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1 Introduction

1.1 The market model

We consider a financial market consisting of two primary assets, a risk-free bond
B and a stock S whose dynamics under the unique risk-neutral measure P are
given by

dB(t) = rB(t) dt
dS(t) = rS(t) dt+ σS(t) dW (t) (1)
B(0) = 1
S(0) = x

where r, σ are deterministic constants with σ > 0 and W (t) is a Brownian
motion under P. We refer to r as the interest rate and to σ as the volatility of
S. We denote by {Ft}t≥0 the natural augmented filtration of W . It is easy to
verify that (1) under P has the unique strong solution

B(t) = ert (2)

S(t) = xeσW (t)+(r−σ2/2)t (3)

It is not difficult to check that e−rtS(t) is a {Ft}-martingale under P.

1.2 Pricing formula

Theorem 1 (Fundamental theorem of asset pricing). Let T > 0 and D be a P-
integrable and FT -measurable random variable, which we interpret as the value
of some derivative security at time T . The arbitrage-free price of D at time
t ∈ [0;T ] is given by

D(t) = E[e−r(T−t)D|Ft] (4)

Moreover e−rtD(t) is a {Ft}-martingale under P.

Proof. See [8] Chapter 5.
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1.3 European and American options

Definition 1. A European [American] call option CEur [CAm] with strike
price K > 0 and time of maturity T > 0 on the underlying asset S is a
contract defined as follows

• The holder of the option has, exactly at time T [at any time t ∈ [0;T ]],
the right but not the obligation to buy one share of the underlying asset S
at price K from the underwriter of the option.

Definition 2. A European [American] put option PEur [PAm] with strike
price K > 0 and time of maturity T > 0 on the underlying asset S is a
contract defined as follows

• The holder of the option has, exactly at time T [at any time t ∈ [0;T ]],
the right but not the obligation to sell one share of the underlying asset S
at price K to the underwriter of the option.

We fix a strike K > 0 and a time of maturity T > 0. By theorem 1, the
arbitrage-free prices of a European call [put] at time 0 is given by

CEur = E[e−rT (S(T )−K)+] (5)

PEur = E[e−rT (K − S(T ))+] (6)

which can be expressed in a closed formula, the Black-Scholes formula1.

Now suppose we are the owner of an American call [put] option. Since we can
exercise the option at any time t ∈ [0;T ], we choose an {Ft}-stopping time
τ ∈ [0, T ] taking values in [0, T ]. At time T we own er(T−τ)(K − S(τ))2. Since
we may choose any {Ft}-stopping time τ ∈ [0, T ], theorem 1 implies3 that the
arbitrage-free price of an American call [put] option at time 0 is given by

CAm = sup
τ∈[0,T ]

E[e−rτ (S(τ)−K)+] (7)

PAm = sup
τ∈[0,T ]

E[e−rτ (K − S(τ))+] (8)

It is obvious that CAm ≥ CEur and PAm ≥ PEur, since we can choose the
exercise strategy τ = T . The following theorem states in which cases the latter
strategy is indeed the best that we can do.

Theorem 2.

1. Suppose r ≥ 0. Then CAm = CEur.

2. Suppose r = 0. Then PAm = PEur.

Proof.
1See for instance [1] p 100 et seq.
2If we exercise before time T , we invest our money for the rest of the time up to T in the

risk-less bond
3More precisely this follows once we have shown the existence of an optimal stopping time.
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1. Fix τ ∈ [0, T ]. Define g1 : R+ → R+ by g1(x) = (x−e−rTK)+. Clearly g1

is convex. Jensen’s inequality for conditional expectations, the fact that
e−rtS(t) is a martingale and the optional sampling theorem yield

CEur = E[e−rT (S(T )−K)+] = E[g1(e−rTS(T ))]

= E[E[g1(e−rTS(T ))|Fτ ]] ≥ E[g1(E[e−rTS(T )|Fτ ])]

= E[g1(e−rτS(τ))] = E[(e−rτS(τ)− e−rTK)+]

≥ E[e−rτ (S(τ)−K)+] (9)

Since τ ∈ [0, T ] was arbitrary, we have CEur ≥ CAm, which together with
CEur ≤ CAm yields the claim.

