Lecture 3 (Edinburgh): Changes of measures and probability of survival of branching processes in random environment

V.A. Vatutin

June 19, 2006

1 Change of measure 1

Besides the measure \mathbf{P} we consider another probability measure $\hat{\mathbf{P}}^{+}$. In order to define this measure let $\mathcal{F}_{n}, n \geq 0$ be the σ-field of events generated by the random variables f_{0}, \ldots, f_{n-1} and $Z(0), \ldots, Z(n)$. These σ-fields form a filtration \mathcal{F}.

Lemma 1 The random variables $V\left(S_{n}\right) I_{\left\{L_{n} \geq 0\right\}}, n=0,1, \ldots$ form a martingale with respect to \mathcal{F} under \mathbf{P}.
Proof. Let B and D be Borel sets in \mathbb{N}_{0}^{n} and \mathcal{P}^{n}, respectively. Recall identities of the first lecture $\mathbf{E} V(x+X)=V(x), x \geq 0$ and the fact that $V(x)=0$ for $x<0$. Conditioning first on the environment $f_{0}, . f_{1}, \ldots$ and then on \mathcal{F}_{n} and using the independence of f_{0}, f_{1}, \ldots we obtain

$$
\begin{align*}
& \mathbf{E}\left[V\left(S_{n+1}\right) ; L_{n+1} \geq 0, Z(0)=z,\left(f_{0}, \ldots, f_{n-1}\right) \in D,(Z(1), \ldots, Z(n)) \in B\right] \\
= & \mathbf{E}\left[V\left(X_{n+1}+S_{n}\right) ; L_{n} \geq 0, L_{n+1} \geq 0, Z(0)=z,\left(f_{0}, \ldots, f_{n-1}\right) \in D,(Z(1), \ldots, Z(n)) \in B\right] \\
= & \mathbf{E}\left[V\left(S_{n}\right) ; L_{n} \geq 0, Z(0)=z,\left(f_{0}, \ldots, f_{n-1}\right) \in D,(Z(1), \ldots, Z(n)) \in B\right] . \tag{1}
\end{align*}
$$

By definition of conditional expectation, (1) implies

$$
\mathbf{E}\left[V\left(S_{n+1}\right) I_{\left\{L_{n+1} \geq 0\right\}} \mid \mathcal{F}_{n}\right]=V\left(S_{n}\right) I_{\left\{L_{n} \geq 0\right\}} \quad \mathbf{P}-\text { a.s. },
$$

which is the desired martingale property.
The proof of the lemma is complete.
Taking into account $V(0)=1$ we may introduce probability measures $\hat{\mathbf{P}}_{n}^{+}$ on the σ-fields \mathcal{F}_{n} by means of the densities

$$
d \hat{\mathbf{P}}_{n}^{+}:=V\left(S_{n}\right) I_{\left\{L_{n} \geq 0\right\}} d \mathbf{P}
$$

Because of the martingale property the measures are consistent, i.e., $\mathbf{P}_{n+1}^{+} \mid \mathcal{F}_{n}=$ \mathbf{P}_{n}^{+}. Therefore (choosing a suitable underlying probability space), there exists a probability measure $\hat{\mathbf{P}}^{+}$on the σ-field $\mathcal{F}_{\infty}:=\bigvee_{n} \mathcal{F}_{n}$ such that

$$
\begin{equation*}
\hat{\mathbf{P}}^{+} \mid \mathcal{F}_{n}=\hat{\mathbf{P}}_{n}^{+}, \quad n \geq 0 \tag{2}
\end{equation*}
$$

We note that (2) can be rewritten as

$$
\begin{equation*}
\hat{\mathbf{E}}^{+} Y_{n}=\mathbf{E}\left[Y_{n} V\left(S_{n}\right) ; L_{n} \geq 0\right] \tag{3}
\end{equation*}
$$

for every $\mathcal{F}_{n}-$ measurable non-negative random variable Y_{n}. This change of measure is the well-known Doob h-transform from the theory of Markov processes. In particular, under $\hat{\mathbf{P}}^{+}$the process S becomes a Markov chain with state space \mathbb{R}_{0}^{+}and transition kernel

$$
\hat{\mathbf{P}}^{+}(x ; d y):=\frac{1}{V(x)} \mathbf{P}\{x+X \in d y\} V(y), \quad x \geq 0
$$

In our context $\hat{\mathbf{P}}^{+}$arises from conditioning:
Lemma 2 Assume A1. For $k \in \mathbb{N}$ let Y_{k} be a bounded real-valued \mathcal{F}_{k}-measurable random variable. Then, as $n \rightarrow \infty$,

$$
\mathbf{E}\left[Y_{k} \mid L_{n} \geq 0\right] \rightarrow \hat{\mathbf{E}}^{+} Y_{k}
$$

More generally, let Y_{1}, Y_{2}, \ldots be a uniformly bounded sequence of real-valued random variables adapted to the filtration \mathcal{F}, which converges $\hat{\mathbf{P}}^{+}{ }_{-}$a.s. to some random variable Y_{∞}. Then, as $n \rightarrow \infty$,

$$
\mathbf{E}\left[Y_{n} \mid L_{n} \geq 0\right] \rightarrow \hat{\mathbf{E}}^{+} Y_{\infty}
$$

