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1 Change of measure 1

Besides the measure P we consider another probability measure P*. In order
to define this measure let F,,, n > 0 be the o—field of events generated by
the random variables fo,..., fn—1 and Z(0),...,Z(n). These o—fields form a
filtration F.

Lemma 1 The random variables V(Sy,)I{r, >0y, n = 0,1,... form a martingale
with respect to F under P.

Proof. Let B and D be Borel sets in Nijj and P", respectively. Recall identities
of the first lecture EV(x + X) = V(z), x > 0 and the fact that V(z) = 0 for
x < 0. Conditioning first on the environment fy,.f1,... and then on F,, and
using the independence of fy, f1,... we obtain
E [V(Sn,+1); Ln+1 Z 07 Z(O) =z, (an sy fn—l) € Da (Z(l)a sy Z(’I’L)) € B}
= E[V(Xnt1+Sn);Ln>0,Lpt1>0,Z(0)=2,(fo,---s fn-1) € D,(Z(1),...,Z(n)) € B]
= E[V(S,); L,>0,Z(0)=2z,(fo,..., fn1) € D,(Z(1),...,Z(n)) € BJ. (1)

By definition of conditional expectation, (1) implies
E[V(Sn+1)I{Ln+1ZO} |fn] = V(Sn)I{LnZO} P - a.s.,

which is the desired martingale property.

The proof of the lemma is complete.

Taking into account V(0) = 1 we may introduce probability measures f’:{
on the o-fields F,, by means of the densities

dP == V(Su)I1, >0, dP .

Because of the martingale property the measures are consistent, i.e., P;'{ 1l Fn =
P;". Therefore (choosing a suitable underlying probability space), there exists
a probability measure Pt on the o-field F., :=\/,, F, such that

PH|F, = PH, n>o0. (2)



We note that (2) can be rewritten as
EtY, = E[Y,,V(Sn); L, >0 (3)

for every F,—measurable non-negative random variable Y;,. This change of mea-
sure is the well-known Doob h-transform from the theory of Markov processes.
In particular, under Pt the process S becomes a Markov chain with state space
R and transition kernel

b

P+ (- —
P (z;dy) V)

P{z+Xedy}V(y), =>0.

In our context PT arises from conditioning:

Lemma 2 Assume Al. Fork € N let Y}, be a bounded real-valued Fi, —measurable
random variable. Then, as n — oo,

E[Yi | L, >0 — ETY .

More generally, let Y1,Ys,... be a uniformly bounded sequence of real-valued
random variables adapted to the filtration F, which converges Pt —a.s. to some
random variable Yo.. Then, as n — oo,

E[Y, | L, >0 — E*Y, .

Proof. For x > 0 write, as before, m,(x) := P{L, > —z}. Then for k <n
conditioning on Fj, gives
Mp—k(Sk)
my,(0)

We know from Lecture 1 and properties of slowly varying functions that for any
kand z >0

My () oy Mok () _ .
n—oo P(y > n) _n1—>oo my(0) Vi@).

Besides, according to Lecture 1

Mp—k (T)

o) SOV

that allows us to apply the dominated convergence theorem giving

lim E[Yy | Ly >0] = E|vp lim "otk

n— o0 n— o0 mn( )

;s L >0 ZE[YkV(Sk); Ly ZO]

and proving the first claim of the lemma.



For the second claim let ¢ > 1. Using again the same arguments as earlier
and (3), we obtain for k < n

g— n Sn
E[Y, = Yi | Lign) > 0] < E [|Yn Pl )

; L 20
mL{mJ (0)

o—1 —(1-p)
c < . ) E[|Y, — Y|V (S,) ; L, > 0]

—(1—p)
_1 “
— c<0 ) EHY, - Vil

g

where ¢ is some positive constant. Letting first n — oo and then k — oo the
right-hand side vanishes by the dominated convergence theorem. Thus, using
the first part of the lemma, we conclude

E[Y,; Lign >0] = (E*Ya +0(1)) P{Lsn >0} .
Consequently, for some ¢ > 0
|E[Y,; L, > 0] — ETY,P{L, >0}
}E[Yn; Lion] > 0] = E Y P{L|,n >0} + ¢P{L, >0, Ly, <0}

(o) +¢(1=0=0=7) ) P{L, > 0},
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where for the last inequality we also used results of Lecture 1 again. Since o
may be chosen arbitrarily close to 1, we have

E[Y,; L, >0 - ETY, P{L, >0} = o(P{L, >0}),

which is the second claim of the lemma.

