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1 Galton-Watson processes with immigration

The Galton-Watson process with immigration: is specified by

f(s) = Esξ, g(s) = Esη =
∞
∑

k=1

P (η = k) sk,

and
Y (n + 1) = ξ

(n)
1 + ... + ξ

(n)
Y (n) + η(n), η(n) d

= η, and iid.

We have

Φ(n + 1, s) = E
[

sY (n+1)|Y (0) = 0
]

= E
[

s
ξ
(n)
1 +...+ξ

(n)

Y (n)
+η(n)

|Y (0) = 0
]

= g(s)Φ(n, f(s)) = ... =
n+1
∏

k=0

g(fk(s)).

Theorem 1 If g′(1) < ∞ and A = f ′(1) < 1 then there exists the limit

Φ(s) = EsY = lim
n→∞

Φ(n, s) =
∞
∏

k=0

g(fk(s)) > 0.

Proof. Indeed,

1 − g(fk(s)) ≤ g′(1) (1 − fk(s)) ≤ g′(1)Ak (1 − s) .

Hence
∞
∑

k=0

(1 − g(fk(s))) < ∞

which shows that 1 ≥ ∏∞

k=0 g(fk(s)) > 0 for all s ∈ [0, 1] finishing the proof.
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Theorem 2 If g
′

(1) = b < ∞ and f ′(1) = 1, B = f”(1) ∈ (0,∞) then for
θ = 2b/B

lim
n→∞

P

(

Y (n)

Bn
≤ x

)

= F (x) =
1

Γ(θ)

∫ x

0

yθ−1e−ydy. (1)

1.1 M [X]|G|1 systems with permanent customers and FIFO−
discipline

(OPTIMIZATION OF A DISK SPACE).
Consider a queueing system with nonordinary Poisson flow of customers with

PGF h(s) and the intensity Λ. Assume that there is 1 permanent customer in
the queue. The service time of the permanent customer is distributed according
to Gp(x) while the distribution of the service time of non-permanent custiomers
is G(x). Initially only the permanent customer is in the queue and its service
starts. When the service is ended the premanent customer joins the queue
consisting of the customers coming during the its service time and becomes the
last one in the queue. The service dicipline is FIFO - first-in-first-out.

Let Y (n) be the number of nonpermanent customers in the queue just after
the moment when the nth service of the permanent customer is finished. Then

Y (n + 1) = ξ
(n)
1 + ... + ξ

(n)
Y (n) + η(n)

where ξ
(n)
i − is the number of customers arriving during the service time of the

i−th nonpermanent customer being in the queue at the end of the (n − 1)-th
service of the permananet customer and η(n) the number of customers arriving
during the n−th service of the permanent customer.

Thus, at these moments we have a Galton-Watson branching process with
immigration. Its ingredients are specified by the Poisson flow of intensity Λ.

Let µ(u) be the number of batches of customers arriving within the interval
[0, u]. Then its probability generating function is

Esµ(u) =
∞
∑

k=0

P(µ(u) = k)sk = eΛu(s−1).

Thus, the offspring probability generating function f(s) for the number of new
customers arriving during the service time l of a nonpermanent customer is

f(s) = Esξ =

∫

∞

0

E
[

sξ|l = u
]

dG(u)

=

∫

∞

0

E
[

sM(u)
]

dG(u) =

∫

∞

0

eΛu(h(s)−1)dG(u)

and the offspring probability generating function g(s) for the number of new
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customers arriving during the service time lp of the permanent customer is

g(s) = Esη =

∫

∞

0

E [sη |lp = u] dGp(u)

=

∫

∞

0

eΛu(h(s)−1)dGp(u).

And if g′(1) = Λh′(1)
∫

∞

0
udGp(u) < ∞ and A = f ′(1) = Λh′(1)

∫

∞

0
udG(u) < 1

we have a stationary distribution for the size of queue at the moments of the
end of the service of the permanent customer.

2 The Galton-Watson process with immigration

at zero:

f(s) = Esξ, g(s) = Esη =

∞
∑

k=1

P (η = k) sk.

We have
Y (n + 1) = ξ

(n)
1 + ... + ξ

(n)
Y (n) + η(n)I {Y (n) = 0} .

ξ
(n)
i

d
= ξ, η(n) d

= η and iid.