2. Fix τ ∈ [0, T ]. Define g2 : R+ → R+ by g2(x) = (K − x)+. Clearly g2

is convex. Jensen’s inequality for conditional expectations, the fact that
S(t) is a martingale and the optional sampling theorem yield

CEur = E[(K − S(T ))+] = E[g2(S(T ))]
= E[E[g2(S(T ))|Fτ ]] ≥ E[g2(E[S(T )|Fτ ])]

= E[g2(S(τ))] = E[(K − S(τ))+] (10)

Since τ ∈ [0, T ] was arbitrary, we have PEur ≥ PAm, which together with
PEur ≤ PAm yields the claim.

Remark. If r > 0 the above argument breaks down for the American put. We
will show below that in this case we have PAm > PEur and we will derive an
explicit formula for difference PAm − PEur.

2 Analytical Characterization of the Put Price

2.1 Formal definition of the problem

Let {W̃ (s)}s≥0 be a Brownian motion on some probability space {Ω̃, F̃ , F̃s, P̃},
where {F̃s}s≥0 is the natural augmented filtration of W̃ . Let E := [0,∞) ×
(0,∞) (Perpetual American Put) or E = [0, T ] × (0,∞); 0 < T < ∞ (Finite
American Put). Set Ω = E × Ω̃, F = B(E) ⊗ F̃ and G = {∅, E} ⊗ F̃ . For
s ≥ 0 and ω = (t, x, ω̃) ∈ Ω define

W (s)(ω) = W̃ (s)(ω̃)

S(s)(ω) = xeσW (s)(ω̃)+(r−σ2/2)s (11)
X(s)(ω) = (t+ s, S(s)(ω))

where r, σ are deterministic constants with σ, r > 0. Moreover, for s ≥ 0,
let Fs = B(E) ⊗ F̃s and Gs = {∅, E} ⊗ F̃s. Finally define probability mea-
sures {P(t,x)}(t,x)∈E on {Ω,F} and P on {Ω,G } by P(t,x) := δt ⊗ δx ⊗ P̃ and
P := µ ⊗ P̃, where δt and δx denote Dirac measures and µ : {∅, E} 7→ [0, 1] is
defined by µ(∅) = 0; µ(E) = 1. For convenience we set Px := P(0,x). It is not
difficult to check that {W (s)}s≥0 is a Brownian motion on {Ω,G ,Gs,P} and
{S(s)}s≥0 and {X(s)}s≥0 are strong Markov families on {Ω,F ,Fs, {Px}x>0}
and {Ω,F ,Fs, {P(t,x)}(t,x)∈E}.
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Remark. Under P(t,x) we interpret S(s) as the value of a stock S̃ with volatility
σ in a financial market with interest rate r at time t + s given that S̃(t) = x.

We fix a strike price K > 0. Define the gain function G : E 7→ [0,K] by
G(t, x) := e−rt(K − x)+. For (t, x) ∈ E define the optimal stopping problem

V (t, x) = sup
τ∈[0,T−t]

E(t,x)[G(X(s))]

= sup
τ∈[0,T−t]

E(t,x)[e−r(t+τ)(K − S(τ))] (12)

where T is the upper boundary of the time coordinate of E and τ ∈ [0, T − t]
is a stopping time4 taking values in [0, T − t]5. Since G is bounded, V (t, x) is
defined for all (t, x) ∈ E. We call V the value function.

Remark. We interpret V (t, x) as the arbitrage free price of an American put
option with strike K and maturity T on S̃ at time 0 given that S̃(t) = x. Since
we have a positive interest rate r, we cannot compare prices at different times
directly, but need to discount appropriately. The price of an American put
option at time t given S̃(t) = x is given by

v(t, x) = ertV (t, x) = sup
τ∈[0,T−t]

Ex[e−rτ (K − S(τ))+] (13)

We call v the value* function. Similarly we define

g(t, x) = ertG(t, x) = (K − x)+ (14)

which we call the gain* function. Even though V and G are the formal correct
objects, which in addition carry the economic interpretation of time value of
money, it turns out that v and g are the convenient mathematical objects to
work with.

2.2 Elementary properties of the value* function

Lemma 1.

1. If T =∞, the function t 7→ v(t, x) is constant

2. If T <∞, the function t 7→ v(t, x) is decreasing with v(T, x) = (K − x)+.

Proof. Let 0 ≤ t1 ≤ t2 ≤ T 6. Then

v(t1, x) = sup
τ∈[0,T−t1]

Ex[e−rτ (K − S(τ))+]

≥ sup
τ∈[0,T−t2]

Ex[e−rτ (K − S(τ))+] (15)

= v(t2, x)

Since [0,∞− t1] = [0,∞− t2] and clearly v(T, x) = (K − x)+ by definition for
T <∞, both assertions follow immediately.