Proof. For $x \geq 0$ write, as before, $m_{n}(x):=\mathbf{P}\left\{L_{n} \geq-x\right\}$. Then for $k \leq n$ conditioning on \mathcal{F}_{k} gives

$$
\mathbf{E}\left[Y_{k} \mid L_{n} \geq 0\right]=\mathbf{E}\left[Y_{k} \frac{m_{n-k}\left(S_{k}\right)}{m_{n}(0)} ; L_{k} \geq 0\right]
$$

We know from Lecture 1 and properties of slowly varying functions that for any k and $x>0$

$$
\lim _{n \rightarrow \infty} \frac{m_{n-k}(x)}{\mathbf{P}(\gamma>n)}=\lim _{n \rightarrow \infty} \frac{m_{n-k}(x)}{m_{n}(0)}=V(x)
$$

Besides, according to Lecture 1

$$
\frac{m_{n-k}(x)}{m_{n}(0)} \leq C V(x)
$$

that allows us to apply the dominated convergence theorem giving

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[Y_{k} \mid L_{n} \geq 0\right]=\mathbf{E}\left[Y_{k} \lim _{n \rightarrow \infty} \frac{m_{n-k}\left(S_{k}\right)}{m_{n}(0)} ; L_{k} \geq 0\right]=\mathbf{E}\left[Y_{k} V\left(S_{k}\right) ; L_{k} \geq 0\right]
$$

and proving the first claim of the lemma.

For the second claim let $\sigma>1$. Using again the same arguments as earlier and (3), we obtain for $k \leq n$

$$
\begin{aligned}
\left|\mathbf{E}\left[Y_{n}-Y_{k} \mid L_{\lfloor\sigma n\rfloor} \geq 0\right]\right| & \leq \mathbf{E}\left[\left|Y_{n}-Y_{k}\right| \frac{m_{\lfloor(\sigma-1) n\rfloor}\left(S_{n}\right)}{m_{\lfloor\sigma n\rfloor}(0)} ; L_{n} \geq 0\right] \\
& \leq c\left(\frac{\sigma-1}{\sigma}\right)^{-(1-\rho)} \mathbf{E}\left[\left|Y_{n}-Y_{k}\right| V\left(S_{n}\right) ; L_{n} \geq 0\right] \\
& =c\left(\frac{\sigma-1}{\sigma}\right)^{-(1-\rho)} \hat{\mathbf{E}}^{+}\left|Y_{n}-Y_{k}\right|
\end{aligned}
$$

where c is some positive constant. Letting first $n \rightarrow \infty$ and then $k \rightarrow \infty$ the right-hand side vanishes by the dominated convergence theorem. Thus, using the first part of the lemma, we conclude

$$
\mathbf{E}\left[Y_{n} ; L_{\lfloor\sigma n\rfloor} \geq 0\right]=\left(\hat{\mathbf{E}}^{+} Y_{\infty}+o(1)\right) \mathbf{P}\left\{L_{\lfloor\sigma n\rfloor} \geq 0\right\}
$$

Consequently, for some $c>0$

$$
\begin{aligned}
\mid \mathbf{E}\left[Y_{n} ; L_{n}\right. & \geq 0]-\hat{\mathbf{E}}^{+} Y_{\infty} \mathbf{P}\left\{L_{n} \geq 0\right\} \mid \\
& \leq\left|\mathbf{E}\left[Y_{n} ; L_{\lfloor\sigma n\rfloor} \geq 0\right]-\hat{\mathbf{E}}^{+} Y_{\infty} \mathbf{P}\left\{L_{\lfloor\sigma n\rfloor} \geq 0\right\}\right|+c \mathbf{P}\left\{L_{n} \geq 0, L_{\lfloor\sigma n\rfloor}<0\right\} \\
& \leq\left(o(1)+c\left(1-\sigma^{-(1-\rho)}\right)\right) \mathbf{P}\left\{L_{n} \geq 0\right\}
\end{aligned}
$$

where for the last inequality we also used results of Lecture 1 again. Since σ may be chosen arbitrarily close to 1 , we have

$$
\mathbf{E}\left[Y_{n} ; L_{n} \geq 0\right]-\hat{\mathbf{E}}^{+} Y_{\infty} \mathbf{P}\left\{L_{n} \geq 0\right\}=o\left(\mathbf{P}\left\{L_{n} \geq 0\right\}\right)
$$

which is the second claim of the lemma.
The change of measure has a natural interpretation: Under $\hat{\mathbf{P}}^{+}$the chain S can be viewed as a random walk conditioned to never hit the strictly negative half line.