The change of measure has a natural interpretation: Under PT the chain S
can be viewed as a random walk conditioned to never hit the strictly negative
half line.

The next statement is an easy consequence of the previous result.

Lemma 3 Assume Al. Fork € N letY}, be a bounded real-valued Fi,—measurable
random variable. Then, as n — o0,

Ele *"* | L, > 0] — BT [e7*], z € [0,00) .

More generally, let Y1,Ys,... be a uniformly bounded sequence of real-valued
random variables adapted to the filtration F, which converges P*—a.s. to some
random variable Yo.. Then, as n — oo,

Ele *" | L, >0] — E* [e7*">], z€[0,00) .

Thus, we have conditional limit theorems for convergence in distribution of
the respective sequences of random variables.



2 Change of measure 2

Let {f; },>0 and {f,/},,.~o be two independent sequences (realizations) of the
random environment and let {S;, }, -, and {S;},, be the corresponding as-
sociate random walks. Later on any characteristics or random variables related
with {f,; },,0 and {f,;'},,~, , are supplied with the symbols — or +, respectively.

For instance, we write L} = ming<;<p S;r,

We need also the random variables
' =min{n >1:S5, >0}

and
vt =min{n >1:8] <0}

and the event Ay, :={I'" > k,»* > p}.
We may now introduce probability measures f’kyp on the o-fields F, x .7:;
by means of the densities

AP, =d (P x P}) == PU(=S)V(SHI{T™ > k,v" >p} d(P~ xPT) .

(1
Because of the properties of the functions U(x) and V(x) the measures are
consistent, i.e.,

Pit1,pF), X f;r =Piypi Prp+1l|Fy x f;r =Prp

Therefore (choosiAng a suitable underlying probability space), there exists a prob-
ability measure P on the o-field Foo :=\/ , (Fy x .7-";’) such that

P|F, xFf = Pry, kp>0. (5)
We note that (5) can be rewritten as
BYip = EYi,ePU-SOVSHI{T™ > byt > p)] (6)

for every F,~ x F,-measurable non-negative random variable Y} ;.
In particular,

Bry(A) = P / U (—S7) V(SHI{ A, (P~ x P). (1)
A
We use symbols L£* and L for the laws of distributions generated by the
measures P* and P. Analogous agreement we keep for E* and E.

Lemma 4 Let condition Al valid and let Vi ,,1 =1,2,...;p =1,2,... be a
tuple of uniformly bounded random variables such that Y;, is measurable with
respect to the o-algebra F;~ x .7-'; for any pair l,p. Then

lim ElYip|Any] = Ylp (8)

min(n,r)—oo



More generally, if the tuples Y, , converge as min(n,r) — oo to a random
variable Yoo P a.s., then

lim  E[Y,,|A.,] =EYy . (9)

min(n,r)—oo

Proof. Relation (8) can be proved the same as Lemma 2. To demon-
strate (9) observe that for any numbers ¢ > 1 and k € N

|E[Yn,r - Yi,l | Aan,ar”

Mgy (=Sa)mE ), (SF)
(c—1)n n (e=1)r T
< (D) () TR W Ykl SV ST (A1)

() Bl - Vil

Hence by the conditions of the lemma and the bounded convergence theorem
we conclude that

limsup limsup |E[Y,,— Y| Asnor]| =0.

[—oo min(n,r)—oo

In particular,
E[Yn,rI{Aan,ar}] = (Eyoo,oo + 0(1)) P(Aan,ar)~

Consequently,

|E[Yn,rI{An,r}] - ]::Yoo,ooP(An,rN
S |E[Yn,rI{Aan,ar}] - ]::Yoo,ooP(Ao'n,ar” +c |P(Aan,o"r) - P(An,r)|
< (o(1) +c((1 =07~ + (1= a'7"))))P(An,y),

since from the results of Lecture 1 it follows that if Mﬁ,l)_ = maxi<k<n Sy then

|P(Aan,z7r) - P(AH,T)|
\PAﬂD—<mP@wzo»—Pmﬁ”‘<®P@r2®

< [Pl <0) = P(MY <0)| (Lo, > 0)
HP(L, > 0)—P(Loy > 0)[P(MP™ <0)
< ((1—0 PaP~ 1 —|—(1—01 ”)) P(A,,.).
Therefore,
[Yn TI{An r}] oo ooP(An,r) = O(P(An,r))a

as min(n,r) — oo which is equivalent to (9).