4In general we allow τ to be an {Ft}-stopping time. Note, however, that for fixed
(t, x) ∈ E for each {Ft}-stopping time τF there exists a {Gt}-stopping time τG with
τF = τG P(t,x)-a.s.. If necessary we will work with τG rather than with τF , which will
always be clear from the context.

5∞− t :=∞; moreover we allow τ =∞ if T =∞
6We require t <∞
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Lemma 2. The function x 7→ v(t, x) is convex and continuous

Proof. Fix t ∈ [0, T ]7. For τ ∈ [0, T − t], x > 0 define

u(x, τ) := e−rτ (K − xeσW (τ)+(r−σ2/2)τ )+ (16)

It is straightforward to check that x 7→ u(x, τ) is convex. By linearity of the
integral it follows that x 7→ E[u(x, τ)] is convex. Moreover clearly

v(x, t) = sup
τ∈[0,T−t]

E[u(x, τ)] (17)

The assertion follows by the well-know facts that the supremum of convex func-
tions is convex again, and that convex functions are continuous.

Lemma 3. The function (t, x) 7→ v(t, x) is lsc.

Proof. For τ ∈ [0, T ] and (t, x) ∈ E define

u(t, x, τ) := e−r(τ∧(T−t))(K − xeσW (τ∧(T−t))+(r−σ2/2)(τ∧(T−t)))+ (18)

It is not difficult to check that (t, x) 7→ u(t, x, τ) is continuous. By the dominated
convergence theorem we get that (t, x) 7→ E[u(t, x, τ))] is continuous. Moreover
clearly8

v(x, t) = sup
τ∈[0,T ]

E[u(t, x, τ)] (19)

The assertion follows by the well-know fact that the supremum of lsc functions
is lsc again.

2.3 Existence of an optimal stopping time

According to the Markovian approach to optimal stopping problems we define
the continuation set

C := {(t, x) ∈ [0, T )× (0,∞) : V (t, x) > G(t, x)}
= {(t, x) ∈ [0, T )× (0,∞) : v(t, x) > g(x)} (20)

and the stopping set

D := {(t, x) ∈ [0, T ]× (0,∞) : V (t, x) = G(t, x)}
= {(t, x) ∈ [0, T ]× (0,∞) : v(t, x) = g(x)} (21)

Note that D is closed since v is lsc by Lemma 3 and g is continuous. Moreover
we define the stopping time9

τD := inf{s ≥ 0 : Xs ∈ D} (22)

Lemma 4. All points (t, x) ∈ [0, T )× [K,∞) belong to the continuation set C.

7Again we require t <∞
8Note {τ ∧ (T − t) : τ ∈ [0, T ]} = {τ : τ ∈ [0, T − t]}
9This is indeed a stopping time since D is closed and X is continuous.
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Proof. Let (t, x) ∈ [0, T )× [K,∞) and 0 < ε < K. Define the stopping time10

τε := inf{s ≥ 0 : Ss ≤ K − ε} ∧ (T − t) (23)

It is not difficult to show that P(t,x)(0 < τε < T − t) =: α > 0. Hence we have
V (t, x) ≥ αe−rT ε > 0 = G(t, x), which establishes the claim.

Now define w(t, x) = v(x, t) + x. Lemma 4 implies

C = {(t, x) ∈ [0, T )× (0,∞) : w(t, x) > K} (24)
D = {(t, x) ∈ [0, T )× (0,∞) : w(t, x) = K} ∪ {T} × (0,∞) (25)

Lemma 5. The function x 7→ w(t, x) is convex and increasing. Moreover
limx�0 w(t, x) = K.

Proof. Convexity follows from convexity of x 7→ v(t, x) and x 7→ x. The obvious
inequality (K − x)+ + x ≤ w(t, x) ≤ K + x, implies K ≤ w(t, x) ∀x ∈ (0,∞)
as well as limx�0 w(t, x) = K. These two facts together with convexity of x 7→
w(t, x) imply immediately that x 7→ w(t, x) is increasing.

