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The proof of Theorem 2.1 will be “guess and verify” and consist
of three steps:

formulate and solve HJB-equation,
an auxiliary technical result,

find appropriate supermartingale (needs Itd’s formula).
Step 77:

When 7 and c¢ are constants, then the generator of w; acts on
o€ C? by
1
(AT0) (w) = ((r + (@ — r)m)w — ¢) ' (w) + §w27120217”(w).
The HJB-equation reads

”
max{(A“"0)(w) + % —d0(w)} =0 for all w > 0.

c,m
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The maxima are achieved at

c= @’(w)% and 7= 7;55,((:2))

and hence the HJB-equation is equivalent to

2 (512
L, p) -7
rwv—?ﬁ” +T

(@)= — 65 = 0.

It is easy to see that v(w) = y~!C7 1w is solution of this
differential equation.
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Step 77:
Let (c¢, 7)) € U be an arbitrary policy and define the process

t
Ty ::/ oy dzy.-
0

Then w; is given explicitly (proof: 1t6’s formula) by

w, = (w - /Ot cofs ds>€(xt)exp (m + /Ot(a e du>

where £ is the stochastic exponential of z; and

fsi= exp(—rs—/S ((a—r)wu_ %J%Z) du—/
0 0

= wy has moments of all orders by Holder’s inequality and
since m; is bounded.

s

0Ty dzu> .
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Step 77:
Define for any policy (¢, 7) the process

t
M, = / e~ u(cs) ds + e o (wy),
0

where v(w) =y~ 'C7lw". Itd’s formula then shows that
t ot
M, = M+ / e=9 ((AC’%)(wS) +o- 5v(ws)> ds
0
t
+UCV_1/ e_‘ssﬂswz dzs.
0

= M, is a supermartingale and if (¢;, ;) = (¢}, 7)) it is a
martingale. Thus,

v(w) = My > By [My] = By /0 eu(cy) ds] + Eole~ v (uwy)].
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The proof is complete if we can show that
: —ot _
tlggo Eyle " v(w)] =0

for any (c,m) € U. To this end, observe that by It&’s formula we
may write

t
e O] = wiE(yay) exp (/ as ds),
0

where

A 1
a8:’y<r+(a—r)7r —2——5(1—7)770>—5

Since as < —(1 — )C the claim follows. This completes the
proof.
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Guessing solution for problem with transaction costs.

Ansatz: try L and U absolutely continuous with bounded
derivatives, that is,

t ¢
Lt:/lsds, Ut:/usds, 0<ls,us <k
0 0
The HJB-equation reads
L 5 9. ~ ~ 1 ~
max § —o- Y Vyy + ravy + oy, + —c — ¢ty
c,l,u 2 0

(= (L 4+ N0+ 0y) L+ ((1 = @)y — 0y)u — 5@} = 0.



Since v, and ¥, are positive (extra wealth gives increased
utility), we see that the maxima are attained as follows:

Cc
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if Oy > (14 A\)7g,
if Gy < (14 \)ig,
if Gy > (1 — p)s,
if 0y < (1 — p)0g



Since v, and ¥, are positive (extra wealth gives increased
utility), we see that the maxima are attained as follows:

¢ = (5)V0D,
S A
0, if Dy < (14 A)Dy,
0, if o, > (1 — pu)d,,
u =
K, if Oy < (1 — p)0s.

This indicates that the optimal transaction policies are
“bang-bang”: buying and selling either take place at maximum
rate or not at all, and the solvency region splits into three
regions

m B, the region in which stocks are bought,

m S, the region in which stocks are sold,

m NT the region where no transactions take place.



Let us analyse the boundary
Uy = (1 4+ )0y

between S and NT (a similar argument applies for the
boundary between NT and B). To this end assume that © € C!
and that it is homothetic which implies that

By (pz, py) = p' ' u(2,y).



Let us analyse the boundary
Uy = (1 4+ )0y

between S and NT (a similar argument applies for the
boundary between NT and B). To this end assume that © € C!
and that it is homothetic which implies that

By (pz, py) = p' ' u(2,y).

