Γ : = min{n ≥ 1 : Sn ≥ 0}, Γ̃ := min{n ≥ 1 : Sn ≤ 0},

γ : = min{n ≥ 1 : Sn < 0}.

Under condition A1 Sn is oscillating and, therefore,

P(Γ̃ < ∞) = P(γ < ∞) = 1.

Set

D =
∞∑

j=1

j−1P(Sj = 0).

Clearly, D = 0 if the distribution of X is absolute continuous.

Lemma 2 For any oscillating random walk

EU(−X)I{−X > 0} = e−D,EU(x − X)I{x − X > 0} = U(x), x > 0, (12)

EV (X) = V (0) = 1, EV (x + X) = V (x), x ≥ 0. (13)

Proof. Set

a := P(S1 = 0) +

∞∑

j=1

P(0 < S1, . . . , 0 < Sj , Sj+1 = 0).

Then

1 = P(Γ̃ < ∞) = P(Γ̃ = 1) +

∞∑

n=1

P(Γ̃ = n + 1)

= P(S1 ≤ 0) +
∞∑

n=1

P(Γ̃ > n, Sn+1 ≤ 0)

= P(S1 < 0) +

∞∑

n=1

P(Γ̃ > n, Sn+1 < 0) + a

= P(0 < −X) +
∞∑

n=1

P(Γ̃ > n, Sn < −X) + a

= EU(−X)I{−X > 0}+ a.
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In view of the equality a = 1− e−D (see Feller, Ch. XII, §10) the first equality
follows from (12). Further, for x > 0

U(x) = 1 + P(0 < S1 < x) +

∞∑

j=1

P(0 < S1, . . . , 0 < Sj , 0 < Sj+1 < x)

= 1 + P(S1 < x) +

∞∑

j=1

P(0 < S1, . . . , 0 < Sj , Sj+1 < x)

−P(S1 < 0) −

∞∑

j=1

P(0 < S1, . . . , 0 < Sj , Sj+1 < 0) − a

= 1 + P(0 < x − X) +

∞∑

j=1

P(0 < S1, . . . , 0 < Sj , Sj < x − X)

−P(0 < −X) −

∞∑

j=1

P(0 < S1, . . . , 0 < Sj , Sj < −X) − a

= 1 + EU(x − X)I{x − X > 0} −EU(−X)I{−X > 0} − a

= EU(x − X)I{x − X > 0}. (14)

The remaining part can be proved using 1 = P(Γ < ∞).
Let

Mn := max
0≤k≤n

Sk, Ln := min
0≤k≤n

Sk = Sτ(n),

mn (x) := P (Ln ≥ −x) , m̃n (x) := P(Mn < x).

and let τ(n) be the left-most point of minimum of Sj , 0 ≤ j ≤ n.

Lemma 3 If Spitzer’s condition is valid then

lim
n→∞

P

(
τ(n)

n
≤ x

)
=

sin ρπ

π

∫ x

0

dy

yρ(1 − y)1−ρ
, 0 ≤ x ≤ 1.

Proof. Omitted.

Lemma 4 For r ∈ (0, 1) and Reλ ≤ 0

∞∑

n=0

rnE
[
eλSn ; Γ > n

]
= exp

{
∞∑

n=1

rn

n
E
[
eλSn ; Sn < 0

]
}

,

∞∑

n=0

rnE
[
eλSn ; γ > n

]
= exp

{
∞∑

n=1

rn

n
E
[
eλSn ; Sn ≥ 0

]
}

.

In particular,

v(r) =
∞∑

n=0

rnP (Γ > n) = exp

{
∞∑

n=1

rn

n
P (Sn < 0)

}
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and

u(r) =

∞∑

n=0

rnP (γ > n) = exp

{
∞∑

n=1

rn

n
P (Sn ≥ 0)

}
.

Lemma 5 (Spitzer identity) For r ∈ (0, 1) and Reλ ≤ 0

∞∑

n=0

rnEeλMn = exp

{
∞∑

n=1

rn

n
E
[
eλSn ; Sn ≥ 0

]
}

and
∞∑

n=0

rnEe−λLn = exp

{
∞∑

n=1

rn

n
E
[
e−λSn ; Sn ≤ 0

]
}

.

A function l(x) is said to be a slowly varying at infinity if

lim
x→∞

l(tx)

l(x)
= 1

for any fixed t > 0.
Examples: ln x.
From now on we assume that X has absolute continuous distribution.

Lemma 6 Under condition A1 there exist slowly varying functions l1 (n) and
l2 (n), with l1 (n) l2 (n) ∼ π/ sinπρ, n → ∞, and constants c1 > 0, c2 > 0 such
that for any n ≥ 1 and all x ∈ [0,∞)

mn (x) ≤ c1V (x) /
(
n 1−ρl1 (n)

)
, m̃n (x) ≤ c2U (x) / (n ρl2 (n))

and for any fixed x ∈ (0,∞) as n → ∞

mn (x) ∼ V (x) /
(
n 1−ρl1 (n)

)
, m̃n (x) ∼ U (x) / (n ρl2 (n)) . (15)

Besides,

mn(0) = P(γ > n) ∼ 1/
(
n 1−ρl1(n)

)
, P(Γ > n) ∼ 1/ (n ρl2(n)) . (16)

Proof. By Lemma 5

v′(r) =

∞∑

n=0

nrn−1P (Γ > n) =

(
∞∑

n=1

rn−1P (Sn < 0)

)
exp

{
∞∑

n=1

rn

n
P (Sn < 0)

}

=

(
∞∑

n=1

rn−1P (Sn < 0)

)
v(r),

and, by Spitzer-Doney condition

(1 − r)v′(r)

v(r)
→ 1− ρ
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implying (see Feller, Volume II)

v(r) ∼
Γ (1 − ρ)

(1− r)1−ρ l2(1/ (1 − r))

or
n∑

k=1

P (Γ > k) ∼
Γ (1 − ρ)

l2(n)
n1−ρ

implying by Tauberian theorem (see Feller, Volume II)

P (Γ > n) ∼
1

nρl2(n)
.

Similarly,

u(r) ∼
Γ (1 − ρ)

(1 − r)
ρ
l1(1/ (1 − r))

and

mn(0) = P(γ > n) ∼
1

n 1−ρl1(n)
.

Further,

v(r)u(r) = exp

{
∞∑

n=1

rn

n
P (Sn < 0)

}
exp

{
∞∑

n=1

rn

n
P (Sn ≥ 0)

}

=
1

1 − r
∼

Γ (1 − ρ)

(1 − r)
1−ρ

l2(1/ (1− r))
×

Γ (ρ)

(1− r)ρ l1(1/ (1 − r))
.

Hence
l2(n)l1(n) ∼ Γ (ρ) Γ (1 − ρ) =

π

sinπρ
.

The rest is omitted.
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