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ROBUST HEDGING OF OPTIONS ON A LEVERAGED EXCHANGE
TRADED FUND

BY ALEXANDER M. G. COX AND SAM M. KINSLEY

University of Bath

A leveraged exchange traded fund (LETF) is an exchange traded fund
that uses financial derivatives to amplify the price changes of a basket of
goods. In this paper, we consider the robust hedging of European options on
a LETF, finding model-free bounds on the price of these options.

To obtain an upper bound, we establish a new optimal solution to the Sko-
rokhod embedding problem (SEP) using methods introduced in Beiglböck–
Cox–Huesmann. This stopping time can be represented as the hitting time of
some region by a Brownian motion, but unlike other solutions of, for example,
Root, this region is not unique. Much of this paper is dedicated to character-
ising the choice of the embedding region that gives the required optimality
property. Notably, this appears to be the first solution to the SEP where the
solution is not uniquely characterised by its geometric structure, and an ad-
ditional condition is needed on the stopping region to guarantee that it is the
optimiser. An important part of determining the optimal region is identifying
the correct form of the dual solution, which has a financial interpretation as a
model-independent superhedging strategy.

1. Introduction. Given a Brownian motion B and a centered probability dis-
tribution μ on the real line which has finite second moment, the Skorokhod em-
bedding problem is to find a stopping time τ such that

(SEP) Bτ has law μ and (Bt∧τ )t≥0 is UI.

In this paper, we give a solution to this problem which has the property that it max-
imises E[F(Bτ , τ )] over solutions of (SEP) for a certain function F that has the
financial motivation of being the payoff of a European call option on a leveraged
exchange traded fund. In Section 2, we show the existence of such a stopping time
using the monotonicity principle of [3]. This solution can be seen as the hitting
time of a region we call a K-cave barrier, which is the combination of a Root bar-
rier and a Rost inverse barrier separated by a curve K(x). It is well known that
for such a distribution μ, there is a Root barrier such that the hitting time of that
barrier solves (SEP), and moreover that barrier is unique. However, it is easy to see
that in most cases there will be infinitely many K-cave barrier solutions of (SEP).
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The main difficulty which arises in this problem is then to determine which of
these solutions is optimal, and much of this paper is dedicated to finding a neces-
sary and sufficient condition that ensures we have the optimal stopping region. In
Section 3, we propose such a condition using a heuristic PDE argument, and then
we confirm that this condition is sufficient in Section 4 using probabilistic argu-
ments. To do this, we introduce the dual problem of finding the minimal starting
cost of a model-independent superhedging strategy, and use martingale theory to
derive an expression for the optimal dual solution.

To argue the converse, that is, there is at least one dual optimiser satisfying
this condition, we take a different approach. In [10], we set up a linear program-
ming problem which is a discretised optimal Skorokhod embedding problem and
for which we can prove a strong duality result. The motivation of [10] was to help
determine the form of our dual superhedging strategy in this continuous time prob-
lem, and indeed the strong duality result gives the existence of dual optimisers. In
[10], we show that we can recover our continuous time problem as the limit of
the discrete linear programming problems, and in Section 5 of this paper, we show
that our superhedging strategy is the limit of the discrete dual optimisers. We then
verify that our proposed condition is both necessary and sufficient.

As well as the financial relevance of this problem, we also believe that the so-
lution we give to the Skorokhod embedding problem is theoretically important.
In [3], it was shown that every known solution to (SEP) which possessed an op-
timality criteria could be derived as a consequence of the monotonicity principle.
Specifically, the monotonicity principle implies a geometric structure that is suffi-
cient to uniquely identify the stopping region. The construction we provide in this
paper uses the monotonicity principle to deduce important geometric structure of
the solution, but this does not uniquely characterise the resulting stopping region,
and we therefore need to provide an additional criterion which specifies which of
the possible stopping regions we should choose. To the best of our knowledge, this
is the first example of such a condition in the literature.

1.1. Background. The standard approach to pricing and hedging exotic op-
tions is to suppose the existence of some probabilistic model, and then deter-
mine the discounted, risk-neutral expected payoff under this model. An alternative
method is to use commonly-traded options, with prices that we can observe, to
construct a hedging strategy. Usually, we assume that we can observe call prices
for a fixed maturity and multiple strikes, and identify models consistent with these
prices. We can then attempt to find “model-independent”, or “robust”, bounds on
our option price by finding the extremal feasible models. A least upper bound on
the price of the option should be the smallest amount of money with which it is
possible to maintain a super-replicating portfolio under any model. In other words,
we are required to give a portfolio which is a superhedge for all feasible models,
and for which there is a specific model that gives the correct option prices, under
which our superhedge is actually a hedge, that is, we replicate the option exactly.
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This approach, although it does not give a single arbitrage-free price for the option,
has the obvious advantage that it eliminates model risk.

A result of Breeden and Litzenberger in [4] says that given European call prices
of all positive strikes for some fixed maturity T , we can calculate the marginal dis-
tribution of the underlying, S, at this time T . Moreover, this distribution is given
under the measure used by the market to price these options, so, unlike in the tradi-
tional methods, we do not need to change measure. In particular, if the call option
prices C(K) are calculated as the discounted expected payoff under a probability
measure Q, then under certain arbitrage conditions on C, we have that

C ′+(K) = −Q(ST > K).

A consistent model (�,F,P) must then be such that ST ∼ μ under P, where μ

is determined from the above Breeden–Litzenberger formula. If we assume that
the price process is a true martingale, by a time change this condition becomes
equivalent to the Skorokhod embedding problem, (SEP). It is also important to
note that given a solution τ to (SEP),

Mt = Bt/(T −t)∧τ

is a martingale with MT ∼ μ, and in fact there is a one-to-one correspondence be-
tween solutions of (SEP) and (uniformly integrable) martingales M with MT ∼ μ.

There are many solutions to (SEP) (see [28] for a survey of all solutions known
at the time), some of which have nice optimality properties. For example, the so-
lution of Root [30] was shown by Rost in [32] to minimise E[F(τ)] for convex
F over solutions of (SEP). The Root stopping time is the hitting time of a region
known as a barrier, and in this paper we find a solution of (SEP) which can also be
viewed as the hitting time of a Brownian motion of a certain region. This stopping
time has the property that it maximises the expected payoff of a certain exotic op-
tion. Using the Skorokhod embedding problem to find no-arbitrage prices of exotic
options given prices of vanilla options was first developed by Hobson in [24], and
since used and extended in many works, including [5, 8, 11, 12, 14, 15, 21, 23,
25]. In particular, we refer to the survey article of Hobson [22].

As mentioned above, the “primal” problem of finding a model-independent up-
per bound on an option price has a related “dual” problem of finding the smallest
amount of money with which a self-financing model-independent superhedging
portfolio can be funded. There are duality results on various options under suit-
able conditions, for example, [9, 17–19, 26]. We follow the pathwise inequality
approach of Cox and Wang [14, 15] to show a duality result and find the form of
the minimal superhedging portfolio.

Our problem1 is motivated by the pricing of a call option on a leveraged ex-
change traded fund, LETF, in particular we look at finding an arbitrage-free upper

1We are grateful to Pierre Henri-Labordère for suggesting this problem to us.



534 A. M. G. COX AND S. M. KINSLEY

bound on the price of these options. An exchange traded fund (ETF) is a security
traded on a stock exchange that tracks an index or basket of assets. An ETF is an
ownership stake in a pool of assets, so a number of investors can share in a large,
diverse portfolio, spreading the transaction costs across all investors. A regular
ETF matches the benchmark index’s performance 1:1, whereas a leveraged ETF
will most commonly match it 2:1 or 3:1, usually by holding daily futures contracts.
Daily compounding means that LETFs do not maintain their 2:1 relative perfor-
mance over time, only over a single day, and even then transaction costs and fees
need to be subtracted. For example, if we have a traditional index ETF and a 2:1
LETF both trading at $100, and the index increases by 10% that day, then our ETF
is at $110 whilst our LETF is now worth $120. Our LETF met its goal on this in-
dividual day, but then these prices are now fixed, since our funds are compounded
daily. If the following day our index sees a decrease of 9%, then the ETF is at
$100.10, but our LETF value decreases by 18% to $98.4. We can clearly see that
over time we will not maintain our 2:1 ratio.

The first LETF was released in 2006, and in 2016 there are over 200 LETFs
available, most commonly with 125%, 200% or 300% ratios. At the time of writ-
ing, the value of assets in the global ETF market is over $3 trillion, and some
investors expect it to double in size by 2021. LETFs are typically written on very
liquid ETFs, with vanilla options traded on both the ETF and the LETF. This means
that our assumption of observing European call option prices on the underlying
ETF is a reasonable one. LETFs have been studied mathematically in recent liter-
ature, for example, [1, 2, 7, 33]. In particular, in [33], Zhang considers options on
an LETF in terms of options on the underlying ETF, giving a closed-form solution
when the volatility of log(St ) is deterministic, and numerical results fitting various
models when the volatility is random.

1.2. Formulation. We will work in continuous time, thus assuming the LETF
portfolio is rebalanced continuously. We set interest rates and transaction costs
to 0, and consider the dynamics of the LETF with leverage ratio β > 1. Let
St , Lt be the prices of the ETF and LETF, respectively, and suppose S is
some continuous martingale on R+. Then the distribution μ obtained from the
Breeden–Litzenberger formula is supported on R+, and we assume it is such that∫
R+ |x|βμ(dx) < ∞. Then the price process of the LETF is given by

Lt = S
β
t exp

(
−β(β − 1)

2
Vt

)
,

where Vt is the accumulated quadratic variation of logSt up to time t . It is easy to
verify that Lt is a martingale when St is. To avoid dealing with the accumulated
log quadratic variation, we time change by setting τt := inf{s ≥ 0 : Vs = t} and
Xt := Sτt . But then

d〈X〉t = d〈S〉τt = S2
τt

dVτt = X2
t dt
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and, therefore, Xt is a geometric Brownian motion (GBM). The payoff function
for a European call option on the time-changed LETF with strike k > 0 is

(1) FL(x, t) =
(
xβ exp

(
−β(β − 1)

2
t

)
− k

)
+
.

Write hL(x, t) = xβ exp(−β(β−1)
2 t) so that hL(Xt , t) is a martingale since Xt is.

The problem of finding an upper bound on the price of such an option is then
equivalent to solving the optimal Skorokhod embedding problem

sup
τ

E

[(
Xβ

τ exp
(
−β(β − 1)

2
τ

)
− k

)
+

]

over stopping times τ such that Xτ ∼ μ,

(LOptSEP)

where X is a GBM, and in fact an exponential martingale. We conjecture a hitting
time solution with a stopping region of the form shown in Figure 1, bounded by
curves lL(x) and rL(x) giving the boundary of an inverse-barrier and a barrier
region respectively (defined below), such that lL(x) ≤ KL(x) ≤ rL(x) and lL is
increasing. The curve KL(x) = 2

β(β−1)
ln(xβ

k
) is such that hL(x,KL(x)) = k, so

we only “score” a positive payoff if we are absorbed by lL, that is, to the left
of KL. The example in Figure 1 contains an infinite section, and the barriers could
also have spikes, we assume no differentiability on the curves lL, rL.

We show that the function rL is such that R := {(x, t) : t ≥ rL(x)} is a barrier,
that is, a closed subset of (−∞,+∞) × [0,+∞) such that if (x, t) ∈ R, then
(x, s) ∈ R for all s > t . Since we are working with geometric Brownian motion,
we will have (0, t) ∈ R for all t . Note in particular that the closedness of R implies
that rL is lower semicontinuous.

FIG. 1. An example of our LETF problem that has a K-cave barrier with an infinite region.
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Similarly, lL is such that R := {(x, t) : t ≤ lL(x)} is an inverse barrier, or reverse
barrier, meaning a closed subset of (−∞,+∞) × [0,+∞) such that if (x, t) ∈ R,
then (x, s) ∈ R for all s < t . Similar to above, the function lL is upper semicon-
tinuous. It is well known that the Rost embedding [6, 31] is a solution of (SEP)
which takes the form of the hitting time of an inverse barrier, see also [13, 14, 28].

DEFINITION 1.1. For an increasing function K :R →R, a K-cave barrier R,
is a closed subset of (−∞,+∞) × [0,∞) such that R = R∪R, where:

• R ⊆ {(x, t) : t ≥ K(x)} is a barrier,
• R ⊆ {(x, t) : t ≤ K(x)} is an inverse barrier.

In the Brownian case, there is a unique Root barrier, or Rost inverse barrier, that
solves (SEP) for any centred distribution μ with finite second moment (and no
atom at 0 for the Rost case), and these solutions have the nice property that they
minimise, or maximise, the expected value of any convex function of the stopping
time. In [3], the authors introduce a new embedding, the cave embedding, which
can be viewed as the combination of a Root and a Rost embedding. Our stopping
region has a similar form, and much of the analysis in this paper also applies to the
cave embedding. In particular, the results we derive in Section 5.1 can be deduced
for the cave embedding in essentially the same manner as in this paper.

We will actually consider pricing two options, the first of which is the problem
described by (LOptSEP). The second problem is very similar and is notable due to
its structure as a European call option on an exponential martingale. For this case,
we consider the payoff function

(2) FBM(x, t) =
(

exp
(
βx − 1

2
β2t

)
− k

)
+

for β > 0 a constant, and k > 0 our strike. Here, we can think of B , the discounted
price process, as a Brownian motion (BM) after a time change. We define hBM
to be hBM(x, t) = exp(βx − 1

2β2t) so that hBM(Bt , t) is a martingale, and we
have a similar stopping region given by lBM(x), rBM(x) separated by KBM(x) =
2x
β

− 2
β2 ln(k), as shown in Figure 2. Our problem in this case is

(OptSEP) sup
τ

E

[(
exp

(
βBτ − 1

2
β2τ

)
− k

)
+

]
over solutions of (SEP).

All results will be stated for a function F ∈ {FL,FBM} and then proved for
F = FBM, with the simple adjustments to FL explained. To make this clear, we
will always be working in one of the following settings.

