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Abstract. A linear Boltzmann equation is derived in the Boltzmann-Grad scaling for the
deterministic dynamics of many interacting particles with random initial data. We study a
Rayleigh gas where a tagged particle is undergoing hard-sphere collisions with background
particles, which do not interact among each other. In the Boltzmann-Grad scaling, we derive
the validity of a linear Boltzmann equation for arbitrary long times under moderate assumptions
on higher moments of the initial distributions of the tagged particle and the possibly non-
equilibrium distribution of the background. The convergence of the empiric dynamics to the
Boltzmann dynamics is shown using Kolmogorov equations for associated probability measures
on collision histories.

1. Introduction

The derivation of continuum equations from atomistic particle models is currently a major
problem in mathematical physics with origins in Hilbert’s Sixth Problem. A particular interest
in this area is the derivation of the Boltzmann equation from atomistic particle dynamics. The
first major work in this area was by Lanford [17] which showed convergence from a hard-sphere
particle model for short times by using the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy, see e.g. [8, 11, 33]. A recent major work by Gallagher, Saint-Raymond and Texier
[14] continued the BBGKY development and proved convergence to the Boltzmann equation for
short times for both hard-sphere and short-range potentials. The latter of which was improved
by Pulvirenti [29]. A particular difficulty has been proving convergence for arbitrarily long
times, since the aforementioned results hold only for times up to a fraction of the mean free
flight time. In [5] Bodineau, Gallagher and Saint-Raymond were able to utilise the tools from
[14] to prove convergence from a hard-sphere particle model to the linear Boltzmann equation for
arbitrary long times in the case that the initial distribution of the background is near equilibrium.
They were further able to use the linear Boltzmann equation as an intermediary step to prove
convergence to Brownian motion. Further in a following paper [6] the authors were able to
consider weaker assumptions on the initial data and prove convergence to the Stokes-Fourier
equations. For a general overview of the Boltzmann equation and the BBGKY hierarchy we
refer to the books [10, 11, 32].
A new method to tackle this problem has recently been developed in a series of papers [24, 25, 26].
This method employs semigroup techniques to study the evolution of collision trees rather than
the BBGKY hierarchy. This comes from studying the distribution of the history of the particles
up to a certain time rather than the distribution of the particles at a specific time. These
papers have been able to prove convergence for arbitrary times but only for a simplified particle
interaction system. This is the approach that we continue to develop in this paper.

1.1. The BBGKY Hierarchy. The standard approach to tackling the derivation of the Boltz-
mann equation is via the BBGKY hierarchy. We refer specifically to [5] for hard spheres. If
fN (t) represents the N particle distribution resulting from hard sphere dynamics at time t then,
away from collisions, fN satisfies the Liouville equation,

∂tfN (t) + v · ∂xfN (t) = 0.
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Considering this equation in weak form and integrating we have, away from collisions,

(1.1) ∂tf
(s)
N (t) +

∑
1≤i≤s

vi · ∇xifN (t) = Cs,s+1f
(s+1)
N (t),

for s = 1, . . . , N where f
(s)
N denotes the s particle marginal and where Cs,s+1 is the effect on

the distribution of the first s particles by a collision with another particle given explicitly in
(2.6) below. The system of N equations (1.1) is known as the BBGKY hierarchy. If the initial
distribution of the N particles is given by,

fN (0) =
1

ZN
1nof

⊗N
0 ,

where 1no conditions on no initial overlap and ZN is a normalising constant, then the initial

distribution of f
(s)
N is given by,

f sN (0, Zs) =

∫
fN (0, Zn) dzs+1 . . . dzN .

After successive time integration of (1.1) one obtains a representation in the form of a finite sum

f
(s)
N (t) =

N−s∑
k=0

∫ t

0

∫ t1

0
. . .

∫ tk−1

0
Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .(1.2)

. . .Ts+k(tk)f
(s+k)
N (0) dtk . . . dt1,

where Ts is the flow map of s hard spheres.
A popular method to establish the convergence of solutions of (1.1) is to first demonstrate that
the mild form of the BBGKY hierarchy is given by a contracting operator if t is sufficiently
small. This step ensures that the sum (1.2) converges absolutely, and in a second step one
checks the convergence of the individual terms. It is noteworthy that the necessity to establish
the contraction property of the mild BBGKY operator (and thereby restricting the analysis to
small values of t) is due to the fact that the individual terms in (1.2) are unsigned.
The key achievement of this paper is to demonstrate that in a simpler setting a representation

formula similar to (1.2) for f
(s)
N can be found so that the individual terms are non-negative and

can be interpreted as probabilities. This representation offers two significant advantages:

(1) It is possible to allow irregular initial data which may not be exponentially tight.

(2) The need to establish a contraction property is replaced by a tightness bound, which
is related to the properties of physically relevant objects such as collision histories. In
particular, convergence can be established for all times.

1.2. The Lorentz and Rayleigh Gas. Instead of considering a system of N identical hard
spheres evolving via elastic collisions one can consider a single tagged or tracer particle evolving
among a system of fluid scatterers or background particles.
If the background particles are fixed and of infinite relative mass to the tracer particle then one
has a model known as the Lorentz gas first introduced by Lorentz in [21] to study the motion
of electrons in a metal.
Much research has been done deriving the linear Boltzmann equation from a Lorentz gas with
randomly placed scatterers, for example [7, 15, 30] and a large number of references found in
Part I Chapter 8 of [32]. The linear Boltzmann equation can however fail to hold if we consider
non-random periodic scatterers, as shown for example by Golse [16] and Marklof [22]. The
existence of a limiting stochastic process for the periodic Lorentz gas from the Boltzmann-Grad
limit was shown by Marklof and Strömbergsson in [23].
When a force field is present the convergence of the distribution of the tracer particle in an
absorbing Lorentz gas to the solution of a gainless linear Boltzmann equation was proved in
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[13]. The authors also proved that if the scatterers move with a constant random initial velocity
then the convergence can be proven with significantly weaker assumptions on the force field.
Closely related to the Lorentz gas is the Rayleigh gas, where the background particles are no
longer of infinite mass. Convergence to Brownian motion is discussed in Part I Chapter 8 of
[32]. In [20] Lebowitz and Spohn proved the convergence of the momentum process for a test
particle to a jump process associated to the linear Boltzmann equation. This was proved for
arbitrarily long times, via the BBGKY hierarchy, when the initial distribution of the velocities
is at equilibrium. This builds on their previous work [18, 19, 34].
In this paper we consider a Rayleigh gas where the background particles are of equal mass to
the tagged particle and have no self interaction. The particles evolve via a simplified form of
hard-sphere dynamics whereby the background particles do not change velocity. We consider
non-equilibrium initial data but require that the background particles are spatially homogeneous.
Convergence is proved for arbitrary times.

2. Model and Main Result

Our Rayleigh gas model in three dimensional space is now detailed. Define U := [0, 1]3 with
periodic boundary conditions. Here a tagged particle evolves via the hard sphere flow and the
remaining N particles do not interact, i.e. move along straight lines. The initial distribution
of the tagged particle is f0 ∈ L1(U × R3). The N background particles are independently
distributed according to the law g0 ∈ L1(R3) in velocity space and uniform in U .
The tagged particle and the background particles are spheres with diameter ε > 0 which is
related to N via the Boltzmann-Grad scaling,

(2.1) Nε2 = 1.

The background particles always travel in free flow with their velocities never changing from the
initial value. The tagged particle travels in free flow whilst its centre remains at least ε away
from the centre of all the background particles.
When the centre of the tagged particle comes within ε of the centre of a background particle
the tagged particle collides as if it was a Newtonian hard-sphere collision and changes velocity.
Explicitly this is described as follows. Denote the position and velocity of background particle
1 ≤ j ≤ N at time t by (xj(t), vj(t)). Then for all t ≥ 0,

dxj(t)

dt
= vj(t) and

dvj(t)

dt
= 0.

Further denote the position and velocity of the tagged particle at time t by (x(t), v(t)). Then
for all t ≥ 0,

dx(t)

dt
= v(t).

If at time t for all 1 ≤ j ≤ N , |x(t) − xj(t)| > ε then dv(t)/dt = 0. Otherwise there exists a
1 ≤ j ≤ N such that |x(t) − xj(t)| = ε and the tagged particle experiences an instantaneous
change of velocity. Define the collision parameter ν ∈ S2 by,

ν :=
x(t)− xj(t)
|x(t)− xj(t)|

.

Then the velocity of the tagged particle instantaneously after the collision, v(t), is given by

v(t) := v(t−)− ν · (v(t−)− vj)ν.

It is noted that in this model we do not have conservation of momentum. The background
particles do not change velocity and the root particle does.

Proposition 2.1. For N ∈ N and T > 0 fixed these dynamics are well defined up to time T for
all initial configurations apart from a set of measure zero.
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Figure 1. The collision parameter ν

The proof is given in section 6, which establishes that almost surely all collisions involve only
pairs.
We are interested in studying the distribution of a tagged particle amongN background particles,
f̂Nt , under the above particle dynamics as N tends to infinity or equivalently as ε tends to zero.

Definition 2.2. Probability densities f0 ∈ L1(U × R3), g0 ∈ L1(R3) are admissible if∫
U×R3

f0(x, v)(1 + |v|2) dx dv <∞,(2.2) ∫
R3

g0(v)(1 + |v|2) dv <∞,(2.3)

ess sup
v∈R3

g0(v)(1 + |v|4) <∞.(2.4)

The distribution of the tagged particle is shown to converge to the solutions of a linear Boltzmann
equation up to a finite arbitrary time T . We now state the main theorem of this paper.

Theorem 2.3. Let 0 < T <∞ and f0, g0 be admissible. Then f̂Nt converges to a time-dependent
density ft in the TV sense. Moreover, the limit ft satisfies the linear Boltzmann equation

(2.5)

{
∂tft(x, v) = −v · ∂xft(x, v) +Q[ft](x, v),

ft=0(x, v) = f0(x, v),

where the collision operator Q is defined by Q := Q+ −Q− and Q+ and Q− known respectively
as the gain and loss term are given as follows,

Q+[f ](x, v) =

∫
S2

∫
R3

f(x, v′)g0(v̄′)[(v − v̄) · ν]+ dv̄ dν,

where the pre-collision velocities, v′ and v̄′, are given by v′ = v+ν ·(v̄−v)ν and v̄′ = v̄−ν ·(v̄−v)ν,
and

Q−[f ](x, v) = f(x, v)

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν.

2.1. Remarks.

(1) The reader is reminded that solutions of (2.5) only conserve mass, but not energy.
(2) The analysis of the Rayleigh gas can also be done using traditional BBGKY approach.

Here one uses the collision operator in Rd:

CRayl
s,s+1f

(s+1)(t, Zs) = (N − s)εd−1

∫
Sd−1×Rd

ν · (vs+1 − vi)

× f (s+1)
N (t, Zs, x1 + εν, vs+1) dν dvs+1.
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The hard sphere collision operator is given by

Chs
s,s+1f

(s+1)(t, Zs) := (N − s)εd−1
s∑
i=1

∫
Sd−1×Rd

ν · (vs+1 − vi)(2.6)

× f (s+1)
N (t, Zs, xi + εν, vs+1) dν dvs+1.

The only difference between CRayl
s,s+1 and Chs

s,s+1 is the fact that in the hard sphere case one
sums over all indices i = 1, . . . , s and in the Rayleigh case only over i = 1. This gives

estimates on CRayl
s,s+1, which are independent of s in the contraction proof for the mild form

of the associated BBGKY hierarchy. Using the function spaces Xε,β,µ with norm ‖.‖ε,β,µ
as in [14, Def 5.1.4] for measurable functions G : t ∈ [0, T ] 7→ (t) = (gs(t))s≥1 ∈ Xε,β,µ

one can introduce another time-dependent variant compared to [14, Def 5.1.4]

‖|G|‖ε,β,µ,λ := sup
0≤t≤T

‖G(t) exp(−λt|v1|2)‖ε,β,µ.

This will lead to a contraction for arbitrary large times T . For a slightly different ap-
proach assuming only finite moments see [31, Section II.B].

(3) Our method can be used to derive quantitative error estimates at the expense of more
complex notation and additional regularity requirements for f0 and g0. In particular,
see lemmas 4.14 and 4.17 for some quantitative expressions.

(4) The result should also hold in the case d = 2 or d ≥ 4 up to a change in moment assump-
tions on the initial data and minor changes in estimates and calculations throughout the
paper.

(5) One could consider a spatially inhomogeneous initial distribution for the background
particles g0 = g0(x, v). This adds a complication to the equations since for example the
operator Q in (2.5) becomes time-dependent, i.e. Qt = Q+

t −Q
−
t with

Q−t [f ](x, v) = f(x, v)

∫
S2

∫
R3

g0(x− tv̄, v̄)[(v − v̄) · ν]+ dv̄ dν,

and Q+
t analogous. Since the operator now depends on the time t this would require

evolution semigroup results to echo the semigroup results in [3].

(6) One could also attempt to adapt these results to more complex and involved models. For
example a model where each particle has an associated counter and a collision occurs
between particle i and j if and only if both counters are less than k, in the hope of
letting k tend to infinity. The main difficulty here will be that one will need to keep
track of the current distribution of the background gt in contrast to our model where
the background has constant with time distribution g0.