The next statement is an easy consequence of the previous result.
Lemma 3 Assume A1. For $k \in \mathbb{N}$ let Y_{k} be a bounded real-valued \mathcal{F}_{k}-measurable random variable. Then, as $n \rightarrow \infty$,

$$
\mathbf{E}\left[e^{-z Y_{k}} \mid L_{n} \geq 0\right] \rightarrow \hat{\mathbf{E}}^{+}\left[e^{-z Y_{k}}\right], z \in[0, \infty)
$$

More generally, let Y_{1}, Y_{2}, \ldots be a uniformly bounded sequence of real-valued random variables adapted to the filtration \mathcal{F}, which converges $\hat{\mathbf{P}}^{+}$-a.s. to some random variable Y_{∞}. Then, as $n \rightarrow \infty$,

$$
\mathbf{E}\left[e^{-z Y_{n}} \mid L_{n} \geq 0\right] \rightarrow \hat{\mathbf{E}}^{+}\left[e^{-z Y_{\infty}}\right], z \in[0, \infty)
$$

Thus, we have conditional limit theorems for convergence in distribution of the respective sequences of random variables.

2 Change of measure 2

Let $\left\{f_{n}^{-}\right\}_{n \geq 0}$ and $\left\{f_{n}^{+}\right\}_{n \geq 0}$ be two independent sequences (realizations) of the random environment and let $\left\{S_{n}^{-}\right\}_{n \geq 0}$ and $\left\{S_{n}^{+}\right\}_{n \geq 0}$ be the corresponding associate random walks. Later on any characteristics or random variables related with $\left\{f_{n}^{-}\right\}_{n \geq 0}$ and $\left\{f_{n}^{+}\right\}_{n \geq 0}$, are supplied with the symbols - or + , respectively.
For instance, we write $L_{n}^{+}=\min _{0 \leq j \leq n} S_{j}^{+}$,
We need also the random variables

$$
\Gamma^{-}=\min \left\{n \geq 1: S_{n}^{-} \geq 0\right\}
$$

and

$$
\gamma^{+}=\min \left\{n \geq 1: S_{n}^{+}<0\right\}
$$

and the event $\mathcal{A}_{k, p}:=\left\{\Gamma^{-}>k, \gamma^{+}>p\right\}$.
We may now introduce probability measures $\hat{\mathbf{P}}_{k, p}$ on the σ-fields $\mathcal{F}_{k}^{-} \times \mathcal{F}_{p}^{+}$ by means of the densities

$$
\begin{equation*}
d \hat{\mathbf{P}}_{k, p}=d\left(\mathbf{P}_{k}^{-} \times \mathbf{P}_{p}^{+}\right):=e^{D} U\left(-S_{k}^{-}\right) V\left(S_{p}^{+}\right) I\left\{\Gamma^{-}>k, \gamma^{+}>p\right\} d\left(\mathbf{P}^{-} \times \mathbf{P}^{+}\right) \tag{4}
\end{equation*}
$$

Because of the properties of the functions $U(x)$ and $V(x)$ the measures are consistent, i.e.,

$$
\hat{\mathbf{P}}_{k+1, p}\left|\mathcal{F}_{k}^{-} \times \mathcal{F}_{p}^{+}=\hat{\mathbf{P}}_{k, p} ; \quad \hat{\mathbf{P}}_{k, p+1}\right| \mathcal{F}_{k}^{-} \times \mathcal{F}_{p}^{+}=\hat{\mathbf{P}}_{k, p}
$$

Therefore (choosing a suitable underlying probability space), there exists a probability measure $\hat{\mathbf{P}}$ on the σ-field $\mathcal{F}_{\infty}:=\bigvee_{k, p}\left(\mathcal{F}_{k}^{-} \times \mathcal{F}_{p}^{+}\right)$such that

$$
\begin{equation*}
\hat{\mathbf{P}} \mid \mathcal{F}_{k}^{-} \times \mathcal{F}_{p}^{+}=\hat{\mathbf{P}}_{k, p}, \quad k, p \geq 0 \tag{5}
\end{equation*}
$$

We note that (5) can be rewritten as

$$
\begin{equation*}
\hat{\mathbf{E}} Y_{k, p}=\mathbf{E}\left[Y_{k, p} e^{D} U\left(-S_{k}^{-}\right) V\left(S_{p}^{+}\right) I\left\{\Gamma^{-}>k, \gamma^{+}>p\right\}\right] \tag{6}
\end{equation*}
$$

for every $\mathcal{F}_{k}^{-} \times \mathcal{F}_{p}^{+}-$measurable non-negative random variable $Y_{k, p}$.
In particular,

$$
\begin{equation*}
\widehat{\mathbf{P}}_{k, p}(\mathcal{A})=e^{D} \int_{\mathcal{A}} U\left(-S_{k}^{-}\right) V\left(S_{p}^{+}\right) I\left\{\mathcal{A}_{k, p}\right\} d\left(\mathbf{P}^{-} \times \mathbf{P}^{+}\right) \tag{7}
\end{equation*}
$$

We use symbols $\widehat{\mathcal{L}}^{ \pm}$and $\widehat{\mathcal{L}}$ for the laws of distributions generated by the measures $\widehat{\mathbf{P}}^{ \pm}$and $\widehat{\mathbf{P}}$. Analogous agreement we keep for $\widehat{\mathbf{E}}^{ \pm}$and $\widehat{\mathbf{E}}$.