ASSUMPTION 1. We write

F(x, t) = FBM(x, t) :=
(

exp
(
βx − 1

2
β2t

)
− k

)
+
,

and assume our underlying process is a Brownian motion Bt with B0 = 0 and μ is
a probability measure on R such that

∫
R eβxμ(dx) < ∞.
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FIG. 2. An example K-cave stopping region with continuous boundaries.

ASSUMPTION 2. We write

F(x, t) = FL(x, t) :=
(
xβ exp

(
−β(β − 1)

2
t

)
− k

)
+
,

and assume our underlying process is a geometric Brownian motion Xt with
X0 = 1 and μ is a probability measure on R+ such that

∫
R+ xβμ(dx) < ∞.

Moving between the two payoffs is generally simply since the problems are
closely related by

Xt = X0 exp
(
Bt − 1

2
t

)

=⇒ X
β
t exp

(
−β(β − 1)

2
t

)
= X

β
0 exp

(
βBt − 1

2
β2t

)
.

However, the embedding condition applies to different processes, and this is where
the problems differ. In particular, note that there are, in general, multiple stopping
times τ which embed Bτ ∼ μ, and so the distribution of Bτ is not enough to
determine the distribution of Xτ = X0 exp(Bτ − 1

2τ) due to the dependence on τ .

2. Existence of a maximiser.

2.1. Stop-go pairs. In [3], the authors introduce the idea of stop-go pairs, and
develop a monotonicity principle that allows them to prove, using a unified ap-
proach, the existence of all solutions to (SEP) that have an optimality property.
The intuition behind stop-go pairs is as follows: we consider continuous paths
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starting from 0 and want to decide when it is optimal to stop or continue them.
Consider a stopped path (g, t) and a path that is not yet stopped (f, s), where
f (s) = g(t). We imagine stopping (f, s) at time s and creating a continuation of
(g, t) by transferring all paths which extend (f, s) onto (g, t). If this improves the
value of the quantity we are optimising, then we have contradicted the optimality
of the stopping region. In this case, we call ((f, s), (g, t)) a stop-go pair, and we
denote the set of stop-go pairs by SG. This then can be extended by a second op-
timality problem in order to sort the pairs that see exactly the same value of the
optimality problem when mass is transferred onto the stopped path.

As in [3], we work on a filtered probability space (�,P,F, (Ft )t ) which is
rich enough to support a Brownian motion and a uniformly distributed F0-random
variable. Formally, [3] considers

S = {
(f, s) : f : [0, s] → R is continuous, f (0) = 0

}
and a Borel function γ : S → R, so γt = γ ((Bs)s≤t , t) is an optional stochastic
process. Our problem is to find the maximiser of

(3) Pγ := sup
{
E[γτ ] : τ solves (SEP)

}
.

We set (
γ ⊕(f,s))

u := γ (f ⊕ B, s + u),

and then (f, g) is a stop-go pair, (f, g) ∈ SG, if for every stopping time σ such
that 0 < E[σ ] < ∞,

E
[(

γ ⊕(f,s))
σ

] + γ (g, t) < γ (f, s) +E
[(

γ ⊕(g,t))
σ

]
.

If τ̂ is our maximiser, we can then find a set � ⊆ S with P[((Bs)s≤τ̂ , τ̂ ) ∈ �] = 1,
such that � is γ -monotone, that is,

SG ∩ (
�< × �

) = ∅,

where �< := {(f, s) : ∃(f̃, s̃) ∈ �, s < s̃ and f ≡ f̃ on [0, s]}. Denote the set of
maximisers of Pγ by Optγ and consider another Borel function γ̃ : S → R. In
[3], it is shown that Optγ is nonempty and compact for suitable γ , and so we can
assume that τ̂ is also a maximiser of the secondary optimisation problem

(4) Pγ̃ |γ := sup
{
E[γ̃τ ] : τ ∈ Optγ

}
.

The set of secondary stop-go pairs, SG2 consists of all ((f, s), (g, t))) ∈ S × S
such that f (s) = g(t) and for every stopping time σ with 0 < E[σ ] < ∞ we have

(5) E
[(

γ ⊕(f,s))
σ

] + γ (g, t) ≤ γ (f, s) +E
[(

γ ⊕(g,t))
σ

]
and the equality

(6) E
[(

γ ⊕(f,s))
σ

] + γ (g, t) = γ (f, s) +E
[(

γ ⊕(g,t))
σ

]
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implies the inequality

(7) E
[(

γ̃ ⊕(f,s))
σ

] + γ̃ (g, t) < γ̃ (f, s) +E
[(

γ̃ ⊕(g,t))
σ

]
.

Then we can also assume that

SG2 ∩ (
�< × �

) = ∅.

Theorem 6.4 in [3] tells us that there exists a γ -monotone Borel set � ⊆ S such
that P-a.s. ((Bt )t≤τ̂ , τ̂ ) ∈ �.

2.2. Existence of K-cave embeddings. We use the notion of stop-go pairs to
prove the following theorem.

THEOREM 2.1. Under the conditions of Assumption 1, there exists a stopping
time τR which maximises E[F(Bτ , τ )] over all solutions to (SEP) and which is of
the form τR := inf{t > 0 : (Bt , t) ∈ R} for some K-cave barrier R.

To prove this, we consider the set of stop-go pairs of our primary and secondary,
yet to be determined, optimality problems, and for these we need to introduce local
times. The local time of a continuous semimartingale Z at a is the increasing,
continuous process La that gives the Itô–Tanaka formula:

(Zt − a)+ = (Z0 − a)+ +
∫ t

0
1{Zs>a} dZs + 1

2
La

t .

Observe that we can write

La
t (Z) = lim

ε→0

1

ε

∫ t

0
1[a,a+ε](Zs)d〈Z〉s,

where 〈Z〉s is the quadratic variation process of Z. By establishing the form of
SG and SG2 we can argue as in [3] that we have a γ -monotone set supporting
a maximiser of our two optimisation problems, and that it can be written as a
stopping time of the required form.

PROOF OF THEOREM 2.1. We prove for F = FBM. Write

Mf
u := h

(
f (s) + Bu, s + u

) = exp
(
β

(
f (s) + Bu

) − β2

2
(s + u)

)
= hf Mu,

Mg
u := h

(
g(t) + Bu, t + u

) = exp
(
β

(
g(t) + Bu

) − β2

2
(t + u)

)
= hgMu,

where the constant hf = h(f (s), s) is introduced to emphasise that the process is

of the form (h(f (s), s)Mu)u, for Mu = exp(βBu − β2

2 u) with (Bu)u a BM. We

then see that, for α = hg

hf = exp(−1
2β2(t − s)),

Mg
u = αMf

u .
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Then, after applying the monotone convergence theorem along the localising se-
quence σj = σ ∧ j , along with Fatou’s lemma and conditional Jensen’s inequality,
the first term in (5) becomes

E
[
F

(
(f ⊕ B)s+σ , s + σ

)] = (
hf − k

)
+ + 1

2
E

[
Lk

σ

(
Mf )]

.

Here, we are taking the local time of the process (M
f
u )u accumulated at k up to

time σ .
If we use the Itô–Tanaka formula on both sides of (5), this is equivalent to

(
hf −k

)
+ + 1

2
E

[
Lk

σ

(
Mf )]+ (

hg −k
)
+ ≤ (

hg −k
)
+ + 1

2
E

[
Lk

σ

(
Mg)]+ (

hf −k
)
+,

which holds iff

E
[
Lk

σ

(
Mf )] ≤ E

[
Lk

σ

(
Mg)]

.

We have equality, that is, case (6), when

E
[
Lk

σ

(
Mf )] = E

[
Lk

σ

(
Mg)]

,

which clearly holds when hf = hg , which happens exactly when s = t , since
f (s) = g(t).

We aim to show that

hf < hg ≤ k =⇒
{

either E
[
Lk

σ

(
Mf )]

< E
[
Lk

σ

(
Mg)]

,

or E
[
Lk

σ

(
Mf )] = E

[
Lk

σ

(
Mg)] = 0,

(8)

hf > hg ≥ k =⇒
{

either E
[
Lk

σ

(
Mf )]

< E
[
Lk

σ

(
Mg)]

,

or E
[
Lk

σ

(
Mf )] = E

[
Lk

σ

(
Mg)] = 0.

(9)

We have to argue the two cases separately, so suppose first that hf < hg ≤ k and

take a stopping time σ such that P[Mg
σ > k] > 0. Also let α = hg

hf = exp(−β2

2 (t −
s)), so α > 1. Then we have

E
[
Lk

σ

(
Mg)] = 2E

[(
Mg

σ − k
)
+

] − 2
(
hg − k

)
+

> 2E
[(

Mg
σ − αk

)
+

] − 2
(
hg − αk

)
+

= E
[
Lαk

σ

(
Mg)]

,

since (hg − k)+ = (hg − αk)+ = 0.
Now we note (see, e.g., [29], Chapter VI, Exercise 1.22) that if f is a strictly

increasing function that can be written as the difference of two convex functions,
a > 0, and Zt a continuous semimartingale,

L
f (a)
t

(
f (Z)

) = f ′+(a)La
t (Z),
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where f ′+ is the right derivative of f . We apply the result with f (k) = αk to find
Lαk

σ (Mg) = αLk
σ (Mf ).

Then, combining the last two results, taking expectations, and noting that α > 1,
we see that if E[Lk

σ (Mg)] > 0, so that P[Mg
σ > k] > 0, then

E
[
Lk

σ

(
Mg)]

> E
[
Lαk

σ

(
Mg)] = αE

[
Lk

σ

(
Mf )]

> E
[
Lk

σ

(
Mf )]

.

This gives (8), but we require a different argument for (9), so suppose now that
k ≤ hg < hf . We have M

g
u = hgeYu , for Yu = βBu − 1

2β2u, so using the local time

result above, Lk
σ (Mg) = kL

log k
hg

σ (Y ), and similarly Lk
σ (Mf ) = kL

log k

hf

σ (Y ). This
means that our problem is equivalent to considering the local time spent by Brow-
nian motion with drift at two different levels. For any σ such that E[Lk

σ (Mg)] > 0,
we have P(Yσ < log k

hg ) > 0 and, therefore,

1

2
E

[
L

log k
hg

σ (Y )
] = E

[(
Yσ − log

k

hg

)
+

]
+ log

k

hg

> E

[(
Yσ − log

k

hf

)
+

]
+ log

k

hf

= 1

2
E

[
L

log k

hf

σ (Y )
]
.

We now have that

SG ⊇ {(
(f, s), (g, t)

) : hf > hg ≥ k or hf < hg ≤ k and E
[
Lk

σ

(
Mg)]

> 0

for all σ s.t. 0 < E[σ ] < ∞}
and the pairs in {((f, s), (g, t)) : hf > hg ≥ k or hf < hg ≤ k} that are not in SG
are those for which we can find a stopping time such that the expected values
of the local times at k up to the stopping time of the two processes are equal.
However, we have shown that if this is the case (and s �= t) then these expected
values must be equal to zero. This tells us that when we set our paths off at hf

and hg , they never reach k, and so in particular sgn(M
f
σ − k) = sgn(hf − k) and

sgn(M
g
σ −k) = sgn(hg −k), and this also holds for all times up to σ (and similarly

when hg = k). We now define our secondary optimality problem as in (4) with

γ̃ (f, s) = −((
h
(
f (s), s

) − k
)
+

)2 + ((
h
(
f (s), s

) − k
)
−

)2
.

Consider a pair of paths ((f, s), (g, t)) and a stopping time σ such that hf < hg ≤
k and Lk

σ (Mf ) = Lk
σ (Mg) = 0. Substituting these into (7) gives

E
[(

k − Mf
σ

)2] + (
k − hg)2

< E
[(

k − Mg
σ

)2] + (
k − hf )2

which, by Itô–Tanaka, simplifies to

E
[〈
Mf 〉

σ

]
< E

[〈
Mg 〉

σ

]
.
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This is true since hf < hg , and we finally have that

SG2 ⊇
{(

(f, s), (g, t)
) : f (s) = g(t), s < t ≤ 2

β2

(
βf (s) − log(k)

)

or s > t ≥ 2

β2

(
βf (s) − log(k)

)}

= {(
(f, s), (g, t)

) : f (s) = g(t), h
(
f (s), s

)
< h

(
g(t), t

) ≤ k

or h
(
f (s), s

)
> h

(
g(t), t

) ≥ k
}
.

Hence, by [3], there exists a γ -monotone set � ∈ S with P[((Bs)s≤τR
, τR) ∈

�] = 1, and we can complete our proof.
We know that there is a maximiser, τR of Pγ and Pγ̃ |γ , and that we can pick a

γ -monotone set � ∈ S supporting τR . Define

RCL := {
(m,x) : ∃(g, t) ∈ �,h

(
g(t), t

) ≤ m ≤ k, g(t) = x
}
,

ROP := {
(m,x) : ∃(g, t) ∈ �,h

(
g(t), t

)
< m ≤ k, g(t) = x

}
,

RCL := {
(m,x) : ∃(g, t) ∈ �,h

(
g(t), t

) ≥ m ≥ k, g(t) = x
}
,

ROP := {
(m,x) : ∃(g, t) ∈ �,h

(
g(t), t

)
> m ≥ k, g(t) = x

}
and write ROP := ROP ∪ROP and RCL := RCL ∪RCL. Denote the corresponding
hitting times (by (Mt(ω),Bt (ω))) of these sets by τOP := τOP ∧ τOP, and similarly
for τCL. Note that by the form of Mt there is a one-to-one correspondence between
(Mt ,Bt ) and (t,Bt ), so we can similarly define these stopping times as hitting
times of (t,Bt ). We claim that τCL ≤ τR ≤ τOP, and indeed we immediately see
that by the definition of RCL we have that τCL ≤ τR .

To show the second inequality pick ω, such that ((Bs)s≤τR(ω), τR(ω)) ∈ �

and assume for contradiction that τOP(ω) < τR(ω) (the argument for τOP(ω) is
similar). Then ∃s ∈ [τOP(ω), τR(ω)) such that f := (Br(ω))r≤s has (h(f (s), s),

f (s)) ∈ ROP. Since s < τR(ω), we know that f ∈ �<. But then by the definition
of ROP, ∃(g, t) ∈ � such that f (s) = g(t) and h(g(t), t) > h(f (s), s) > k which
contradicts the γ -monotonicity of �, since (g(t), f (s)) ∈ SG2 ∩ (�< × �).