2.2. Method of Proof. We closely follow the method of [26]. That is we study the probability
distribution of finding a given history of collisions, a given tree, at time t.
Firstly in section 3 we prove the main result, theorem 3.1, which shows that there exists a
solution Pt to a Kolmogorov differential equation (3.1) and relate this solution to the solution
of the linear Boltzmann equation. We show existence by explicitly building a solution on the
most simple trees and using this to iteratively build a full solution.
In section 4 we consider the distribution P̂t of finding a given history of collisions from our
particle dynamics and show by direct calculation that this solves a similar differential equation
in theorem 4.6 for sufficiently well controlled (good) trees.
Finally in section 5 we prove the main theorem of the paper, theorem 2.3, by proving the
convergence between Pt and P̂t in theorem 5.8 and then relating this to ft and f̂Nt .
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2.3. Tree Set Up. We construct trees in a similar way to [26].
A tree represents a specific history of collisions. The nodes of the tree are denoted by m
and represent particles while the edges, denoted E, represent collisions. The root of the tree
represents the tagged particle and is marked with the initial position of the tagged particle
(x0, v0) ∈ U × R3. The child nodes of the root represent background particles that the root
collides with and are denoted (tj , νj , vj) ∈ (0, T ] × S2 × R3, where tj represents the collision
time, νj the collision parameter and vj the incoming velocity of the background particle. Since
the background particles only collide with the root particle and not each other we only consider
trees of height at most 1, so the trees simplify to the initial position of the tagged particle and
a list of its n ≥ 0 collisions. The graph structure is mainly suppressed.

Definition 2.4. The set of collision trees MT is defined by,

MT := {(x0, v0), (t1, ν1, v1), . . . , (tn, νn, vn) : n ∈ N ∪ {0}}.
For a tree Φ ∈MT , n(Φ) is the number of collisions.
The final collision in a tree Φ plays a significant role. Define the maximum collision time
τ(Φ) ∈ [0, T ],

(2.7) τ(Φ) :=

{
0 if n(Φ) = 0,

max1≤j≤n(Φ) tj else.

Further for n(Φ) ≥ 1 the marker for the final collision is denoted by,

(τ, ν, v′) := (tn(Φ), νn(Φ), vn(Φ)).

The realisation of a tree Φ at a time t ∈ [0, T ] for a particle diameter ε > 0 uniquely defines the
position and velocity of the tagged particle for all times up to t since the initial position and
the collisions the root experiences are known. Further it determines the initial positions of the
n(Φ) background particles involved in the tree since we can work backwards from the collision
and we know that their velocity does not change. Finally it also includes information about the
other N − n background particles, because it is known that they do not interfere with the root
up to time t.
If the root collides at the instant t denote the pre-collisional velocity by v(t−) and the post-
collisional velocity by v(t). Throughout this paper the dependence on Φ is often dropped from
these and other variables when the context is clear.
For n ≥ 1, define Φ̄ as being the pruned tree of Φ with the node representing the final collision,
which occurs at time τ , removed. For example if Φ = ((x0, v0), (t1, ν1, v1), (τ, ν, v′)) then Φ̄ =
((x0, v0), (t1, ν1, v1)).

(x0, v0)

(τ, ν, v′)

(a) An example
tree with 1 colli-
sion

(x0, v0)

(t1, ν1, v1)

(t2, ν2, v2)

(τ, ν, v′)

(b) An example tree with 3 collisions

Figure 2. Two example trees

Define a metric d onMT as follows. For Φ,Ψ ∈MT with components Φj and Ψj respectively.

d(Φ,Ψ) :=

{
1 if n(Φ) 6= n(Ψ)

min {1,max0≤j≤n |Φj −Ψj |∞} else.
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Further denote by Bh(Φ) the ball of radius h/2 around Φ ∈MT ,

(2.8) Bh(Φ) := {Ψ ∈MT : d(Φ,Ψ) < h/2}.
The standard Lebesgue measure on MT is denoted by dλ.

3. The Idealized Distribution

In this section we show that there exists a solution, denoted Pt, to the idealized equation,
equation (3.1), and relate this solution to the solution of the linear Boltzmann equation. We
prove existence by constructing a solution iteratively on different sized trees. In section 5 Pt
is compared to the solution of a similar evolution equation defined by the particle dynamics
in order to show the required convergence. The idealized system plays the same role as the
Boltzmann hierarchy in [14].
For a given tree Φ ∈ MT , P0(Φ) is zero unless Φ involves no collisions, in which case P0(Φ) is
given in terms of the initial distribution f0. Pt(Φ) remains zero until t = τ when there is an
instantaneous increase to a positive value depending on Pτ (Φ̄) and the final collision in Φ. For
t > τ , Pt(Φ) decreases at a rate that is obtained by considering all possible collisions.
The idealized equation is given by,

(3.1)

{
∂tPt(Φ) = Qt[Pt](Φ) = Q+

t [Pt](Φ)−Q−t [Pt](Φ),

P0(Φ) = f0(x0, v0)1n(Φ)=0,

where,

(3.2) Q+
t [Pt](Φ) :=

{
δ(t− τ)Pt(Φ̄)g0(v′)[(v(τ−)− v′) · ν]+ if n(Φ) ≥ 1,

0 if n(Φ) = 0,

(3.3) Q−t [Pt](Φ) := Pt(Φ)

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν.

Theorem 3.1. Suppose that f0 and g0 are admissible (in the sense of Def. 2.2). Then there
exists a solution P : [0, T ] → L1(MT ) to the idealized equation, (3.1). Moreover for any
t ∈ [0, T ] and for any Ω ⊂ U × R3 define

St(Ω) := {Φ ∈MT : (x(t), v(t)) ∈ Ω}.
Then ∫

Ω
ft(x, v) dx dv =

∫
St(Ω)

Pt(Φ) dΦ,

where ft is the unique mild solution of the linear Boltzmann equation given in proposition 3.5.

Remark 3.2. Condition (2.4) can be relaxed to

(3.4) ess sup
v∈R3

g0(v)(1 + |v|3+η) <∞

for some η > 0.

From now on assume that f0 and g0 are admissible with the provision that either (2.4) or (3.4)
holds. We prove the existence by construction, taking several steps to build a solution by solving
on the most simple trees first and using this solution to iteratively build a full solution. We begin
by solving the linear Boltzmann equation. We establish existence, uniqueness and regularity of
solutions of (2.5) by adapting methods from semigroup theory. The difficulty here is that after
writing the linear Boltzmann equation as the sum of two unbounded operators we need to ensure
that a honest semigroup is generated in order to prove existence and uniqueness. Next we adapt

these semigroup techniques to define functions P
(j)
t that describe the distribution of finding the

tagged particle such that it has experienced j collisions. This is key to connecting Pt to the
solution of the linear Boltzmann.
The following notion of mild solution suitable for transport equations is used (c.f. [1, Def 3.1.1])
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Definition 3.3. Consider the following system,

(3.5)

{
∂tu(t) = Lu(t),

u(0) = u0.

Where L : D(L) ⊂ L1(U ×R3)→ L1(U ×R3) is an operator and u0 ∈ L1(U ×R3) is given. The
function u : [0, T ]→ U × R3 is called a mild solution of (3.5) if for all t ≥ 0,∫ t

0
u(θ) dθ ∈ D(L) and L

∫ t

0
u(θ) dθ = u(t)− u0.

We split the right hand side of (2.5) into two operators, A and B. These will appear in the
construction of Pt.

Definition 3.4. Define D(A), D(B) ⊂ L1(U × R3) by,

D(A) := {f ∈ L1(U × R3) : v · ∂xf(x, v) +Q−[f ](x, v) ∈ L1(U × R3)},
D(B) := {f ∈ L1(U × R3) : Q+[f ] ∈ L1(U × R3)}.

Then define A : D(A)→ L1(U × R3) and B : D(B)→ L1(U × R3) by,

(Af)(x, v) := −v · ∂xf(x, v)−Q−[f ](x, v),(3.6)

(Bf)(x, v) := Q+[f ](x, v).(3.7)

Proposition 3.5. Suppose that the assumptions in theorem 3.1 hold. Then there exists a unique
mild solution f : [0, T ] → L1(U × R3) to (2.5). Furthermore ft remains non-negative and of
mass 1, and ∫

U×R3

ft(x, v)(1 + |v|) dx dv <∞,(3.8)

ft ∈ D(B)(3.9)

hold for all t ∈ [0, T ].

Proof. See section 6. �

Proposition 3.6. There exists a unique mild solution, P (0) : [0, T ] → L1(U × R3), to the
following evolution equation,

(3.10)

{
∂tP

(0)
t (x, v) = (AP

(0)
t )(x, v),

P
(0)
0 (x, v) = f0(x, v).

Where A is as in (3.6).

The distribution P
(0)
t (x, v) can be thought of as the probability of finding the tagged particle at

(x, v) at time t such that it has not yet experienced any collisions.

Proof. By lemma 6.1 A generates the substochastic C0 semigroup T (t) given in (6.1). By the
Hille-Yoshida theorem, [28, Thm 1.3.1] A is closed. By [1, Thm 3.1.12] (3.10) has a unique mild
solution given by

(3.11) P
(0)
t = T (t)f0.

�

Lemma 3.7. For all t ∈ [0, T ], P
(0)
t ≤ ft pointwise.

Remark 3.8. This lemma is entirely expected. The probability of finding the tagged particle at
(x, v) at time t is given by ft(x, v) and the probability of finding it at (x, v) at time t such that

it has not experienced any collisions up to time t is given by P
(0)
t (x, v) so one expects P

(0)
t ≤ ft.
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Proof. For t ∈ [0, T ] define F
(0)
t := ft − P (0)

t . Then since ft and P
(0)
t are mild solutions of (2.5)

and (3.10) respectively, F
(0)
t is a mild solution of{

∂tF
(0)
t (x, v) = AF

(0)
t +Bft(x, v)

F
(0)
0 (x, v) = 0.

By (3.9) and [1, Prop. 3.1.16] F
(0)
t is given by,

F
(0)
t =

∫ t

0
T (t− θ)Bfθ dθ.

Now noting that fθ is non-negative it follows that Bfθ and hence T (t− θ)Bfθ are non-negative

also. Hence F
(0)
t ≥ 0 which implies P

(0)
t ≤ ft. �

Definition 3.9. For j ∈ N ∪ {0} denote by Tj the set of all trees with exactly j collisions.
Explicitly,

(3.12) Tj := {Φ ∈MT : n(Φ) = j}.
The required solution Pt can now be defined iteratively on the space MT . For Φ ∈ T0 define

(3.13) Pt(Φ) := P
(0)
t (x(t), v(t)).

Else define,

Pt(Φ) := 1t≥τ exp

(
−(t− τ)

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν ′]+ dv̄ dν ′
)

Pτ (Φ̄)g0(v′)[(v(τ−)− v′) · ν]+.(3.14)

The right hand side of this equation depends on Pτ (Φ̄) but since Φ̄ has degree exactly one less
than Φ the equation is well defined.

The proof that Pt has the required properties of theorem 3.1 is given shortly. We first define

the function P
(j)
t which is thought of, in parallel to P

(0)
t , as being the probability of finding the

tagged particle at a certain position at time t such that it has experienced exactly j collisions

up to time t. The P
(j)
t will be required to show the connection between Pt and the solution of

the linear Boltzmann equation.

Definition 3.10. Let t ∈ [0, T ] and Ω ⊂ U ×R3 be measurable. Recall in theorem 3.1 we define
the set, St(Ω) = {Φ ∈ MT : (x(t), v(t)) ∈ Ω} - the set of all trees such that the tagged particle
at time t is in Ω. Define for all j ∈ N ∪ {0},

Sjt (Ω) := Tj ∩ St(Ω).

Then for j ≥ 1, define P (j)(Ω) by,

P
(j)
t (Ω) :=

∫
Sjt (Ω)

Pt(Φ) dΦ.

Lemma 3.11. Let t ∈ [0, T ], j ≥ 1. Then P
(j)
t is absolutely continuous with respect to the

Lebesgue measure on U × R3.

Proof. Let j = 1. Then we have by (3.14),

P
(1)
t (Ω) =

∫
S1
t (Ω)

Pt(Φ)

=

∫ t

0

∫
R3

∫
R3

∫
S2

∫
U

exp

(
−(t− τ)

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν

)
P (0)
τ (x0 + τv0, v0)g0(v′)[(v0 − v′) · ν]+1(x(t),v(t))∈Ω) dx0 dν dv′ dv0 dτ(3.15)
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We define a coordinate transform (ν, x0, v0, v
′) 7→ (ν, x, v, w̄) given by,

v := v0 + ν(v′ − v0) · ν
x := x0 + τv0 + (t− τ)v

w̄ := v′ − ν(v′ − v0) · ν.
This transformation has Jacobi matrix,

Id 0 0 0
Id
0 Id− ν ⊗ ν ν ⊗ ν
0 ν ⊗ ν Id− ν ⊗ ν


where the blank entries are not required for the computation of the matrix’s determinant. The
2x2 matrix in the bottom right has determinant −1 and hence the absolute value of the deter-
minant of the entire matrix is 1. With this (3.15) becomes,

P
(1)
t (Ω) =

∫
Ω

∫ t

0

∫
R3

∫
S2

exp

(
−(t− τ)

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν

)
P (0)
τ (x− (t− τ)v, w′)g0(w̄′)[(v − w̄) · ν]+ dν dw̄ dτ dx dv,

where w′ = v+ν(w̄−v) ·ν and w̄′ = w̄−ν(w̄−v) ·ν. Hence we see that if the Lebesgue measure

of Ω equals zero then so does P
(1)
t (Ω). For j ≥ 2 we use a similar approach, using the iterative

formula for Pt(Φ) (3.14). �

Remark 3.12. Since P
(j)
t is an absolutely continuous measure on U ×R3, the Radon-Nikodym

theorem (see Theorem 4.2.2 [12]) implies that P
(j)
t has a density, which we denote by P

(j)
t also.