Lemma 4 Let condition $A 1$ valid and let $Y_{l, p}, l=1,2, \ldots ; p=1,2, \ldots$ be a tuple of uniformly bounded random variables such that $Y_{l, p}$ is measurable with respect to the σ-algebra $\mathcal{F}_{l}^{-} \times \mathcal{F}_{p}^{+}$for any pair l, p. Then

$$
\begin{equation*}
\lim _{\min (n, r) \rightarrow \infty} \mathbf{E}\left[Y_{l, p} \mid A_{n, r}\right]=\hat{\mathbf{E}} Y_{l, p} \tag{8}
\end{equation*}
$$

More generally, if the tuples $Y_{n, r}$ converge as $\min (n, r) \rightarrow \infty$ to a random variable $Y_{\infty, \infty} \hat{\mathbf{P}}$ a.s., then

$$
\begin{equation*}
\lim _{\min (n, r) \rightarrow \infty} \mathbf{E}\left[Y_{n, r} \mid A_{n, r}\right]=\hat{\mathbf{E}} Y_{\infty, \infty} \tag{9}
\end{equation*}
$$

Proof. Relation (8) can be proved the same as Lemma 2. To demonstrate (9) observe that for any numbers $\sigma>1$ and $k \in \mathrm{~N}$

$$
\begin{aligned}
& \left|\mathbf{E}\left[Y_{n, r}-Y_{l, l} \mid A_{\sigma n, \sigma r}\right]\right| \\
\leq & \mathbf{E}\left[\left|Y_{n, r}-Y_{l, l}\right| \frac{\widetilde{m}_{(\sigma-1) n}^{-}\left(-S_{n}^{-}\right)}{\widetilde{m}_{\sigma n}^{-}(0)} \frac{m_{(\sigma-1) r}^{+}\left(S_{r}^{+}\right)}{m_{\sigma r}^{+}(0)} I\left\{A_{n, r}\right\}\right] \\
\leq & c\left(\frac{\sigma-1}{\sigma}\right)^{-\rho}\left(\frac{\sigma-1}{\sigma}\right)^{\rho-1} \mathbf{E}\left[\left|Y_{n, r}-Y_{k, k}\right| U^{-}\left(-S_{n}^{-}\right) V^{+}\left(S_{r}^{+}\right) I\left\{A_{n, r}\right\}\right] \\
= & c\left(\frac{\sigma-1}{\sigma}\right)^{-1} \hat{\mathbf{E}}\left[\left|Y_{n, r}-Y_{l, l}\right|\right] .
\end{aligned}
$$

Hence by the conditions of the lemma and the bounded convergence theorem we conclude that

$$
\limsup _{l \rightarrow \infty} \limsup _{\min (n, r) \rightarrow \infty}\left|\mathbf{E}\left[Y_{n, r}-Y_{l, l} \mid A_{\sigma n, \sigma r}\right]\right|=0
$$

In particular,

$$
\mathbf{E}\left[Y_{n, r} I\left\{A_{\sigma n, \sigma r}\right\}\right]=\left(\hat{\mathbf{E}} Y_{\infty, \infty}+o(1)\right) \mathbf{P}\left(A_{\sigma n, \sigma r}\right)
$$

Consequently,

$$
\begin{aligned}
& \left|\mathbf{E}\left[Y_{n, r} I\left\{A_{n, r}\right\}\right]-\hat{\mathbf{E}} Y_{\infty, \infty} \mathbf{P}\left(A_{n, r}\right)\right| \\
& \quad \leq\left|\mathbf{E}\left[Y_{n, r} I\left\{A_{\sigma n, \sigma r}\right\}\right]-\hat{\mathbf{E}} Y_{\infty, \infty} \mathbf{P}\left(A_{\sigma n, \sigma r}\right)\right|+c\left|\mathbf{P}\left(A_{\sigma n, \sigma r}\right)-\mathbf{P}\left(A_{n, r}\right)\right| \\
& \left.\quad \leq\left(o(1)+c\left(\left(1-\sigma^{-\rho}\right) \sigma^{\rho-1}+\left(1-\sigma^{1-\rho}\right)\right)\right)\right) \mathbf{P}\left(A_{n, r}\right)
\end{aligned}
$$

since from the results of Lecture 1 it follows that if $M_{n}^{(1)-}=\max _{1 \leq k \leq n} S_{k}^{-}$then

$$
\begin{aligned}
& \left|\mathbf{P}\left(A_{\sigma n, \sigma r}\right)-\mathbf{P}\left(A_{n, r}\right)\right| \\
= & \left|\mathbf{P}\left(M_{\sigma n}^{(1)-}<0\right) \mathbf{P}\left(L_{\sigma r} \geq 0\right)-\mathbf{P}\left(M_{n}^{(1)-}<0\right) \mathbf{P}\left(L_{r} \geq 0\right)\right| \\
\leq & \left|\mathbf{P}\left(M_{\sigma n}^{(1)-}<0\right)-\mathbf{P}\left(M_{n}^{(1)-}<0\right)\right| \mathbf{P}\left(L_{\sigma r} \geq 0\right) \\
+\mid \mathbf{P}\left(L_{r} \geq\right. & 0)-\mathbf{P}\left(L_{\sigma r} \geq 0\right) \mid \mathbf{P}\left(M_{n}^{(1)-}<0\right) \\
\leq & c\left(\left(1-\sigma^{-\rho}\right) \sigma^{\rho-1}+\left(1-\sigma^{1-\rho}\right)\right) \mathbf{P}\left(A_{n, r}\right) .
\end{aligned}
$$

Therefore,

$$
\mathbf{E}\left[Y_{n, r} I\left\{A_{n, r}\right\}\right]-\hat{\mathbf{E}} Y_{\infty, \infty} \mathbf{P}\left(A_{n, r}\right)=o\left(\mathbf{P}\left(A_{n, r}\right)\right)
$$

as $\min (n, r) \rightarrow \infty$ which is equivalent to (9).