If
Π(n, s) = EsY (n)

then

Π(n + 1, s) = Π (n, f(s)) − Π(n, 0) + Π(n, 0)g(s)

= Π (n, f(s)) − (1 − g(s))Π(n, 0)

= Π (0, fn+1(s)) −
n
∑

k=0

(1 − g(fk(s))Π(n − k, 0).

In particular, if Y (0) = 0 then

Π(n + 1, 0) = 1 −
n
∑

k=0

(1 − g(fk(0))Π(n − k, 0).

If A < 1 and
g

′

(1) = b, g(0) > 0,

then we have a stationary distribution for the process Y (n) as n → ∞.
Indeed, it is known that if a Markov chain is irreducible and nonperiodic

then either
1) for any pair of states p

(n)
ij → 0, n → ∞, and, therefore, there exists no

stationary distribution;
or
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2) all the states are ergodic, that is,

lim
n→∞

p
(n)
ij = πj > 0

and in this case {πj} is a stationary distribution and no other stationary distri-
butions exists.

In our case take p
(n)
00 = Π(n, 0) = P (Y (n) = 0) . Assuming that there is NO

stationary distribution we get by dominated convergence theorem a contradic-
tion:

lim
n→∞

Π(n + 1, 0) = 0 = 1 − lim
n→∞

n
∑

k=0

(1 − g(fk(0))Π(n − k, 0) = 1

since the series
∞
∑

k=0

(1 − g(fk(0)) ≤ b
∞
∑

k=0

(1 − fk(0)) ≤ b
∞
∑

k=0

Ak < ∞.

Thus, we have a stationary distribution

Π (s) = EsY = lim
n→∞

EsY (n)

where

Π (s) = Π (f(s)) − π0 (1 − g(s))

or

Π (s) = 1 − π0

∞
∑

k=0

(1 − g(fk (s))) .

From here

π0 = 1 − π0

∞
∑

k=0

(1 − g(fk (0)))

leading to

π0 =
1

1 +
∑

∞

k=0 (1 − g(fk (0)))
.

Hence

Π (s) = 1 −
∑

∞

k=0 (1 − g(fk (s)))

1 +
∑

∞

k=0 (1 − g(fk (0)))
.

Introduce the following classes of functions: K1 = K (b1, b2) = {g(s) = Esη}
of probability generating functions (PGF):

0 < b ≤ g′(1) = Eη = b; g(0) > 0; Eη2 ≤ b2 < ∞

and K2 = K2 (C1, C2) =
{

f(s) = Esξ
}

of PGF specified by B1, B2:

A = Eξ, 0 < C1 ≤ f”(1) = Eξ(ξ − 1) = B, Eξ3 ≤ C2 < ∞

Let g(m, s), m = 1, 2, ... be a sequence of PGF belonging to class K1 = K (b1, b2)
and f(m, s), m = 1, 2, ...be a sequence of PGF belonging to class K2 = K2 (C1, C2) ..
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Theorem 3 If Am = f ′(m, 1) < 1 and Bm = f ′′(m, 1) < ∞ and the functions
g(m, s), f(m, s), m = 1, 2, ..vary within the classes K1 and K2 in such a way
that as m → ∞

bm → b, Am ↗ 1, lim
m→∞

Bm = B

and if Ym(n) is the branching process with immigration at zeroand reproduc-

tion functions (g(m, s), f(m, s)) with Ym
d
= limn→∞Y (∞) then we have (under

heavy trafic!)

lim
m→∞

P

(

ln Ym

ln 1
1−Am

≤ x

)

= x, x ∈ (0, 1].

2.1 Queueing systems with batch service

M [X]|G|1
Λ- the intensity of the input Poisson flow. The customers arrive in batches

of random size. The size of the i−th group is η(i)

g(s) = Esη =

∞
∑

k=1

P (η = k) sk.

The first customer → to the server
ν(1)- the number of customers coming during the service time of the first

customer.
ν(2)- the number of customers coming during the service time of all first

ν(1) customers.
ν(j)- the number of customers coming during the service time of all ν(j −1)

customers.
If NO customers arrive during the service time of a group of customers then

we wait for the new batch and take all of them. We have

ν(n + 1) = ξ
(n)
1 + ... + ξ

(n)
ν(n) + η(n)I {ν(n) = 0} .