This gives, ∫
Ω
P

(j)
t (x, v) dx dv =

∫
Sjt (Ω)

Pt(Φ) dΦ.

Hence for almost all (x, v) ∈ U × R3,

P
(j)
t (x, v) =

∫
Sjt (x,v)

Pt(Φ) dΦ.

Remark 3.13. A similar formula holds for P
(0)
t since the set S0

t (x, v) contains exactly one tree:
the tree Φ with initial root data (x− tv, v) and such that the root has no collisions,∫

S0
t (x,v)

Pt(Φ) dΦ = Pt((x− tv, v)) = P
(0)
t (x, v).

Proposition 3.14. For j ≥ 1, P
(j)
t as defined above is almost everywhere the unique mild

solution to the following differential equation,{
∂tP

(j)
t (x, v) = AP

(j)
t (x, v) +BP

(j−1)
t (x, v),

P
(j)
0 (x, v) = 0,

where A is given in (3.6) and B in (3.7).

The following lemma helps prove the proposition for the case j = 1 which allows the use of an
inductive argument to prove the proposition in full.

Lemma 3.15. For any t ∈ [0, T ] and almost all (x, v) ∈ U × R3,

P
(1)
t (x, v) =

∫ t

0
T (t− θ)BP (0)

θ (x, v) dθ,

where the semigroup T (t) is as in (6.1). The right hand side is well defined since (3.9), (3.7)

and (6.8) imply P
(0)
t ∈ D(B).
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Proof. We show that for any Ω ⊂ U × R3 measurable we have,∫
Ω
P

(1)
t (x, v) dx dv =

∫
Ω

∫ t

0
T (t− θ)BP (0)

θ (x, v) dθ dx dv.

By the definition of T (t) in equation (6.1), the definition of B in (3.7), and the proof of
lemma 3.11, for w′ = v + ν(w̄ − v) · ν and w̄′ = w̄ − ν(w̄ − v) · ν, we have,∫

Ω

∫ t

0
T (t− θ)BP (0)

θ (x, v) dθ dx dv

=

∫
Ω

∫ t

0
exp

(
−(t− θ)

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν

)
×BP (0)

θ (x− (t− θ)v, v) dθ dx dv

=

∫
Ω

∫ t

0
exp

(
−(t− θ)

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν

)
∫
R3

∫
S2
P

(0)
θ (x− (t− θ)v, w′)g0(w̄′)[(v − w̄) · ν]+ dν dw̄ dθ dx dv

=

∫
Ω

∫ t

0

∫
R3

∫
S2

exp

(
−(t− θ)

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν

)
P

(0)
θ (x− (t− θ)v, w′)g0(w̄′)[(v − w̄) · ν]+ dν dw̄ dθ dx dv

=

∫
Ω
P

(1)
t (x, v) dx dv.

�

Proof of proposition 3.14. Consider induction on j. First let j = 1. We seek to apply [1, Prop

3.1.16]. If
∫ t

0 BP
(0)
θ dθ ∈ L1(U × R3) then the proposition holds so by the above lemma P

(1)
t is

the unique mild solution.

To this aim note that since P
(0)
t is the unique mild solution of (3.10),∫ t

0
P

(0)
θ dθ ∈ D(A).

By [3, Section 10.4.3] D(A) ⊂ D(B) and hence∫ t

0
P

(0)
θ dθ ∈ D(B).

This implies,

B

∫ t

0
P

(0)
θ dθ ∈ L1(U × R3).

as required. Now consider j ≥ 2 and assume the proposition is true for j − 1. By setting

F
(j−1)
t := ft − P (j−1)

t a similar argument to lemma 3.7 shows that P
(j−1)
t ≤ ft. By (3.9) and

(6.8), P
(j−1)
t ∈ D(B) so the right hand side is well defined. A similar approach to lemma 3.15

shows that for any t ∈ [0, T ] and almost all (x, v) ∈ U × R3,

P
(j)
t (x, v) =

∫ t

0
(T (t− θ)BP (j−1)

θ )(x, v) dθ,

where T (t) is the semigroup given in (6.1). The rest follows by the same argument as in the
j = 1 case. �

Proposition 3.16. For all t ∈ [0, T ] and almost all (x, v) ∈ U × R3,

(3.16)

∞∑
j=0

P
(j)
t (x, v) = ft(x, v),
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where ft is the unique mild solution of the linear Boltzmann equation given in proposition 3.5.

Proof. Since P
(0)
t is a mild solution of (3.10),

(3.17)

∫ t

0
P

(0)
θ (x, v) dθ ∈ D(A),

and,

(3.18) P
(0)
t (x, v) = f0(x, v) +A

∫ t

0
P

(0)
θ (x, v) dθ.

Further for j ≥ 1 by proposition 3.14 and [3, Prop 3.31],

(3.19)

∫ t

0
P

(j)
θ (x, v) dθ ∈ D(A),

and,

(3.20) P
(j)
t (x, v) = A

∫ t

0
P

(j)
θ (x, v) dθ +

∫ t

0
BP

(j−1)
θ (x, v) dθ.

Combining (3.17) and (3.19), ∫ t

0

∞∑
j=0

P
(j)
θ (x, v) dθ ∈ D(A).

Recalling from the proof of proposition 3.14 that D(A) ⊂ D(B),∫ t

0

∞∑
j=0

P
(j)
θ (x, v) dθ ∈ D(A) ∩D(B) = D(A+B).

Further summing (3.18) and (3.20) for j ≥ 1,

∞∑
j=0

P
(j)
t (x, v) = f0(x, v) +

∞∑
j=0

A

∫ t

0
P

(j)
θ (x, v) dθ +

∞∑
j=1

∫ t

0
BP

(j−1)
θ (x, v) dθ

= f0(x, v) +A

∫ t

0

∞∑
j=0

P
(j)
θ (x, v) dθ +

∫ t

0
B
∞∑
j=0

P
(j)
θ (x, v) dθ

= f0(x, v) + (A+B)

∫ t

0

∞∑
j=0

P
(j)
θ (x, v).

Hence by definition 3.3,
∑∞

j=0 P
(j)
t (x, v) is a mild solution of (6.6) and therefore since ft is the

unique mild solution the proof is complete. �

We now have all the results needed to prove that Pt satisfies all the requirements of theorem
3.1.

Proof of theorem 3.1. Using definition 3.10, proposition 3.16, and, since each P
(j)
t is positive,

the monotone convergence theorem we have for any measurable Ω ⊂ U × R3,∫
St(Ω)

Pt(Φ) dΦ =
∞∑
j=0

∫
Sjt (Ω)

Pt(Φ) dΦ =
∞∑
j=0

∫
Ω
P

(j)
t (x, v) dx dv

=

∫
Ω
ft(x, v) dx dv.(3.21)

In particular, ∫
MT

Pt(Φ) dΦ =

∫
U×R3

ft(x, v) dx dv <∞.
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Hence Pt ∈ L1(MT ). To show that Pt is a solution of (3.1) first consider Φ ∈ T0. Since
n(Φ) = 0,

P0(Φ) = P
(0)
0 (x(0), v(0)) = f0(x0, v0) = f0(x0, v0)1n(Φ)=0.

Hence it solves the initial condition. Now for t > 0, since Φ ∈ T0, v(t) = v0 and x(t) = x0 + tv0.
Hence by (6.1) and (3.11),

Pt(Φ) = P
(0)
t (x(t), v(t)) = P

(0)
t (x0 + tv0, v0)

= exp

(
−t
∫
S2

∫
R3

g0(v̄)[(v0 − v̄) · ν]+ dv̄ dν

)
f0(x0, v0).

The only dependence on t here is in the exponential term so we differentiate Pt(Φ) with respect
to t,

∂tPt(Φ) = ∂t

(
exp

(
−t
∫
S2

∫
R3

g0(v̄)[(v0 − v̄) · ν]+ dv̄ dν

)
f0(x0, v0)

)
= −

∫
S2

∫
R3

g0(v̄)[(v0 − v̄) · ν]+ dv̄ dν × Pt(Φ) = −Q−t [Pt](Φ).

Hence Pt solves (3.1) on T0.
We now consider Φ ∈ Tj for j ≥ 1. Since Φ ∈ Tj we have n(Φ) = j and τ > 0. Hence

(3.22) P0(Φ) = 0 = f0(x0, v0)1n(Φ)=0.

For t = τ ,

Pτ (Φ) = Pτ (Φ̄)g0(v′)[v(τ−)−v
′) · ν]+.(3.23)

Further for t > τ the only dependence on t is inside the exponential term and hence differenti-
ating gives,

∂tPt(Φ) = ∂t

(
exp

(
− (t− τ)

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν ′]+ dv̄ dν ′
)

Pτ (Φ̄)g0(v′)[(v0 − v′) · ν]+

)
= exp

(
−(t− τ)

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν ′]+ dv̄ dν ′
)

Pτ (Φ̄)g0(v′)[(v0 − v′) · ν]+

×
(
−
∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν ′]+ dv̄ dν ′
)

= −Pt(Φ)

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν ′]+ dv̄ dν ′ = −Q−t [Pt](Φ).(3.24)

Equations (3.22), (3.23) and (3.24) prove that Pt solves (3.1) on Tj . Since MT is the disjoint
union of Tj for j ≥ 0, Pt is a solution of (3.1) onMT . Finally, the required connection between
Pt and the solution of the linear Boltzmann equation has been shown in (3.21). �

4. The Empirical Distribution

We now consider the empirical distribution of trees P̂ εt defined by the dynamics of the particle
system for particles with diameter ε. To ease notation we drop the dependence on ε and write
P̂t. The key result of this section is that P̂t solves the differential equation (4.2) which is similar
to the idealized equation (3.1). The similarity between the two equations is exploited in the
next section to prove the required convergence as ε tends to zero.
We do this by restricting our attention to trees that are well controlled in various ways, calling
these trees good trees.
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Definition 4.1. For a tree Φ ∈MT define V(Φ) ∈ [0,∞) to be the maximum velocity involved
in the tree. That is,

V(Φ) := max

{
max

j=1,...,n(Φ)
{|vj |}, max

s∈[0,T ]
{|v(s)|}

}
.

Definition 4.2. A tree Φ ∈ MT is called re-collision free at diameter ε if for all 0 ≤ ε′ ≤ ε,
for all 1 ≤ j ≤ n(Φ) and for all t < tj,

|x(t)− (xj + tvj)| > ε′.

That is to say, if the tree involves a collision between the root particle and background particle
j at time tj then the root particle has not previously collided with background particle j. So if a
tree is re-collision free then it involves at most one collision per background particle.
Further define

R(ε) := {Φ ∈MT : Φ is re-collision free at diameter ε}.

Definition 4.3. A tree Φ ∈ MT is called non-grazing if all collisions in Φ are non-grazing,
that is if,

min
1≤j≤n(Φ)

νj · (v(t−j )− vj) > 0.

Definition 4.4. A tree is Φ ∈ MT is called free from initial overlap at diameter ε > 0 if
initially the root is at least ε away from the centre of each background particle. Explicitly if, for
j = 1, . . . , N ,

|x0 − xj | > ε.

Define S(ε) ⊂MT to be the set of all trees that are free from initial overlap at radius ε.

Definition 4.5. For any pair of decreasing functions V,M : (0,∞)→ [0,∞) such that limε→0 V (ε) =
limε→0M(ε) =∞, the set of good trees of diameter ε, G(ε), is defined as,

G(ε) :=
{

Φ ∈MT : n(Φ) ≤M(ε), V(Φ) ≤ V (ε),

Φ ∈ R(ε) ∩ S(ε) and Φ is non-grazing
}

Since M,V are decreasing for ε′ < ε we have G(ε) ⊂ G(ε′). Later some conditions on M and V

are required to prove that P̂t solves the relevant equation and to prove convergence.

Now define the operator Q̂t which mirrors the idealized operator Qt in the empirical case. Fix
Ĉ1 > 0, a constant depending only on Φ described later. Define the gain operator,

Q̂+
t [P̂t](Φ) :=

{
δ(t− τ)P̂t(Φ̄) g0(v′)[(v(τ−)−v′)·ν]+

1−πε2
∫ τ
0 |v(s)−v′|ds+Ĉ1ε3

if n ≥ 1

0 if n = 0.