Lemma 5 Let condition Al be valid and let Y and Y, l,p € N - be a tuple of
random variables meeting the conditions of Lemma 4. If Y, n € N is a sequence
of uniformly bounded random variables such that Y,* is measurable with respect
to the o-algebra F,, for any n and

E[Y;:< |7'(n) = l] = ED/l,n—l |Al,n—l]7 0<i<n,

then .
lim E[Y,] = E[Ys,o0]- (10)

n— oo

Proof. In view of the generalized arcsine law for any € > 0 there exists
§ € (0,271) such that P (7 (n) ¢ [nd,n(1 — §)]) < e for all sufficiently large n.
Now to prove the lemma it sufficies to use the total probability formula with
respect to {7(n) = k},0 < k < n, and to apply Lemma 4.

Clearly, under the conditions above Y, — Y o in distribution.

We need the following statement.

Theorem 6 We have

o0 o0
E+[Z e 5% < o0, E_[Z e%] < 0.
k=0 k=0

Proof. Let
Iy =0T}, =min{n>T}:8, > S}

be weak ascending ladder epochs. By the duality principle for random walks
(see Feller, Volume IT) we have

ZP (Sp<x,0r<rlji£1p5j >0> :ZP(Spngszsﬁoﬁjﬁp)

p=0 p=0
o0 P o0 o0

= Y Y P, <aTi=p=> > P(S,<zT}=p)
p=0 k=0 k=0 p=k

I
NE

P (Sp: <z) =U*(x)

el
Il
o

and, therefore, U*(x) is the renewal function for the sequence

Xg=0,X;, = Sr: —Sr:

k41

Recall the following Key Renewal theorem (see Feller, Volume II):
If the distribution of X, is nonarithmetic then for any fixed h as  — oo

h
—
EX}

U*(z + h) — U*(x)



(even if EX] = 00). The same is true for arithmetic distributions for h = kA,
where A is the span of the distribution of X7. In particular, we have that for
ANY renewal function there exists a constant ¢ such that

U'(z) <e¢(x+1), z>0.

By definition,

E+[Z e 5] = ZE Sp)I{y > p}]
p=0
Z%/o e "V (z)dP (Sp < x,v > p)
- /0 eV (2 <ZP (5 <z, min 5 >o>>

_ /Ooo e~V (2)dU* (x).

Hence by monotonicity
B> e ] = / e~V (2)dU* (2)
p=0 0

e "V (k+ 1)U (k4 1)

]38

]
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< ClCQZe k—|—1

The arguments needed to prove the second statement are similar.
Corollary 7 Under the conditions of Theorem 6 as k — oo
S — +oo Pt — a.8., Sp — —00 P —as.

Proof. This is a simple consequence of the statements of Theorem 6.

3 Properties of generating functions
Set

fen ()= fe(fes1(.(fam1(8).)), 0<k <n
fnm (8) = frn-1(fn—2(.(fm (8))-+), n >m+1,

and
1 1
TG T ma sy Y=t )




Lemma 8 Let fr, #1,0 <k <n—1. Then forany0 < s<1land0<m<n—1

1 e=Sn+Sm N1 s
— " —Ok 'm’ 12
e et DI S (12)
and
esnism 1 + zn: ( ) S.—S (13)
— . s)e”d m
1—fom(s) 1—s | 13,
’ j=m+1
where for k <n
% (1)

Meon (8) = Xk (fet1,n (8)) < M1 = W
and for j >m
Nim (8) := Xj-1 (fi—1,m (5)) < ;.

If the generating functions are geometric:

fi(s) = & s, pit+q =1, pigg>0,9=0,1,...,
1—p;s

then ngn (s) =1 for all k and n.

Proof. We have

1 1 B 1 N 1
L=fon(s) — 1=fou(s) FOA—finls)  fOA = frn(s)

= s5))eSo—50 L - 1
= Xo(fin(s)) A= fin ) T = fon ()
1

OO ETNO)
= Xo(f1,0 ()€™ 7% 4 X1 (fan (5))e™ ™ +

1
oML = f2,n (5))

n—1 eS0—5n
= = D Xk (8)e%0 4 ——
k=0

So—5Sn

1—s '

n—1 e
= D mn(s)e 5 4
k=0



Similarly,
1 1 B 1
1- fm,n (5) 1- fm,n (8) f;n(l)(l - fm+1,n (5))
1
T Frrin ()