Finally, by the strong Markov property and the fact that one-dimensional Brow-
nian motion immediately returns to its starting point, observe that τCL = τOP.
To show that τCL = τOP we argue as in the Rost embedding case of [3], Theo-
rem 2.4.

It is clear that we then have such a domain consisting of a barrier and an inverse
barrier separated by K(x), since when f (s) = g(t) we have that hf > hg ≥ m

=⇒ s < t . �
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REMARK 2.2. To repeat these arguments in the framework of Assumption 2,
we have h(x, t) = xβ exp(−β(β−1)

2 t), and instead of Mf and Mg we look at

Xf
u := h

(
f (s) + Xu, s + u

) = (
f (s) + Xu

)β exp
(
−β(β − 1)

2
(s + u)

)
,

Xg
u := h

(
g(t) + Xu, t + u

) = (
g(t) + Xu

)β exp
(
−β(β − 1)

2
(t + u)

)
,

where (Xu)u is a GBM. For the inverse-barrier argument we have that, since
f (s) = g(t), X

g
u = αX

f
u for α = exp(−β(β−1)

2 (t − s)). For k ≤ hg < hf we write
X

g
u = hgeYu where Yu is again a martingale with a negative drift. We can then

repeat exactly the arguments above.

REMARK 2.3. The stop-go arguments above show that we can never em-
bed mass along the curve K , and this can be seen as follows. If l(x) = K(x)

or r(x) = K(x) for some x, then by the form of SG2 we must have l(x) =
r(x) = K(x), as otherwise we have a stop-go pair. Take any optimiser τR with
corresponding l and r and let x∗ = inf{x > 0 : l(x) = r(x)}, x∗ = sup{x < 0 :
l(x) = r(x)} (with inf∅ = ∞, sup∅ = −∞). Then clearly we cannot embed
any mass outside of [x∗, x∗]. Also, we can only embed along K if (BτR, τR) ∈
{(x∗,K(x∗)), (x∗,K(x∗))}, but this is a null event, so no optimiser can embed any
mass along the curve K .

2.3. Nonuniqueness. We have proved that there exists a solution to (OptSEP)
which maximises our expected terminal payoff and is the hitting time of a K-cave
barrier, but it is important to note that there is not a unique solution to (SEP) of
this form for nontrivial distributions.

One example of nonuniqueness is a result of having a nonincreasing left-hand
boundary l. In this case, there can be areas of l that we do not hit, and so these
parts of l could actually take any form, as long as they do not embed any mass.
Any choice of l has an increasing equivalent (where on any regions we do not hit,
l just remains constant), and to remove this form of nonuniqueness we can assume
that we are taking this choice of the left boundary. This is equivalent to the idea of
uniqueness of regular barriers, as introduced by Loynes in [27].

Even once we have made this choice of l, a more troublesome form of
nonuniqueness can occur. Consider, for example, an atomic distribution with atoms
at three points N , −N and z ∈ (0,N). Corresponding K-cave stopping regions
will have absorbing barriers at ±N (to ensure the stopped process is uniformly
integrable), and two barriers with end points l(z) and r(z) at z. Suppose this
stopping region stops mass at N,−N,z with probabilities pN,p−N,pz, respec-
tively.
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Then these probabilities must sum to one, and we also have the martingale con-
dition, so

pN + p−N + pz = 1,

NpN − Np−N + zpz = 0.

These two equations fix pN,p−N for a given pz.
We can change our stopping time by moving the points r(z) and l(z), and it is

easy to see that increasing l(z) (moving our left-hand boundary at z to the right)
increases pz. Similarly, decreasing l(z) decreases the amount of paths stopped by
this boundary, so decreases pz, and moving r(z) has the opposite effect.

Therefore, writing pz = pz(l, r) as a function of l := l(z) and r := r(z), pz is
increasing in l(z) and decreasing in r(z).

Suppose we have some l(z) and r(z) such that pz(l, r) = μ({z}) (and, there-
fore, pN = μ({N}) and p−N = μ({−N})). Consider increasing l(z) by some small
amount, ε, to a new value l̃(z) = l(z) + ε, so pz(l + ε, r) > pz(l, r) = μ({z}).
For certain distributions μ, we will then be able to increase r(z) to some new
r̃(z) = r(z) + δ, for δ > 0, such that pz(l + ε, r + δ) = pz(l, r) = μ({z}).

For “nice” μ (with atom at z not too small or too large), we could find that
there is a nontrivial interval (a, b) and a function r : (a, b) → [K(z),∞) such that
pz(l, r(l)) = μ({z}) for any l ∈ (a, b), so we have infinitely many K-cave barriers
that embed μ. We then need to move l inside the interval (a, b) to get different
embeddings and find the optimal such stopping time.

In less trivial cases, we could have multiple barriers embedding μ each with a
different stopping time and, therefore, a different payoff, so we would like to find
a condition on the barriers that determines whether a given K-cave barrier which
embeds the correct law is also optimal. This is the aim of the following section,
where we will consider the dual problem.

3. Heuristic PDE arguments for duality. In this section, we take a heuristic
approach to the dual problem. Our aim is to establish a condition on the barriers
which will correspond to a form of dual attainment. Very loosely, our primal prob-
lem can be reconsidered in the framework of optimising over the class of K-cave
barriers which embed the desired law. Assuming that an appropriate dual prob-
lem can be formulated, one might expect to be able to characterise optimality in
terms of dual attainment of a corresponding dual solution. The aim of this section
is to construct a candidate dual solution, and provide a condition for feasibility.
In subsequent sections, we will justify the condition, by showing both that there
exist K-cave barriers satisfying the condition, and that the condition is sufficient
for optimality.

The following analysis is motivated by [20], Section 4, and relies on PDE ar-
guments. In this section, our arguments are purely formal, and aim to provide
justification for our later results. The dual problem has a natural interpretation as



ROBUST HEDGING OF LETFS 545

a superhedging problem, and we use that language here, although it can also be
understood in terms of martingale arguments.

Suppose we want to superhedge the option with payoff F(x, t), and to make
use of our LETF motivation we work under the conditions of Assumption 1, so
we assume that Xt is a Geometric Brownian Motion and F = FL (the argument is
easily transferrable to Assumption 2).

For our superhedging portfolio, we wish to hold a static portfolio of call op-
tions with price process λ(Xt), and trade a dynamic portfolio with value γ (Xt , t)

such that F(Xt, t) ≤ λ(Xt) + γ (Xt , t) at all times t . The dynamic portfolio value,
γ (Xt , t), can be viewed as the gains from trading, and we might therefore expect
it to be a martingale, or more generally a supermartingale by allowing ourselves to
withdraw positive amounts from the balance.

Portfolios satisfying these conditions can be thought of as feasible superhedging
(dual) portfolios. The initial cost of setting up this portfolio is then an upper bound
on the arbitrage-free price of the option with payoff F . The aim of the heuristic
arguments in this section is to find a condition under which the superhedging port-
folio gives the least upper bound. In the case of the Root and Rost embeddings, it
is shown in [14, 15] that, under certain assumptions, the necessary conditions are
that γ (Xt∧τ , t ∧ τ) should be a martingale, and that our superhedge should be an
exact hedge in the stopping region. The time 0 cost of setting up this portfolio is
the least upper bound on the price of the option and, therefore, is equal to the value
of our primal problem.

We follow the same idea here, attempting to construct a superhedging portfolio
that has these properties. In the case of the Root and Rost embeddings (for certain
payoffs), we can always find a portfolio that replicates the value of the option;
however in the K-cave case we require an extra condition to ensure that our chosen
portfolio is indeed optimal, and this section motivates the form of this condition.

Initially, we choose some region D (which will correspond to R�), and a func-
tion λ(x) representing a static portfolio of call options at all strikes. Let τD be
the exit time of D, and τ

(x,t)
D be the first hitting time of the stopping region for a

Brownian motion setting off from (x, t), so τD ≡ τ
(0,0)
D . Then

τD := inf{t ≥ 0 : t /∈ D},
τ

(x,t)
D := t + inf

{
s ≥ 0 : (x + Bs, t + s) /∈D

}
.

For any function f , we write Ex,t [f (XτD , τD)] to mean E[f (X
τ

(x,t)
D

, τ
(x,t)
D )].

We set our dynamic trading strategy to be

γ (x, t) :=
{
Fλ(x, t) for (x, t) /∈ D,

Ex,t [Fλ(XτD , τD)
]

for (x, t) ∈ D,
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where Fλ(x, t) := F(x, t) − λ(x). Then for γ (x, t) + λ(x) to be a superhedge (in
the above sense), we require

Lγ := x2

2
∂2
xγ + ∂tγ ≤ 0 ∀(x, t),(10)

γ ≥ Fλ ∀(x, t).(11)

We can see immediately that (10) holds with equality in D, and (11) holds with
equality in D�.

Consider a domain D which is the continuation region of a K-cave barrier, so
for (x, t) ∈ D we have that l(x) := inf{s < t : (x, s) ∈ D} and r(x) := sup{s >

t : (x, s) ∈ D} are independent of t (otherwise we contradict the (inverse) barrier
properties of the region). We want our superhedge to match the payoff on the
boundary, so we require

γ
(
x, l(x)

) = Fλ(
x, l(x)

)
,

γ
(
x, r(x)

) = Fλ(
x, r(x)

)
.

(12)

Then we wish to find D, λ such that

Lγ = 0 in D,

γ = Fλ on ∂D.

Note that with this boundary condition and sufficient smoothness we find ∂tγ =
∂tF

λ = ∂tF on ∂D, and then, writing η = ∂tγ , we expect

Lη = 0 in D,

η = ∂tF
λ = ∂tF on ∂D.

We can then use Dynkin’s formula to deduce that

η(x, t) = Ex,t [∂tF (XτD , τD)
] =: M(x, t)(13)

and so

γ (x, t) = −
∫ r(x)

t
M(x, v)dv − ξ(x),(14)

where ξ(x) is some function, which we will choose to ensure Lγ = 0. We could
take any upper limit in the integral, but we will see later that r(x) is a natural
choice.

With this form for the function γ , we can consider the boundary conditions,
(12). Rearranging (12), we see that we must have

λ(x) = F
(
x, l(x)

) − γ
(
x, l(x)

) = F
(
x, r(x)

) − γ
(
x, r(x)

)
.
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Observing that F(x, r(x)) = 0 (by the form of F , since r(x) ≥ K(x)), we note
that this holds whenever

(15) �(x) := F
(
x, l(x)

) +
∫ r(x)

l(x)
M(x, v)dv = 0 ∀x ∈ D.

More generally, if we only require that (11) holds, a necessary condition on the
boundary is that

λ(x) ≥ max
{
F

(
x, l(x)

) +
∫ r(x)

l(x)
M(x, v)dv + ξ(x), ξ(x)

}
,

and we see that if �(x) = 0, it is sufficient to take ξ(x) = λ(x). Since ξ was chosen
to make Lγ = 0, this will effectively fix λ. In the next section, we will see that it
is sufficient for (11) to hold on the boundaries in order to deduce that it holds in
the interior as well.

Then, to summarise this section, given a set D which is the continuation region
of a K-cave barrier, we (heuristically) can construct functions γD (given by (14))
and λD(x) := max{F(x, l(x)) + ∫ r(x)

l(x) M(x, v)dv + ξ(x), ξ(x)} such that (10) and
(11) hold. If in addition τ is a (uniformly integrable) stopping time such that Xτ ∼
μ, then

E
[
F(Xτ , τ )

] ≤ E
[
γD(Xτ , τ ) + λD(Xτ )

]
≤ γD(X0,0) +

∫
λD(x)μ(dx)

and, therefore,

(16) sup
τ :Xτ ∼μ

E
[
F(Xτ , τ )

] ≤ inf
D

{
γD(X0,0) +

∫
λD(x)μ(dx)

}
.

Moreover, if D is such that XτD ∼ μ, γD(Xt ∧ τD, t ∧ τD) is a martingale, and
�(x) = 0, the inequalities above are equalities for τD , and so the supremum and
the infimum coincide.

Our aim in the next section will be to make these heuristic arguments rigorous
whilst showing that, in fact, any set D which is the continuation region of a K-cave
barrier embedding μ and which satisfies (15) (or a slightly refined version of (15))
gives equality in (16).

4. Optimality. We have introduced the dual problem of choosing a K-cave
barrier which embeds μ and such that �(x) = 0. In this section, we will make
these heuristic arguments rigorous, and show that if we have a K-cave barrier
that satisfies these conditions, then it does indeed give rise to an optimal embed-
ding. We will modify the arguments presented in Cox and Wang [15], using the
heuristics of the previous section to motivate our choice of functions, but writing
our problem under Assumption 1, although an essentially identical analysis holds
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under Assumption 2. Hence, for a Brownian motion B , we wish to find an embed-
ding τ of the form given in Theorem 2.1 (the hitting time of a K-cave barrier), and
functions G(x, t) and H(x) such that

• F(x, t) ≤ G(x, t) + H(x) everywhere,(17)

• G(Bt , t) is a supermartingale,(18)

• F(Bτ , τ ) = G(Bτ , τ ) + H(Bτ ),(19)

• G(Bt∧τ , t ∧ τ) is a martingale.(20)

We use the previous section to motivate a possible form of our super-replicating
portfolio, and we will see that it is highly dependent on the region D. The idea here
is that the portfolio we propose, which depends heavily on the stopping region, is
“dual feasible” for any stopping region, and then the correct choice of our region
D, or equivalently our curves l, r , will correspond to satisfying the complementary
slackness conditions of our primal-dual problem. The conditions (17) and (18)
are our dual conditions, that is, our dual problem is to minimise E[G(Bτ , τ ) +
H(Bτ )] over functions G, H such that (17), (18) hold. Then (19) and (20) are the
complementary slackness conditions. In Section 5, we prove that our choices of
G, H are indeed the correct ones, so the condition we give is both necessary and
sufficient.