Lemma 5 Let condition $A 1$ be valid and let Y and $Y_{l, p}, l, p \in \mathrm{~N}$ - be a tuple of random variables meeting the conditions of Lemma 4. If $Y_{n}^{*}, n \in \mathrm{~N}$ is a sequence of uniformly bounded random variables such that Y_{n}^{*} is measurable with respect to the σ-algebra \mathcal{F}_{n} for any n and

$$
\mathbf{E}\left[Y_{n}^{*} \mid \tau(n)=l\right]=\mathbf{E}\left[Y_{l, n-l} \mid \mathcal{A}_{l, n-l}\right], \quad 0 \leq l \leq n
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{E}\left[Y_{n}^{*}\right]=\hat{\mathbf{E}}\left[Y_{\infty, \infty}\right] \tag{10}
\end{equation*}
$$

Proof. In view of the generalized arcsine law for any $\varepsilon>0$ there exists $\delta \in\left(0,2^{-1}\right)$ such that $\mathbf{P}(\tau(n) \notin[n \delta, n(1-\delta)])<\varepsilon$ for all sufficiently large n. Now to prove the lemma it sufficies to use the total probability formula with respect to $\{\tau(n)=k\}, 0 \leq k \leq n$, and to apply Lemma 4 .

Clearly, under the conditions above $Y_{n}^{*} \rightarrow Y_{\infty, \infty}$ in distribution.
We need the following statement.
Theorem 6 We have

$$
\widehat{\mathbf{E}}^{+}\left[\sum_{k=0}^{\infty} e^{-S_{k}}\right]<\infty, \widehat{\mathbf{E}}^{-}\left[\sum_{k=0}^{\infty} e^{S_{k}}\right]<\infty
$$

Proof. Let

$$
\Gamma_{0}^{*}=0, \Gamma_{k+1}^{*}=\min \left\{n>\Gamma_{k}^{*}: S_{n} \geq S_{\Gamma_{k}^{*}}\right\}
$$

be weak ascending ladder epochs. By the duality principle for random walks (see Feller, Volume II) we have

$$
\begin{aligned}
& \sum_{p=0}^{\infty} \mathbf{P}\left(S_{p} \leq x, \min _{0 \leq j \leq p} S_{j} \geq 0\right)=\sum_{p=0}^{\infty} \mathbf{P}\left(S_{p} \leq x, S_{p} \geq S_{j}, 0 \leq j \leq p\right) \\
= & \sum_{p=0}^{\infty} \sum_{k=0}^{p} \mathbf{P}\left(S_{p} \leq x, \Gamma_{k}^{*}=p\right)=\sum_{k=0}^{\infty} \sum_{p=k}^{\infty} \mathbf{P}\left(S_{p} \leq x, \Gamma_{k}^{*}=p\right) \\
= & \sum_{k=0}^{\infty} \mathbf{P}\left(S_{\Gamma_{k}^{*}} \leq x\right)=U^{*}(x)
\end{aligned}
$$

and, therefore, $U^{*}(x)$ is the renewal function for the sequence

$$
X_{0}^{*}=0, X_{k+1}^{*}=S_{\Gamma_{k+1}^{*}}-S_{\Gamma_{k}^{*}}
$$

Recall the following Key Renewal theorem (see Feller, Volume II):
If the distribution of X_{k+1}^{*} is nonarithmetic then for any fixed h as $x \rightarrow \infty$

$$
U^{*}(x+h)-U^{*}(x) \rightarrow \frac{h}{E X_{1}^{*}}
$$

(even if $E X_{1}^{*}=\infty$). The same is true for arithmetic distributions for $h=k \lambda$, where λ is the span of the distribution of X_{1}^{*}. In particular, we have that for ANY renewal function there exists a constant c such that

$$
U^{*}(x) \leq c(x+1), x \geq 0
$$

By definition,

$$
\begin{aligned}
\widehat{\mathbf{E}}^{+}\left[\sum_{p=0}^{\infty} e^{-S_{p}}\right] & =\sum_{p=0}^{\infty} \mathbf{E}\left[e^{-S_{p}} V\left(S_{p}\right) I\{\gamma>p\}\right] \\
& =\sum_{p=0}^{\infty} \int_{0}^{\infty} e^{-x} V(x) d \mathbf{P}\left(S_{p} \leq x, \gamma>p\right) \\
& =\int_{0}^{\infty} e^{-x} V(x) d\left(\sum_{p=0}^{\infty} \mathbf{P}\left(S_{p} \leq x, \min _{0 \leq j \leq p} S_{j} \geq 0\right)\right) \\
& =\int_{0}^{\infty} e^{-x} V(x) d U^{*}(x)
\end{aligned}
$$