Next for a given tree Φ, a time 0 < t < T and ε > 0, define the function 1
ε
t [Φ] : U ×R3 → {0, 1}

by

(4.1) 1
ε
t [Φ](x̄, v̄) :=

{
1 if for all s ∈ (0, t), |x(s)− (x̄+ sv̄)| > ε,

0 else.

That is 1εt [Φ](x̄, v̄) is 1 if a background particle starting at the position (x̄, v̄) avoids colliding
with the root particle of the tree Φ up to the time t. This allows us to define the loss operator,

Q̂−t [P̂t](Φ) := P̂t(Φ)

∫
S2
∫
R3 g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
.

For some Ĉ2(ε) > 0 depending on t and Φ of o(1) as ε tends to zero. Finally define the operator

Q̂t as follows,

Q̂t = Q̂+
t − Q̂

−
t .
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Theorem 4.6. For ε sufficiently small and for Φ ∈ G(ε), P̂t solves the following

(4.2)

{
∂tP̂t(Φ) = (1− γ(t))Q̂t[P̂t](Φ)

P̂0(Φ) = ζ(ε)f0(x0, v0)1n(Φ)=0.

The functions γ and ζ are given by

(4.3) ζ(ε) := (1− 4

3
πε3)N ,

and,

γ(t) :=

{
n(Φ̄)ε2 if t = τ,
n(Φ)ε2 if t > τ.

Remark 4.7. When choosing the background particles according to some Poisson point process
some of these terms simplify as in [25].

The proof is developed by a series of lemmas in which we prove the gain term, loss term and
initial condition separately.

Definition 4.8. Define ω0 := (u0, w0) ∈ U × R3 to be the random initial position of the test
particle. By our model ω0 has distribution f0.
Further for j = 1, . . . , N define ωj := (uj , wj) to be the random initial position and velocity
of background particle j. Note that ωj has distribution Unif(U) × g0. Finally define ω :=
(ω1, . . . , ωN ).

Lemma 4.9. Let ε > 0 and Ψ ∈ G(ε) then P̂t is absolutely continuous with respect to the
Lebesgue measure λ on a neighbourhood of Ψ.

Proof. Recall the definition of Bh(Ψ) (2.8). Since G(ε) is open there exists a h > 0 such that

Bh(Ψ) ⊂ G(ε). In the case n(Ψ) = 0 for all t ≥ 0, P̂t(Ψ) ≤ f0(x0, v0) and hence absolute
continuity follows.
Suppose n(Φ) ≥ 1. Define a map ϕ : Bh(Ψ)→MT × U × R3,

ϕ(Φ) := (Φ̄, (x(τ) + εν − τv′, v′)).
We view ϕ as having n(Φ) + 1 components, the first being the initial root position (x0, v0),
components j = 2 . . . , n being the marker (tj , νj , νj) and the final component being (x(τ) +εν−
τv′, v′) - the initial position of the background particle that leads to the final collision with the
root in Φ. We claim that,

(4.4) det(∇ϕ)(Φ) = ε2(v(τ−)− v′) · ν.
To prove this we first rotate our coordinate axis so that ν = e1. Then for k = 0, . . . , n define
F0,k := ∇x0ϕk(Φ) and for j = 1, . . . , n define Fj,k := ∇tk,νkϕj(Φ). We calculate,

Fn+1,n+1 = ∇τ,νϕn+1(Φ) =

(v(τ−)− v′) · ν 0 0
ε 0
0 ε

 ,

where the blank components are not needed. Also, F0,n = ∇x0ϕn(Φ) = Id(2). Further for
j = 2, . . . , n+ 1, Fj,j = ∇tj ,νjϕj(Φ) = Id(2). For any other j, k not already calculated, Fj,k = 0.
Hence det(∇ϕ)(Φ) is the product of the determinants of all Fk,k for k = 1, . . . , n + 1, proving
the claim.
Now define a second map, ϕ̃ : Bh(Ψ)→ (U × R)n+1,

ϕ̃(Φ) := ((x0, v0), (x1, v1), . . . , (xn, vn)).

This maps Φ to the initial position of each particle in Φ. By repeatedly applying (4.4),

(4.5) det(∇ϕ̃)(Φ) =

n(Φ)∏
j=1

(
ε2(v(t−j )− vj) · νj

)
.
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For h > 0 and j = 0, . . . , n define Ch,j(Φ) = Ch,j ⊂ U × R3 to be the cube with side length h
centred at ϕ̃j(Φ). Further for h > 0 define,

Ch(Φ) :=
n∏
j=0

Ch,j(Φ).

By the fact that the probability of finding a tree is less than the probability that initially there
is a particles at the required initial position,

P̂t(ϕ̃
−1(Ch)) ≤

∫
Ch,0

f0(x, v) dx dv

×
n∏
j=1

N

∫
Ch,j

g0(v) dx dv.(4.6)

Recalling that λ denotes the Lebesgue measure on MT , by (4.5) it follows,

(4.7) λ(ϕ̃−1(Ch)) =
h6(n+1)∏n

j=1

(
ε2(v(t−j )− vj) · νj

)(1 + o(1)).

Hence combining (4.6) and (4.7) and recalling (2.1),

P̂t(ϕ̃
−1(Ch))

λ(ϕ̃−1(Ch))
≤ 1

h6

∫
Ch,0

f0(x, v) dx dv

×
n∏
j=1

(
(v(t−j )− vj) · νj
h6(1 + o(1))

∫
Ch,j

g0(v) dx dv

)
.(4.8)

Since f0 ∈ L1(U ×R3) and g0 ∈ L1(R3) let h tend to zero and the left hand side, which becomes

P̂t(Φ)/λ(Φ) in the limit, remains bounded. This completes the proof. �

We now prove the initial condition requirement on P̂t.

Lemma 4.10. Under the assumptions and set up of theorem 4.6 we have

P̂0(Φ) = ζ(ε)f0(x0, v0)1n(Φ)=0.

Proof. In the case n(Φ) > 0, we have P̂0(Φ) = 0. This is because the tree is free from initial
overlap and the tree involves collisions happening at some positive time therefore the collisions
cannot have occurred at time 0.
Now consider n(Φ) = 0. In this situation the tree Φ contains only the root particle and the
probability of finding the root at the given initial data (x0, v0) is given by f0(x0, v0). However
this must be multiplied by a factor less than one because we must rule out situations that
would give initial overlap of the root particle with a background particle. So we calculate the
probability that there is no overlap. Firstly,

P(|x0 − x1| > ε) = 1− P(|x0 − x1| < ε) = 1−
∫
R3

∫
|x0−x1|<ε

g0(v̄) dx1 dv̄

= 1− 4

3
πε3

∫
R3

g0(v̄) dv̄ = 1− 4

3
πε3.

Hence,

P(|x0 − xj | > ε,∀j = 1, . . . , N) = P(|x0 − x1| > ε)N = (1− 4

3
πε3)N = ζ(ε),

as required. �

Before we prove the loss term lemma we require a few technical estimates to calculate the rate
at which the root particle experiences a collision.
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Definition 4.11. Let Φ ∈ G(ε). Define for h > 0,

Wh(t) :=
{

(x̄, v̄) ∈ U × R3 : ∃(ν ′, t′) ∈ S2 × (t, t+ h)

such that x(t′) + εν ′ = x̄+ t′v̄ and (v(t′−)− v̄) · ν ′ > 0
}
.

That is Wh(t) is the set of initial points in U × R3 for the background particles that lead to a
collision with the root particle of Φ between the time t and t+ h. Further define,

(4.9) Ih(t) :=

∫
U×R3 g0(v̄)1Wh(t)(x̄, v̄)1εt [Φ](x̄, v̄) dx̄ dv̄∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
.

From now on assume that the functions V and M in definition 4.5 satisfy, for any 0 < ε < 1,

(4.10) εV (ε)3 ≤ 1

8
,

and,

(4.11) M(ε) ≤ 1√
ε
.

Lemma 4.12. Recall definition 4.8. For ε sufficiently small, Φ ∈ G(ε) and t > τ ,

lim
h→0

1

h
P̂t(#(ω ∩Wh(t)) ≥ 2 |Φ) = 0.

Proof. Note that by the inclusion exclusion principle the fact that the background particles are
independent,

P̂t(#(ω ∩Wh(t)) ≥ 2 |Φ) ≤
∑

1≤i<j≤N−n(Φ)

P̂t((xi, vi) ∈Wh(t) and (xj , vj) ∈Wh(t) |Φ)

≤ N(N − 1)P̂t((x1, v1) ∈Wh(t) and (x2, v2) ∈Wh(t) |Φ)

= N(N − 1)P̂t((x1, v1) ∈Wh(t) |Φ)2.(4.12)

Recalling (4.9),

(4.13) P̂t((x1, v1) ∈Wh(t) |Φ) = Ih(t).

Now we estimate the right hand side of (4.13) by estimating the numerator and denominator.
Firstly by calculating the volume of the appropriate cylinder, for any v̄ ∈ R3,

(4.14)

∫
U
1Wh(t)(x̄, v̄) dx̄ ≤ πε2

∫ t+h

t
|v(s)− v̄|ds.

Define

(4.15) β :=

∫
R3

g0(v)(1 + |v|) dv.

Note that by assumption (2.3), β < ∞. Since Φ ∈ G(ε) it follows that |v(t)| ≤ V(Φ) ≤ V (ε).
Using these and (4.14) we estimate the numerator in (4.13),∫

U×R3

g0(v̄)1Wh(t)(x̄, v̄)1εt [Φ](x̄, v̄) dx̄ dv̄ ≤
∫
U×R3

g0(v̄)1Wh(t)(x̄, v̄) dx̄ dv̄

≤
∫
R3

g0(v̄)πε2

∫ t+h

t
|v(s)− v̄|ds dv̄ ≤ πε2

∫
R3

g0(v̄)

∫ t+h

t
|v(s)|+ |v̄| ds dv̄

≤ πε2

∫
R3

g0(v̄)

∫ t+h

t
V (ε) + |v̄|ds dv̄ ≤ πε2

∫
R3

g0(v̄)h (V (ε) + |v̄|) dv̄

≤ hπε2

∫
R3

g0(v̄) (V (ε) + |v̄|) dv̄ ≤ hπε2(V (ε) + β).(4.16)
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Turning to the denominator of (4.9). Firstly note that,∫
U×R3

g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄ =

∫
U×R3

g0(v̄)
(
1− 1Wt(0)(x̄, v̄)

)
dx̄ dv̄

= 1−
∫
U×R3

g0(v̄)1Wt(0)(x̄, v̄) dx̄ dv̄.(4.17)

By using (4.14), t ≤ T and the same estimates from the numerator estimate,∫
U×R3

g0(v̄)1Wt(0)(x̄, v̄) dx̄ dv̄

≤ πε2

∫
R3

g0(v̄)

∫ t

0
|v(s)− v̄|ds dv̄ ≤ πε2

∫
R3

g0(v̄)

∫ t

0
V(Φ) + |v̄| dsdv̄

≤ πε2

∫
R3

g0(v̄)t (V (ε) + |v̄|) dv̄ ≤ πε2T (V (ε) + β).(4.18)

Hence for ε sufficiently small by (4.10),

πε2T (V (ε) + β) ≤ 1/2,

so by (4.17) and (4.18),

(4.19)

∫
U×R3

g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄ ≥ 1/2.

Bounds for both the numerator and the denominator of (4.13) have been found in equations
(4.16) and (4.19) respectively. Hence,

(4.20) Ih(t) ≤ 2hπε2(V (ε) + β).

Substituting this into (4.12) and recalling (2.1),

P̂t(#(ω ∩Wh(t)) ≥ 2 |Φ) ≤ N(N − 1)× 4h2π2ε4(V (ε) + β)2

≤ 4h2π2N2ε4(V (ε) + β)2 ≤ 4h2π2(V (ε) + β)2.

This gives finally that,

lim
h→0

1

h

(
P̂t(#(ω ∩Wh(t)) ≥ 2 |Φ)

)
≤ lim

h→0

1

h
× 4h2π2(V (ε) + β)2

≤ 4π2(V (ε) + β)2 lim
h→0

h = 0,

completing the proof of the lemma. �

The previous lemma shows that the rate of seeing two collisions in a short time converges to
zero. We now show that the rate of seeing one collision converges to the required loss term.
Before we do this we first estimate the error caused by re-collisions.

Definition 4.13. For Φ ∈ G(ε), t > τ and h > 0 recall the definition of Wh(t) in definition 4.11
and 1

ε
t [Φ](x̄, v̄) (4.1). Define, Bh,t(Φ) ⊂ U × R3,

Bh,t(Φ) :=
{

(x̄, v̄) ∈ U × R3 : 1εt [Φ](x̄, v̄) = 0 and 1Wh(t)(x̄, v̄) = 1
}
.

Notice that Bh,t(Φ) is the set of all initial positions that a background particle can take such that
it collides with the root once during (0, t) and once during (t, t+ h).

