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1 Change of measure 1

Besides the measure P we consider another probability measure P̂+. In order
to define this measure let Fn, n ≥ 0 be the σ–field of events generated by
the random variables f0, . . . , fn−1 and Z(0), . . . , Z(n). These σ–fields form a
filtration F .

Lemma 1 The random variables V (Sn)I{Ln≥0}, n = 0, 1, . . . form a martingale

with respect to F under P.

Proof. Let B and D be Borel sets in N
n
0 and Pn, respectively. Recall identities

of the first lecture EV (x + X) = V (x), x ≥ 0 and the fact that V (x) = 0 for
x < 0. Conditioning first on the environment f0, .f1, ... and then on Fn and
using the independence of f0, f1, . . . we obtain

E [V (Sn+1); Ln+1 ≥ 0, Z(0) = z, (f0, . . . , fn−1) ∈ D, (Z(1), . . . , Z(n)) ∈ B]

= E[V (Xn+1 + Sn); Ln ≥ 0, Ln+1 ≥ 0, Z(0) = z, (f0, . . . , fn−1) ∈ D, (Z(1), . . . , Z(n)) ∈ B]

= E[V (Sn) ; Ln ≥ 0, Z(0) = z, (f0, . . . , fn−1) ∈ D, (Z(1), . . . , Z(n)) ∈ B]. (1)

By definition of conditional expectation, (1) implies

E[V (Sn+1)I{Ln+1≥0} | Fn] = V (Sn)I{Ln≥0} P− a.s.,

which is the desired martingale property.
The proof of the lemma is complete.
Taking into account V (0) = 1 we may introduce probability measures P̂+

n

on the σ-fields Fn by means of the densities

dP̂+
n := V (Sn)I{Ln≥0} dP .

Because of the martingale property the measures are consistent, i.e., P+
n+1|Fn =

P+
n . Therefore (choosing a suitable underlying probability space), there exists

a probability measure P̂+ on the σ-field F∞ :=
∨

n Fn such that

P̂+|Fn = P̂+
n , n ≥ 0 . (2)
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We note that (2) can be rewritten as

Ê+ Yn = E[YnV (Sn); Ln ≥ 0] (3)

for every Fn–measurable non-negative random variable Yn. This change of mea-
sure is the well-known Doob h-transform from the theory of Markov processes.
In particular, under P̂+ the process S becomes a Markov chain with state space
R

+
0 and transition kernel

P̂+(x; dy) :=
1

V (x)
P{x + X ∈ dy}V (y) , x ≥ 0 .

In our context P̂+ arises from conditioning:

Lemma 2 Assume A1. For k ∈ N let Yk be a bounded real-valued Fk–measurable

random variable. Then, as n → ∞,

E[Yk | Ln ≥ 0] → Ê+ Yk .

More generally, let Y1, Y2, . . . be a uniformly bounded sequence of real-valued

random variables adapted to the filtration F , which converges P̂+–a.s. to some

random variable Y∞. Then, as n → ∞,

E[Yn | Ln ≥ 0] → Ê+ Y∞ .

Proof . For x ≥ 0 write, as before, mn(x) := P{Ln ≥ −x}. Then for k ≤ n
conditioning on Fk gives

E[Yk | Ln ≥ 0] = E

[
Yk

mn−k(Sk)

mn(0)
; Lk ≥ 0

]
.

We know from Lecture 1 and properties of slowly varying functions that for any
k and x > 0

lim
n→∞

mn−k (x)

P(γ > n)
= lim

n→∞

mn−k (x)

mn(0)
= V (x) .