ξ
(n)
i

d
= ξ, and iid.

This is a BRANCHING PROCESS WITH IMMIGRATION AT ZERO. Clearly,

Esξ =

∞
∑

j=0

P (ξ = j) sj =

∞
∑

k=0

∫

∞

0

e−Λu (Λu)k

k!
gk(s)dG(u)

=

∫

∞

0

e−Λu(1−g(s))dG(u) = f(s).

Direct calculations show that

A = Eξ = f
′

(1) = Λg
′

(1)

∫

∞

0

udG(u) = Λg
′

(1)L

where L is the expected service time of a customer. Hence we can apply the
previous theorem to study the queueing system under heavy traffic when A =
Λg

′

(1)L ↗ 1.

5



3 Continuous time Markov processes

Only nonformal definition: if there are i particles at some moment then each of
them has exponential remaining life-length with parameter, say, ρ, and dying
produces children in accordance with the pgf

f(s) =

∞
∑

k=0

P(ξ = k)sk =

∞
∑

k=0

pksk, 0 ≤ s ≤ 1,

independently of other individuals.
From here for f (ρ)(s) = ρ(f(s) − s) and i = 1 we have for

F (t, s) = E
[

sZ(t)|Z(0) = 1
]

the following equations

∂F (t; s)

∂t
= f (ρ) (s)

∂F (t; s)

∂s
, F (0, s) = s,

and

∂F (t; s)

∂t
= ρ(f(F (t, s)) − F (t, s)) = f (ρ)(F (t, s)),

F (0, s) = s. (2)

3.1 Classification

Let

A(t) = EZ(t).

Then
A(t) = eat, a = ρ(f

′

(1) − 1).

A continuous time Markov branching process is called supercritical, critical,
subcritical if, respectively f

′

(1) > 1, = 1, < 1.

3.1.1 Criterion

A Markov process does not explode if and only if for any ε ∈ (0, 1)

∫ 1

1−ε

du

1 − f(u)
= ∞.

6



4 Branching processes counted by random char-
acteristics (branching processes with final prod-

uct)

We consider continuous time Markov branching process with exponential life-
time distribution with parameter ρ and the reproduction function f(s).

Now we suppose that at the end of life any particle produces along with
random number ξ of children a final product χ ≥ 0 which is not changed later
on and denote by ϕχ(s, λ) the joint probability generating function of the vector
(ξ, χ) specified by

ϕχ(s, λ) = Esξe−λχ.

χ is called a random characteristics or the final product. It is assumed that the
size of the final product of a particle IS INDEPENDENT of her life-length.

Examples. χ = I {ξ = k} , χ = I {ξ ≥ k} and so on.
Let

Zχ(t) =
∑

D

χD

where the summation is taken over all particles D which died up to the moment
t.

We deduce integral and diferential equations for the probability generating
fucntion of the pair (Z(t), Zχ(t)) assuming that the final product of a particle
IS INDEPENDENT of her life-length. We have by the total probability formula
for

Φ (t, s, λ) = E
[

sZ(t)e−λZχ(t)|(Z(0), Zχ(0)) = (1, 0)
]

and G(t) = 1 − e−ρt :

Φ (t, s, λ) = s (1 − G(t)) +

∫ t

0

ϕχ(Φ (t − u, s, λ) , λ)dG(u).

Hence

∂Φ (t, s, λ)

∂t
= ρ (ϕχ(Φ (t, s, λ) , λ) − Φ (t, s, λ)) , Φ (0, s, λ) = s.

In particular, for

Φ (t, λ) := E
[

e−λZχ(t)|(Z(0), Zχ(0)) = (1, 0)
]

= Φ (t, 1, λ)

we get

Φ (t, λ) = (1 − G(t)) +

∫ t

0

ϕχ(Φ (t − u, λ) , λ)dG(u) (3)

and
∂Φ(t, λ)

∂t
= ρ (ϕχ(Φ (t, λ) , λ) − Φ (t, λ))
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with
Φ (0, λ) = 1.