Lemma 4 and 5 imply that there exist a function b : [0, T )→ [0,K) such that

C = {(t, x) ∈ [0, T )× (0,∞) : x > b(t)} (26)
D = {(t, x) ∈ [0, T )× (0,∞) : x ≤ b(t)} ∪ {T} × (0,∞) (27)

2.3.1 Infinite time horizon

For convenience set v(x) := v(0, x). For 0 < b < K define the stopping time
τb = inf{s ≥ 0 : S(s) ≤ b} and let

vb(x) := Ex[e−rτb(K − S(τb))+] (28)

The formula for the Laplace transform for the first passage time of a Brownian
motion with drift11 yields after some simple calculations

vb(x) =

{
K − x if 0 < x ≤ b
(K − b)

(
x
b

)−2r/σ2

if x ≥ b
(29)

Define v∗(x) = supb∈(0,K) vb(x). Elementary Calculus yields

v∗(x) = vb∗(x) =

{
K − x if 0 < x ≤ b∗

(K − b∗)
(
x
b∗

)−2r/σ2

if x ≥ b∗
(30)

where b∗ = 2r
2r+σ2K. It is straightforward to check that v∗ ∈ C1((0,∞)) and

v∗ ∈ C2((0, b) ∪ (b,∞)) with

v∗x(x) =

{
−1 if 0 < x ≤ b∗
−2r
σ2x v

∗(x) if x ≥ b∗
(31)

v∗xx(x) =

{
0 if 0 < x < b∗

2r(2r+σ2)
σ4x2 v∗(x) if x > b∗

(32)

Define V ∗(t, x) = e−rtv∗(x).
10This is again a stopping time since [0,K − ε] is closed and S is continuous.
11See for instance [8] p 346 et seq (Theorem 8.3.2)
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Theorem 3. v∗(x) = v(x) for x ∈ (0,∞). Moreover τb∗ is the optimal stopping
time for the Perpetual American Put.

Proof. Since V ∗ ∈ C1,1(E) ∪ C1,2(E\([0,∞) × b)) and Px(S(t) = b∗) = 0 for
all x ∈ (0,∞) and all t > 0, we can apply a slightly generalized version of Itô’s
formula12 to V ∗(t, S(t)) and get

dV ∗(t, S(t)) = −rV ∗(t, S(t)) dt+ V ∗x (t, S(t)) dS(t)

+
1
2
V ∗xx(t, S(t))1{S(t)6=b} d〈S(t), S(t)〉

= −e−rtrK1{S(t)<b∗} dt+ σS(t)V ∗x (t, S(t)) dW (t) (33)

Hence V ∗(t, S(t)) is a {Ft}-supermartingale13 with V ∗(t, S(t)) ≥ G(t, S(t))14.
Let τ ∈ [0,∞] be a stopping time. Monotonicity of the integral and the optional
sampling theorem yield

Ex[G(τ, S(τ))] ≤ Ex[V ∗(τ, S(τ))] ≤ V ∗(0, x) = v∗(x) (34)

Taking the supremum in (34) over τ ∈ [0,∞] yields v∗(x) ≥ v(x). On the other
hand v∗(x) ≤ v(x) by definition. Hence

v∗(x) = v(x) = Ex[v∗(τ∗b , S(τ∗b ))] (35)

q.e.d.

2.3.2 Finite time horizon

Since V is lsc by lemma 3 and G is continuous, τD is optimal in (12), since
Pt,x(τD < ∞) = 1 by the main existence theorem of the Markovian approach
(Theorem 3.7 of the lecture notes).

2.4 Elementary properties of b for finite time horizon

Lemma 6. The function b is increasing with b∗ ≤ b(t) < K.

Proof. Let 0 ≤ t1 < t2 < T . By Lemma 1 and the definitions of the functions
v, g and b we have

g(b(t1)) = v(t1, b(t1)) ≥ v(t2, b(t1)) ≥ g(b(t1)) (36)

Therefore (t2, b(t1)) ∈ D, which implies b(t2) ≥ b(t1). Moreover let x ≤ b∗.
Then by Theorem 3

v(0, x) ≤ sup
τ∈[0,∞]

Ex[e−rτ (K − S(τ))+] = K − x = g(x) (37)

whence (0, x) ∈ D, which implies b(t) ≥ b(0) ≥ b∗. Finally, Lemma 4 implies
b(t) < K.

12confer [6] p 74 et seq
13

∫ t
0 σS(s)V ∗x (s, S(s)) dW (s) is a proper martingale since |V ∗x (s, S(s))| ≤ e−rs ≤ 1.

14Note that v∗(x) ≥ (K − x)+ for x ∈ (0,∞).
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2.5 Further properties of the value* function

Lemma 7. The function x 7→ v(t, x) is decreasing and strictly decreasing for
x ∈ (0,K]. Moreover limx�0 v(t, x) = K and limx→∞ v(t, x) = 0.