Besides, according to Lecture 1

mn−k (x)

mn(0)
≤ CV (x)

that allows us to apply the dominated convergence theorem giving

lim
n→∞

E[Yk | Ln ≥ 0] = E

[
Yk lim

n→∞

mn−k(Sk)

mn(0)
; Lk ≥ 0

]
= E [YkV (Sk) ; Lk ≥ 0]

and proving the first claim of the lemma.
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For the second claim let σ > 1. Using again the same arguments as earlier
and (3), we obtain for k ≤ n

∣∣E[Yn − Yk | Lbσnc ≥ 0]
∣∣ ≤ E

[
|Yn − Yk|

mb(σ−1)nc(Sn)

mbσnc(0)
; Ln ≥ 0

]

≤ c

(
σ − 1

σ

)−(1−ρ)

E[|Yn − Yk |V (Sn) ; Ln ≥ 0]

= c

(
σ − 1

σ

)−(1−ρ)

Ê+|Yn − Yk| ,

where c is some positive constant. Letting first n → ∞ and then k → ∞ the
right-hand side vanishes by the dominated convergence theorem. Thus, using
the first part of the lemma, we conclude

E[Yn ; Lbσnc ≥ 0] = ( Ê+Y∞ + o(1))P{Lbσnc ≥ 0} .

Consequently, for some c > 0

|E[Yn ; Ln ≥ 0] − Ê+Y∞ P{Ln ≥ 0}|

≤
∣∣∣E[Yn ; Lbσnc ≥ 0] − Ê+Y∞ P{Lbσnc ≥ 0}

∣∣∣ + cP{Ln ≥ 0, Lbσnc < 0}

≤
(
o(1) + c

(
1 − σ−(1−ρ)

))
P{Ln ≥ 0},

where for the last inequality we also used results of Lecture 1 again. Since σ
may be chosen arbitrarily close to 1, we have

E[Yn ; Ln ≥ 0] − Ê+Y∞ P{Ln ≥ 0} = o(P{Ln ≥ 0}) ,

which is the second claim of the lemma.
The change of measure has a natural interpretation: Under P̂+ the chain S

can be viewed as a random walk conditioned to never hit the strictly negative
half line.

The next statement is an easy consequence of the previous result.

Lemma 3 Assume A1. For k ∈ N let Yk be a bounded real-valued Fk–measurable

random variable. Then, as n → ∞,

E[e−zYk | Ln ≥ 0] → Ê+
[
e−zYk

]
, z ∈ [0,∞) .

More generally, let Y1, Y2, . . . be a uniformly bounded sequence of real-valued

random variables adapted to the filtration F , which converges P̂+–a.s. to some

random variable Y∞. Then, as n → ∞,

E[e−zYn | Ln ≥ 0] → Ê+
[

e−zY∞

]
, z ∈ [0,∞) .

Thus, we have conditional limit theorems for convergence in distribution of
the respective sequences of random variables.
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2 Change of measure 2

Let {f−
n }n≥0 and {f+

n }n≥0 be two independent sequences (realizations) of the

random environment and let {S−
n }n≥0 and {S+

n }n≥0 be the corresponding as-
sociate random walks. Later on any characteristics or random variables related
with {f−

n }n≥0 and {f+
n }n≥0 , are supplied with the symbols − or +, respectively.

For instance, we write L+
n = min0≤j≤n S+

j ,
We need also the random variables

Γ− = min{n ≥ 1 : S−
n ≥ 0}

and
γ+ = min{n ≥ 1 : S+

n < 0}

and the event Ak,p := {Γ− > k, γ+ > p} .

We may now introduce probability measures P̂k,p on the σ-fields F−
k × F+

p

by means of the densities

dP̂k,p = d
(
P−

k ×P+
p

)
:= eDU(−S−

k )V (S+
p )I

{
Γ− > k, γ+ > p

}
d
(
P− ×P+

)
.