Thus, if
Aχ(t) = EZχ(t),

then denoting by l the lifelength of the initial particle we get from (3) by
differentiating with respect to λ and setting λ = 0 :

Aχ(t) = Eξ

∫ t

0

Aχ(t − u)dG(u) +

∫ t

0

E[χ|l = u]dG(u)

= (by independence of χ of the lifelength)

= Eξ

∫ t

0

Aχ(t − u)dG(u) + EχG(t)

giving

Aχ(t) =
Eχ

Eξ − 1
e(Eξ−1)t − Eχ

Eξ − 1

if Eξ 6= 1 and
Aχ(t) = tEχ

if Eξ = 1.
Passing to the limit as t → ∞ we get for

Φ (λ) := Ee−λZχ(∞) = lim
t→∞

Φ (t, λ)

= lim
t→∞

E
[

e−λZχ(t)|(Z(0), Zχ(0)) = (1, 0)
]

(since Zχ(t) is nondecreasing this limit always exists) that

Φ (λ) = ϕχ(Φ (λ) , λ).

This is a reflection of the relation

Zχ(t)
d
=
[

χ0 + Zχ
1 (t − l0) + ... + Zχ

ξ (t − l0)
]

I {l0 ≤ t}

and, therefore,

Zχ(∞)
d
= χ0 + Zχ

1 (∞) + ... + Zχ
ξ (∞).

In particular, for the total number of particles born in the process (χ = 1) we
get

ϕχ(s, λ) = Esξe−λχ = e−λEsξ = e−λf(s)

and
Φ (λ) = e−λf(Φ (λ)).

For instance, for the case

f(s) =
1

2 − s
(4)

we get

Φ (λ) = 1 −
√

1 − e−λ or (= 1 −
√

1 − s).
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5 Branching processes and Queueing system with
SIRO (service in random order) discipline

System with one server and the infinite capacity queue.
Consider a queueing system in which initially there are n + 1 customers in

the queue one of them is marked and the server is idle (free). The subsequent
customer is selected for service from the queue at random. Let πi be the service
time of the i−th customer being served:

P(πi ≤ x) = G(x),

and let ξi be the number of new customers arriving to the system during the
service time πi. Assume that the pairs (ξi, πi), i = 1, 2, ... are iid (for instance
this is valid for any M |G|1 system). Denote by T π

n the waiting time for the
start of the service of the marked customer. Clearly, if the marked customer is
served as the (N + 1)−th customer then

T π
n = π1 + π2 + ... + πN .

We consider this from a more general point of view: πi → χi that is, a final
product χi is produced at moment π1 + π2 + ... + πi and the final products are
accumulated in the process. For instance, if χi = 1 then T χ

n = N if χi = ξi − 1
then T χ

n +n is the length of the queue when the service of the marked customer
starts and so on.

The associated branching process is described as follows. The pro-
cess starts by n + 1 individuals, each of them (say, D) is treated as a customer.
The start of splitting of the individual D is the start of the service of the
customer D . The number of children of D is the number of new customers
arriving during the service time of D. The end of the splitting is the moment
of the end of service of D when it produces a final product χD. The life-length
distributions of particles are exponential with parameter 1. Thus, each parti-
cle presenting in the process at moment t has one and the same probability to
produce the final product first:

T χ
n = χ1 + χ2 + ... + χN .

Using the construction above one can show the validity of the following
statement.

Theorem 4 The queueing system above and the associated branching process
can be specified on a common probability space in such a way that

T χ
n = Zχ

1 (τ) + ... + Zχ
n (τ) a.s.

where τ and the random variables Zχ(t), i = 1, 2, ..., n are independent, P(τ ≤
x) = 1 − e−x and

Zχ
i (τ)

d
= Zχ(τ).
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In particular,

Ee−λT χ
n =

∫

∞

0

e−tΦn(t, λ)dt

and

E (Tn)
p

=

∫

∞

0

e−tE (Zχ
1 (t) + ... + Zχ

n (t))
p
dt.

Thus, if the characteristics χ is independent of the life-time then

ETn = n

∫

∞

0

e−tEZχ(t)dt =
nEχ

Eξ − 1

∫

∞

0

e−t(e(Eξ−1)t − 1)dt

=
nEχ

Eξ − 1

∫

∞

0

(

e(Eξ−2)t − e−t
)

dt

=
nEχ

Eξ − 1

(

1

2 −Eξ
− 1

)

=
nEχ

2 −Eξ
.