Hence by monotonicity

$$
\begin{aligned}
\widehat{\mathbf{E}}^{+}\left[\sum_{p=0}^{\infty} e^{-S_{p}}\right] & =\int_{0}^{\infty} e^{-x} V(x) d U^{*}(x) \\
& \leq \sum_{k=0}^{\infty} e^{-k} V(k+1) U^{*}(k+1) \\
& \leq c_{1} c_{2} \sum_{k=0}^{\infty} e^{-k}(k+1)^{2}
\end{aligned}
$$

The arguments needed to prove the second statement are similar.
Corollary 7 Under the conditions of Theorem 6 as $k \rightarrow \infty$

$$
S_{k} \rightarrow+\infty \quad \widehat{\mathbf{P}}^{+}-\text {a.s., } S_{k} \rightarrow-\infty \quad \widehat{\mathbf{P}}^{-}-\text {a.s. }
$$

Proof. This is a simple consequence of the statements of Theorem 6.

3 Properties of generating functions

Set

$$
\begin{aligned}
f_{k, n}(s) & :=\quad f_{k}\left(f_{k+1}\left(\ldots\left(f_{n-1}(s)\right) \ldots\right)\right), 0 \leq k \leq n-1, f_{n+1, n}(s):=s, \\
f_{n, m}(s) & :=\quad f_{n-1}\left(f_{n-2}\left(\ldots\left(f_{m}(s)\right) \ldots\right)\right), n \geq m+1
\end{aligned}
$$

and

$$
\begin{equation*}
\chi_{k}(s):=\frac{1}{1-f_{k}(s)}-\frac{1}{f_{k}^{\prime}(1)(1-s)}, 0 \leq s \leq 1 \tag{11}
\end{equation*}
$$

Lemma 8 Let $f_{k} \neq 1,0 \leq k \leq n-1$. Then for any $0 \leq s<1$ and $0 \leq m \leq n-1$

$$
\begin{equation*}
\frac{1}{1-f_{m, n}(s)}=\frac{e^{-S_{n}+S_{m}}}{1-s}+\sum_{k=m}^{n-1} \eta_{k, n}(s) e^{-S_{k}+S_{m}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e^{S_{n}-S_{m}}}{1-f_{n, m}(s)}=\frac{1}{1-s}+\sum_{j=m+1}^{n} \eta_{j, m}(s) e^{S_{j}-S_{m}} \tag{13}
\end{equation*}
$$

where for $k \leq n$

$$
\begin{equation*}
\eta_{k, n}(s):=\chi_{k}\left(f_{k+1, n}(s)\right) \leq \eta_{k+1}=\frac{f_{k}^{\prime \prime}(1)}{\left(f_{k}^{\prime}(1)\right)^{2}} \tag{14}
\end{equation*}
$$

and for $j>m$

$$
\eta_{j, m}(s):=\chi_{j-1}\left(f_{j-1, m}(s)\right) \leq \eta_{j}
$$

If the generating functions are geometric:

$$
f_{i}(s)=\frac{q_{i}}{1-p_{i} s}, p_{i}+q_{i}=1, p_{i} q_{i}>0, i=0,1, \ldots
$$

then $\eta_{k, n}(s)=1$ for all k and n.
Proof. We have

$$
\begin{aligned}
\frac{1}{1-f_{0, n}(s)}= & \frac{1}{1-f_{0, n}(s)}-\frac{1}{f_{0}^{\prime}(1)\left(1-f_{1, n}(s)\right)}+\frac{1}{f_{0}^{\prime}(1)\left(1-f_{1, n}(s)\right)} \\
= & \chi_{0}\left(f_{1, n}(s)\right) e^{S_{0}-S_{0}}+\frac{1}{f_{0}^{\prime}(1)\left(1-f_{1, n}(s)\right)}-\frac{1}{f_{0}^{\prime}(1) f_{1}^{\prime}(1)\left(1-f_{2, n}(s)\right)} \\
& +\frac{1}{f_{0}^{\prime}(1) f_{1}^{\prime}(1)\left(1-f_{2, n}(s)\right)} \\
= & \chi_{0}\left(f_{1, n}(s)\right) e^{S_{0}-S_{0}}+\chi_{1}\left(f_{2, n}(s)\right) e^{S_{0}-S_{1}}+\frac{1}{f_{0}^{\prime}(1) f_{1}^{\prime}(1)\left(1-f_{2, n}(s)\right)} \\
= & \ldots=\sum_{k=0}^{n-1} \chi_{k}\left(f_{k+1, n}(s)\right) e^{S_{0}-S_{k}}+\frac{e^{S_{0}-S_{n}}}{1-s} \\
= & \sum_{k=0}^{n-1} \eta_{k, n}(s) e^{S_{0}-S_{k}}+\frac{e^{S_{0}-S_{n}}}{1-s}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{1}{1-f_{m, n}(s)}= & \frac{1}{1-f_{m, n}(s)}-\frac{1}{f_{m}^{\prime}(1)\left(1-f_{m+1, n}(s)\right)} \\
& +\frac{1}{f_{m}^{\prime}(1)\left(1-f_{m+1, n}(s)\right)} \\
= & \chi_{m}\left(f_{m+1, n}(s)\right) e^{S_{m}-S_{m}} \\
& +\frac{1}{f_{m}^{\prime}(1)\left(1-f_{m+1, n}(s)\right)}-\frac{1}{f_{m}^{\prime}(1) f_{m+1}^{\prime}(1)\left(1-f_{m+2, n}(s)\right)} \\
& +\frac{1}{f_{m}^{\prime}(1) f_{m+1}^{\prime}(1)\left(1-f_{m+2, n}(s)\right)} \\
= & \chi_{m}\left(f_{m+1, n}(s)\right) e^{S_{m}-S_{m}}+\chi_{m+1}\left(f_{m+2, n}(s)\right) e^{S_{m+1}-S_{m}} \\
& +\frac{1}{f_{m}^{\prime}(1) f_{m+1}^{\prime}(1)\left(1-f_{m+2, n}(s)\right)} \\
= & \ldots=\frac{e^{S_{m}-S_{n}}}{1-s}+\sum_{k=m}^{n-1} \eta_{k, n}(s) e^{S_{m}-S_{k}}
\end{aligned}
$$