(4)
Because of the properties of the functions U(x) and V (x) the measures are
consistent, i.e.,

P̂k+1,p|F
−
k ×F+

p = P̂k,p; P̂k,p+1|F
−
k ×F+

p = P̂k,p

Therefore (choosing a suitable underlying probability space), there exists a prob-
ability measure P̂ on the σ-field F∞ :=

∨
k,p

(
F−

k ×F+
p

)
such that

P̂|F−
k ×F+

p = P̂k,p , k, p ≥ 0 . (5)

We note that (5) can be rewritten as

ÊYk,p = E[Yk,pe
DU(−S−

k )V (S+
p )I

{
Γ− > k, γ+ > p

}
] (6)

for every F−
k ×F+

p –measurable non-negative random variable Yk,p.
In particular,

P̂k,p(A) = eD

∫

A

U
(
−S−

k

)
V (S+

p )I{Ak,p}d(P− ×P+). (7)

We use symbols L̂± and L̂ for the laws of distributions generated by the
measures P̂± and P̂. Analogous agreement we keep for Ê± and Ê.

Lemma 4 Let condition A1 valid and let Yl,p, l = 1, 2, . . . ; p = 1, 2, . . . be a

tuple of uniformly bounded random variables such that Yl,p is measurable with

respect to the σ-algebra F−
l ×F+

p for any pair l, p. Then

lim
min(n,r)→∞

E[Yl,p |An,r] = ÊYl,p. (8)
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More generally, if the tuples Yn,r converge as min(n, r) → ∞ to a random

variable Y∞,∞ P̂ a.s., then

lim
min(n,r)→∞

E[Yn,r |An,r] = ÊY∞,∞. (9)

Proof. Relation (8) can be proved the same as Lemma 2. To demon-
strate (9) observe that for any numbers σ > 1 and k ∈ N

|E[Yn,r − Yl,l |Aσn,σr ]|

≤ E

[
|Yn,r − Yl,l|

m̃−
(σ−1)n (−S−

n )

m̃−
σn (0)

m+
(σ−1)r (S+

r )

m+
σr (0)

I {An,r}

]

≤ c
(σ − 1

σ

)−ρ(σ − 1

σ

)ρ−1

E
[
|Yn,r − Yk,k |U

−(−S−
n )V +(S+

r )I {An,r}
]

= c
(σ − 1

σ

)−1

Ê[|Yn,r − Yl,l|].

Hence by the conditions of the lemma and the bounded convergence theorem
we conclude that

lim sup
l→∞

lim sup
min(n,r)→∞

|E[Yn,r − Yl,l |Aσn,σr ]| = 0.

In particular,

E[Yn,rI{Aσn,σr}] =
(
ÊY∞,∞ + o(1)

)
P(Aσn,σr).

Consequently,

|E[Yn,rI{An,r}] − ÊY∞,∞P(An,r)|

≤ |E[Yn,rI{Aσn,σr}] − ÊY∞,∞P(Aσn,σr)| + c |P(Aσn,σr) −P(An,r)|

≤ (o(1) + c
(
(1 − σ−ρ)σρ−1 + (1 − σ1−ρ)

)
))P(An,r),

since from the results of Lecture 1 it follows that if M
(1)−
n = max1≤k≤n S−

k then

|P(Aσn,σr) −P(An,r)|

=
∣∣∣P(M (1)−

σn < 0)P(Lσr ≥ 0) −P(M (1)−
n < 0)P(Lr ≥ 0)

∣∣∣

≤
∣∣∣P(M (1)−

σn < 0) −P(M (1)−
n < 0)

∣∣∣P(Lσr ≥ 0)

+|P(Lr ≥ 0) −P(Lσr ≥ 0)|P(M (1)−
n < 0)

≤ c
(
(1 − σ−ρ)σρ−1 + (1 − σ1−ρ)

)
P(An,r).

Therefore,
E[Yn,rI{An,r}] − ÊY∞,∞P(An,r) = o(P(An,r)),

as min(n, r) → ∞ which is equivalent to (9).
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Lemma 5 Let condition A1 be valid and let Y and Yl,p, l, p ∈ N - be a tuple of

random variables meeting the conditions of Lemma 4. If Y ∗
n , n ∈ N is a sequence

of uniformly bounded random variables such that Y ∗
n is measurable with respect

to the σ-algebra Fn for any n and

E[Y ∗
n | τ(n) = l] = E[Yl,n−l | Al,n−l], 0 ≤ l ≤ n,

then

lim
n→∞

E[Y ∗
n ] = Ê[Y∞,∞]. (10)

Proof. In view of the generalized arcsine law for any ε > 0 there exists
δ ∈

(
0, 2−1

)
such that P (τ (n) /∈ [nδ, n(1 − δ)]) < ε for all sufficiently large n.