Hence Eξ < 2 gives finite expectation for Tn (even for n = 1).
One can show that

ET 2
n = n

(

Eχ2

2 −Eξ
+

2EχEξχ

(2 −Eξ)
2 +

2 (Eχ)2
(

Eξ2 − 2
)

(3 − 2Eξ) (2 −Eξ)
2

)

+
n2Eχ2

(3 − 2Eξ) (2 −Eξ)
.

Remark. It is interesting to understand when P (Tn < ∞) = 1. Clearly,

P (Tn < ∞) = 1 ⇐⇒ P (Zχ(τ) < ∞) = 1

⇐⇒ P (Zχ(t) < ∞) = 1

for almost all t and hence for all t > 0 and this, in turn, means that, under
reasonable assumption on χ (say, 0 < c1 ≤ χ ≤ c2 < ∞ for some constants
c1, c2 > 0) that

P (Zχ(t) < ∞) = 1 ⇐⇒ P (Z(t) < ∞) = 1.

Therefore, by the non-explosion criterion for ordinary Markov processes the
following statement is valid (under reasonable assumption on χ) :

Theorem 5 P (Tn < ∞) = 1 if and only if

∫ 1

0

du

1 − f(1 − u)
= ∞.

For M |G|1 system with ordinary Poisson input and intensity 1 we have

f(s) = Esξ =

∫

∞

0

e(s−1)xdG(x)
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and, therefore

f(1 − u) =

∫

∞

0

e−uxdG(x).

An unusual phenomena: Consider an M |G|1 system having the following
ingredients:

The flow of customers is Poisson with intensity, say Λ, and the service time
distribution is G(x). The service intensity of customers is 1. Consider two such
systems with underlying distributions Gi(x), i = 1, 2. Combine the two flows
of customers into one, that is assume that the customers have the service time
distributed as

1

2
(G1(x) + G2(x))

and with any service intensity c > 0. Then there are two distribution functions
Gi(x), i = 1, 2, such that the waiting time of a customer under the stationary
regime in the new system is infinite while for each separate system they are
finite (see Grishechkin, TPA, V.21, 1986 for more details).

Let m = Eξ − 1.

Theorem 6 As n → ∞
T χ

n

nEχ

d→ ζ

where the distribution function of the random variable ζ is

Fm(x) = 1 − (1 + mx)−1/m , 0 ≤ x ≤ xm,

where

xm = − 1

m
, m < 0, xm = ∞, m ≥ 0,

and
F0(x) = 1 − e−x.

Proof. We have

P

(

T χ
n

nEχ
≤ x

)

= P

(

Zχ
1 (τ) + ... + Zχ

n (τ)

nEχ
≤ x

)

=

∫

∞

0

e−tP

(

Zχ
1 (t) + ... + Zχ

n (t)

nEχ
≤ x

)

dt.

Since

Aχ(t) =
Eχ

Eξ − 1
e(Eξ−1)t − Eχ

Eξ − 1
=

Eχ

m

(

emt − 1
)

,

we have by the law of large numbers

lim
n→∞

P

(

Zχ
1 (t) + ... + Zχ

n (t)

nEχ
≤ x

)

= P

(

1

m

(

emt − 1
)

≤ x

)

.
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Now if m < 0 we get for mx > −1

P

(

1

m

(

emt − 1
)

≤ x

)

= P
(

emt ≥ mx + 1
)

= P

(

t ≤ 1

m
ln (mx + 1)

)

and by the dominated convergence theorem

lim
n→∞

∫

∞

0

e−tP

(

Zχ
1 (t) + ... + Zχ

n (t)

nEχ
≤ x

)

dt

=

∫

∞

0

e−tP

(

1

m

(

emt − 1
)

≤ x

)

dt

=

∫

∞

0

e−tP

(

t ≤ 1

m
ln (mx + 1)

)

dt

=

∫ 1
m

ln(mx+1)

0

e−tdt = 1 − (1 + mx)
−1/m

.

For m = 0

lim
n→∞

∫

∞

0

e−tP

(

Zχ
1 (t) + ... + Zχ

n (t)

nEχ
≤ x

)

dt

=

∫

∞

0

e−tP (t ≤ x) dt =

∫ x

0

e−tdt = 1 − e−x.

The case m > 0 can be treated similarly.
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