Proof. The claim is trivial for t = T , so assume t < T . Lemma 5 implies
limx�0 v(t, x) = limx�0 w(t, x) = K. Moreover by (32) for x ≥ K

v(x, t) = sup
τ∈[0,T−t]

Ex[e−rτ (K − S(τ))+]

≤ sup
τ∈[0,∞]

Ex[e−rτ (K − S(τ))+]

= (K − b∗)
( x
b∗

)−2r/σ2

(38)

which implies limx→∞ v(t, x) = 0. Since 0 ≤ v(t, x) ≤ K by definition and
x 7→ v(t, x) is convex by Lemma 2, x 7→ v(t, x) is decreasing. Moreover clearly
v(t, x) > 0 for x < K. Again convexity of x 7→ v(t, x) implies that x 7→ v(t, x)
is strictly decreasing for x ∈ (0,K].

Lemma 8. The function v is continuous in E.

Proof. For t ≥ 0 define M(t) := sup0≤s≤t |W (s)|. Fix x ∈ (0,∞) and let
0 ≤ t1 < t2 ≤ T . Denote by τ1 the {Gs}-optimal stopping time for v(t1, x)
and define τ2 := τ1 ∧ (T − t2). Clearly τ1 ≥ τ2 with τ1 − τ2 ≤ t2 − t1. By
stationary and independent increments {W (τ2 + t)−W (τ2)}t≥0 is independent
of Gτ2 and equal in law to {W (t)}t≥0. Recalling that e−rtS(t) is a martingale
and v(t1, x) ≥ v(t2, x) we get

0 ≤ v(t1, x)− v(t2, x)

≤ Ex[e−rτ1(K − S(τ1))+]− Ex[e−rτ2(K − S(τ2))+]

≤ Ex[e−rτ2 [(K − S(τ1))+ − (K − S(τ2))+]]

≤ Ex[e−rτ2(S(τ2)− S(τ1))+]

≤ Ex[e−rτ2S(τ2)(1− eσ(W (τ1)−W (τ2))+(r−σ2/2)(τ1−τ2))+]

≤ Ex[e−rτ2S(τ2)E[(1− eσ(W (τ1)−W (τ2))+(r−σ2/2)(τ1−τ2))+|Gτ2 ]]

≤ E[e−rτ2S(τ2)E[(1− eσW (τ1−τ2)+(r−σ2/2)(τ1−τ2))+]]

≤ xE[(1− e−σM(t2−t1)−|(r−σ2/2)|(t2−t1))+] (39)

Define the function h : R → R by h(t) := E[(1 − e−σM(|t|)−|(r−σ2/2)||t|)+]. By
dominated convergence h is continuous at 0 with h(0) = 0. Now fix (t0, x0) ∈ E
and let {(tn, xn)}n≥1 be a sequence in E with limn→∞(tn, xn) = (t0, x0). Then
by Lemma 2 and (39) we have

lim sup
n→∞

|v(tn, xn)− v(t0, x0)| ≤ lim sup
n→∞

|v(tn, xn)− v(t0, xn)|

+ lim sup
n→∞

|v(t0, xn)− v(t0, x0)|

≤ lim sup
n→∞

xnh(tn − t0) + 0 = 0 (40)

Hence v is continuous in E.
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Lemma 9. The function v is C1,2 in C and satisfies there vx ≤ 0 and vt ≤ 0
as well as vxx(t, x) ≥ 2r

σ2x2 v(x, t).

Proof. Denote by LX the infinitesimal generator of X. It is not difficult to
establish that

LX =
∂

∂t
+ rx

∂

∂x
+
σ2

2
x2 ∂

2

∂x2
(41)

Now fix (t0, x0) ∈ C and let r0 > 0 such that B := Br0(t0, x0) ⊂ C. Now
consider the following PDE

LXU = 0 in B

U = V on ∂B (42)

Since V is continuous by Lemma 8, standard PDE results15 state, that there
exist a unique solution U of (42) in C1,2(B) ∩ C0(B). Let (t, x) ∈ B and ε > 0
be arbitrary. Since B is compact and U, V ∈ C0(B) with U = V on ∂B there
exists 0 < r1 < r0 such that (t, x) ∈ B∗ := Br(t0, x0) and |U − V | ≤ ε on ∂B∗.
Let U∗ : E 7→ R be a C1,2-extension of U |B∗