Consider a K-cave barrier R with continuation region D = R�. Let τD be the
exit time of D, and τ

(x,t)
D be the first hitting time of the stopping region for a

Brownian motion setting off from (x, t), so τD ≡ τ
(0,0)
D . Then

τD := inf
{
t ≥ 0 : t /∈ (

l(Bt ), r(Bt)
)}

,

τ
(x,t)
D := t + inf

{
s ≥ 0 : (x + Bs, t + s) /∈D

}
.

Recall that F(x, t) = (h(x, t) − k)+, for h(x, t) = exp(βx − 1
2β2t), so for t �=

K(x), the time derivative of F is

∂tF (x, t) = ∂th(x, t)1
{
h(x, t) > k

}
= ∂th(x, t)1

{
t ≤ K(x)

} = −β2

2
h(x, t)1

{
t < K(x)

}
.

Note that F is not differentiable across K . The shape of the optimal K-cave barrier
means that we never embed mass along K (see Remark 2.3), and so this is not
important to us, we can consider either the left or right derivative at t = K(x) in
order to define ∂tF (x, t) everywhere.

Looking at (13) and (14), we define

G(x, t) := G∗(x, t) − Z(x) where

G∗(x, t) := −
∫ r(x)

t
M(x, s)ds,
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M(x, t) := Ex,t [∂tF (BτD , τD)
]

= −β2

2
Ex,t [h(BτD , τD)1

{
τD < K(BτD)

}]
,

and Z(x) is chosen as above to ensure that G(Bt , t) is a martingale in D. Here, we
write Ex,t [∂tF (BτD , τD)] to mean E[∂tF (B

τ
(x,t)
D

, τ
(x,t)
D )] = E[∂tF (BτD , τD)|Bt =

x, t ≤ τD]. In particular, in the continuation region M(Bt, t) = E[∂tF (BτD ,

τD)|Ft ] and M(Bt, t) is therefore a martingale. We have taken the Brownian mo-
tion payoff, F = FBM, and the only difference in the case of the LETF payoff is

that β2

2 becomes β(β−1)
2 .

Since h(Bt , t) is a nonnegative martingale,

M(x, t) − β2

2
Ex,t [h(BτD , τD)1

{
τD > K(BτD)

}] = −β2

2
h(x, t)

and then we have

M(x, t) = −β2

2
h(x, t) for (x, t) ∈ {

(x, t) : t ≤ l(x)
}
,

−β2

2
h(x, t) ≤ M(x, t) ≤ 0 for (x, t) ∈ D = {

(x, t) : l(x) ≤ t ≤ r(x)
}
,

M(x, t) = 0 for (x, t) ∈ {
(x, t) : t ≥ r(x)

}
.

Define μl and μr to be the the distributions of the mass embedded along l(x)

and r(x), respectively, that is, for any A ⊆ R,

μl(A) := P
(
BτD ∈ A,BτD ≤ l(τD)

)
,

μr(A) := P
(
BτD ∈ A,BτD ≥ r(τD)

)
.

We say that both barriers are attainable at x if x ∈ supp(μl) ∩ supp(μr). Define

�(x) := F
(
x, l(x)

) +
∫ r(x)

l(x)
M(x, v)dv.

From the heuristics in the previous section, we propose the following condition on
our barriers l and r for optimality:

(�)
�(x) ≥ 0 μl-a.s.,

�(x) ≤ 0 μr -a.s.

THEOREM 4.1. If R is a K-cave barrier that embeds a distribution μ and
also satisfies (�), then τD is optimal.

To show this, we first need to show that our function G∗ is such that we can
choose Z and H to give the required properties. First, let x∗ := inf{x : l(x) =
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K(x) = r(x)}, where we set inf∅ = ∞ if our barriers never meet. Note that if
x∗ < ∞, then our distribution μ embeds no mass above x∗ and so any pair of
barriers embedding μ must meet at x∗, that is, l(x∗) = r(x∗) = K(x∗). If this
was not the case, then with positive probability, we can find 0 < t < τD such that
Bt = x > x∗. Then τ

(x,t)
D ≥ t + Hx−x∗(B), and in particular E[τ (x,t)

D ] = ∞, so
(Bt∧τD)t is not uniformly integrable. Therefore, our process is always stopped
below this point, or before Hx∗ = inf{t ≥ 0 : Bt = x∗}.

LEMMA 4.2. We can find a function Z such that the process

G(Bt∧τD , t ∧ τD) is a martingale

and

G(Bt, t) is a supermartingale up to Hx∗ .

PROOF. We first show that we can find an increasing process At = A(Bt),
depending only on Bt , such that G∗(Bt , t) − At is a martingale in D, and a su-
permartingale in general. We note that, for either of our payoffs, h(x, t) < ∞ for
any (x, t) and h is integrable on any [y, z] × [0,∞) for any bounded y < z. This
means that |G∗| is bounded on compact sets in space for all t ≥ 0, and so all of the
terms in the following arguments are well-defined. In much of what follows, we
will take our process at some point (Bt , t) and consider letting it run until some
stopping time, perhaps τ := inf{u > 0 : |Bt+u − Bt | ≥ δ} ∧ ε for some small δ

and ε.
1. Show G∗(Bt , t) is a submartingale in D: First, take (Bt , t) ∈ D, the continu-

ation region and τ a stopping time of the above form such that t + τ < τD , so we
remain in the continuation region. Then

E
[
G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft

]
= E

[
−

∫ r(Bt+τ )

t+τ
M(Bt+τ , u)du +

∫ r(Bt )

t
M(Bt , u)du|Ft

]

= E

[
−

∫ r(Bt )

t

(
M(Bt+τ , u + τ) − M(Bt,u)

)
du|Ft

]

+E

[∫ r(Bt )+τ

r(Bt+τ )
M(Bt+τ , u)du|Ft

]
.

It is natural to split the integrals up in this way since we know that in the contin-
uation region M is a martingale, and so we hope to use Fubini and the martingale
property to argue that the first term is zero. However, our Brownian motion does
not stay within D for all u ∈ (t, r(Bt )), as shown in Figure 3, and so we cannot use
this martingale property and instead must argue about the sign of this term. Since
we have assumed that t + τ < τD , we know that the path leaving (Bt , t) does not
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FIG. 3. Here, we have a path leaving from (Bt0 , t0) running for a time τ inside D and we consider
moving this path along the time axis, so we may now exit D.

cross the the left-hand boundary l. Then when we move the starting the point to
(Bt , u) for u ≥ t , by the definition of the inverse barrier shape, we know that these
paths also cannot cross l; however, they may now cross r . Also note that t < r(Bt)

since we are in D.
Note that M(Bt+τ , u) = 0 if u ≥ r(Bt+τ ), so the final term is 0 if r(Bt+τ ) ≤

r(Bt ). We also know that M is everywhere nonpositive, so if r(Bt+τ ) ≥ r(Bt )

then the final integral is nonnegative. Therefore, the last term in the above is always
nonnegative.

We can also show that the other term in the above expression is nonnegative.
Recall that τ

(x,t)
D := t + inf{s ≥ 0 : (x + Bs, t + s) /∈ D} = t + inf{s ≥ 0 : u + s ≥

r(Bt+s)}, where the second equality now follows since we cannot cross l into the
inverse barrier. Take u ∈ (t, r(Bt)) and let τ̂D := (τ

(Bt ,u)
D − u) ∧ τ . When τ̂D = τ ,

we have M(Bt+τ , u+ τ) = M(Bt+τ̂D , u+ τ̂D) ≤ 0, and when τ̂D < τ we have that
M(Bt+τ , u + τ) ≤ 0 = M(Bt+τ̂D , u + τ̂D). Therefore,

E
[
M(Bt+τ , u + τ)|Ft

] ≤ E
[
M(Bt+τ̂D , u + τ̂D)|Ft

] = M(Bt,u)

since M(Bt, t) is a martingale in D. Swapping the expectation and the integral by
Tonelli’s theorem, we conclude that

(21) E

[
−

∫ r(Bt )

t

(
M(Bt+τ , u + τ) − M(Bt,u)

)
du

∣∣∣Ft

]
≥ 0.

Provided we have integrability, this tells us that G∗(Bt , t) is a submartingale
in D and, therefore, the Doob–Meyer decomposition theorem tells us that there
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exists a unique, increasing, predictable process At such that Mt = G∗(Bt , t) − At

is a martingale in D. But

E
[∣∣G∗(Bt , t)

∣∣] ≤ E

[
−

∫ r(Bt )

0
M(Bt, s)ds

]
≤ E

[
F(Bt ,0)

]
< ∞ ∀t

for either of our payoffs, and so we have integrability.
2. At depends only on Bt : To think more about At , we consider, as usual, a time

t < τD and then run our process from t up until a small stopping time τ such that
t + τ < τD, but now we imagine moving this path along the time axis. We then
have t < τD , t + τ < τ

(Bt ,t)
D and we take s < r(Bt) such that s + τ < τ

(Bt ,s)
D . From

the definition of G∗, we have

E
[
G∗(Bt+τ , s + τ) − G∗(Bt , s)|Ft

]
= E

[
G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft

]
(22)

+E

[∫ s

t

(
M(Bt+τ , u + τ) − M(Bt,u)

)
du

∣∣∣Ft

]
.

Since s < s + τ < τD and t < t + τ < τD , and by the shape of our boundaries, we
have that (Bt , u), (Bt+τ , u + τ) ∈ D for u ∈ (t, s), and as M(Bt, t) is a martingale
in D, we have that

E
[
M(Bt+τ , u + τ)|Ft

] = E
[
M(Bt,u)|Ft

] = M(Bt,u)

for all u ∈ (t, s). By Fubini, the final term in (22) is 0, so

E
[
G∗(Bt+τ , s + τ) − G∗(Bt , s)|Ft

]
= E

[
G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft

]
.

(23)

This tells us that in D, At depends only on Bt and not directly on t . If we now
consider taking any s, but keeping t such that t + τ < τD , then we still have (22),
but now we can show that the final term is actually nonpositive.

Since we now consider any s, we will no longer always be in the continuation
region, and we need to consider crossing the boundaries. We know from Theo-
rem 2.1 that our right-hand boundary r is a barrier, and l is an inverse barrier. If we
have t + τ < τ

(Bt ,t)
D , then (Bt+u, t + u) ∈ D for every u ∈ (0, τ ), so in particular

we do not cross the left hand boundary l. If t < s then, since l is an inverse barrier,
we must also have that s + u > l(Bt+u) for every u ∈ (0, τ ), so shifting this part
of our path to the right cannot cause us to cross l. We can however cross r , so we
need to argue exactly as with (21) to see that

E

[∫ s

t

(
M(Bt+τ , u + τ) − M(Bt,u)

)
du

∣∣∣Ft

]
≤ 0

and so

E
[
G∗(Bt+τ , s + τ) − G∗(Bt , s)|Ft

] ≤ E
[
G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft

]
.
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If we take s < t , then we instead have that s + u < r(Bt+u) for every u ∈
(0, τ ), and so we do not cross r but could cross l. The argument here is simi-
lar in that we let τ̃D = (τ

(Bt ,u)
D − u) ∧ τ , take u ∈ (s, t) and compare M(Bt+τ ,

u + τ) and M(Bt+τ̃D , u + τ̃D). On {τ̃D = τ }, we clearly have M(Bt+τ , u + τ) =
M(Bt+τ̃D , u + τ̃D), but when τ̃D < τ we have

E
[
M(Bt+τ̃D , u + τ̃D)|Ft

] = E

[−β2

2
h(Bt+τ̃D , u + τ̃D)

∣∣∣Ft

]

= E

[−β2

2
h(Bt+τ , u + τ)

∣∣∣Ft

]

≤ E
[
M(Bt+τ , u + τ)

∣∣∣Ft

]
by the optional sampling theorem, since both stopping times are bounded. Com-
bining these as before and using Fubini, we again have

E

[∫ s

t

(
M(Bt+τ , u + τ) − M(Bt,u)

)
du

∣∣∣Ft

]
≤ 0

and so for t < t + τ < τD and any s, we have that

E
[
G∗(Bt+τ , s + τ) − G∗(Bt , s)|Ft

]
≤ E

[
G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft

]
= E[At+τ − At |Ft ].

(24)

3. G(Bt , t) has the desired properties: We now combine the above two results
to show that we have the supermartingale property we require, noting that we al-
ready have the martingale property in D, as this is how we chose A. Consider
now arbitrary s and τ and suppose that we can fix a t such that (s,Bt ) ∈ D and
s + τ < τ

(Bt ,s)
D . Then from (23) and (24) we have

E
[
G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft

] ≤ E
[
G∗(Bt+τ , s + τ) − G∗(Bt , s)|Ft

]
.

We can use this to give the following:

E
[
G∗(Bt+τ , t + τ) − At+τ |Ft

] ≤ E
[
G∗(Bt+τ , s + τ) − At+τ |Ft

]
+ G∗(Bt , t) − G∗(Bt , s)

= E
[
G∗(Bt+τ , s + τ) − G∗(Bt , s)|Ft

]
+ G∗(Bt , t) −E[At+τ |Ft ]

= G∗(Bt , t) +E[At+τ − At |Ft ] −E[At+τ |Ft ]
= G∗(Bt , t) − At,

which is exactly the supermartingale property we are looking for.
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It will not always be the case that we can find such a t as above, in fact for a
given t , τ we may find that τ > τ

(Bt ,s)
D − s ∀s such that (Bt , s) ∈ D. We then need

to find a sequence of stopping times that sum to τ and use the above on each of the
intervals. Suppose first that our curves l, r do not meet, or they do so well away
from t and t + τ . We can then choose some s ∈ (l(Bt ), r(Bt)) (we will usually take
s = K(Bt) for simplicity unless we have l(Bt ) = K(Bt) or r(Bt ) = K(Bt)) and we
run the process from (Bt , s) until we hit a boundary, call this stopping time σ1. We
then move back into our continuation region and set off from (K(Bs+σ1),Bs+σ1),
and run again for a time σ2 until we hit the boundary. Provided our barriers do not
meet, we can continue this until we reach s + τ in a finite number of steps. We can
then write E[G∗(Bt+τ , t + τ) − G∗(Bt , t)|Ft ] as a telescoping sum and show the
inequality as before. From the exact argument above with τ when we do not leave
the region, we have that

E
[
G∗(Bt+σ1, t + σ1) − At+σ1 |Ft

] ≤ G∗(Bt , t) − At,

and also

E
[
G∗(Bt+σj+1, t + σj+1) − At+σj+1 |Ft

] ≤ E
[
G∗(Bt+σj

, t + σj ) − At+σj
|Ft

]
for our stopping times {σj }j where σj = τ for some j . We then combine these
results in our telescoping sum to get the supermartingale property as before. If
Bt+τ < x∗, then we can always find a finite sequence of stopping times that sum
to τ . The only other case is where Bt+τ = x∗. In this case, we again require a
sequence of stopping times, but this time we will could have infinitely many, with
the sum converging to τ , but then we can work as before but using Fubini to inter-
change our expectation and the infinite sum.