Now to prove the lemma it sufficies to use the total probability formula with
respect to {τ(n) = k}, 0 ≤ k ≤ n, and to apply Lemma 4.

Clearly, under the conditions above Y ∗
n → Y∞,∞ in distribution.

We need the following statement.

Theorem 6 We have

Ê+[

∞∑

k=0

e−Sk ] < ∞, Ê−[

∞∑

k=0

eSk ] < ∞.

Proof. Let

Γ∗
0 = 0, Γ∗

k+1 = min
{
n > Γ∗

k : Sn ≥ SΓ∗

k

}

be weak ascending ladder epochs. By the duality principle for random walks
(see Feller, Volume II) we have

∞∑

p=0

P

(
Sp ≤ x, min

0≤j≤p
Sj ≥ 0

)
=

∞∑

p=0

P (Sp ≤ x, Sp ≥ Sj , 0 ≤ j ≤ p)

=

∞∑

p=0

p∑

k=0

P (Sp ≤ x, Γ∗
k = p) =

∞∑

k=0

∞∑

p=k

P (Sp ≤ x, Γ∗
k = p)

=

∞∑

k=0

P
(
SΓ∗

k
≤ x

)
= U∗(x)

and, therefore, U∗(x) is the renewal function for the sequence

X∗
0 = 0, X∗

k+1 = SΓ∗

k+1
− SΓ∗

k

Recall the following Key Renewal theorem (see Feller, Volume II):
If the distribution of X∗

k+1 is nonarithmetic then for any fixed h as x → ∞

U∗(x + h) − U∗(x) →
h

EX∗
1
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(even if EX∗
1 = ∞). The same is true for arithmetic distributions for h = kλ,

where λ is the span of the distribution of X∗
1 . In particular, we have that for

ANY renewal function there exists a constant c such that

U∗(x) ≤ c(x + 1), x ≥ 0.

By definition,

Ê+[

∞∑

p=0

e−Sp ] =

∞∑

p=0

E
[
e−SpV (Sp)I{γ > p}

]

=

∞∑

p=0

∫ ∞

0

e−xV (x)dP (Sp ≤ x, γ > p)

=

∫ ∞

0

e−xV (x)d

(
∞∑

p=0

P

(
Sp ≤ x, min

0≤j≤p
Sj ≥ 0

))

=

∫ ∞

0

e−xV (x)dU∗(x).

Hence by monotonicity

Ê+[

∞∑

p=0

e−Sp ] =

∫ ∞

0

e−xV (x)dU∗(x)

≤
∞∑

k=0

e−kV (k + 1)U∗(k + 1)

≤ c1c2

∞∑

k=0

e−k(k + 1)2.

The arguments needed to prove the second statement are similar.

Corollary 7 Under the conditions of Theorem 6 as k → ∞

Sk → +∞ P̂+ − a.s., Sk → −∞ P̂− − a.s.

Proof. This is a simple consequence of the statements of Theorem 6.

3 Properties of generating functions

Set

fk,n (s) := fk(fk+1(...(fn−1 (s))...)), 0 ≤ k ≤ n − 1, fn+1,n (s) := s,

fn,m (s) := fn−1(fn−2(...(fm (s))...)), n ≥ m + 1,

and

χk (s) :=
1

1 − fk (s)
−

1

f ′
k (1) (1 − s)

, 0 ≤ s ≤ 1. (11)
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Lemma 8 Let fk 6= 1, 0 ≤ k ≤ n−1. Then for any 0 ≤ s < 1 and 0 ≤ m ≤ n−1

1

1 − fm,n (s)
=

e−Sn+Sm

1 − s
+

n−1∑

k=m

ηk,n (s) e−Sk+Sm , (12)

and
eSn−Sm

1 − fn,m (s)
=

1

1 − s
+

n∑

j=m+1

ηj,m(s)eSj−Sm (13)

where for k ≤ n

ηk,n (s) := χk (fk+1,n (s)) ≤ ηk+1 =
f ′′

k (1)

(f ′
k (1))

2 (14)

and for j > m
ηj,m (s) := χj−1 (fj−1,m (s)) ≤ ηj .