Lemma 4.14. For ε sufficiently small, Φ ∈ G(ε), t > τ and h > 0 sufficiently small there exists

a Ĉ2(ε) > 0 depending on t and Φ with Ĉ2(ε) = o(1) as ε tends to zero such that,∫
Bh,t(Φ)

g0(v̄) dx̄ dv̄ = hε2Ĉ2(ε).
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Proof. Recall that (x(t), v(t)) is the trajectory of the tagged particle defined by the tree Φ.
Bh,t(Φ) is given by,

Bh,t(Φ) =
{

(x̄, v̄) :∃s ∈ (0, t), σ ∈ (t, t+ h), ν1, ν2 ∈ S2 such that

x̄+ sv̄ − x(s) = εν1, x̄+ σv̄ − x(σ) = εν2 and

(v(s)− v̄) · ν1 > 0, (v(σ)− v̄) · ν2 > 0
}
.

Define δ := ε1/3. We split the set Bh,t(Φ) into two parts, the first, denoted Bδ
h,t(Φ), which

considers s ∈ (0, t − δ] and the second, denoted B2
h,t(Φ), which considers s ∈ (t − δ, t). We

evaluate the bounds on these two sets separately.
Consider s ∈ (0, t− δ] and σ ∈ (t, t+ h) fixed. The conditions defined by Bh,t require that,

v̄ =
x(σ)− x(s)

σ − s
+
εν2 − εν1

σ − s
.

For σ fixed this implies that v̄ is contained in a cylinder of radius 2ε/δ around the curve defined by
x(σ)−x(s)

σ−s for s ∈ (0, t−δ]. Recalling the definition of V (ε) from definition 4.5, taking h� ε/V (ε)

implies h|v(σ)| � ε so the dependence on σ ∈ (t, t+ h) gives only a small perturbation around

the curve defined by x(t)−x(s)
t−s for s ∈ (0, t− δ]. Hence v̄ is contained in the cylinder with radius

4ε/δ around the piecewise differentiable curve r(s) := x(t)−x(s)
t−s for s ∈ (0, t− δ].

Denote this cylinder in R3 by E = E(t,Φ, δ). We seek a bound on the volume of E, |E|. First
consider the length of the curve r. For almost all s ∈ (0, t− δ),

d

ds
r(s) =

x(t)− x(s)

(t− s)2
+
v(s)

t− s
.

Hence,

| d

ds
r(s)| ≤ |x(t)− x(s)|

(t− s)2
+
|v(s)|
t− s

≤ 3

(t− s)2
+
V (ε)

t− s
.

Thus the length of the curve is bounded by,∫ t−δ

0
| d

ds
r(s)| ds ≤

∫ t−δ

0

3

(t− s)2
+
V (ε)

t− s
ds =

3

δ
− 3

t
− V (ε)(log(δ)− log(t)).

Therefore for some C > 0,

(4.21) |E| ≤ C
(ε
δ

)2
(

3

δ
− 3

t
− V (ε)(log(δ)− log(t))

)
.

Noting that x(σ) = x(t) + (σ − t)v(t), for v̄ given, (x̄, v̄) ∈ Bh,t(Φ) requires that,

x̄ = x(σ)− σv̄ + εν2 = x(t) + (σ − t)− σv̄ + εν2

= x(t)− tv̄ + (σ − t)(v(t)− v̄) + εν2.

Hence for v̄ given x̄ is contained in cylinder of radius ε and length h|v(t) − v̄|. Denote this
cylinder by C(v̄). By (2.4) or (3.4), for constants C that change on each line,∫

Bδh,t(Φ)
g(v̄) dx̄ dv̄ ≤

∫
E
g(v̄)

∫
C(v̄)

dx̄ dv̄ ≤ Cε2h

∫
E
g(v̄)|v(t)− v̄| dv̄

≤ Cε2h

∫
E
g(v̄)(V (ε) + |v̄|) dv̄ ≤ Cε2h(V (ε) + 1)|E|.
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It remains to show that (V (ε) + 1)|E| is o(1) as ε tends to zero. Recall (4.10), that δ = ε1/3 and
(4.21),

(V (ε) + 1)|E| = (V (ε) + 1)× C
(ε
δ

)2
(

3

δ
− 3

t
− V (ε)(log(δ)− log(t))

)
≤ C

(
1

2ε1/3
+ 1

)
ε4/3

(
3

ε1/3
+

1

2ε1/3
(| log ε1/3|+ | log t|)

)
≤ C

(
1

2ε1/3
+ 1

)(
3ε+

1

2
ε

(
1

3
| log ε|+ | log t|

))

as required.
Now consider the second part of Bh,t(Φ) for s ∈ (t−δ, t) denoted B2

h,t(Φ). Since Φ is fixed, t > τ

and δ = ε1/3 let ε sufficiently small such that t − δ > τ . Hence for s ∈ (t − δ, t), v(s) = v(t).
We change the velocity space coordinates so that v(t) = 0. If we require that a particle starting
at (x̄, v̄) collides with the tagged particle in (t − δ, t) and again in (t, t + h) we require in the
new coordinates that either v̄ = 0 or that |v̄| is sufficiently large so that the background particle
wraps round the torus having travelled at least distance 3/4 (for ε sufficiently small) within time
(δ + h) to re-collide with the tagged particle. That is,

|v̄| ≥ 3

4(δ + h)
.

For h ≤ 1/4δ, this implies |v̄| ≥ 3
5δ . Changing back to the original coordinates, this means it is

required that v̄ = v(t) or |v̄ − v(t)| ≥ 3/5δ.
For a given v̄, the same conditions as before on the x̄ coordinate must hold and so x̄ is in the
cylinder C(v̄). Recalling (2.3), (4.10), δ = ε1/3 and that |v(t)| ≤ V (ε) ≤ 1/2ε−1/3 = 1/2δ it
follows for constants C that change on each line,

∫
B2
h,t(Φ)

g0(v̄) dx̄ dv̄ ≤
∫
R3\B3/5δ(v(t))

g0(v̄)

∫
C(v̄)

dx̄ dv̄ ≤ Cε2h

∫
R3\B3/5δ(v(t))

g0(v̄)|v(t)− v̄|dv̄

≤ Cε2h

∫
R3\B3/5δ(v(t))

g0(v̄)(V (ε) + |v̄|) dv̄ ≤ Cε2h

∫
R3\B1/10δ(0)

g0(v̄)(V (ε) + |v̄|) dv̄

≤ Cε2h

∫
R3\B1/10δ(0)

g0(v̄)(100δ2|v̄|2V (ε) + 10δ|v̄|2) dv̄ ≤ Cε2h(10δ2V (ε) + δ)

≤ Cε2h

(
5
ε2/3

ε1/3
+ ε1/3

)
= Cε2h× ε1/3,

as required. Since Bh,t(Φ) = Bδ
h,t(Φ) ∪B2

h,t(Φ) the proof of the lemma is complete.
�

Lemma 4.15. For ε sufficiently small, Φ ∈ G(ε), t > τ and Ĉ2(ε) as in the above lemma,

lim
h→0

1

h
P̂t(#(ω ∩Wh(t)) = 1 |Φ)

= (1− γ(t))

∫
S2
∫
R3 g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
.

20



Proof. Since the initial data for each background particle is independent of the other background
particles,

P̂t(#(ω∩Wh(t)) = 1 |Φ) =

N−n(Φ)∑
i=1

P̂t

(
(xi, vi) ∈Wh(t) and (x1, v1), . . . ,

(xi−1, vi−1), (xi+1, vi+1), . . . , (xN−n(Φ), vN−n(Φ)) /∈Wh(t) |Φ
)

= (N − n(Φ))P̂t((x1, v1) ∈Wh(t) |Φ)P̂t((x2, v2) /∈Wh(t) |Φ)N−n(Φ)−1

= (N − n(Φ))Ih(t) (1− Ih(t))N−n(Φ)−1

= (N − n(Φ))Ih(t)

N−n(Φ)−1∑
j=0

(−1)j
(
N − n(Φ)− 1

j

)
Ih(t)j

= (N − n(Φ))

N−n(Φ)−1∑
j=0

(−1)j
(
N − n(Φ)− 1

j

)
Ih(t)j+1.(4.22)

By (4.20),

lim
h→0

1

h
Ih(t)2 = 0.

Hence dividing (4.22) by h and taking h to zero we see that all terms in the sum for j ≥ 1 tend
to zero, leaving only the contribution from the term j = 0. Hence,

lim
h→0

1

h
P̂t(#(ω ∩Wh(t)) = 1 |Φ)

= lim
h→0

1

h
(N − n(Φ))

N−n(Φ)−1∑
j=0

(−1)j
(
N − n(Φ)− 1

j

)
Ih(t)j+1 = lim

h→0

1

h
(N − n(Φ))Ih(t).(4.23)

It remains to investigate,

lim
h→0

1

h
Ih(t) = lim

h→0

1

h

∫
U×R3 g0(v̄)1Wh(t)(x̄, v̄)1εt [Φ](x̄, v̄) dx̄ dv̄∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
.

For Bh,t(Φ) as defined in definition 4.13 we have,∫
U×R3

g0(v̄)1Wh(t)(x̄, v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

=

∫
U×R3

g0(v̄)1Wh(t)(x̄, v̄) dv̄ −
∫
Bh,t(Φ)

g0(v̄) dx̄ dv̄

It then follows from lemma 4.14,

lim
h→0

1

h
Ih(t) = lim

h→0

1

h

∫
U×R3 g0(v̄)1Wh(t)(x̄, v̄)1εt [Φ](x̄, v̄) dx̄ dv̄∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

= lim
h→0

1

h

(
hε2

∫
S2
∫
R3 g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν − hε2Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

)

= ε2

∫
S2
∫
R3 g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
.
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Substituting this into (4.23),

lim
h→0

1

h
P̂t(#(ω ∩Wh(t)) = 1 |Φ) = lim

h→0

1

h
(N − n(Φ))Ih(t)

= (N − n(Φ))ε2

∫
S2
∫
R3 g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

= (1− γ(t))

∫
S2
∫
R3 g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
,

which proves the lemma. �

With these estimates we can now prove that the loss term of (4.2) holds.

Lemma 4.16. Under the assumptions and set up of theorem 4.6, for t > τ ,

∂tP̂t(Φ) = (1− γ(t))Q̂−t [P̂t](Φ).

Proof. We calculate, for t > τ ,

∂tP̂t(Φ) = lim
h→0

1

h

(
P̂t+h(Φ)− P̂t(Φ)

)
.

Noting that,

P̂t+h(Φ) =
(

1− P̂t (#(ω ∩Wh(t)) > 0 |Φ)
)
P̂t(Φ).

It follows,
1

h

(
P̂t+h(Φ)− P̂t(Φ)

)
= −1

h
P̂t(#(ω ∩Wh(t)) > 0 |Φ)P̂t(Φ).

Using lemma 4.12 and lemma 4.15,

∂tP̂t(Φ) = lim
h→0

1

h

(
P̂t+h(Φ)− P̂t(Φ)

)
= − lim

h→0

1

h
P̂t(#(ω ∩Wh(t)) > 0 |Φ)P̂t(Φ) = −P̂t(Φ) lim

h→0

1

h
P̂t(#(ω ∩Wh(t)) = 1 |Φ)

= −P̂t(Φ)(1− γ(t))

∫
S2
∫
R3 g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄
= (1− γ(t))Q̂−t [P̂t](Φ),

which proves the lemma. �

We next move to proving the gain term in (4.2).

Lemma 4.17. Under the assumptions and set up of theorem 4.6, for n(Φ) ≥ 1

P̂τ (Φ) = (1− γ(τ))P̂τ (Φ̄)
g0(v′)[(v(τ−)− v′) · ν]+

1− πε2
∫ τ

0 |v(s)− v′|ds+ Ĉ1ε3
.

For some Ĉ1 > 0 depending only on Φ.

Proof. Firstly,

P̂τ (Φ) = P̂τ (Φ ∩ Φ̄) = P̂τ (Φ | Φ̄)P̂τ (Φ̄).

It remains to show that

(4.24) P̂τ (Φ | Φ̄) = (1− γ(τ))
g0(v′)[(v(τ−)− v′) · ν]+

1− πε2
∫ τ

0 |v(s)− v′| ds+ Ĉ1ε3
.

We do this by proving upper and lower bounds. For h ≥ 0 define,

Uh := {Ψ ∈MT : Ψ̄τ(Φ) = Φ̄τ(Φ) and Ψ ∈ Bh(Φ)}.
Note that U0 := {Φ}. Then by lemma 4.9,

(4.25) P̂τ (Φ | Φ̄) = lim
h→0

h−6P̂τ (Uh | Φ̄).
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For Ψ ∈ Uh define Vh(Ψ) ∈ U × R3 to be the initial position of the background particle that
leads to the final collision of Ψ and define Vh ⊂ U × R3 by,

Vh = ∪Ψ∈UhVh(Ψ).

Note that V0 = {(x(τ)+εν−τv′, v′)} that is V0 contains only the initial point of the background
particle that gives the final collision in Φ. Then by a change of coordinates, recalling (4.4),

P̂τ (Uh | Φ̄) ≤
N−(n(Φ)−1)∑

i=1

P̂τ ((xi, vi) ∈ Vh | Φ̄τ )ε2[(v(τ−)− v′) · ν]+

= (N − (n(Φ)− 1))ε2P̂τ ((x1, v1) ∈ Vh | Φ̄)[(v(τ−)− v′) · ν]+

= (1− γ(τ))P̂τ ((x1, v1) ∈ Vh | Φ̄)[(v(τ−)− v′) · ν]+.(4.26)

By absolute continuity of P̂τ ,

lim
h→0

h−6P̂τ ((x1, v1) ∈ Vh | Φ̄) = P̂τ ((x1, v1) ∈ V0 | Φ̄).