We now know that we can find an increasing process At , dependent only on
Bt , such that G∗(Bt , t) − At is a martingale up until τD and a supermartingale
in general. We know ([29], Chapter X, Section 2) that any continuous additive
functional At of linear Brownian motion can be written as

(25) At = f (Bt) − f (B0) −
∫ t

0
f ′−(Bs)dBs

for some convex function f . Then we must have that for any s, t ,

E[At − As |Ft ] = E
[
f (Bt) − f (Bs)|Ft

]
.

We therefore choose Z(x) = f (x) to give the result. �

We now return to proving Theorem 4.1 by choosing the function H .

PROOF OF THEOREM 4.1. Our choice of H should be to give F = G + H on
the boundaries, and F ≤ G + H in general. We have

G(x, t) + Z(x) = G∗(x, t) = −
∫ r(x)

t
M(x, s)ds,
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so for any x, t ,

t < K(x) =⇒ Ft(x, t) = −β2

2
h(x, t) ≤ M(x, t) = G∗

t (x, t),

t > K(x) =⇒ Ft(x, t) = 0 ≥ M(x, t) = G∗
t (x, t).

From these derivatives we can see that if G(x, l(x)) + H(x) ≥ F(x, l(x)) and
G(x, r(x)) + H(x) ≥ F(x, r(x)) (where l(x), r(x) are possibly 0,∞ respec-
tively), then G(x, t) + H(x) ≥ F(x, t) everywhere, as required.

Let H(x) = Z(x)+ (�(x))+, so G(x, t)+H(x) = G∗(x, t)+ (�(x))+. This is
a pathwise superhedging strategy since

�(x) > 0 =⇒
{
G

(
x, l(x)

) + H(x) = F
(
x, l(x)

)
,

G
(
x, r(x)

) + H(x) = �(x) > F
(
x, r(x)

)
,

�(x) < 0 =⇒
{
G

(
x, l(x)

) + H(x) = F
(
x, l(x)

) − �(x) > F
(
x, l(x)

)
,

G
(
x, r(x)

) + H(x) = F
(
x, r(x)

)
,

�(x) = 0 =⇒
{
G

(
x, l(x)

) + H(x) = F
(
x, l(x)

)
,

G
(
x, r(x)

) + H(x) = F
(
x, r(x)

)
.

For x ∈ supp(μr), we require G(x, r(x)) + H(x) = F(x, r(x)), which holds
by the above when �(x) ≤ 0. Similarly, for x ∈ supp(μl) we have G(x, l(x)) +
H(x) = F(x, l(x)) when �(x) ≥ 0. Also, note that for x /∈ supp(μl) ∪ supp(μr),
we can choose any H(x) that gives the superhedging property.

We now have the desired properties for G and H and prove our theorem as
follows. Let τ ′ be any other stopping time that embeds μ. Then

E
[
F(BτD , τD)

] = E
[
G(BτD , τD)

] +E
[
H(BτD)

]
= G(B0,0) +

∫
R

H(x)μ(dx)

≥ E
[
G

(
Bτ ′, τ ′)] +

∫
R

H(x)μ(dx)

≥ E
[
F

(
Bτ ′, τ ′)].

The first equality follows from our assumption (�), so, as we have shown above,
our processes G(Bt, t)+H(Bt) and F(Bt , t) agree on the boundary. Also note that
E[H(BτD)] < ∞ since AτD is integrable. In the second line, we use the martingale
property of G(Bt , t) in D and rewrite the H term as an integral to make it clear
that this term does not change, since both stopping times embed μ. The inequality
then follows since G(Bt , t) is a supermartingale up to Hx∗ and we know that for
any embedding τ ′ of μ we have that Bτ ′ ≤ x∗. The final inequality is true since we
have shown above that G + H ≥ F everywhere. �
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REMARK 4.3. The case for geometric Brownian motion under Assumption 2
is similar, noting that the measure associated with a continuous additive functional
of a geometric Brownian motion is a Radon measure, and therefore we again have
the representation (25) (see [29], Chapter X, Section 2).

REMARK 4.4. For sufficiently smooth curves l and r , then we may find that
G is differentiable, in which case the above proof can be simplified through the
use of Itô’s lemma to show, for example, that G∗ is a submartingale, or that At

depends only on Bt .

5. Necessity of condition (�) via linear programming. Our aim now is to
show the converse of Theorem 4.1, that is if we have a K-cave barrier that does not
satisfy (�), then it does not give the optimal embedding. To do this we show that
the functions G, H we have chosen are the correct choice of the functions in our
“dual” problem of finding the cheapest superhedging portfolio. We have proposed
one feasible superhedging portfolio, and this portfolio gives the sufficient condi-
tion (�), but other feasible dual formulations could give different conditions, so we
show that our condition is also necessary. To show this we require some form of
strong duality result, which furthermore gives the form of the dual optimisers. To
the best of our knowledge these results are not available in our current setup, but we
can discretise our problem and then use standard results from infinite-dimensional
linear programming.

In [10], we consider discretising an optimal Skorokhod embedding problem to
create an optimal stopping problem for a random walk, which can then be consid-
ered as a linear programming problem. This problem has a well-defined Fenchel
dual and we are able to prove a strong duality result in this discrete setting. We also
show that as we let the step size of our random walk shrink to zero, we can recover
the optimal continuous time solution in certain cases. In particular, if we are max-
imising the expected value of a convex or concave function of our stopping time,
then we recover the Rost or Root embeddings, respectively. In [3], the authors in-
troduce the cave embedding solution to the Skorokhod embedding problem, which
can be seen as the combination of a Root and a Rost barrier, as is the case with the
K-cave embedding. We show in [10] that we can reproduce this cave embedding
result, and here we argue that the K-cave barriers can be done similarly.

We work under Assumption 1. Suppose now that our target measure μ is
bounded, with x∗ the smallest x such that μ((x,∞)) = 0, and x∗ the largest
x such that μ((−∞, x∗)) = 0. We work on the grid (xN

j , tNn ) = (
j√
N

, n
N

)

for j ∈ {�x∗
√

N�, �x∗
√

N� + 1, . . . , �x∗√N�} =: J and n ≥ 0. Let jN
0 :=

�x∗
√

N�, jN
1 := �x∗

√
N� + 1, . . . , jN

L := �x∗√N�, where L ∼ √
N , so J =

{jN
0 , jN

1 , . . . , jN
L }. We also defineJ ′ = {jN

1 , . . . , jN
L−1}, andJ ′′ = {jN

2 , . . . , jN
L−2}.

For each N we choose j∗,N ∈ J so that xN
j∗ = j∗,N√

N
→ 0 as N → ∞. If YN is the
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simple symmetric random walk on this grid, started at xN
j∗ , then by Donsker’s The-

orem, YN�Nt� converges in distribution to a Brownian motion started at 0. In the

case of geometric Brownian motion we take xN
j = e

j√
N .

We also need a discretised version of our payoff F , say F̄ N , chosen so
that F̄ N(�√Nx�, �Nt�) → F(x, t) everywhere. In the Brownian setup, our

continuous-time payoff function is F(x, t) = (eβxe− β2

2 t − k)+ = (h(x, t) − k)+,
where h(Xt , t) is a martingale, and we write the discretised version with a similar
martingale term. We have

E
[
exp

(
βYN

n+1
)|YN

n

] = exp
(
βYN

n

)(1

2
exp

(
β√
N

)
+ 1

2
exp

(
− β√

N

))

= exp
(
βYN

n

)
cosh

(
β√
N

)
,

and so F̄ N(j, t) = F̄ N
j,t := (eβxN

j (cosh(
β√
N

))−t −k)+ has the same form as before.

Note now that F̄ N
j,n ≈ F(xN

j , n�t) = F(
j√
N

, n
N

), or F(x, t) ≈ F̄ N

�x√
N�,�tN�, since

(cosh(
β√
N

))−Nt → e− β2

2 t , as N → ∞. In the case of Assumption 2 the arguments
are the same.

If τ̃ is a stopping time of our random walk YN , we can define the probabilities

pN
j,t := P

(
YN

t = xN
j , τ̃ ≥ t + 1

)
,

qN
j,t := P

(
YN

t = xN
j , τ̃ = t

)
.

We can optimise over these using the one-to-one correspondence between (ran-
domised) stopping times τ̃ and the probabilities p,q , which are infinite sequences
in l1 = {(xj,t )j,t : ∑

j,t xj,t < ∞}.
Take an optimiser of (OptSEP), τ say, and consider discretising the stopped

paths (Bt∧τ , t ∧ τ)t by defining a random walk, YN , on the grid (xN
k ) by tak-

ing YN
k = BN

τN
k

where τN
0 = 0 and if BτN

k
= xN

j for k ≥ 0, then τN
k+1 = inf{t ≥

τN
k : Bt ∈ {xN

j−1, x
N
j+1}}. We can also define a stopping time, τ̃ , for YN to be the

time t such that τN
t−1 < τ ≤ τN

t . Then YN
τ̃

∼ μN for some atomic distribution μN .
We show in [10] that the sequence of measures (μN)N converges weakly to μ as
N → ∞.

In [10], we give the following primal-dual pair of problems:

PN : sup
p

{ ∑
j∈J ′′
t≥2

F̄ N
j,t

(
1

2
(pj−1,t−1 + pj+1,t−1) − pj,t

)
+ ∑

t≥2

F̄ N

jN
L ,t

1

2
pjN

L−1,t−1

+ ∑
t≥2

F̄ N

jN
0 ,t

1

2
pjN

1 ,t−1 + ∑
t≥2

F̄ N

jN
L−1,t

(
1

2
pjN

L−2,t−1 − pjN
L−1,t

)
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+ ∑
t≥2

F̄ N

jN
1 ,t

(
1

2
pjN

2 ,t−1 − pjN
1 ,t

)
+ F̄ N

j∗+1,1

(
1

2
− pj∗+1,1

)

+ F̄ N
j∗−1,1

(
1

2
− pj∗−1,1

)}

over (pj,t )j∈J ′
t≥1

subject to:

• (pj,t ) ∈ l1,

• pj,t ≥ 0 ∀j, t,

• 1
{
j = j∗} +

∞∑
t=1

pj,t ≤ √
N

(∑
i

∣∣xN
i − xN

j

∣∣μN ({
xN
i

}) − ∣∣xN
j∗ − xN

j

∣∣)

=: UN
j ∀j ∈ J ′,

• pj,t ≤ 1

2
(pj−1,t−1 + pj+1,t−1) ∀t ≥ 2, j ∈ J ′′,

• pjN
1 ,t ≤ 1

2
pjN

2 ,t−1 ∀t ≥ 2,

• pjN
L−1,t

≤ 1

2
pjN

L−2,t−1 ∀t ≥ 2,

• pj∗+1,1 ≤ 1

2
pj∗−1,1 ≤ 1

2
,

• pj,1 = 0 ∀j �= j∗ ± 1,

which has dual problem

DN : inf
η,ν

{ ∑
j∈J ′

νjUj + 1

2
(ηj∗+1,1 + ηj∗−1,1) + 1

2

(
F̄ N

j∗+1,1 + F̄ N
j∗−1,1

)}

over (νj )j∈J ′, (ηj,t )j∈J
t≥1

subject to

• (ν, η) ∈ l∞,

• ηj,t , νj ≥ 0 ∀j, t,(26)

• 1

2
(ηj+1,t+1 + ηj−1,t+1) − ηj,t − νj

≤ F̄ N
j,t − 1

2

(
F̄ N

j+1,t+1 + F̄ N
j−1,t+1

) ∀j, t.

(27)

The variables qj,t do not appear in PN , but for any sequence (pj,t ) we can
define qj,t = 1

2(pj−1,t−1 +pj+1,t−1)−pj,t for all j ∈ J ′′, t ≥ 1 and similarly for
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the boundary terms. These problems have complementary slackness conditions

pj,t > 0 =⇒ 1

2
(ηj−1,t+1 + ηj+1,t+1) − ηj,t − νj

= F̄ N
j,t − 1

2

(
F̄ N

j+1,t+1 + F̄ N
j−1,t+1

)
,

(28)

qj,t > 0 =⇒ ηj,t = 0,(29)

νj > 0 =⇒
∞∑
t=1

pj,t = Uj .(30)

The arguments in [10] show that we have strong duality in the sense that the
optimal values of these problems are equal, and both values are obtained by some
optimal p∗, ν∗, η∗. The original primal-dual pair considered in [10] optimises over
(pj,t ) ∈ l1(λ) := {(xj,t ) : ∑

j,t |xj,t |λt < ∞} and (νj , ηj,t ) ∈ RL+1 × l∞(λ−1),
where l∞(λ−1) := {(yj,t ) : supj,t |yj,t |λ−t < ∞} and λ > 1 is a constant. The du-
ality result [10], Theorem 3.2, gives dual optimisers (ν∗

j , η∗
j,t ) ∈ RL+1 × l∞(λ−1);

however, for the primal optimisers we can only argue that there is an optimal se-
quence (p∗

j,t ) ∈ l1, not l1(λ) ([10], Lemma 3.3).
To ensure that the dual variables are in the true dual space of the primal vari-

ables, we require (ν∗
j , η∗

j,t ) ∈ RL+1 × l∞. Note that for large T (such that F̄ N
j,t = 0

for all t ≥ T ), ηT
j,t = η∗

j,t1{t < T } gives a feasible sequence (ηT
j,t ) ∈ l∞, and this

sequence also gives the same value of the objective function. We can therefore,
without loss of generality, restrict our dual problem to RL+1 × l∞.