For pure geometric functions:

$$
1-f_{k}(s)=1-\frac{q_{k}}{1-p_{k} s}=\frac{p_{k}(1-s)}{1-p_{k} s}, f_{k}^{\prime}(1)=p_{k} / q_{k}
$$

leading to

$$
\chi_{k}(s):=\frac{1-p_{k} s}{p_{k}(1-s)}-\frac{q_{k}}{p_{k}(1-s)}=\frac{p_{k}(1-s)}{p_{k}(1-s)}=1 .
$$

This gives

$$
\begin{equation*}
\frac{1}{1-f_{m, n}(s)}=\frac{e^{S_{m}-S_{n}}}{1-s}+\sum_{k=m}^{n-1} e^{S_{m}-S_{k}} \tag{15}
\end{equation*}
$$

In the general situation in view of $1-f(s) \geq f^{\prime}(s)(1-s)$

$$
\begin{align*}
f^{\prime}(1) \chi(s) & =\frac{f^{\prime}(1)}{1-f(s)}-\frac{1}{1-s} \\
& =\frac{1}{1-f(s)} \frac{f^{\prime}(1)(1-s)-(1-f(s))}{(1-s)} \\
& \leq \frac{f^{\prime}(1)-f^{\prime}(s)}{1-f(s)}=\sum_{k=1}^{\infty} k r_{k}(s) \tag{16}
\end{align*}
$$

where

$$
r_{k}(s)=p_{k} \frac{1-s^{k-1}}{1-f(s)}
$$

Observe that

$$
\frac{r_{k+1}(s)}{r_{k}(s)}=\frac{p_{k+1}\left(1-s^{k}\right)}{p_{k}\left(1-s^{k-1}\right)}=\frac{p_{k+1}}{p_{k}}\left(1+\frac{1}{\sum_{j=1}^{k-1} s^{-j}}\right)
$$

is increasing in s for any $k \geq 1$ and that the $r_{k}(s)$ sums to 1 for any $0 \leq s<1$. Hence the right-hand side of (16) is increasing in s and, therefore

$$
f^{\prime}(1) \chi(s) \leq \sup _{s \in[0,1]} \frac{f^{\prime}(1)-f^{\prime}(s)}{1-f(s)}=\frac{f^{\prime \prime}(1)}{f^{\prime}(1)}
$$

The lemma is proved.

4 Probabilty of survival

Theorem 9 Assume that there exists a constant $C \in(0, \infty)$ such that

$$
\frac{f^{\prime \prime}(1)}{\left(f^{\prime}(1)\right)^{2}} \leq C \text { a.s. }
$$

and let the Spitzer condition be valid. Then the sequence of random variables

$$
\begin{equation*}
\zeta_{0, n}:=e^{-S_{\tau(n)}} \mathbf{P}_{\pi}(Z(n)>0)=e^{-S_{\tau(n)}}\left(1-f_{0, n}(0)\right), n=0,1,2, \ldots \tag{17}
\end{equation*}
$$

convereges in distribution as $n \rightarrow \infty$ to a random variable $\zeta \in[0,1]$ which is positive with probability 1.

We prove this theorem into several steps
Lemma 10 Under the conditions of Theorem 9

$$
q_{m}:=\lim _{n \rightarrow \infty} f_{m, n}(0)<1 \quad \hat{\mathbf{P}}^{+}-\text {a.s., } m=0,1, \ldots
$$

Proof. Existence of the limit is obvious. Let us show that $q_{m}<1 \hat{\mathbf{P}}^{+}-$a.s. Clearly,

$$
\frac{1}{1-f_{m, n}(0)} \uparrow
$$

as $n \rightarrow \infty$. By Lemma 8 and the conditions of the lemma in question

$$
\begin{aligned}
\frac{1}{1-f_{m, n}(0)} & =e^{-S_{n}+S_{m}}+\sum_{k=m}^{n-1} \eta_{k, n}(0) e^{-S_{k}+S_{m}} \\
& \leq(C+1) e^{S_{m}} \sum_{k=m}^{n} e^{-S_{k}} \leq(C+1) e^{S_{m}} \sum_{k=0}^{\infty} e^{-S_{k}}
\end{aligned}
$$

It follows from Theorem 6 that

$$
\sum_{k=0}^{\infty} e^{-S_{k}}<\infty \quad \hat{\mathbf{P}}^{+}-\text {a.s. }
$$

From this fact the statement of the lemma follows easily.