Combining these into (4.25),

P̂τ (Φ | Φ̄) = lim
h→0

h−6P̂τ (Uh | Φ̄)

≤ lim
h→0

h−6(1− γ(τ))P̂τ ((x1, v1) ∈ Vh | Φ̄)[(v(τ−)− v′) · ν]+

= (1− γ(τ))P̂τ ((x1, v1) ∈ V0 | Φ̄τ )[(v(τ−)− v′) · ν]+.(4.27)

Next consider the lower bound. By the inclusion-exclusion principle,

P̂τ (Uh | Φ̄) ≥
N−(n(Φ)−1)∑

i=1

P̂τ ((xi, vi) ∈ Vh | Φ̄)ε2[(v(τ−)− v′) · ν]+

−
∑

1≤i<j≤N−(n(Φ)−1)

P̂τ ((xi, vi), (xj , vj) ∈ Vh | Φ̄)ε2[(v(τ−)− v′) · ν]+.(4.28)

As in (4.26) it follows,

N−(n(Φ)−1)∑
i=1

P̂τ ((xi, vi) ∈ Vh | Φ̄)ε2[(v(τ−)− v′) · ν]+

= (1− γ(τ))P̂τ ((x1, v1) ∈ Vh | Φ̄)[(v(τ−)− v′) · ν]+.

Further, ∑
1≤i<j≤N−(n(Φ)−1)

P̂τ ((xi, vi), (xj , vj) ∈ Vh | Φ̄)ε2[(v(τ−)− v′) · ν]+

≤ N(N − 1)P̂τ ((x1, v1), (x2, v2) ∈ Vh | Φ̄)ε2[(v(τ−)− v′) · ν]+

= (N − 1)P̂τ ((x1, v1) ∈ Vh | Φ̄)2[(v(τ−)− v′) · ν]+.

By the absolute continuity of P̂t this implies,

lim
h→0

1

h6

∑
1≤i<j≤N−(n(Φ)−1)

P̂τ ((xi, vi), (xj , vj) ∈ Vh | Φ̄)ε2[(v(τ−)− v′) · ν]+ = 0.

Hence by (4.28),

P̂τ (Φ | Φ̄) = lim
h→0

h−6P̂τ (Uh | Φ̄)

≥ lim
h→0

h−6(1− γ(τ))P̂τ ((x1, v1) ∈ Vh | Φ̄)[(v(τ−)− v′) · ν]+

= (1− γ(τ))P̂τ ((x1, v1) ∈ V0 | Φ̄)[(v(τ−)− v′) · ν]+.(4.29)
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Recalling that we need to prove (4.24) to prove the lemma, we see that with (4.27) and (4.29)
we now need only to show that,

P̂τ ((x1, v1) ∈ V0 | Φ̄) =
g0(v′)

1− πε2
∫ τ

0 |v(s)− v′| ds+ Ĉ1ε3
.

That is,

(4.30) P̂τ
(
(x1, v1) = (x(τ) + εν − τv′, v′) | Φ̄

)
=

g0(v′)

1− πε2
∫ τ

0 |v(s)− v′|ds+ Ĉ1ε3
.

Since we are conditioning on Φ̄ occurring there is a region of U that we must rule out for the
initial position of the background particle if we know that is has velocity v′. That is to say there
is a region of U where we know the background particle cannot have started with initial velocity
v′ because if it did it would have interfered with Φ̄. Denote this region of U by ∆. To calculate
the volume of ∆ we imagine it as cylinders to get, for fixed incoming velocity v′,

(4.31) |∆| = πε2

∫ τ

0
|v(s)− v′| ds− Ĉ1ε

3,

where the first term calculates the volume of each cylinder as the root particle changes direction
and the second term subtracts the over-estimate error caused counting certain parts twice as
the particle changes direction.

(x0, v0)

(x(t), v(t))

U

∆

Figure 3. In the case v′ = 0 we are calculating the volume of ∆, since we know
the background particle cannot start in ∆. For v′ 6= 0 the cylinders get shifted
but the principle is the same. (Diagram not to scale)

Therefore, recalling that |U | = 1,

|U \∆| = 1−
(
πε2

∫ τ

0
|v(s)− v′| ds− Ĉ1ε

3

)
,

and this together with the fact that the velocity of the background particle has initial distribution
g0 gives the required (4.30). �

Proof of theorem 4.6. Combining lemmas 4.10, 4.16 and 4.17 gives the required proof of the
theorem. �

5. Convergence

Having proven the existence of the idealized distribution Pt and shown that the empirical distri-
bution P̂t solves the appropriate equation, we seek to show the convergence results that will help
prove our main result. Following [26], the idea is to establish a differential inequality in (5.3).
In combination with the fact that Pt is a probability measure and that limε→0 Pt(G(ε)) = 1 in
proposition 5.5 the inequality delivers the convergence result theorem 5.8. The main theorem 2.3
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is a direct consequence. We first introduce some notation. Recall (4.1) and (4.3). For ε > 0,
Φ ∈ G(ε), t ∈ [0, T ], define the following,

ηεt (Φ) :=

∫
U×R3

g0(v̄)(1− 1εt [Φ](x̄, v̄)) dx̄ dv̄,

Rεt (Φ) := ζ(ε)Pt(Φ),

L(Φ) := −
∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν,

C(Φ) := 2 sup
t∈[0,T ]

{∫
S2

∫
R3

g0(v̄)[(v(t)− v̄) · ν]+

}
(5.1)

ρε,0t (Φ) := ηεt (Φ)C(Φ)t.

Further for k ≥ 1 define,

ρε,kt (Φ) := (1− ε)ρε,k−1
t (Φ) + ρε,0t (Φ) + ε.

Note that this implies that for k ≥ 1,

(5.2) ρε,kt (Φ) = (1− ε)kρε,0t (Φ) + (ρε,0t (Φ) + ε)

k∑
j=1

(1− ε)k−j .

Finally define,

ρ̂εt (Φ) := ρ
ε,n(Φ)
t (Φ).

Proposition 5.1. For ε sufficiently small, Φ ∈ G(ε) and t ∈ [0, T ],

(5.3) P̂ εt (Φ)−Rεt (Φ) ≥ −ρ̂εt (Φ)Rεt (Φ).

To prove this proposition we use a number of lemmas.

Lemma 5.2. For Φ ∈ G(ε) and t ≥ τ ,

P̂ εt (Φ)−Rεt (Φ) ≥ exp

(
L(Φ)

∫ t

τ
(1 + 2ηεs(Φ)) ds

)
(P̂ ετ (Φ)−Rετ (Φ))

+ 2ηεt (Φ)L(Φ)Rεt (Φ)

∫ t

τ
exp (2ηεs(Φ)(t− s)L(Φ)) ds.

Proof. For t = τ the result holds trivially. For t > τ , by theorem 3.1 and theorem 4.6,

(5.4) ∂t

(
P̂ εt (Φ)−Rεt (Φ)

)
= (1− γ(t))L̂t(Φ)P̂t(Φ)− L(Φ)Rεt (Φ),

where

L̂t(Φ) := −

(∫
S2
∫
R3 g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

)
.

Recalling (4.31) and (4.15), for ε sufficiently small,∫
U×R3

g0(v̄)(1− 1εt [Φ](x̄, v̄)) dx̄ dv̄ ≤
∫
R3

g0(v̄)

(
πε2

∫ t

0
|v(s)− v̄| ds− Ĉ1ε

3

)
dv̄

≤
∫
R3

g0(v̄)
(
πε2T (V(Φ) + |v̄|)− Ĉ1ε

3
)

dv̄ ≤
∫
R3

g0(v̄)
(
πε2T (V (ε) + |v̄|)

)
dv̄

≤ πε2T

∫
R3

g0(v̄) (V (ε) + |v̄|) dv̄ ≤ πε2T (V (ε) + β) < 1/2.(5.5)

Noting that for 0 ≤ z ≤ 1/2,
∑∞

i=0 z
i ≤ 2 which gives,

1

1− z
=

∞∑
i=0

zi = 1 + z

( ∞∑
i=0

zi

)
≤ 1 + 2z.
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It follows,

1∫
U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

=
1

1−
∫
U×R3 g0(v̄)(1− 1εt [Φ](x̄, v̄)) dx̄ dv̄

≤ 1 + 2

(∫
U×R3

g0(v̄)(1− 1εt [Φ](x̄, v̄)) dx̄ dv̄

)
= 1 + 2ηεt (Φ).(5.6)

This gives that,

(1− γ(t))

(∫
S2
∫
R3 g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν − Ĉ2(ε)∫

U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

)

≤
∫
S2
∫
R3 g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν∫
U×R3 g0(v̄)1εt [Φ](x̄, v̄) dx̄ dv̄

≤ (1 + 2ηεt (Φ))

∫
S2

∫
R3

g0(v̄)[(v(τ)− v̄) · ν]+ dv̄ dν.

Finally giving that,

(1− γ(t))L̂t(Φ) ≥ (1 + 2ηεt (Φ))L(Φ).

Substituting this into (5.4),

∂t

(
P̂ εt (Φ)−Rεt (Φ)

)
= (1− γ(t))L̂t(Φ)P̂t(Φ)− L(Φ)Rεt (Φ)

≥ (1 + 2ηεt (Φ))L(Φ)P̂t(Φ)− L(Φ)Rεt (Φ)

= (1 + 2ηεt (Φ))L(Φ)
(
P̂t(Φ)−Rεt (Φ)

)
+ 2ηεt (Φ)L(Φ)Rεt (Φ).(5.7)

For fixed Φ this is simply a 1d ODE in t. If y : [τ,∞)→ R satisfies,{
d
dty(t) ≥ a(t)y(t) + b(t),

y(τ) = y0.

Then it follows by the variation of constants,

y(t) ≥ exp

(∫ t

τ
a(s) ds

)
y0 +

∫ t

τ
exp

(∫ t

s
a(σ) dσ

)
b(s) ds.

Applying this to (5.7),

P̂ εt (Φ)−Rεt (Φ) ≥ exp

(∫ t

τ
(1 + 2ηεs(Φ))L(Φ) ds

)
(P̂ ετ (Φ)−Rετ (Φ))

+

∫ t

τ
exp

(∫ t

s
(1 + 2ηεσ(Φ))L(Φ) dσ

)
2ηεs(Φ)L(Φ)Rεs(Φ) ds.(5.8)

Recall the definition of 1εt [Φ] (4.1) and note that it is non-increasing. Hence ηεt (Φ) is non-
decreasing. So for τ ≤ σ ≤ t, ηεσ(Φ) ≤ ηεt (Φ). Recalling that L(Φ) is non-positive, (5.8)
becomes,

P̂ εt (Φ)−Rεt (Φ) ≥ exp

(∫ t

τ
(1 + 2ηεs(Φ))L(Φ) ds

)
(P̂ ετ (Φ)−Rετ (Φ))

+ 2ηεt (Φ)

∫ t

τ
exp

(∫ t

s
(1 + 2ηεσ(Φ))L(Φ) dσ

)
L(Φ)Rεs(Φ) ds

≥ exp

(∫ t

τ
(1 + 2ηεs(Φ))L(Φ) ds

)
(P̂ ετ (Φ)−Rετ (Φ))

+ 2ηεt (Φ)L(Φ)

∫ t

τ
exp

(
(1 + 2ηεs(Φ))(t− s)L(Φ)

)
Rεs(Φ) ds.(5.9)
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Finally for t > τ ,

∂tR
ε
t (Φ) = ζ(ε)∂tPt(Φ) = ζ(ε)Pt(Φ)L(Φ) = Rεt (Φ)L(Φ).

Hence for τ ≤ s ≤ t,
Rεt (Φ) = exp ((t− s)L(Φ))Rεs(Φ).

Which implies,

(5.10) Rεs(Φ) = exp (−(t− s)L(Φ))Rεt (Φ).

Substituting this into (5.9),

P̂ εt (Φ)−Rεt (Φ) ≥ exp

(∫ t

τ
(1 + 2ηεs(Φ))L(Φ) ds

)
(P̂ ετ (Φ)−Rετ (Φ))

+ 2ηεt (Φ)L(Φ)

∫ t

τ
exp

(
(1 + 2ηεs(Φ))(t− s)L(Φ)

)
× exp (−(t− s)L(Φ))Rεt (Φ) ds

≥ exp

(∫ t

τ
(1 + 2ηεs(Φ))L(Φ) ds

)
(P̂ ετ (Φ)−Rετ (Φ))

+ 2ηεt (Φ)L(Φ)Rεt (Φ)

∫ t

τ
exp (2ηεs(Φ)(t− s)L(Φ)) ds.

This completes the proof of the lemma. �

Lemma 5.3. For Φ ∈ G(ε) and t ≥ τ ,

2ηεt (Φ)L(Φ)

∫ t

τ
exp (2ηεs(Φ)(t− s)L(Φ)) ds ≥ −ρε,0t (Φ).

Proof. Since L(Φ) ≤ 0, ∫ t

τ
exp (2ηεs(Φ)(t− s)L(Φ)) ds ≤ t− τ ≤ t.