If the generating functions are geometric:

fi (s) =
qi

1 − pis
, pi + qi = 1, piqi > 0, i = 0, 1, ...,

then ηk,n (s) = 1 for all k and n.

Proof. We have

1

1 − f0,n (s)
=

1

1 − f0,n (s)
−

1

f ′
0(1)(1 − f1,n (s))

+
1

f ′
0(1)(1 − f1,n (s))

= χ0(f1,n (s))eS0−S0 +
1

f ′
0(1)(1 − f1,n (s))

−
1

f ′
0(1)f ′

1(1)(1 − f2,n (s))

+
1

f ′
0(1)f ′

1(1)(1 − f2,n (s))

= χ0(f1,n (s))eS0−S0 + χ1(f2,n (s))eS0−S1 +
1

f ′
0(1)f ′

1(1)(1 − f2,n (s))

= ... =

n−1∑

k=0

χk(fk+1,n (s))eS0−Sk +
eS0−Sn

1 − s

=

n−1∑

k=0

ηk,n(s)eS0−Sk +
eS0−Sn

1− s
.
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Similarly,

1

1 − fm,n (s)
=

1

1 − fm,n (s)
−

1

f ′
m(1)(1 − fm+1,n (s))

+
1

f ′
m(1)(1 − fm+1,n (s))

= χm(fm+1,n (s))eSm−Sm

+
1

f ′
m(1)(1 − fm+1,n (s))

−
1

f ′
m(1)f ′

m+1(1)(1 − fm+2,n (s))

+
1

f ′
m(1)f ′

m+1(1)(1 − fm+2,n (s))

= χm(fm+1,n (s))eSm−Sm + χm+1(fm+2,n (s))eSm+1−Sm

+
1

f ′
m(1)f ′

m+1(1)(1 − fm+2,n (s))

= ... =
eSm−Sn

1 − s
+

n−1∑

k=m

ηk,n (s) eSm−Sk .

For pure geometric functions:

1 − fk(s) = 1 −
qk

1 − pks
=

pk(1 − s)

1 − pks
, f ′

k (1) = pk/qk,

leading to

χk (s) :=
1 − pks

pk(1 − s)
−

qk

pk (1 − s)
=

pk (1 − s)

pk (1 − s)
= 1.

This gives

1

1 − fm,n (s)
=

eSm−Sn

1 − s
+

n−1∑

k=m

eSm−Sk . (15)

In the general situation in view of 1 − f (s) ≥ f ′ (s) (1 − s)

f ′ (1) χ (s) =
f ′ (1)

1 − f (s)
−

1

1 − s

=
1

1 − f (s)

f ′ (1) (1 − s) − (1 − f (s))

(1 − s)

≤
f ′ (1) − f ′ (s)

1 − f (s)
=

∞∑

k=1

krk(s) (16)

where

rk(s) = pk

1 − sk−1

1 − f (s)
.

Observe that

rk+1(s)

rk(s)
=

pk+1

(
1 − sk

)

pk (1 − sk−1)
=

pk+1

pk

(
1 +

1
∑k−1

j=1 s−j

)
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is increasing in s for any k ≥ 1 and that the rk(s) sums to 1 for any 0 ≤ s < 1.
Hence the right-hand side of (16) is increasing in s and, therefore

f ′ (1) χ (s) ≤ sup
s∈[0,1]

f ′ (1) − f ′ (s)

1 − f (s)
=

f”(1)

f ′(1)
.

The lemma is proved.