Introduce the notation

$$
\zeta_{k, m}(s):=\frac{1-f_{k, m}(s)}{e^{S_{k}-S_{m}}}
$$

and

$$
\zeta_{k}(s):=\frac{1-f_{k, 0}(s)}{e^{S_{k}}}
$$

Lemma 11 Under the conditions of Theorem 9 for any $s \in[0,1)$ and any $m=0,1, \ldots$ there exists $\lim _{k \rightarrow \infty} \zeta_{k, m}(s)=: \zeta_{\infty, m}(s)$ and $\zeta_{\infty, m}(s)>0 \hat{\mathbf{P}}^{-}-$a.s.

Proof. Clearly, for $l+1 \geq m$

$$
\begin{aligned}
\zeta_{k+1, m}(s) & :=\frac{1-f_{k+1, m}(s)}{e^{S_{k+1}-S_{m}}}=\frac{1-f_{k+1}\left(f_{k, m}(s)\right)}{e^{S_{k+1}-S_{m}}} \\
& \leq \frac{1-f_{k, m}(s)}{e^{S_{k}-S_{m}}}=\zeta_{k, m}(s)
\end{aligned}
$$

proving existence of the limit. In particular,

$$
\frac{e^{S_{k}-S_{m}}}{1-f_{k, m}(s)} \uparrow
$$

as $k \rightarrow \infty$. Further, by Lemma 8 , the conditions of the lemma in question and the respective results of Lecture 2

$$
\begin{aligned}
\frac{e^{S_{k}-S_{m}}}{1-f_{k, m}(s)} & =\frac{1}{1-s}+\sum_{j=m+1}^{k} \eta_{j, m}(s) e^{S_{j}-S_{m}} \\
& \leq \frac{1}{1-s}+C e^{-S_{m}} \sum_{j=0}^{\infty} e^{S_{j}}<\infty \quad \hat{\mathbf{P}}^{-}-\text {a.s. }
\end{aligned}
$$

The lemma is proved.
Proof of Theorem 9. We write

$$
\zeta_{0, n}=\left(1-f_{0, \tau(n)}\left(f_{\tau(n), n}(0)\right)\right) e^{-S_{\tau(n)}}
$$

set for $\lambda>0$

$$
Y_{n}^{*}=e^{-\lambda \zeta_{0, n}}
$$

and consider the Laplace transform

$$
\mathbf{E} e^{-\lambda \zeta_{0, n}}=\mathbf{E}\left[Y_{n}^{*}\right]
$$

of the distribution of $\zeta_{0, n}$. Clearly, for the associated random walk

$$
\mathbf{E}\left[Y_{n}^{*} \mid \tau(n)=k\right]=\mathbf{E}\left[Y_{k, n-k} \mid \mathcal{A}_{k, n-k}\right],
$$

where

$$
Y_{k, n-k}=\exp \left\{-\lambda\left(1-f_{k, 0}^{-}\left(f_{0, n-k}^{+}(0)\right)\right) e^{-S_{k}^{-}}\right\}
$$

and $\left\{f_{n}^{-}\right\}_{n \geq 0}$ and $\left\{f_{n}^{+}\right\}_{n \geq 0}$ are two independent sequences (realizations) of the random environment with $\left\{S_{n}^{-}\right\}_{n \geq 0}$ and $\left\{S_{n}^{+}\right\}_{n \geq 0}$ be the corresponding associate random walks.

From Lemmas 11 and 10 it follows that

$$
\lim _{\min (n-k, k) \rightarrow \infty} Y_{k, n-k}=: Y_{\infty, \infty}=\exp \left\{-\lambda\left(1-\zeta_{\infty, 0}^{-}\left(q^{+}\right)\right)\right\}
$$

exists $\hat{\mathbf{P}}-$ a.s., where

$$
\zeta_{\infty, 0}^{-}\left(q^{+}\right)=\lim _{k, n-k \rightarrow \infty} \frac{1-f_{k, 0}^{-}\left(f_{0, n-k}^{+}(0)\right)}{e^{S_{k}^{-}}}
$$

and, moreover, $Y_{\infty, \infty}=Y(\lambda)<1 \hat{\mathbf{P}}-$ a.s.
Hence, with $\zeta^{-}(s):=\zeta_{\infty, 0}^{-}(s)$ and according to our previous results

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[Y_{n}^{*}\right]=\lim _{n \rightarrow \infty} \mathbf{E}\left[e^{-\lambda \zeta_{0, n}}\right]=\hat{\mathbf{E}}\left[e^{-\lambda \zeta^{-}\left(q^{+}\right)}\right]
$$

The theorem is proved.