Recalling (5.1),

−L(Φ) ≤ C(Φ)

2
.

Hence combining these,

2L(Φ)

∫ t

τ
exp (2ηεs(Φ)(t− s)L(Φ)) ds ≥ −C(Φ)t.

Multiplying both sides by ηεt (Φ) gives the required identity. �

Lemma 5.4. For ε sufficiently small, for any Φ ∈ G(ε) and any t ∈ [0, T ],

1− 1− γ(t)

1− |∆|
≤ ε.

Proof. We show that for ε sufficiently small,

1

ε

(
1− 1− γ(t)

1− |∆|

)
≤ 1.

Note,

|∆| = πε2

∫ τ

0
|v(s)− v′|ds− Ĉε3 ≤ πε2

∫ τ

0
|v(s)− v′|ds ≤ πε22TV (ε).
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Recalling (4.11),

1− 1− γ(t)

1− |∆|
=

1− |∆|
1− |∆|

− 1− γ(t)

1− |∆|
=
γ(t)− |∆|

1− |∆|

≤ γ(t)

1− |∆|
≤ ε2n(Φ)

1− 2ε2πTV (ε)
≤ ε2M(ε)

1− 2ε2πTV (ε)
≤ ε3/2

1− 2ε2πTV (ε)
.

Therefore
1

ε

(
1− 1− γ(t)

1− |∆|

)
≤ ε1/2

1− 2ε2πTV (ε)
,

which, by recalling (4.10), converges to zero as ε converges to zero. Hence for ε sufficiently small
the right hand side is less than 1.

�

Proof of proposition 5.1. We prove by induction on the degree of Φ. Firstly we show that the
proposition holds for Φ ∈ T0 ∩ G(ε). Now if Φ ∈ T0 ∩ G(ε) it follows that τ = 0 and hence,

P̂ ετ (Φ) = P̂ ε0 (Φ) = ζ(ε)f0(x0, v0) = ζ(ε)P0(Φ) = Rετ (Φ).

By lemma 5.2 and 5.3 for t ≥ 0,

P̂ εt (Φ)−Rεt (Φ) ≥ 2ηεt (Φ)L(Φ)Rεt (Φ)

∫ t

τ
exp (2ηεs(Φ)(t− s)L(Φ)) ds ≥ −ρε,0t (Φ)Rεt (Φ)

= −ρ̂εt (Φ)Rεt (Φ).

Proving the proposition in the base case. Now suppose that the proposition holds true for all
trees Φ ∈ Tk−1 ∩ G(ε) for some k ≥ 1 and let Ψ ∈ Tk ∩ G(ε). For t < τ the proposition holds
trivially, so we consider t ≥ τ . Now recall that,

P̂ ετ (Ψ) =
1− γ(t)

1− |∆|
P̂ ετ (Ψ̄)g0(v′)[(v(τ−)− v′) · ν]+,

and,

Rετ (Ψ) = Rετ (Ψ̄)g0(v′)[(v(τ−)− v′) · ν]+.

Further since Ψ̄ ∈ Tk−1 we know by our inductive assumption that the proposition holds for Ψ̄,
which implies.

P̂ εt (Ψ̄) ≥ Rεt (Ψ̄)− ρ̂εt (Ψ̄)Rεt (Ψ̄).

Hence by the estimate in lemma 5.4 for ε sufficiently small,

P̂ ετ (Ψ)−Rετ (Ψ) = g0(v′)[(v(τ−)− v′) · ν]+

(
1− γ(t)

1− |∆|
P̂ ετ (Ψ̄)−Rετ (Ψ̄)

)
≥ g0(v′)[(v(τ−)− v′) · ν]+

(
(1− ε)P̂ ετ (Ψ̄)−Rετ (Ψ̄)

)
≥ g0(v′)[(v(τ−)− v′) · ν]+

(
(1− ε)(Rετ (Ψ̄)− ρ̂t(Ψ̄)Rετ (Ψ̄))−Rετ (Ψ̄)

)
= g0(v′)[(v(τ−)− v′) · ν]+R

ε
τ (Ψ̄)

(
1− ε− (1− ε)ρ̂ετ (Ψ̄)− 1

)
= g0(v′)[(v(τ−)− v′) · ν]+R

ε
τ (Ψ̄)

(
−ε− (1− ε)ρ̂ετ (Ψ̄)

)
= Rετ (Ψ)

(
−ε− (1− ε)ρ̂ετ (Ψ̄)

)
.(5.11)

Since the trajectory of the root particle of Ψ up to time τ is equal to the trajectory of the root
particle of Ψ̄ up to time τ and recalling that for any Φ, ηεt (Φ) is non-decreasing in t, it follows,

ηετ (Ψ̄) =

∫
U×R3

g0(v̄)(1− 1ετ [Ψ̄](x̄, v̄)) dx̄ dv̄

=

∫
U×R3

g0(v̄)(1− 1ετ [Ψ](x̄, v̄)) dx̄ dv̄,= ηετ (Ψ) ≤ ηεt (Ψ),

and recalling (5.1),

C(Ψ̄) ≤ C(Ψ).
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Hence,

ρε,0τ (Ψ̄) = ηετ (Ψ̄)C(Ψ̄)τ ≤ ηεt (Ψ)C(Ψ)t = ρε,0t (Ψ).

Recalling (5.2), this implies,

ρ̂ετ (Ψ̄) = ρε,k−1
τ (Ψ̄) ≤ ρε,k−1

t (Ψ).

Substituting this into (5.11),

P̂ ετ (Ψ)−Rετ (Ψ) ≥ Rετ (Ψ)
(
−ε− (1− ε)ρ̂ετ (Ψ̄)

)
≥ Rετ (Ψ)

(
−ε− (1− ε)ρε,k−1

t (Ψ)
)

= −Rετ (Ψ)
(
ε+ (1− ε)ρε,k−1

t (Ψ)
)
.

Recalling (5.10),

exp

(
L(Ψ)

∫ t

τ
(1 + 2ηεs(Ψ)) ds

)
(P̂ ετ (Ψ)−Rετ (Ψ))

≥ − exp

(
L(Ψ)

∫ t

τ
(1 + 2ηεs(Ψ)) ds

)
Rετ (Ψ)

(
ε+ (1− ε)ρε,k−1

t (Ψ)
)

= − exp

(
L(Ψ)

∫ t

τ
2ηεs(Ψ) ds

)
Rεt (Ψ)

(
ε+ (1− ε)ρε,k−1

t (Ψ)
)

≥ −Rεt (Ψ)
(
ε+ (1− ε)ρε,k−1

t (Ψ)
)
.

Recalling lemma 5.2 and 5.3 this gives,

P̂ εt (Ψ)−Rεt (Ψ) ≥ exp

(∫ t

τ
L(Ψ)(1 + 2ηεs(Ψ)) ds

)
(P̂ ετ (Ψ)−Rετ (Ψ))

+ 2ηεt (Ψ)L(Ψ)Rεt (Ψ)

∫ t

τ
exp (2ηεs(Ψ)(t− s)L(Ψ)) ds

≥ −Rεt (Ψ)
(
ε+ (1− ε)ρε,k−1

t (Ψ)
)
− ρε,0t (Ψ)Rεt (Ψ)

≥ −Rεt (Ψ)
(
ε+ (1− ε)ρε,k−1

t (Ψ) + ρε,0t (Ψ)
)

= −Rεt (Ψ)ρε,kt (Ψ) = −Rεt (Ψ)ρ̂εt (Ψ).

This completes the proof of the inductive step which concludes the proof of the proposition. �

Proposition 5.5. Good trees have full measure in the sense that

lim
ε→0

Pt(MT \ G(ε)) = 0.

Proof. Firstly we prove that G(0) is of measure 1. To this aim recall the definition of R(ε) from
definition 4.2 and the definition of Tj (3.12). Define for j ∈ N ∪ {0},

Rj(ε) := Tj ∩R(ε).

Now note that T0 \R0(ε) and T1 \R1(ε) are empty, since it is not possible for a tree in T0 or T1

to have a re-collision. For a general Φ ∈ T2, Φ is of the form,

Φ =
(
(x0, v0), (s1, ν1, v1), (s2, ν2, v2)

)
.

If we require that Φ ∈ T2 \ R2(0) then there must be a re-collision and since the background
particles do not change velocity this requires that v1 = v2. Hence T2 \R2(0) is a submanifold of
T2 with,

dim(T2 \R2(0)) < dim(T2).

This argument holds true for all j ≥ 2 and hence, because MT = ∪∞j=0Tj we see that,

Pt(MT \R(0)) = 1.
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Therefore it follows, since the other requirements on G(0) are clear, that Pt(MT \ G(0)) = 1,
and hence also that Pt(G(0)) = 1.
Since G(ε) is increasing as ε decreases and limε→0 G(ε) = G(0) it follows by the dominated
convergence theorem that,

lim
ε→0

Pt(G(ε)) = Pt(G(0)) = 1.

Hence

lim
ε→0

Pt(MT \ G(ε)) = 0,

as required. �

Lemma 5.6. Recall β (4.15). For ε > 0, Φ ∈ G(ε) there exists constants C1, C2 > 0 such that,

ηεt (Φ) ≤ C1ε
2(β + V (ε)),(5.12)

C(Φ) ≤ C2(β + V (ε)).(5.13)

Proof. Firstly by (5.5),

ηεt (Φ) =

∫
U×R3

g0(v̄)(1− 1εt [Φ](x̄, v̄)) dx̄ dv̄ ≤ πε2T (β + V (ε)).

So take C1 := πT proving (5.12). Next note,∫
S2

∫
R3

g0(v̄)[(v(t)− v̄) · ν]+ dv̄ dν ≤ π
∫
R3

g0(v̄)|v(t)− v̄|dv̄

≤ π
∫
R3

g0(v̄)(V(Φ) + |v̄|) dv̄ ≤ π(V (ε) + β).

Hence by (5.1),

C(Φ) ≤ 2π(V (ε) + β).

so take C2 := 2π which proves (5.13). �

Lemma 5.7. For any δ > 0, there exists a ε′ > 0 such that for 0 < ε < ε′ and for any Φ ∈ G(ε),

ρ̂εt (Φ) < δ.

Proof. Fix δ > 0. Firstly by the above lemma,

ρε,0t (Φ) = ηt(Φ)C(Φ)t ≤ C1C2Tε
2(β + V (ε))2.

Recalling (4.10) there exists an ε1 > 0 such that for 0 < ε < ε1,

ρε,0t (Φ) <
δ

3
.

Further there exists an ε2 > 0 such that for 0 < ε < ε2,

1√
ε
ρε,0t (Φ) ≤ C1C2Tε

3/2(β + V (ε))2 <
δ

3
.

Finally there exists an ε3 > 0 such that for 0 < ε < ε3,
√
ε < δ

3 . Hence take ε′ = min{ε1, ε2, ε3, 1}
then for any Φ ∈ G(ε),

ρ̂εt (Φ) = ρ
ε,n(Φ)
t (Φ) = (1− ε)n(Φ)ρε,0t (Φ) + (ρε,0t (Φ) + ε)

n(Φ)∑
j=1

(1− ε)n(Φ)−j

≤ ρε,0t (Φ) + (ρε,0t (Φ) + ε)× n(Φ) ≤ ρε,0t (Φ) +M(ε)(ρε,0t (Φ) + ε)

= ρε,0t (Φ) +M(ε)ρε,0t (Φ) +M(ε)ε ≤ ρε,0t (Φ) +
1√
ε
ρε,0t (Φ) +

√
ε < δ.

�
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Theorem 5.8. Uniformly for t ∈ [0, T ],

lim
ε→0
‖Pt − P̂ εt ‖TV = 0.

Proof. Let δ > 0 and S ⊂MT then,

Pt(S)− P̂ εt (S) = Pt(S ∩ G(ε)) + Pt(S \ G(ε))− P̂ εt (S ∩ G(ε))− P̂ εt (S \ G(ε))

≤ Pt(S ∩ G(ε)) + Pt(S \ G(ε))− P̂ εt (S ∩ G(ε)).

By proposition 5.5 for ε sufficiently small,

Pt(S \ G(ε)) ≤ Pt(MT \ G(ε)) <
δ

3
.

Hence,

(5.14) Pt(S)− P̂ εt (S) < Pt(S ∩ G(ε))− P̂ εt (S ∩ G(ε)) +
δ

3
.

Recall the definition of ζ(ε) in (4.3). It is clear that this implies

(5.15) ζ(ε) ≤ 1.

Hence by the above lemma, for ε sufficiently small and Φ ∈ G(ε),

ζ(ε)ρ̂εt (Φ) ≤ ρ̂εt (Φ) <
δ

3
.

Further by proposition 5.1, for Φ ∈ G(ε),

(5.16) −P̂ εt (Φ) ≤ −Rεt (Φ) + ρ̂εt (Φ)Rεt (Φ).

The Binomial inequality states that for x ≥ −1 and N ∈ N,

(1 + x)N ≥ 1 +Nx.