= Xm(ferl,n (8))65m—8m,
1 1

T 0= i 5) T s (D = Forron (5))

Lo
= Xm(ferln (8))6

" X1 (g2, (8))em175m

(1) m+1( ) fm+2n( ))
S —1

1
1
= . + Z Nk, Sm_sk.

k=m

(
Sm
(

For pure geometric functions:

1—fr(s)=1- 1_ql;ks —pf(_lp 8) fr (1) = pi/an,

leading to
(5) = l—prs @ :pk(l—s)zl
A e R O A (e
This gives
1 B eSm—5Sn n Zes n—=Sk (15)
1= fmn(s) T o1—3
In the general situation in view of 1 — f (s) > f’ (s) (1—23s)
O O
1 M)A —s)—(1—-F(s)
1—f(s) (1—s)
< L Zkrk (16)
where

Observe that

Ti+1(8) _ Pr1 (1-5) _ Prrr g
re(s)  pe(L=s"1) i



is increasing in s for any k& > 1 and that the ri(s) sums to 1 for any 0 < s < 1.
Hence the right-hand side of (16) is increasing in s and, therefore

, OO
FOx) < s =755~ = F

The lemma is proved.

4 Probabilty of survival

Theorem 9 Assume that there exists a constant C € (0,00) such that

7
(f'(1))*

and let the Spitzer condition be valid. Then the sequence of random variables

<C a.s.

Com = e 5P (Z(n) > 0) = e 57 (1 — fo., (0)), n=0,1,2,..., (17)

convereges in distribution as n — oo to a random variable ¢ € [0,1] which is
positive with probability 1.

We prove this theorem into several steps
Lemma 10 Under the conditions of Theorem 9

gm = lim f, ,(0) <1 Pt — as,m=0,1,...

n—o0

Proof. Existence of the limit is obvious. Let us show that ¢, < 1 Pt—as.

Clearly,
1

1- fm,n (O)

as n — 00. By Lemma 8 and the conditions of the lemma in question

|

1 — o SatSm 4 —Sk+50m
L — fm,n (0) Z

(C+1) S’”Xn:efs’“< C+1) S’”ie
k=0

k=m

IN

It follows from Theorem 6 that
Ze‘s"' < 00 Pt — as.
From this fact the statement of the lemma follows easily.

10



Introduce the notation

and |

Lemma 11 Under the conditions of Theorem 9 for any s € [0,1) Aand any
m =0,1,... there exists limp_ oo Ci.m (5) = Coo,m(S) and (oom(s) >0 P™— a.s.

Proof. Clearly, for l +1>m
1= firim(s) _ 1= frrri(frm(s))

Crrim(s) @ =

esls:-#l*S?n esk-%—lfs'm

1- fan(S)

- eskfs'm = <k7m (S)

proving existence of the limit. In particular,
eskfs'm

T fom(®) |

as k — oo. Further, by Lemma 8, the conditions of the lemma in question and
the respective results of Lecture 2

eSk—Sm 1 Xk: ( ) s s
= + Nj,m(8)e” "™
1— fiem (9) 1—s Pt I
1 > .
< 1_S+Ce_SmZeSj < 00 P~ — as.

j=0
The lemma is proved.

Proof of Theorem 9. We write

Gon = (1= forr(m) (Fr(mn(0))) €5,

set for A > 0
Y* = e*>\C0.n7

and consider the Laplace transform
Ee o = E[Y;]

of the distribution of (o . Clearly, for the associated random walk

E[Y,) |7(n) = k| = E[Yin—k | Akn—k),

11



where

Yiin—k = exp {—/\ (1 - fk_’o(f(;i:n—k(o))) eis;}

and {f; },~0 and {7}, ~, are two independent sequences (realizations) of the

random environment with {S, }, -, and {S;'}, -, be the corresponding asso-
ciate random walks. a B
From Lemmas 11 and 10 it follows that

lim Yiin—k =t Yoo,00 = €Xp {—)\ (1 - C;Q,O(q"'))}

min(n—k,k)— o0
exists P— a.s., where

= lim 1_fk_,0(f(;’,—n7k(0))

+
) k,n—k—oo0 eSI:

CC:0,0 (¢

and, moreover, Yo oo = Y(A) <1 P- as.
Hence, with (™ (s) := (5, (s) and according to our previous results

lim E[Y;] = lim E[e %] = & [e—xc-oﬁ)] .

The theorem is proved.
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