4 Probabilty of survival

Theorem 9 Assume that there exists a constant C ∈ (0,∞) such that

f”(1)

(f ′(1))
2 ≤ C a.s.

and let the Spitzer condition be valid. Then the sequence of random variables

ζ0,n := e−Sτ(n)P π (Z(n) > 0) = e−Sτ(n) (1 − f0,n (0)) , n = 0, 1, 2, ..., (17)

convereges in distribution as n → ∞ to a random variable ζ ∈ [0, 1] which is

positive with probability 1.

We prove this theorem into several steps

Lemma 10 Under the conditions of Theorem 9

qm := lim
n→∞

fm,n(0) < 1 P̂+ − a.s., m = 0, 1, ....

Proof. Existence of the limit is obvious. Let us show that qm < 1 P̂+− a.s.
Clearly,

1

1 − fm,n (0)
↑

as n → ∞. By Lemma 8 and the conditions of the lemma in question

1

1 − fm,n (0)
= e−Sn+Sm +

n−1∑

k=m

ηk,n (0) e−Sk+Sm

≤ (C + 1)eSm

n∑

k=m

e−Sk ≤ (C + 1)eSm

∞∑

k=0

e−Sk

It follows from Theorem 6 that

∞∑

k=0

e−Sk < ∞ P̂+ − a.s.

From this fact the statement of the lemma follows easily.
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Introduce the notation

ζk,m(s) :=
1 − fk,m(s)

eSk−Sm

and

ζk(s) :=
1 − fk,0(s)

eSk
.

Lemma 11 Under the conditions of Theorem 9 for any s ∈ [0, 1) and any

m = 0, 1, ... there exists limk→∞ ζk,m(s) =: ζ∞,m(s) and ζ∞,m(s) > 0 P̂−− a.s.

Proof. Clearly, for l + 1 ≥ m

ζk+1,m(s) : =
1 − fk+1,m(s)

eSk+1−Sm
=

1 − fk+1(fk,m(s))

eSk+1−Sm

≤
1 − fk,m(s)

eSk−Sm
= ζk,m(s)

proving existence of the limit. In particular,

eSk−Sm

1 − fk,m(s)
↑

as k → ∞. Further, by Lemma 8, the conditions of the lemma in question and
the respective results of Lecture 2

eSk−Sm

1 − fk,m (s)
=

1

1 − s
+

k∑

j=m+1

ηj,m(s)eSj−Sm

≤
1

1 − s
+ Ce−Sm

∞∑

j=0

eSj < ∞ P̂− − a.s.

The lemma is proved.

Proof of Theorem 9. We write

ζ0,n =
(
1 − f0,τ(n)(fτ(n),n(0))

)
e−Sτ(n) ,

set for λ > 0
Y ∗

n = e−λζ0,n ,

and consider the Laplace transform

Ee−λζ0,n = E [Y ∗
n ]

of the distribution of ζ0,n. Clearly, for the associated random walk

E[Y ∗
n | τ(n) = k] = E[Yk,n−k | Ak,n−k],
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where
Yk,n−k = exp

{
−λ
(
1 − f−

k,0(f
+
0,n−k(0))

)
e−S

−

k

}

and {f−
n }n≥0 and {f+

n }n≥0 are two independent sequences (realizations) of the

random environment with {S−
n }n≥0 and {S+

n }n≥0 be the corresponding asso-
ciate random walks.

From Lemmas 11 and 10 it follows that

lim
min(n−k,k)→∞

Yk,n−k =: Y∞,∞ = exp
{
−λ
(
1 − ζ−∞,0(q

+)
)}

exists P̂− a.s., where

ζ−∞,0(q
+) = lim

k,n−k→∞

1 − f−
k,0(f

+
0,n−k(0))

eS
−

k

and, moreover, Y∞,∞ = Y (λ) < 1 P̂− a.s.
Hence, with ζ−(s) := ζ−∞,0(s) and according to our previous results

lim
n→∞

E [Y ∗
n ] = lim

n→∞
E
[
e−λζ0,n

]
= Ê

[
e−λζ−(q+)

]
.

The theorem is proved.
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