It follows that if v, (z,y) = (1 + X\)0,(x, y) for some point (x,y),
then the same is true for all points along the ray through (z,y).
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Heuristic argument suggests so far:

m boundaries between transaction and no-transaction regions
are straight lines through the origin,

m in the transaction regions , transactions take place at
maximum, i.e. infinite, speed, which implies that the
investor will make an instantaneous finite transaction to
the boundary of NT',

m the finite transaction in S or B moves the portfolio down
or up a line of slope —1/(1 — p) or —1/(1 + A).

m after the initial transaction, all further transactions must
take place at the boundaries, and this suggests a “local
time” type of transaction policy,

m meanwhile, consumption takes place at rate (vx)l/ (=1,



In NT the value function v(x,y) satisfies the HJB-equation
with | =u =0:
2

1 1
max {50 Y2vyy + (rz — c)vy + ayvy, + =7 — (52}} =0,
¢ v

ie.,

1 1-—
502y20yy + (re — c)vy + ayvy, + 5 ryv;w(l_w) —dv =0.




In NT the value function v(x,y) satisfies the HJB-equation
with | =u =0:
2

1 1
max {50 Y2vyy + (rz — c)vy + ayvy, + =7 — (52}} =0,
¢ v

ie.,

1 1-—
502y20yy + (re — c)vy + ayvy, + 5 ryv;w(l_w) —dv =0.

The final step now consists of reducing this equation to an
equation in one variable. In order to do so, define

Y(x) = v(zx,1).

By the homothetic property it follows that v(x,y) = y ¢ (x/y).



If our conjectured optimal policy is correct then v is constant
along lines of slope (1 — p)~! in S and along lines of slope
(1+X)~!in B, and this implies by homothetic property that
(x+1—p), z<ux,

(x+14XN)7, z>ap,

<|~<|»~

for some constants A, B and xy and xp as in the picture.



If our conjectured optimal policy is correct then v is constant
along lines of slope (1 — p)~! in S and along lines of slope
(1+X)~!in B, and this implies by homothetic property that

b(#) = @+ 1- ), x <,

_ 2

P(x) = ;(x +14+ X)), z>ap,

for some constants A, B and zg and x7 as in the picture. Using
the homothetic property again, one can show that 1 satisfies for
x € [xo, z7],

Bay" (x) + Boat! () + Prp(x) + “TV(w/(x))—v/u—w o,

where 31 = —%027(1 —y+ay) =68, fo=0c*(1—7)+7r—q,
B3 = 07



Theorem (4.1, follows from [?

Take 0 < xog < x7 and let NT' be the closed wedge shown in the
picture, with upper and lower boundaries 0S,0B respectively.
Let ¢ : NT — [0,00) be any Lipschitz continuous function and
let (x,y) € NT. Then there exists a unique process sg, sy and
continuous increasing processes L,U such that for

t <7 =inf{t >0: (so(t),s1(t)) =0}

dso(t) = (rso(t) —c(so(t), s1(t)))dt
—(L+XN)dL; + (1 — p)dU;, s0(0) = =,
dsi(t) = asi(t)dt 4+ os1(t)dzy — dUy,  $1(0) =y,

t

Ly = /0 L{(so(&),51(¢))coB} AL,
t

U = /0 L{(so(),51(¢))c0s}y AUt

The process ¢ := c(so(t), s1(t)) satisfies condition (2.1)(1).



Define the set of policies that do not involve short selling:
W={(c,L,U) € U: (s0(t),s1(t)) € -7, for all t > 0},

where /) = {(z,y) € R? : y > 0 and 2 + (1 — p)y > 0}.



Theorem (4.2, proof in |?

Le 0 < v <1 and assume Condition A holds. Suppose there are
constants A, B, xo,xr and a function 1 : [-1(1 — pu),00) = R
such that

0<zy <z < 00,

Y is C? and ¢/ (x) > 0 for all z,
Y(z) = %A(az +1—p)? forx < xg,
Bz (x) + Bozt' () + Prep(z)

+1_T’Y(¢/(x))_7/(l_’y) =0 fO'f’ lE [3707 JTT],

Y(z) = %B(az + 14+ N7 forz > xr.



Theorem

Let Nt denote the closed wedge
{(z,y) eR} 127! <ya™' <aj'}

and let B and S denote the regions below and above NT' as in
the picture. For (z,y) € NT \ {(0,0)} define

*z,y) =y (z/y) "/,

Let & = c*(so(t),s1(t)) where (so,s1,L*,U*) is the unique
solution of (4.1) with ¢ := c¢*. Then the policy

(€*(t), L*(t),U*(t)) is optzmal in the class %' for any initial
endowment (x,y) € NT. If (x,s) ¢ NT then an immediate
transaction to the closest point in NT followed by application of
this policy is optimal in %'. The mazimal expected utility is

v(z,s) =y P(z/y).
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