16. Now applying Itô’s formula to
U∗(Xs) yields

dU∗(Xs) = LXU
∗(Xs) ds+ σS(s)U∗x(Xs) dW (s) (43)

Define the stopping time

τBc∗ := inf{s ≥ 0 : Xs ∈ Bc∗} (44)

Note that LX = 0 in B∗ by (42). Hence (43) and the Optional Sampling theorem
yield17

U(t, x) = U∗(t, x) = E(t,x)[U∗(XτBc∗
)] = E(t,x)[U(XτBc∗

)] (45)

On the other hand, since τBc∗ ≤ τD we get by the Strong Markov property

E(t,x)[V (XτBc∗
)] = E(t,x)[EXτBc∗

[G(XτD )]]

= E(t,x)[E(t,x)[G(XτBc∗+τD )|FτBc∗
]]

= E(t,x)[G(XτBc∗+τD )] = E(t,x)[G(XτD )]

= V (t, x) (46)

Putting (45) and (46) together yields

|V (t, x)− U(t, x)| = |E(t,x)[V (XτBc∗
)− U(XτBc∗

)]|

≤ E(t,x)[|V (XτBc∗
)− U(XτBc∗

)|]

≤ E(t,x)[ ε ] = ε (47)

Since ε > 0 was arbitrary, we get V (t, x) = U(t, x). Thus V = U in B, which
in particular implies that V is C1,2 in (t0, x0). Since (t0, x0) ∈ C was chosen

15See for instance [3] for a proof
16More precisely U∗ ∈ C1,2(E) and U∗ = U on B∗.
17Note that a priory we only know that

∫ t
0 σS(s)U∗x (Xs) dW (s) is local martingale. There-

fore we use a localizing sequence {τn}n≥0 of stopping times and observe that Ux is bounded

on B∗. The dominated convergence theorem then yields the desired result.
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arbitrary, it follows that V and therefore also v are in C1,2 in C. By Lemma
1 and Lemma 7 we get that vx ≤ 0 and vt ≤ 0. Moreover, an easy calculation
using LXV = 0 in C yields

vxx(t, x) =
2

σ2x2
(rv(t, x)− vt(t, x)− vx(t, x))

≥ 2r
σ2x2

v(t, x) (48)

Lemma 10. The function x 7→ v(t, x) is differentiable at b(t) with vx = gx.

Proof. Fix t∗ ∈ [0, T ). Since x 7→ v(t∗, x) is convex by Lemma 2, the right-hand
derivative ∂+v

∂x (t∗, x) exist for all x ∈ (0,∞). Denote x∗ = b(t∗) < K. Then

∂+v

∂x
(t∗, x∗) = lim

ε↓0

v(t∗, x∗ + ε)− v(t∗, x∗)
ε

≥ lim
ε↓0

g(x∗ + ε)− g(x∗)
ε

= −1 (49)

Define τx∗ := inf{s ≥ 0 : S(s) ≤ x∗} and denote by τ ξ the {Gs}-optimal
stopping time for v(t∗, x∗ + ξ) for ξ ≥ 0. Since b is increasing by lemma 6,
clearly τ ξ ≤ τx∗ under P(t∗,x∗+ξ) for all ξ ≥ 0. Moreover by (29) we have

lim inf
ξ�0

E[e−rτ
ξ

] ≥ lim inf
ξ�0

E(t∗,x∗+ξ)[e−rτx∗ ]

= lim
ξ�0

(
x∗ + ξ

x∗

)−2r/σ2

= 1 (50)

This implies that for any sequence {ξn}n≥1 in R+ with limn→∞ ξn = 0 we have
limn→∞ τ ξn = 0 in probability. For t ≥ 0 define M(t) := sup0≤s≤t |W (s)| and
for convenience set Σ(t) := eσW (t)+(r−σ2/2)t and Θ±(t) := e

±σM(t)±|(r−σ2/2)|t.
Let ε > 0 be arbitrary and {ξn}n≥1 a sequence in R+ with limn→∞ ξn = 0.
After possibly discarding a subsequence we may assume that limn→∞ τ ξn = 0
a.s. Then it holds

∂+v

∂x
(t∗, x∗) = lim sup

n→∞

v(t∗, x∗ + ξn)− v(t∗, x∗)
ξn

≤ lim sup
n→∞

E[e−rτ
ξn

((K − (x∗ + ξn)Σ(τ ξn))+ − (K − x∗Σ(τ ξn))+)]/ξn

≤ lim sup
n→∞

E[e−rτ
ξn

(−Σ(τ ξn))1{(x∗+ξn)Σ(τξn )<K}1{τξn<ε}]