With our setup complete, we can now adapt [10], Theorem 4.3, to prove a dis-
crete version of Theorem 2.1.

THEOREM 5.1. The optimal solution of the primal problem PN , where F̄ N
j,t is

our discretised LETF function, is given by a sequence (p∗
j,t ) which gives a stopping

region for a random walk with the K-cave barrier-like property:

if q∗
i,t > 0 for some (i, t) where t < K

(
xN
i

)
, then p∗

i,s = 0 ∀s < t,(31)

if q∗
i,t > 0 for some (i, t) where t > K

(
xN
i

)
, then p∗

i,s = 0 ∀s > t.(32)

PROOF. First, consider the inverse-barrier to the left of the curve K . To show
(31), suppose we have a feasible solution with qi,t > 0 and pi,s > 0 for some i

and s < t < K(xN
i ). We take some 0 < ε < min{1

2qi,t , pi,s} and show that we can
improve our objective function by transferring ε of the mass that currently leaves
(i, t) onto (i, s). We use the p̃, q̃ , p̄, q̄ defined in [10], Theorem 4.3, but repeat
them here for convenience. The p̃, q̃ track the ε of mass leaving (i, t), so

p̃i,s = ε, q̃i,s = −ε,

p̃j,s = 0, q̃j,s = 0 ∀j �= i,
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p̃j,r+1 = pj,r+1
p̃j+1,r + p̃j−1,r

pj+1,r + pj−1,r

∀j �= jN
0 , jN

L ,∀r ≥ s,

q̃j,r+1 = qj,r+1
p̃j+1,r + p̃j−1,r

pj+1,r + pj−1,r

∀j �= jN
0 , jN

L ,∀r ≥ s,

and similarly for the boundary terms. Using these values, we can write down p̄, q̄ ,
corresponding to the dynamics of the system after moving this mass:

p̄j,r = pj,r , q̄j,r = qj,r ∀(j, r) ∈ {
(j, r) : 1 ≤ r < s

}
,

p̄j,r = pj,r − p̃j,r , q̄j,r = qj,r − q̃j,r ∀(j, r) ∈ {
(j, r) : s ≤ r < t

}
,

p̄j,r = pj,r − p̃j,r + p̃j,r−(t−s),

q̄j,r = qj,r − q̃j,r + q̃j,r−(t−s) ∀(j, r) ∈ {
(j, r) : t ≤ r

}
.

The feasibility of these new probabilities is exactly as in [10], Lemma 4.4.
Now, F̄j,t = (h̄j,t − k)+ where h̄Yt ,t is a martingale, so

∑
r>s,j h̄j,r q̃j,r = εh̄i,s .

Let Kj = K(xN
j ), then for any j we have {r > s} = {s < r ≤ Kj − (t −s)}∪{Kj −

(t − s) < r ≤ Kj } ∪ {r > Kj }. Fix some j such that s < Kj , then we have

F̄j,r+t−s − F̄j,r = h̄j,r+t−s − h̄j,r in
{
s < r ≤ Kj − (t − s)

}
,

F̄j,r+t−s − F̄j,r = k − h̄j,r ≥ h̄j,r+t−s − h̄j,r in
{
Kj − (t − s) < r ≤ Kj

}
,

F̄j,r+t−s − F̄j,r = 0 ≥ h̄j,r+t−s − h̄j,r in {r > Kj }.
Combining these, we see that∑

j,r

F̄j,r q̄j,r = ∑
j,r

F̄j,rqj,r + ε(F̄i,s − F̄i,t ) − ∑
r>s,j

F̄j,r q̃j,r + ∑
r>t,j

F̄j,r q̃j,r−(t−s)

= ∑
j,r

F̄j,rqj,r + ε(F̄i,s − F̄i,t ) + ∑
r>s,j

q̃j,r (F̄j,r+t−s − F̄j,r )

≥ ∑
j,r

F̄j,rqj,r + ε(h̄i,s − h̄i,t ) + ∑
r>s,j

q̃j,r (h̄j,r+t−s − h̄j,r )

= ∑
j,r

F̄j,rqj,r + ∑
r>s,j

q̃j,r (h̄j,r − h̄j,r+t−s)

+ ∑
r>s,j

q̃j,r (h̄j,r+t−s − h̄j,r )

= ∑
j,r

F̄j,rqj,r .

The right-hand barrier (32) is similar, and we use p̂, q̂ defined in [10], Theo-
rem 4.3. Now we have that F̄j,r = 0 for r > K(xN

j ) and this simplifies our argu-
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ment: ∑
j,r

F̄j,r q̂j,r = ∑
j,r

F̄j,rqj,r − ∑
r>s,j

F̄j,r q̃j,r + ∑
r>t,j

F̄j,r q̃j,r+s−t

= ∑
j,r

F̄j,rqj,r + ∑
r>s,j

(F̄j,r−(s−t) − F̄j,r )q̃j,r

≥ ∑
j,r

F̄j,rqj,r ,

since F̄j,r is decreasing in r .
We have improved the value of our objective function and, therefore, any so-

lution without this K-cave property is suboptimal. Since we know that optimisers
exist, they must have this property. �

From [10], Theorem 3.2, Theorem 4.3, we know that an optimal solution exists
for each PN and this is a sequence (p∗,N ) that corresponds to a stopped ran-
dom walk that is stopped by some almost-deterministic stopping region B̂N that
takes the form of a K-cave barrier. The region B̂N is determined by points l̄Nj

and r̄N
j , defined as the largest time l̄Nj < K(xN

j ) such that p
∗,N
j,t = 0 ∀t ≤ l̄Nj ,

and similarly the smallest time r̄N
j > K(xN

j ) such that p
∗,N
j,t = 0 ∀t ≥ r̄N

j . Note

that for each j we either have q
∗,N

j,r̄N
j

> 0, or q
∗,N
j,s = 0, ∀s > K(xN

j ), and simi-

larly for l̄Nj . These barriers have equivalent stopping regions, BN , for a Brown-
ian motion, and [10], Lemma 5.5, says that these barriers converge to a contin-
uous time K-cave barrier B∞ which embeds μ into a Brownian motion. From
[10], Lemma 5.6, we know that the corresponding stopping time is indeed a max-
imiser of (OptSEP), and in fact that the stopped random walks converge to the
stopped Brownian motion. In other words, if PN is the optimal value of PN , then
PN → supτ,Bτ ∼μE[F(Bτ , τ )], and our discrete barriers converge exactly to an
optimal stopping region for (OptSEP). This approach therefore reproves Theo-
rem 2.1. Furthermore, we can now look at the convergence of the dual optimisers
η∗, ν∗.

5.1. Dual convergence. We know by strong duality that an optimal solution to
the linear programming problem is given by the p, q , ν, η that are PN -feasible
and DN -feasible, and for which the complementary slackness conditions hold. In
Theorem 4.1 we show that if τ is such that certain properties of G, H hold, then we
have optimality, and as shown in [10], Section 3.2, the complementary slackness
conditions here have obvious connections to these properties. Once we have con-
vergence, it will guarantee the correct choice of our functions G, H and, therefore,
show that (�) is both a necessary and sufficient condition for optimality.
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Let τ be an optimiser of (OptSEP) of the form of a hitting time of a K-cave
barrier, which we know exists by Theorem 2.1 (or alternatively as a consequence of
results in [10]). Recall that G(x, t) = − ∫ r(x)

t M(x, s)ds −Z(x), where M(x, t) =
Ex,t [∂tF (Bτ , τ )], and now we show that our dual optimisers η∗,N take a similar
form. Fix N and let D := {(j, t) : p

∗,N
j,t > 0}. For presentation purposes we will

drop the dependence on N in much of what follows, so let τ̄ be the stopping law
of our random walk Y in the N -grid given by the p∗

j,t (or τ̄ j,t if Y starts at (j, t)).

We will also write F̄ N
Yτ̄ ,τ̄ := F̄ N(

√
NYτ̄ , τ̄ ). Then for (j, t) ∈ D, since we have a

positive probability of leaving (j, t), we have q∗
Yτ̄ ,τ̄ > 0 almost surely, and so by

(29), η∗
Yτ̄ ,τ̄ = 0. Since we have the interpretation that η∗ represents G + H − F ,

write η̃∗ = η∗ + F̄ N . From (28) we deduce that

(33) η̃∗
j,t = Ej,t

[
η∗

Yτ̄ ,τ̄ + F̄ N
Yτ̄ ,τ̄ −

τ̄−1∑
s=t

ν∗
Ys

]
= Ej,t

[
F̄ N

Yτ̄ ,τ̄ −
τ̄−1∑
s=t

ν∗
Ys

]
.

Now define a new stopping time as(
τ̄−1)j,t−1 = inf

{
n ≥ t − 1 : (

Y j,t−1
n , n + 1

)
/∈ D

}
.

By the strong Markov property we see that (τ̄−1)j,t−1 = τ̄ j,t − 1 ≥ t − 1, and
Y

j,t−1
τ̄−1 = Y

j,t
τ̄ . Now,

η̃∗
j,t−1 ≥ Ej,t−1

[
η∗

Y
τ̄−1 ,τ̄−1 + F̄ N

Y
τ̄−1 ,τ̄−1 −

τ̄−1−1∑
s=t

ν∗
Ys

]
by (27)

≥ Ej,t−1

[
F̄ N

Y
τ̄−1 ,τ̄−1 −

τ̄−1−1∑
s=t

ν∗
Ys

]
by (26)

= Ej,t

[
F̄ N

Yτ̄ ,τ̄−1 −
τ̄−2∑
s=t

ν∗
Ys

]
.

We then have

η̃∗
j,t − η̃∗

j,t−1 ≤ Ej,t [F̄ N
Yτ̄ ,τ̄ − F̄ N

Yτ̄ ,τ̄−1 − ν∗
Yτ̄−1

] ≤ Ej,t [F̄ N
Yτ̄ ,τ̄ − F̄ N

Yτ̄ ,τ̄−1
]
.

In a very similar fashion, we can find a lower bound, giving us

Ej,t−1[
F̄ N

Yτ̄ ,τ̄+1 − F̄ N
Yτ̄ ,τ̄

] ≤ η̃∗
j,t − η̃∗

j,t−1 ≤ Ej,t [F̄ N
Yτ̄ ,τ̄ − F̄ N

Yτ̄ ,τ̄−1
] ≤ 0.

From the form of F̄ N under Assumption 1 (geometric Brownian motion is similar),
we deduce that for t < K(xN

j ),

F̄ N
j,t − F̄ N

j,t−1 = eβxN
j

(
cosh

(
β√
N

))−t(
1 − cosh

(
β√
N

))
.
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In particular, we have that

N
(
F̄ N

�√Nx�,�Nt� − F̄ N

�√Nx�,�Nt�−1

) → ∂tF (x, t).

In [10] we show that |( τ̄N

N
,Yτ̄N ) − (τN,BτN )| d−→ 0, and (τN,BτN )

P−→ (τ,Bτ )

as N → ∞, where τ is an optimiser of (OptSEP) and τN is the Brownian hitting
time of the K-cave barrier BN . Both F̄ N and F are bounded in our domain and
Lipschitz continuous in time, so for t < K(x) we have

NE�√Nx�,�Nt�[F̄ N
Yτ̄ ,τ̄ − F̄ N

Yτ̄ ,τ̄−1
] → Ex,t [∂tF (Bτ , τ )

]
as N → ∞.

We can now find the limit of our dual optimisers η̃∗.
For any x, let r̄N

x denote the left-most point of the right-hand barrier at level

�√Nx� of B̂N . Then r(x) := limN→∞ r̄N
x

N
∈ [K(x),∞] is the left-most point of

the right-hand boundary at x of the limit barrier B∞.

LEMMA 5.2. For any (x, t) in our domain,

η̃∗
�√Nx�,�Nt� − η̃∗

�√Nx�,r̄N
x

→
∫ t

r(x)
Ex,s[∂tF (Bτ , τ )

]
ds as N → ∞.

PROOF. Suppose first r(x) < ∞. If t > r(x), then ∃N0 such that N ≥ N0 =⇒
Nt > r̄N

x and then η̃∗
�√Nx�,�Nt� = 0 by (29) and we are done. Suppose t < r(x),

then for large N we know by the above that

−
r̄N
x∑

s=�Nt�+1

E�√Nx�,s−1[
F̄ N

Yτ̃ ,τ̃+1 − F̄ N
Yτ̃ ,τ̃

]

≤ η̃∗
�√Nx�,�Nt� − η̃∗

�√Nx�,r̄N
x

≤ −
r̄N
x∑

s=�Nt�+1

E�√Nx�,s[F̄ N
Yτ̃ ,τ̃ − F̄ N

Yτ̃ ,τ̃−1

]
.

We look at the convergence of the right-hand side and argue that the other inequal-
ity is similar. First, note that when r̄N

x < ∞, we know qj,r̄N
x

> 0, and so by our

complementary slackness conditions, η̃∗
�√Nx�,r̄N

x

= F̄ N

�√Nx�,r̄N
x

= 0, since η∗ = 0

in the stopping region. Now,

r̄N
x∑

s=�Nt�+1

E�√Nx�,s[F̄ N
Yτ̃ ,τ̃ − F̄ N

Yτ̃ ,τ̃−1

]

=
r̄Nx
N∑

s=�Nt�+1
N

E�√Nx�,�Ns�[F̄ N
Yτ̃ ,τ̃ − F̄ N

Yτ̃ ,τ̃−1

]
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=
r̄Nx
N∑

s=�Nt�+1
N

NE�√Nx�,�Ns�[F̄ N
Yτ̃ ,τ̃ − F̄ N

Yτ̃ ,τ̃−1

] 1

N

=
∫ r̄Nx

N

(�Nt�+1)
N

NE�√Nx�,�Ns�[F̄ N
Yτ̃ ,τ̃ − F̄ N

Yτ̃ ,τ̃−1

]
ds

=
(∫ r(x)

t
+

∫ t

(�Nt�+1)
N

+
∫ r̄Nx

N

r(x)

)
NE�√Nx�,�Ns�[F̄ N

Yτ̃ ,τ̃ − F̄ N
Yτ̃ ,τ̃−1

]
ds.