Hence for ε > 0 such that 4
3πε

3 ≤ 1 we apply this to ζ(ε) recalling (2.1),

ζ(ε) = (1− 4

3
πε3)N ≥ 1−N 4

3
πε3 = 1− 4

3
πε.(5.17)

Hence for ε sufficiently small (5.16) gives,

Pt(Φ)− P̂ εt (Φ) ≤ Pt(Φ)−Rεt (Φ) + ρ̂εt (Φ)Rεt (Φ)

= Pt(Φ)− ζ(ε)Pt(Φ) + ρ̂εt (Φ)ζ(ε)Pt(Φ) ≤ 4

3
πεPt(Φ) +

δ

3
Pt(Φ) ≤ 2δ

3
Pt(Φ).

This holds for all Φ ∈ G(ε) with ε sufficiently small hence

Pt(S ∩ G(ε))− P̂ εt (S ∩ G(ε)) ≤ 2δ

3
Pt(S ∩ G(ε)) ≤ 2δ

3
.(5.18)

By substituting (5.18) into (5.14), for ε sufficiently small,

(5.19) Pt(S)− P̂ εt (S) < δ.

Since ε did not depend on S this holds true for every S ⊂MT . Hence for any S ⊂MT ,

P̂ εt (S)− Pt(S) = (1− P̂ εt (MT \ S))− (1− Pt(MT \ S)) = Pt(MT \ S)− P̂ εt (MT \ S) < δ.

This together with (5.19) gives that, for ε sufficiently small, for any S ⊂MT ,

|Pt(S)− P̂ εt (S)| < δ,

which completes the proof of the theorem. �

We can now prove the main theorem of the paper, theorem 2.3, which follows from the above
theorem.
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Proof of theorem 2.3. Recall for Ω ⊂ U × R3,

St(Ω) := {Φ ∈MT : (x(t), v(t)) ∈ Ω}.
By theorem 3.1, ∫

Ω
ft(x, v) dx dv =

∫
St(Ω)

Pt(Φ) dΦ = Pt(St(Ω)).

Also by definition of P̂ εt ,∫
Ω
f̂Nt (x, v) dx dv =

∫
St(Ω)

P̂ εt (Φ) dΦ = P̂ εt (St(Ω)).

Hence by theorem 5.8,

lim
N→∞

sup
Ω⊂U×R3

|
∫

Ω
f̂Nt (x, v)− ft(x, v) dx dv| = lim

ε→0
sup

Ω⊂U×R3

|Pt(St(Ω))− P̂ εt (St(Ω))| = 0,

which completes the proof. �

6. Proof of auxiliary results

6.1. Particle dynamics.

Proof of Prop 2.1. The dynamics become undefined if there is instantaneously more than one
background particle colliding with the tagged particle or if the tagged particle experiences an
infinite number of collisions in finite time. We adapt a similar proof for the full hard-spheres
dynamics from [14, Prop 4.1.1].
Let R > 0 and δ < ε/2 such that there exists a K ∈ N with T = Kδ. Denote the ball of radius
R about x in R3 by BR(x). For the initial position of the tagged particle (x0, v0) ∈ U × BR(0)
fixed define I(x0, v0) ⊂ (U × R3)N by,

I(x0, v0) := {(x1, v1), . . . , (xN , vN ) ∈ (U ×BR(0))N : the tagged particle collides

with at least two background particles in the time interval [0, δ]}.
We bound the volume of this set. Firstly define

I1(x0, v0) := {(x1, v1) ∈ U ×BR(0) : ε ≤ |x0 − x1| ≤ ε+ 2Rδ}.
It can be seen that for some C,

|I1(x0, v0)| ≤ CR3 × (2Rδ)3.

Since I(x0, v0) is a subset of,

{(x1, v1), . . . , (xN , vN ) ∈ (U ×BR(0))N : ∃ 1 ≤ i < j ≤ N such that

ε ≤ |x0 − xi| ≤ ε+ 2Rδ and ε ≤ |x0 − xj | ≤ ε+ 2Rδ}
The above estimate gives, for some constant C = C(N, ε),

|I(x0, v0)| ≤ CR3(N−2) × (R6δ3)2

≤ CR3(N+2)δ6.

Hence if we define,
I := ∪{I(x0, v0) : (x0, v0) ∈ U ×BR(0)},

it follows,

|I| ≤ CR3(N+3)δ6.

Hence there exists a subset I0(δ,R) of measure at most CR3(N+3)δ6 such that for any initial
configuration in (U ×BR(0))N+1 \ I0(δ,R) the tagged particle experiences at most one collision
in [0, δ].
Now consider the system at time δ. Since all particles had initial velocity in BR(0) and the
tagged particle had at most one collision in time [0, δ] the velocity of the tagged particle at
time δ is in B2R(0). By the same arguments above there exists a set I1(δ,R) of measure at most
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CR3(N+3)δ6 for some new constant C such that for any initial configuration in (U×BR(0))N+1 \
I0(δ,R)∪ I1(δ,R) the tagged particle experiences at most one collision in [0, δ] and at most one
collision in [δ, 2δ] and thus the dynamics are well defined up to 2δ.
Continue this process K times defining the set,

I(δ,R) := ∪K−1
j=0 Ij(δ,R),

which has measure at most CR3(N+3)δ6 for some new constant C and such that for any initial
configuration in (U ×BR(0))N+1 \ I(δ,R) the tagged particle has at most one collision per time
interval [jδ, (j + 1)δ] and hence the dynamics are well defined up to time T . Defining,

I(T,R) := ∩δ>0I(δ,R),

if follows I(T,R) is of measure zero and for any any initial configuration in (U × BR(0))N+1 \
I(T,R) the dynamics are well defined up to time T .
Finally take,

I := ∪R∈NI(T,R)

and note that I is a countable union of measure zero sets and for any initial configuration in
(U × R3) \ I the dynamics are well defined up to time T . �

6.2. Semigroup theory.

Lemma 6.1. A is the generator of the substochastic semigroup (c.f. [3, Section 10.2]) T (t) :
L1(U × R3)→ L1(U × R3) given by,

(6.1) (T (t)f)(x, v) := exp

(
−t
∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν

)
f(x− tv, v).

Proof. We seek to apply theorem 10.4 of [3]. Conditions (A1), (A2) trivially hold since F = 0
in our situation. As for (A3),

(6.2) ν(x, v) =

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν.

This is locally integrable so (A3) holds. Hence we can apply the theorem. In our case,

ϕ(x, v, t, s) = x− (t+ s)v.

So the semigroup is given by

(T (t)f)(x, v) := exp

(
−t
∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν

)
f(x− tv, v),

as required. �

Remark 6.2. For v, v∗ ∈ R3, v 6= v∗ define the Boltzmann kernel k by,

(6.3) k(v, v∗) :=
1

|v − v∗|

∫
Ev,v∗

g0(w) dw,

where Ev,v∗ = {w ∈ R3 : w · (v − v∗) = v · (v − v∗)}. By the use of Carleman’s representation,
first described in [9] (see also [4, Section 3]),

(Bf)(x, v) = Q+[f ](x, v)

=

∫
S2

∫
R3

f(x, v′)g0(v̄′)[(v − v̄) · ν]+ dv̄ dν

=

∫
R3

k(v, v∗)f(x, v∗) dv∗.(6.4)

Lemma 6.3. There exists a C > 0 such that for any V > 0,

(6.5)

∫
|v|>V

k(v, v∗) dv ≤ C,

for almost all |v∗| ≤ V .
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Proof. A similar calculation to the proof of theorem 2.1 in [2] (see also [27]) allows us to show
that in our case, for v 6= v∗,

k(v, v∗) ≤
2π

|v − v∗|
h

(
1

4

[
|v − v∗|+

|v|2 − |v∗|2

|v − v∗|

]2
)
.

Where h : [0,∞)→ R is given by,

h(r) :=

∫ ∞
r

z sup
{v∈R3:|v|=z}

g0(v) dz.

Thus we can follow the calculations in [3, Ex 10.29] to see that, for d = 3, for almost all |v∗| ≤ V
and using assumption (2.4), ∫

|v|>V
k(v, v∗) dv ≤ CΓ <∞,

where C > 0 is some geometric constant and

Γ :=

∫ ∞
0

rh(r2) dr.

�

Proof of proposition 3.5. By the definition of A and B, (2.5) is now,

(6.6)

{
∂tft(x, v) = (Af +Bf)(x, v)

ft=0(x, v) = f0(x, v).

By lemma 6.1 and equations (10.86), (10.88) of [3], [3, corollary 5.17] holds for our equation, so
we apply [3, theorem 5.2]. Lemma 6.3 allow us to further apply [3, theorem 10.28]. Therefore
we have an honest C0 semigroup of contractions generated by A+B, which we denote by G(t).
Finally by [1, theorem 3.1.12], (6.6) has a unique mild solution for each f0 ∈ L1(U × R3).
It remains to show (3.8) and (3.9). Firstly we find a bound for the operator B. Then we prove
(3.8) for f0 ∈ D(A) first before generalising to all f0. Recall (4.15). As g0 is normalized,∫

S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν ≤
∫
S2

∫
R3

g0(v̄)|v − v̄| dv̄ dν

≤ π
∫
R3

g0(v̄)(|v|+ |v̄|) dv̄ dν ≤ π(|v|+ β).(6.7)

By (10.6) in [3] for f ∈ L1(U × R3) and by (6.7) recalling (6.2),∫
U×R3

Bf(x, v) dx dv =

∫
U×R3

∫
R3

k(v, v∗)f(x, v∗) dv∗ dx dv

=

∫
U×R3

ν(x, v)f(x, v) dx dv

=

∫
U×R3

f(x, v)

∫
S2

∫
R3

g0(v̄)[(v − v̄) · ν]+ dv̄ dν dx dv

≤
∫
U×R3

f(x, v)π(|v|+ β) dx dv.(6.8)

Now suppose that f0 ∈ D(A). Then [3, corollary 5.17] holds and so we apply [3, corollary 5.8]
which gives,

(6.9) ft = T (t)f0 +

∫ t

0
G(t− θ)BT (θ)f0 dθ.
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Where G(t) is the contraction semigroup generated by A+B and T (t) the contraction semigroup
generated by A. Hence by (6.8),∫

U×R3

ft(x, v)(1 + |v|) dx dv

≤
∫
U×R3

T (t)f0(x, v)(1 + |v|) +

∫ t

0
G(t− θ)BT (θ)f0 dθ(x, v)(1 + |v|) dx dv

≤
∫
U×R3

f0(x, v)(1 + |v|) + tf0(x, v)(1 + |v|)π(|v|+ β) dx dv.

Noting that t ∈ [0, T ] and recalling our assumption on f0 in (2.2), this is bounded.
Consider a general f0 in (2.2), not necessarily in D(A). Suppose for contradiction that (3.8) is
not true. Hence there exists a t ∈ [0, T ] such that for any C > 0 there exists an R > 0 such that,∫

U

∫
BR(0)

ft(x, v)(1 + |v|) dv dx ≥ C.

D(A) is dense in L1(U × R3) because it contains, for example, smooth compactly supported
functions. Hence for any n ∈ N there exists an fn0 ∈ L1(U × R3) such that fn0 ∈ D(A), fn0 ≥ 0,
there exists a C1 > 0 such that

(6.10)

∫
U×R3

fn0 (x, v)(1 + |v|2) dx dv ≤ C1,

and that,

(6.11)

∫
U×R3

|fn0 (x, v)− f0(x, v)|(1 + |v|) dx dv ≤ 1

n
.

Now define fnt to be the solution of (2.5) with initial data given by fn0 . In this case (6.9) gives,

fnt = T (t)fn0 +

∫ t

0
G(t− θ)BT (θ)fn0 dθ.

The argument above for fn0 ∈ D(A) together with (6.10) gives that there exists a C2 > 0
independent of n such that, ∫

U×R3

fnt (x, v)(1 + |v|) dx dv ≤ C2.

By our contradiction assumption there exists an R > 0 such that,∫
U

∫
BR(0)

ft(x, v)(1 + |v|) dv dx ≥ 2C2.

These two bounds together give that,∫
U×R3

|ft(x, v)− fnt (x, v)|(1 + |v|) dx dv

≥
∫
U

∫
BR(0)

|ft(x, v)− fnt (x, v)|(1 + |v|) dv dx

≥
∣∣∣∣ ∫

U

∫
BR(0)

ft(x, v)(1 + |v|) dv dx−
∫
U

∫
BR(0)

fnt (x, v)(1 + |v|) dv dx

∣∣∣∣ ≥ C2.(6.12)

However since G(t) is a contraction semigroup it follows for n > 1/C2 by (6.11),∫
U×R3

(ft(x, v)− fnt (x, v))(1 + |v|) dx dv =

∫
U×R3

G(t)(f0 − fn0 )(x, v)(1 + |v|) dx dv

≤
∫
U×R3

(f0(x, v)− fn0 (x, v))(1 + |v|) dx dv ≤ 1

n
< C2.
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By the same argument, ∫
U×R3

(fnt (x, v)− ft(x, v))(1 + |v|) dx dv < C2.

Hence we have a contradiction with (6.12) which completes the proof of (3.8).
To show (3.9) fix t ∈ [0, T ]. By (6.8),∫

U×R3

Bft(x, v) dx dv ≤
∫
U×R3

ft(x, v)π(|v|+ β) dx dv.

By the above calculations ft has finite first moment so this is finite as required. �
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