≤ e−rε lim sup
n→∞

E[−Θ−(ε)1{(x∗+ξn)Θ+(ε)<K}1{τξn<ε}]

= −e−rεE[Θ−(ε))1{x∗Θ+(ε)<K}] (51)

Letting ε � 0 in (51) we get by dominated convergence18

∂+v

∂x
(t∗, x∗) ≤ −1 (52)

18Clearly limε�0 Θ±(ε) = 1; recall moreover that x∗ < K
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which together with (49) implies ∂+v
∂x (t∗, x∗) = −1. Finally we have

∂−v

∂x
(t∗, x∗) = lim

ε↓0

v(t∗, x∗ − ε)− v(t∗, x∗)
−ε

= lim
ε↓0

g(x∗ − ε)− g(x∗)
−ε

= −1 (53)

Hencex 7→ v(t, x) is differentiable at b(t) with vx = gx (smooth fit).

Lemma 11. The function x 7→ v(t, x) is C1 with −1 ≤ vx(t, x) ≤ 0.

Proof. Fix t∗ ∈ [0, T ). For x > b(t∗) the assertion follows by lemma 7; for
x < b(t∗) this follows by the fact that v(t, x) = g(x) in (0, b(t∗)] and clearly
g(x) ∈ C1((0, b(t∗)]). Now let x = b(t∗). Since x 7→ v(t∗, x) is differentiable at
b(t∗) by lemma 10 with vx(t∗, b(t∗)) = −1 = limx�b(t∗) vx(t∗, x), it remains to
show that

lim
x�b(t∗)

vx(t∗, x) = −1 (54)

Since x 7→ v(t∗, x) is differentiable we clearly have

vx(t∗, x) =
∂+v

∂x
(t∗, x) (55)

Since x 7→ v(t∗, x) is convex, the function x 7→ ∂+v
∂x (t∗, x) is right-continuous19.

This fact together with (55) immediately establishes (54). Hence x 7→ v(t∗, x) is
C1. Finally, clearly vx(t∗, x) = −1 for x ∈ (0, b(t∗)] and hence by continuity of
x 7→ vx(t∗, x), convexity of x 7→ v(t∗, x) and lemma 9 we get −1 ≤ vx(t∗, x) ≤ 0
for x ∈ (0, b(t∗)].

2.6 Further properties of b for finite time horizon

Lemma 12. The function b is continuous with limt�T b(t) = K.

Proof.

• Right-continuity: Let t ∈ [0, T ). Since b is increasing by Lemma 6, the
right-hand limit b(t+) exists with b(t) ≤ b(t+) < K. Moreover by def-
inition (t, b(t)) ∈ D for t ∈ [0, T ). Since D is closed, it follows that
(t, b(t+)) ∈ D. This together with Lemma 7 implies

0 ≤ v(t, b(t+))− v(t, b(t))
= (K − b(t+))− (K − b(t))
= b(t)− b(t+) ≤ 0 (56)

Hence b(t) = b(t+) and t 7→ b(t) is right-continuous.

• Left-continuity: Let t ∈ (0, T ]. For convenience set b(T ) := K. Since b
is increasing, the left-hand limit b(t−) exists with b(t−) ≤ b(t) ≤ K20.
Moreover (t, b(t)) ∈ D for t ∈ [0, T ). Since D is closed, it follows that

19For a proof see [5] p 142 et seq (Satz 7.7 iv).
20Recall that b(t) < K for t ∈ [0, T ).
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(t, b(t−)) ∈ D. Seeking a contradiction, suppose that b(t−) < b(t). Set
x∗ := (b(t−) + b(t))/2 and let t′ < t21. Then

b(t′) ≤ b(t−) < x∗ < b(t) ≤ K (57)

which implies in particular that (b(t′), x∗) ⊂ C and (t, x∗) ∈ D. By
definition of C and Lemma 10 we have

v(t′, b(t′))− g(b(t′) = 0
vx(t′, b(t′))− gx(b(t′) = 0 (58)

Finally, by Lemma 9 we have for x ∈ (b(t′), x∗)

vxx(t′, x) ≥ 2r
σ2x2

v(t′, x) ≥ 2r
σ2x2

(K − x)

≥ 2r
σ2b(t′)2

(K − x∗) =: γ > 0 (59)