Since we are working in [x∗, x∗], we see that the integrand above is nonpositive
and bounded below, and also

N
(
F̄ N

j,t − F̄ N
j,t−1

) ≥ NeβxN
j

(
cosh

(
β√
N

))−t(
1 − cosh

(
β√
N

))

≥ Neβx∗
(

1 − cosh
(

β√
N

))

→ −β2

2
eβx∗

,

as N → ∞. Then the two remainder integral terms vanish, since∣∣∣∣
∫ t

�Nt�+1
N

NE�√Nx�,�Ns�[F̄ N
Yτ̃ ,τ̃ − F̄ N

Yτ̃ ,τ̃−1

]
ds

∣∣∣∣
≤

(
t − �Nt� + 1

N

)
max

s
NE�√Nx�,�Ns�[∣∣F̄ N

Yτ̃ ,τ̃ − F̄ N
Yτ̃ ,τ̃−1

∣∣]

≤
(
t − �Nt� + 1

N

)
Neβx∗

(
1 − cosh

(
β√
N

))

→ 0 as N → ∞
and similarly for the other integral since r̄N

x

N
− r(x) → 0. Finally, by the dominated

convergence theorem,

−
∫ r(x)

t
NE�√Nx�,�Ns�[F̄ N

Yτ̃ ,τ̃ − F̄ N
Yτ̃ ,τ̃−1

]
ds → −

∫ r(x)

t
Ex,s[∂tF (Bτ , τ )

]
ds.

If r(x) = ∞, then the integral on the right-hand side above is still finite since
we are working on a bounded domain and F = 0 for large t . In this case, the same
argument holds once we observe that only finitely many terms in each of our sums
can be nonzero.

The other inequality is similar and shows

−
r̄N
x∑

s=�Nt�+1

E�√Nx�,s−1[
F̄ N

Yτ̃ ,τ̃+1 − F̄ N
Yτ̃ ,τ̃

] → −
∫ r(x)

t
Ex,s[∂tF (Bτ , τ )

]
ds.
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Recall that since τ is an optimiser, it embeds no mass along the curve K , and F is
differentiable away from K , so without loss of generality we can write ∂tF (x, t).

�

We can now prove that our discrete dual optimisers converge to exactly the dual
solution we gave earlier, and that we therefore have strong duality in the continuous
time problem, but first we look at the effect of the η̃∗

�√Nx�,r̄N
x

term in the above.

Recall that we define �(x) := ∫ r(x)
l(x) M(x, s)ds + F(x, l(x)), so by Lemma 5.2,

�(x) = lim
N→∞

(−η̃∗
�√Nx�,l̄Nx + η̃∗

�√Nx�,r̄N
x

+ F̄ N

�√Nx�,l̄Nx
)

= lim
N→∞

(
η∗

�√Nx�,r̄N
x

− η∗
�√Nx�,l̄Nx

)
.

Also recall that we define μl to be the the distribution of the mass embedded along
l(x), that is, the distribution of the stopped Brownian motion when it hits l before
r , and μr similarly. Then, for x ∈ supp(μr), η∗

�√Nx�,l̄Nx
≥ 0 and η∗

�√Nx�,r̄N
x

= 0 by

(29), so

�(x) = lim
N→∞

(
F̄ N

�√Nx�,l̄Nx − η̃∗
�√Nx�,l̄Nx

) = − lim
N→∞η∗

�√Nx�,l̄Nx ≤ 0

=⇒ lim
N→∞ η̃∗

�√Nx�,r̄N
x

= 0 = (
�(x)

)
+.

For x ∈ supp(μl), η∗
�√Nx�,r̄N

x

≥ 0 and η∗
�√Nx�,l̄Nx

= 0 by (29), so

�(x) = lim
N→∞ η̃∗

�√Nx�,r̄N
x

≥ 0 =⇒ lim
N→∞ η̃∗

�√Nx�,r̄N
x

= (
�(x)

)
+.

In particular we have proven the following.

LEMMA 5.3. For any x ∈ supp(μl) ∪ supp(μr), limN→∞ η̃∗
�√Nx�,r̄N

x

=
(�(x))+. Furthermore, in the limiting K-cave barrier B∞, (�) holds.

We have shown that the condition (�) holds in our limiting stopping region, and
all that remains to show is that with our functions G and H from Theorem 4.1
there is no duality gap.

THEOREM 5.4. With G(x, t), H(x) defined as in Theorem 4.1,

sup
τ,Bτ ∼μ

E
[
F(Bτ , τ )

] = E
[
G(Bτ , τ ) + H(Bτ )

]
.

PROOF. By Lemma 5.2 and Lemma 5.3, limN→∞ η̃∗
�√Nx�,�Nt� = G∗(x, t) +

(�(x))+ = G(x, t) + H(x) for G, H as in Theorem 4.1 (for x /∈ supp(μl) ∪
supp(μr) we can ensure this by our freedom of choice of H(x)). We can write
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η̃∗
j,t = η̃

∗,G
j,t + η̃

∗,H
j,t such that η̃

∗,G
j,t is a martingale and limN→∞ η̃

∗,G

�√Nx�,�Nt� =
G(x, t) for any (x, t). Then clearly limN→∞ η̃

∗,H

�√Nx�,�Nt� = H(x) for any (x, t),

and so η̃
∗,H
j,t = η̃

∗,H
j is independent of t .

When N is sufficiently large, for every j �= jN
0 , jN

L there is some t such that
pj,t > 0, so from (28) we have

νj = 1

2

(
η̃∗

j+1,t+1 + η̃∗
j−1,t+1

) − η̃∗
j,t = 1

2

(
η̃

∗,H
j+1 + η̃

∗,H
j+1

) − η̃
∗,H
j .

From the ideas in [10], Section 3.2, we suspect that Nν�√Nx� → 1
2H ′′(x) as

N → ∞. Since we cannot argue the convergence of derivatives, the corresponding
summation is

i∑
m=1

m∑
k=1

νjk
=

i∑
m=1

m∑
k=1

1

2

(
η̃

∗,H
jk+1

+ η̃
∗,H
jk−1

) − η̃
∗,H
jk

=
i∑

m=1

(
1

2

m+1∑
k=2

η̃
∗,H
jk

+ 1

2

m−1∑
k=0

η̃
∗,H
jk

− 1

2

m∑
k=1

η̃
∗,H
jk

)

= 1

2

i∑
m=1

((
η̃

∗,H
jm+1

− η̃
∗,H
jm

) − (
η̃

∗,H
j1

− η̃
∗,H
j0

))

= 1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

) − 1

2
i
(
η̃

∗,H
j1

− η̃
∗,H
j0

)
,

and in particular,

lim
N→∞

�√Nx�∑
m=1

m∑
j=j0

νj = 1

2

(
H(x) − H(x∗)

) − 1

2
lim

N→∞�√Nx�(η̃∗,H
j1

− η̃
∗,H
j0

)
.

Our aim is to rewrite
∑

j∈J ′ νjUj to incorporate this double sum by an inte-
gration by parts type argument and work instead with the derivatives of U . Let
Vji

= Uji+1 − Uji
, Wji

= Vji+1 − Vji
for i = 0, . . . ,L − 1, VjL

= WjL
= 0, and

ν0 = 0. Then, noting that UjL
= 0,

∑
j∈J ′

νjUj =
L−1∑
i=1

(
i∑

k=0

νjk
−

i−1∑
k=0

νjk

)
Uji

= −
L−1∑
i=1

(
i∑

k=0

νjk

)
Vji

+
(

L−1∑
k=1

νjk

)
UjL
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= −
L−1∑
i=1

(
i∑

m=0

m∑
k=0

νjk
−

i−1∑
m=0

m∑
k=0

νjk

)
Vji

=
L−2∑
i=1

(
i∑

m=1

m∑
k=1

νjk

)
Wji

−
(

L−1∑
i=1

i∑
k=1

νjk

)
VjL−1 .

Substituting in our expression for the double summation of ν, the first term
becomes

L−2∑
i=1

(
i∑

m=1

m∑
k=1

νjk

)
Wji

=
L−2∑
i=1

(
1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

) − 1

2
i
(
η̃

∗,H
j1

− η̃
∗,H
j0

))
Wji

=
L−2∑
i=1

1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

)
Wji

−
L−2∑
i=1

1

2
i
(
η̃

∗,H
j1

− η̃
∗,H
j0

)
(Vji+1 − Vji

)

=
L−2∑
i=1

1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

)
Wji

− 1

2

(
η̃

∗,H
j1

− η̃
∗,H
j0

)(
(L − 1)VjL−1 −

L−1∑
i=1

Vji

)

=
L−2∑
i=1

1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

)
Wji

− 1

2

(
η̃

∗,H
j1

− η̃
∗,H
j0

)(
Vj0 + (L − 1)VjL−1

)
.

For the second term,(
L−1∑
i=1

i∑
k=1

νjk

)
VjL−1 = 1

2

(
η̃

∗,H
jL

− η̃
∗,H
j1

)
VjL−1

− 1

2

(
η̃

∗,H
j1

− η̃
∗,H
j0

)
(L − 1)VjL−1,

and so

∑
j∈J ′

νjUj =
L−2∑
i=1

1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

)
Wji

− 1

2

(
η̃

∗,H
j1

− η̃
∗,H
j0

)
Vj0

− 1

2

(
η̃

∗,H
jL

− η̃
∗,H
j1

)
VjL−1 .

To work with the derivatives of the potential, we now approximate it by smooth
functions. From our choice of UN , for each x we know that 1√

N
UN(�√Nx�) →

Uδ0(x) − Uμ(x), the difference in the potential functions of the distributions
δ0 and μ. These functions are continuous and concave and so by the Stone–
Weierstrass theorem there exists a decreasing sequence of functions, (Ũn)n, in
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C∞ converging uniformly to Uδ0 − Uμ with Ũn(x∗) = Ũn(x∗) = 0 for all n.
For a given n, we can find discrete approximations Ũn,N of Ũn (and the as-

sociated Ṽ n,N , W̃n,N ) such that 1√
N

Ũ
n,N

�√Nx� → Ũn(x), Ṽ
n,N

�√Nx� → dŨn

dx
(x), and

√
NW̃

n,N

�√Nx� → d2Ũn

dx2 (x) for all x as N → ∞. We can also, without loss of gener-

ality, choose Ũn,N such that Ũ
n,N
j0

= Ũ
n,N
jL

= 0 and Ũn,N ≥ Ũn.
Then, by the above,

∑
j∈J ′

νj Ũ
n,N
j

=
L−2∑
i=1

1

2

(
η̃

∗,H
ji+1

− η̃
∗,H
j1

)
W̃

n,N
ji

− 1

2

(
η̃

∗,H
j1

− η̃
∗,H
j0

)
Ṽ

n,N
j0

− 1

2

(
η̃

∗,H
jL

− η̃
∗,H
j1

)
Ṽ

n,N
jL−1

=
∫ L−2√

N

1√
N

1

2

(
η̃

∗,H

�√Nx�+1
− η̃

∗,H
j1

)√
NW̃

n,N

�√Nx� dx − 1

2

(
η̃

∗,H
j1

− η̃
∗,H
j0

)
Ṽ

n,N
j0

− 1

2

(
η̃

∗,H
jL

− η̃
∗,H
j1

)
Ṽ

n,N
jL−1

→
∫ 1

2

(
H(x) − H(x∗)

)d2Ũn

dx2 (x)dx

− 1

2

(
H

(
x∗) − H(x∗)

)dŨn

dx

(
x∗)

as N → ∞.

Since H is convex, it is differentiable almost everywhere and has a second deriva-
tive in the sense of distributions. Using integration by parts again,

∫ 1

2

(
H(x) − H(x∗)

)d2Ũn

dx2 (x)dx

=
∫ 1

2
H(x)

d2Ũn

dx2 (x)dx − 1

2
H(x∗)

(
dŨn

dx

(
x∗) − dŨn

dx
(x∗)

)

=
∫ 1

2
H ′′(x)Ũn(x)dx + 1

2

(
H

(
x∗) − H(x∗)

)dŨn

dx

(
x∗)

.

Therefore,

∑
j∈J ′

νj Ũ
n,N
j →

∫ 1

2
H ′′(x)Ũn(x)dx as N → ∞,
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and so by monotone convergence

lim
n,N→∞

∑
j∈J ′

νj Ũ
n,N
j =

∫ 1

2
H ′′(x)U(x)dx

=
∫ 1

2
H ′′(x)

(
Uδ0(x) − Uμ(x)

)
dx

= E
[
H(Bτ )

] − H(B0).

By our choice of approximation we know that limN→∞ UN = U ≤ Ũn =
limN→∞ Ũn,N for all n, and so without loss of generality we can choose Ũn,N ≥
UN for large n,N . Then, since νj ≥ 0 for all j , by monotone convergence it fol-
lows that ∣∣∣∣ ∑

j∈J ′
νj Ũ

n,N
j − ∑

j∈J ′
νjU

n

∣∣∣∣ → 0 as n,N → ∞.

Finally, recall that

DN = ∑
j∈J ′

νjUj + 1

2
(ηj∗+1,1 + ηj∗−1,1) + 1

2

(
F̄ N

j∗+1,1 + F̄ N
j∗−1,1

)
,

so

lim
N→∞ DN = E

[
H(Bτ )

] − H(B0) + G∗(B0,0)

= E
[
H(Bτ )

] + G(B0,0)

= E
[
G(Bτ , τ ) + H(Bτ )

]
.

Then by the above and the results of [10],

sup
τ,Bτ ∼μ

E
[
F(Bτ , τ )

] = lim
N→∞ PN = lim

N→∞ DN

= G(B0,0) +E
[
H(Bτ )

]
. �

THEOREM 5.5. For a K-cave stopping time τ given by curves l, r , the condi-
tion (�) is necessary for optimality.

