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−βṽ′(w)
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+
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γ
(ṽ′)−γ/(1−γ) − δṽ = 0.

It is easy to see that v(w) = γ−1Cγ−1wγ is solution of this
differential equation.
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⇒ wt has moments of all orders by Holder’s inequality and
since πt is bounded.
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⇒ Mt is a supermartingale and if (ct, πt) = (c∗t , π
∗
t ) it is a

martingale. Thus,

v(w) =M0 ≥ Ew[Mt] = Ew[

∫ t

0
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−δtv(wt)].
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Since as ≤ −(1− γ)C the claim follows. This completes the
proof.
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Ansatz: try L and U absolutely continuous with bounded
derivatives, that is,

Lt =

∫ t

0
ls ds, Ut =

∫ t

0
us ds, 0 ≤ ls, us ≤ κ

The HJB-equation reads

max
c,l,u

{

1

2
σ2y2ṽyy + rxṽx + αyṽy +

1

γ
cγ − cṽx

(

− (1 + λ)ṽx + ṽy
)

l +
(

(1− µ)ṽx − ṽy
)

u− δṽ

}

= 0.
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Since ṽx and ṽy are positive (extra wealth gives increased
utility), we see that the maxima are attained as follows:

c = (ṽx)
1/(γ−1),

l =

{

κ, if ṽy ≥ (1 + λ)ṽx,

0, if ṽy < (1 + λ)ṽx,

u =

{

0, if ṽy > (1− µ)ṽx,

κ, if ṽy ≤ (1− µ)ṽx.

This indicates that the optimal transaction policies are
“bang-bang”: buying and selling either take place at maximum
rate or not at all, and the solvency region splits into three
regions

B, the region in which stocks are bought,

S, the region in which stocks are sold,

NT the region where no transactions take place.



Let us analyse the boundary

ṽy = (1 + λ)ṽx

between S and NT (a similar argument applies for the
boundary between NT and B). To this end assume that ṽ ∈ C1

and that it is homothetic which implies that

ṽx(ρx, ρy) = ργ−1ṽx(x, y).
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boundary between NT and B). To this end assume that ṽ ∈ C1

and that it is homothetic which implies that

ṽx(ρx, ρy) = ργ−1ṽx(x, y).

It follows that if ṽy(x, y) = (1 + λ)ṽx(x, y) for some point (x, y),
then the same is true for all points along the ray through (x, y).
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boundaries between transaction and no-transaction regions
are straight lines through the origin,

in the transaction regions , transactions take place at
maximum, i.e. infinite, speed, which implies that the
investor will make an instantaneous finite transaction to
the boundary of NT ,

the finite transaction in S or B moves the portfolio down
or up a line of slope −1/(1 − µ) or −1/(1 + λ).

after the initial transaction, all further transactions must
take place at the boundaries, and this suggests a “local
time” type of transaction policy,

meanwhile, consumption takes place at rate (vx)
1/(γ−1).
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with l = u = 0:

max
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γ
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}

= 0,

i.e.,

1

2
σ2y2vyy + (rx− c)vx + αyvy +

1− γ

γ
v−γ/(1−γ)
x − δv = 0.

The final step now consists of reducing this equation to an
equation in one variable. In order to do so, define

ψ(x) := v(x, 1).

By the homothetic property it follows that v(x, y) = yγψ(x/y).



If our conjectured optimal policy is correct then v is constant
along lines of slope (1− µ)−1 in S and along lines of slope
(1 + λ)−1 in B, and this implies by homothetic property that

ψ(x) =
1

γ
(x+ 1− µ)γ , x ≤ x0,

ψ(x) =
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for some constants A,B and x0 and xT as in the picture.



If our conjectured optimal policy is correct then v is constant
along lines of slope (1− µ)−1 in S and along lines of slope
(1 + λ)−1 in B, and this implies by homothetic property that

ψ(x) =
1

γ
(x+ 1− µ)γ , x ≤ x0,

ψ(x) =
1

γ
(x+ 1 + λ)γ , x ≥ xT ,

for some constants A,B and x0 and xT as in the picture. Using
the homothetic property again, one can show that ψ satisfies for
x ∈ [x0, xT ],

β3ψ
′′(x) + β2xψ

′(x) + β1ψ(x) +
1− γ

γ
(ψ′(x))−γ/(1−γ) = 0,

where β1 = −1
2σ

2γ(1− γ + αγ)− δ, β2 = σ2(1− γ) + r − α,
β3 =

1
2σ

2.



Theorem (4.1, follows from [?])

Take 0 < x0 < xT and let NT be the closed wedge shown in the

picture, with upper and lower boundaries ∂S, ∂B respectively.

Let c : NT → [0,∞) be any Lipschitz continuous function and

let (x, y) ∈ NT . Then there exists a unique process s0, s1 and

continuous increasing processes L,U such that for

t < τ = inf{t ≥ 0 : (s0(t), s1(t)) = 0}

ds0(t) =
(

rs0(t)− c(s0(t), s1(t))
)

dt

−(1 + λ)dLt + (1− µ)dUt, s0(0) = x,

ds1(t) = αs1(t)dt+ σs1(t)dzt − dUt, s1(0) = y,

Lt =

∫ t

0
1{(s0(ξ),s1(ξ))∈∂B}dLξ,

Ut =

∫ t

0
1{(s0(ξ),s1(ξ))∈∂S}dUξ.

The process c̃t := c(s0(t), s1(t)) satisfies condition (2.1)(i).



Define the set of policies that do not involve short selling:

U
′ = {(c, L, U) ∈ U : (s0(t), s1(t)) ∈ S

′
µ for all t ≥ 0},

where S ′
µ = {(x, y) ∈ R

2 : y ≥ 0 and x+ (1− µ)y ≥ 0}.



Theorem (4.2, proof in [?])

Le 0 < γ < 1 and assume Condition A holds. Suppose there are

constants A,B, x0, xT and a function ψ : [−1(1 − µ),∞) → R

such that

0 < x0 < xT <∞,

ψ is C2 and ψ′(x) > 0 for all x,

ψ(x) =
1

γ
A(x+ 1− µ)γ for x ≤ x0,

β3ψ
′′(x) + β2xψ

′(x) + β1ψ(x)

+
1− γ

γ
(ψ′(x))−γ/(1−γ) = 0 for x ∈ [x0, xT ],

ψ(x) =
1

γ
B(x+ 1 + λ)γ for x ≥ xT .



Theorem

Let NT denote the closed wedge

{(x, y) ∈ R
2
+ : x−1

T ≤ yx−1 ≤ x−1
0 }

and let B and S denote the regions below and above NT as in

the picture. For (x, y) ∈ NT \ {(0, 0)} define

c∗(x, y) = yψ′(x/y)−1/(1−γ).

Let c̃∗t = c∗(s0(t), s1(t)) where (s0, s1, L
∗, U∗) is the unique

solution of (4.1) with c := c∗. Then the policy

(c̃∗(t), L∗(t), U∗(t)) is optimal in the class U ′ for any initial

endowment (x, y) ∈ NT . If (x, s) /∈ NT then an immediate

transaction to the closest point in NT followed by application of

this policy is optimal in U ′. The maximal expected utility is

v(x, s) = yγψ(x/y).
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