A double application of the Fundamental Theorem of Calculus together
with (58) yields

v(t′, x∗)− g(x∗) =
∫ x∗

b(t′)

(vx(t′, y)− gx(y)) dy

=
∫ x∗

b(t′)

∫ y

b(t′)

(vxx(t′, z)− gxx(z)) dz dy

≥
∫ x∗

b(t′)

∫ y

b(t′)

γ dz dy = γ
(x∗ − b(t′))2

2
(60)

Taking the limit t′ ↑ t and using that v is continuous yields

v(t, x∗)− g(x∗) ≥ γ (x∗ − b(t−))2

2
> 0 (61)

Hence (t, x∗) /∈ D in contradiction to (t, x∗) ∈ D. Thus b(t) = b(t−) and
t 7→ b(t) is left-continuous with limt�T b(t) = K.

Lemma 13. The function t 7→ b(t) is convex and satisfies

lim
t�T

log(b(t)/K)
σ
√

(T − t)(− log(8πr2(T − t)/σ2))
= 1 (62)

Proof. See [2].

Remark. This result will not be used in the following.

2.7 Early exercise premium representation

The above lemmata imply22 that V ∈ C0,1(E\{T}× {K})∩C1,2(E\Γ(b(t)))23.
Moreover, since P(t,x)(X(s) = b(t + s)) = 0 for all (t, x) ∈ (0, T ) × (0,∞) and

21Note that t′ < T .
22Note that clearly V ∈ C1,2(Int{D}).
23Γ(b(t)) := {(t, x) ∈ [0, T ]× (0,∞) : x = b(t)}
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all 0 < s < T − t, we can apply a slightly generalized version of Itô’s formula24

to V (Xs) and get

dV (Xs) = LXV (Xs)1{X(s)6=b(t+s)} ds+ Vx(X(s)) dS(t)

= −e−rsrK1{S(s)<b(t+s)} dt+ σS(t)Vx(Xs) dW (t) (63)

From (63) we get immediately25 for (t, x) ∈ E

E(t,x)[V (X(T−t))] = V (t, x)−rK
∫ T−t

0

e−r(t+s)P(t,x)(S(s) < b(t+s)) ds (64)

By the Markov Property using (T − t) + τD = T − t under P(t,x) we have

E(t,x)[V (X(T − t))] = E(t,x)[EX(T−t)[G(X(τD))]]
= E(t,x)[E(t,x)[G(X((T − t) + τD))|FT−t]]
= E(t,x)[G(X((T − t) + τD))]
= E(t,x)[G(X((T − t)))] (65)

multiplying (64) with e−rt yields using (65)

v(t, x) = e−r(T−t)E(t,x)[g(S(T − t))]

+ rK

∫ T−t

0

e−rsP(t,x)(S(s) < b(t+ s)) ds (66)

Plugging in t = 0 in (66) yields after some algebra

V (0, x) = Ex[e−rT (K − S(T ))+]

+ rK

∫ T

0

e−rs Φ
(

1
σ
√
s

(
log
(
b(s)
b(0)

)
−
(
r − σ2

2

)
s

))
ds (67)

where Φ denotes the cdf of a standard normal.

Remark. Formula (67) is called the early exercise premium representation of
the value function. It shows that the value of an American put option with strike
price K and maturity T is the sum of the value of an European put option with
the same strike and maturity and the so-called early exercise premium.

2.8 Free boundary equation for b(t)

Theorem 4. The function t 7→ b(t) is the unique solution in the class of con-
tinuous increasing functions c : [0, T ] → R satisfying 0 < c(t) < K for all
0 < t <∞ of the following free-boundary integral equation

K − b(t) = e−r(T−t)
∫ K

0

Φ
(

1
σ
√
T − t

(
log
(
K − x
b(t)

)
−
(
r − σ2

2

)
(T − t)

))
dx

+ rK

∫ T−t

0

e−rs Φ
(

1
σ
√
s

(
log
(
b(t+ s)
b(t)

)
−
(
r − σ2

2

)
s

))
ds (68)

24confer [6] p 74 et seq
25Note that

∫ t
0 σS(s)Vx(s, S(s)) dW (s) is a proper zero-mean martingale since |Vx(Xs)| ≤

e−rt < 1.
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Proof.

• t 7→ b(t) is a solution of (68): Plugging (t, b(t)) in (66) and noting that
v(t, b(t)) = K − b(t) yields after some lengthy calculation (68).

• t 7→ b(t) is the unique solution of (68): See [6] p 386 - 392.
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