PROOF. By Theorem 5.4 our functions G and H give no duality gap. We know
that G(x, t) + H(x) ≥ F(x, t) everywhere, but also

�(x) > 0 =⇒ G
(
x, r(x)

) + H(x) > F
(
x, r(x)

)
,

�(x) < 0 =⇒ G
(
x, l(x)

) + H(x) > F
(
x, l(x)

)
,

so if (�) does not hold then E[F(Bτ , τ )] < G(B0,0) + E[H(Bτ )], contradicting
Theorem 5.4. �
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5.2. An additional property of the barrier. We have seen that the linear pro-
gramming approach to this problem allows us to recover the condition (�), but
it also reveals additional information about our continuous problem. As men-
tioned previously, for any dual optimisers (ν∗

j , η∗
j,t ) ∈ RL+1 × l∞, the sequence

(ν∗
j , ηT

j,t ) ∈RL+1 × l∞, where ηT
j,t = η∗

j,t1{t ≤ T }, is also dual feasible when T is

such that F̄ N
j,t = 0 for t ≥ T . Furthermore, this new dual solution is also optimal.

Since we work on the bounded domain [x∗, x∗], there exists T ∗ := min{t : F̄ N
j,t =

0 ∀t ≥ T ,∀j}. Anything that happens after T ∗ does not affect our payoff, and we
therefore have some freedom past this point. We can also see this from our proof
of Theorem 2.1 if we work on [x∗, x∗]. For t ≥ T ∗ we have LK∞(B)−LK

t (B) = 0,
so we have equality in the primary optimisation problem (5) and require the sec-
ondary problem (7) to get the K-cave barrier shape.

In the discrete problem, this freedom arises in the following way: if pj,t > 0 for
some j and t ≥ T ∗, then we can stop mass at (j, t), decreasing our local time ev-
erywhere (so remaining primal-feasible) without affecting optimality. This allows
us to prove the following.

LEMMA 5.6. Let μN
l and μN

r be the distributions embedded by our optimal
(pj,t ) to the left and right of K , respectively. Then for any j ,

j ∈ supp
(
μN

l

) =⇒ r̄N
j ≤ T ∗.

In particular, this means that supp(μN
r ) = supp(μN).

PROOF. Take j ∈ supp(μN
l ), so qj,l̄Nj −1 > 0, pj,l̄Nj −1 = 0 and suppose that

T ∗ < r̄N
j < ∞, so pj,r̄N

j
= 0 and pj,r̄N

j −1 > 0. Let ε = min{qj,l̄Nj −1,pj,r̄N
j −1}. We

define new primal variables corresponding to stopping ε of mass at (j, r̄N
j − 1),

and releasing ε of mass at (j, l̄Nj − 1) which we stop after one step. Let

p̄j,l̄Nj −1 = ε, q̄j,l̄Nj −1 = qj,l̄Nj −1 − ε,

p̄j+1,l̄Nj
= pj+1,l̄Nj

, q̄j+1,l̄Nj
= q̄j+1,l̄Nj

+ ε

2
,

p̄j−1,l̄Nj
= pj−1,l̄Nj

, q̄j−1,l̄Nj
= q̄j−1,l̄Nj

+ ε

2
,

p̄j,r̄N
j −1 = pj,r̄N

j −1 − ε, q̄j,r̄N
j −1 = qj,r̄N

j −1 + ε,

p̄j,r = pj,r − p̃j,r ∀r > s, q̄j,r = qj,r + q̃j,r ∀r > s,

p̄j,r = pj,r otherwise, q̄j,r = qj,r otherwise,

where the p̃j,r are defined as in Theorem 5.1 with s = r̄N
j − 1. We can check that

these new variables are primal feasible, noting in particular that
∑

t p̄j,t ≤ ∑
t pj,t .
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Furthermore, F̄ N is a submartingale, and so by releasing mass at (j, l̄Nj − 1) we

improve our payoff:
∑

F̄ N
j,t q̄j,t ≥ ∑

F̄ N
j,tqj,t .

We can repeat this process until either qj,l̄Nj −1 = 0 or pj,r̄N
j −1 = 0. If pj,r̄N

j −1 =
0, first then we have moved r̄N

j → r̄N
j − 2 and can repeat the above from this new

value of r̄N
j . Similarly, if qj,l̄Nj −1 = 0, first then we have moved l̄Nj → l̄Nj + 2 and

can repeat the above. This will continue until either r̄N
j ≤ T ∗ or j /∈ supp(μN

l ).
Since we improve our payoff at each step, any optimiser must have one of these
properties at each j .

If r̄N
j = ∞ for some j ∈ supp(μN

l ), then we can run the above argument with

any t > T ∗ in place of r̄N
j and come to the same conclusion. In particular, we have a

right-hand barrier whenever j ∈ supp(μN
l ), and obviously also for j ∈ supp(μN) \

supp(μN
l ). �

The conclusion supp(μN
r ) = supp(μN) means that we have a right-hand barrier

at any atom of μN , so in particular η̃∗
j,r̄N

j

= 0 for all j ∈ supp(μN). Then, for any

x ∈ supp(μ),

�(x) = lim
N→∞

(−η̃∗
�√Nx�,l̄Nx + η̃∗

�√Nx�,r̄N
x

+ F̄ N

�√Nx�,l̄Nx
)

= lim
N→∞−η∗

�√Nx�,l̄Nx
≤ 0.

In particular, (�) now becomes

(�′)
�(x) ≤ 0 μ-a.s.,

�(x) = 0 μl-a.s.

and we have proved the following.

THEOREM 5.7. For a K-cave stopping time τ given by curves l and r , the
condition (�′) is both necessary and sufficient for optimality.

6. Uniqueness. In Theorem 2.1 we proved that there is a K-cave barrier
whose stopping time solves (OptSEP), however we also argued in Section 2.3 that
there are multiple K-cave barriers solving (SEP). We have now characterised the
optimal solutions and can ask if there are multiple K-cave barriers that are also
optimal.

Similar to Loynes [27], we define regular K-cave barriers. Take a K-cave barrier
R with boundary curves l and r . Recall that we define x∗ to be the smallest x such
that μ((x,∞)) = 0, and x∗ the largest x such that μ((−∞, x∗)) = 0.
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DEFINITION 6.1. The K-cave barrier R is regular if:

• l is increasing on {x > 0}, and decreasing on {x < 0},
• l(x) = K(x) = r(x) for all x /∈ [x∗, x∗] (where l and K exist),
• r(x) = 0 for all x < x∗ ∧ 1

β
ln k.

THEOREM 6.1. There is a unique regular K-cave barrier whose stopping time
solves (OptSEP).

PROOF. Suppose τ , σ are both optimisers of (OptSEP) and hitting times of K-
cave barriers with continuation regions Dτ and Dσ , respectively. By Theorem 5.4
these stopping times have dual optimisers Gτ , Hτ and Gσ , Hσ , where the func-
tions Gτ , Gσ take the form G(x, t) = − ∫ r(x)

t M(x, s)ds for the corresponding r

and M . Then,

E
[
F(Bτ , τ )

] = E
[
Gτ(Bτ , τ ) + Hτ(Bτ )

]
= Gτ(B0,0) +

∫
Hτ(x)μ(dx)

≥ E
[
Gτ(Bσ ,σ ) + Hτ(Bσ )

]
≥ E

[
F(Bσ ,σ )

]
,

since Gτ(Bt , t) is a supermartingale, and Gτ(x, t)+Hτ(x) ≥ F(x, t) everywhere.
However, since both stopping times are optimisers, E[F(Bτ , τ )] = E[F(Bσ ,σ )],
and we have equality in the above, so

E
[
F(Bσ ,σ )

] = E
[
Gτ(Bσ ,σ ) + Hτ(Bσ )

]
.

In Section 4, we argue that Gτ(x, t) + Hτ(x) ≥ F(x, t) since for Mτ(x, s) =
Ex,s[∂−

t F (Bτ , τ )] we have

t < K(x) =⇒ Ft(x, t) = −β2

2
h(x, t) ≤ Mτ(x, t),

t > K(x) =⇒ Ft(x, t) = 0 ≥ Mτ(x, t).

It is easy to see that these inequalities are strict on

Sτ
D := {

(x, t) ∈ Dτ : Px,t (F(Bτ , τ ) > 0
)
> 0

}
,

and so Gτ(Bσ ,σ ) + Hτ(Bσ ) > F(Bσ ,σ ) for (Bσ , σ ) ∈ Sτ
D . Therefore, (Bσ , σ ) /∈

Sτ
D almost surely, and similarly (Bτ , τ ) /∈ Sσ

D almost surely. The inverse barriers
given by lτ and lσ must then coincide. To see this, suppose for contradiction that
lτ (x) < lσ (x) for some x. Since our barriers are regular, we must have lτ (Bσ ) <

σ < K(Bσ ) with positive probability (any increasing section or atom of lσ will be
hit with positive probability), so P((Bσ , σ ) ∈ Sτ

D) > 0, which is a contradiction.
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Furthermore, the argument of Loynes [27] proves that for a given inverse barrier
bounded by lτ , there is a unique barrier given by some rτ that gives the correct
embedding. This argument runs as follows: suppose we have two Root barriers R1
and R2 given by curves r1 and r2, respectively. If our inverse barrier is R, then
BτR∧τR1

∼ μ and BτR∧τR2
∼ μ. We can consider R0 = R1 ∪R2, or r1 ∧ r2, and

show that BτR∧τR0
∼ μ also. By taking the union of the two barriers, we increase

the area of the stopping region and, therefore, ensure that no extra paths can be
embedded at R. Also, if we have points ¯x, x̄ such that r1(x) ≤ r2(x) on (¯x, x̄), then
less mass is embedded in (¯x, x̄) by R0 than R1, so overall less mass is embedded
in (¯x, x̄) by τR ∧ τR0 than τR ∧ τR1 . Similarly, at points where r2(x) ≤ r1(x), we
have that less mass is embedded by τR ∧ τR0 than τR ∧ τR2 . Then on any interval
A, P(BτR∧τR0

∈ A) ≤ μ(A), but since both of these distributions are probability
measures we must in fact have equality.

This shows that R0 also embeds the correct distribution, so BτR∧τR0
∼ μ and,

therefore,

E[τR ∧ τR1 ∧ τR2] = E[τR ∧ τR0] = E
[
B2

τR∧τR0

]
=

∫
x2μ(dx) = E[τR ∧ τR1],

so τR ∧ τR1 ∧ τR2 = τR ∧ τR1 almost surely. We can then conclude that R1 and
R2 are equivalent as in [27]. �

We now summarise what we know of the uniqueness of these barriers:

• There may be many (regular) K-cave barriers whose hitting times solve (SEP).
• There is exactly one regular K-cave barrier whose hitting time solves (OptSEP),

and this is the regular K-cave barrier satisfying (�′).
• All other solutions of (OptSEP) have the same stopping region as the regular

K-cave barrier solution, τ , on

Sτ = {
(x, t) : Px,t (F(Bτ , τ ) > 0

)
> 0

}
.

In particular, they have the same inverse barrier.

In the spirit of [27], we could say that two stopping regions are τ -equivalent
if they agree on Sτ , and then any region whose hitting time solves (OptSEP) is
τ -equivalent to the K-cave optimiser τ .

7. Conclusions. In this paper, we have given a new solution to the Skorokhod
embedding problem that arises when considering model-independent bounds on
the price of European call options on a leveraged exchange traded fund. Unlike
many classical solutions to (SEP), stopping times of this form are not unique and
we have used two very different methods to find the form of the superhedging
portfolio in order to identify the optimal stopping region. One method involves a
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PDE approach to suggest the form of such a portfolio and then purely probabilistic
arguments to confirm the sufficient condition for optimality with this portfolio.
The other approach originates from the idea of considering a discretised version
of (SEP) as a primal-dual linear programming pair in [10] and then constructing a
superhedging strategy as the limit of the dual optimisers.

The techniques used are not specific to our choice of payoff, for example, all
results in Section 5 hold for payoff of the form F(x, t) = (h(x, t) − k)+ where
h(x, t) is decreasing in time and such that h(Xt , t) is a martingale. In particular,
we can repeat all previous arguments with the inverse LETF, where β < 0, and the
only difference is the shape of the curve K(x). These results are also true when
we consider the case of the cave embedding, and furthermore, the probabilistic
approach of Theorem 4.1 also holds with the cave payoff. The cave payoff is of
a very different form to the European call option payoff we work with in this
paper, and this raises some natural questions. Firstly, are there other solutions to
(SEP) which can be seen as the combination of Root and Rost barriers? Secondly,
if there are other solutions, is (�) the correct condition to choose the unique pair
satisfying some maximisation problem? Given a maximisation problem we can
characterise its optimiser geometrically using the monotonicity principle of [3],
and if the optimal stopping time does take the form of a hitting time for Brownian
motion then the ideas used in Section 4 and Section 5 here should be applicable.

There are other natural questions that arise from this problem, and many of them
have been asked, and answered, for other embeddings:

• Is it possible to generalise our results to general starting distributions? In this
paper, we always consider a (geometric) Brownian motion started at some fixed
point, but it should be possible to consider general starting distributions; indeed
the results used from [10] appear to hold for more general starting distributions.
When considering just the Rost barrier, for a true hitting time solution we require
the supports of the initial and target distributions to be disjoint (see [14]). The
inclusion of the extra Root barrier will allow us to embed at points in the support
of the initial distribution, but there may be technicalities.

• In [12], the authors consider the Root solution to the multi-marginal Skorokhod
embedding problem through an optimal stopping approach, and Rost barriers
have also been considered in terms of optimal stopping problems in [16]. Is
there a similar optimal stopping formulation for this problem? Can an optimal
stopping setup, or any other approach, give a multi-marginal result for cave or
K-cave barriers?

• Can we use similar methods to find a robust lower bound on the price of our
option? The monotonicity principle calculation in this case will be the exact op-
posite, meaning that the optimal stopping region will look like the continuation
region of a K-cave barrier. For target distributions with full support, we would
then require some external randomisation in the stopping region, perhaps along
the curve K .
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