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Reflections V = vector space over k, dimV is finite.

s 2 GL(V ) is a (pseudo)reflection if s is of finite order,
codimV s = 1.

• real reflections (k = R): s � diag(1; 1; : : : ; 1;�1)
X

O

s(X)

reflecting hyperplane = ker(Id � s)

• complex reflections (k = C): s � diag(1; 1; : : : ; 1; ")
" 6= 1 a root of 1

• char k > 0: s may not be diagonalisable



Finite reflection groups (subgps of GL(V ) generated by reflections)

NB: Finiteness is a very strong condition!

Only very special arrangements of reflecting hyperplanes
(“mirrors”) lead to finite reflection groups.

Reflection groups over Q = Weyl groups
(extremely important in the theory of semisimple Lie algebras)

\

Real reflection groups = Coxeter groups

\

Complex reflection groups



Finite reflection groups: classification over Q and R

A reflection group can be characterised by the set of �normals to
mirrors (roots)

• For example: Rn+1 3 fei � ej : 1 � i 6= j � n + 1g
reflections sij : ei $ ej generate symmetric group Sn+1
(Weyl group of type An , n � 1)

• Weyl group of type Bn , n � 2:
Rn 3 f�ei � ej : 1 � i 6= j � ng [ f�ei : 1 � i � ng
reflection-generators sij : ei $ ej , ti : ei $ �ei (hyperoctahedral
group, order 2nn !)

• Also, Dn (n � 4), E6, E7, E8, F4, G2 are Weyl groups
I2(m), H3, H4 are “extra” Coxeter groups



Root systems of D4 and E8

(planar projection of the polytope which is the convex hull of the
root system)



Complex reflection groups

The Shephard – Todd classification of finite complex
reflection groups (1954)

They all are direct products of the following groups:

• G = G(m ; p;n) � GLn(C), pjm
(invertible n � n matrices with exactly n non-zero entries
which are m th roots of 1, their product is an (m=p)th root of 1)

• G = one of the exceptional groups G4; : : : ;G37.

Notation: S(V )G = fp in S(V ) : g(p) = p 8 g 2 Gg

The Chevalley – Shephard – Todd theorem (1955)

Assume that char k = 0. A finite G < GL(V ) is a complex
reflection group, if and only if S(V )G is a polynomial algebra.



Remark on generators of S(V )G

S(V ) is an algebra of polynomials in n = dimV variables.

If G < GL(V ) is a finite complex reflection group, S(V )G has n
algebraically independent generators p1; : : : ; pn .

Moreover, p1; : : : ; pn may be chosen to be homogeneous.

p1; : : : ; pn are not unique, but fd1; : : : ; dng = fdeg p1; : : : ;deg png
is uniquely determined by G (degrees of G).

One has d1d2 : : : dn = jG j.

Example G = Sn symmetric group � GLn(C)

p1; : : : ; pn are, e.g., elementary symmetric polynomials in n
variables

Degrees: d1 = 1; d2 = 2; : : : ; dn = n



Generalisations of the C-S-T theorem

(1) char k > 0.

Serre (1970s) proved that if S(V )G is polynomial, then G is a
reflection group, and for any proper subspace W � V , H=the
stabiliser of W has polynomial S(W )H .

Kemper, Malle (1997) proved “if and only if” (using a classification
of pseudoreflection groups due to Kantor, Wagner, Zalesskii,
Serezhin).

(2) Replace S(V ) with some noncommutative algebra, on which
the group G acts.

(In other words, consider a “noncommutative space” with an action
of G .)

Below is a particular case of this:

V = C-span of x1; : : : ; xn ; q = fqij g
n
i ;j=1, qii = 1, qij qji = 1 8 i ; j

Sq(V ) = hx1; : : : ; xn jxixj = qij xj xi i “the algebra of
q-polynomials”



Problem 1: Find finite G such that G acts on Sq(V ) and Sq(V )G

is also a q 0-polynomial algebra.

(“q-reflection groups”?)

B.-Berenstein, 2009:

instead of solving Problem 1, solved a different problem (Problem
2 below) such that:

• if qij = 1 8 i ; j (the commutative case), the solution to
Problem 1 AND to Problem 2 are reflection groups.



The semidirect product S(V )oG

To see what Problem 2 is about, condider the following.

Definition: The semidirect product S(V )oG is the algebra
generated by V and by the algebra CG subject to relations

g � v = g(v) � g for g 2 G , v 2 V ; [v1; v2] = 0 8v1; v2 2 V .

Important property: if x1; : : : ; xn are a basis of V ,

fx k11 : : : x knn g j ki 2 Z�0; g 2 Gg

is a basis of S(V )oG .

In other words, S(V )oG is S(V )
CG as a vector space.



Drinfeld’s degenerate affine Hecke algebra

Drinfeld (1985) suggested the following deformation of the
defining relations of S(V )oG . Let A be the algebra generated by
V and by the algebra CG subject to relations

g � v = g(v) � g for g 2 G , v 2 V ; [v1; v2] =
P

g2G ag(v1; v2)g .

Here ag : V �V ! C are bilinear forms.

Clearly, the above set
fx k11 : : : x knn gg (†)

of monomials spans A, but it may now be linearly dependent, and
A may be “strictly smaller” than S(V )
CG .

The set fag : g 2 Gg � (V 
V )� is called admissible, if the
monomials (†) are a basis of A.

• PBW-type basis

• A is a flat deformation of S(V )oG



The following conditions are necessary for fag : g 2 Gg to be
admissible: for vi 2 V , g 2 G ,

• [v1; v2] = �[v2; v1], so ag is skew-symmetric;

• g � [v1; v2] = [g(v1); g(v2)] � g , so
ah(v1; v2) = aghg�1(g(v1); g(v2));

• [[v1; v2]; v3] + [[v2; v3]; v1] + [[v3; v1]; v2] = 0 (Jacobi identity),
which rewrites as

g 6= 1; ag 6= 0 ) ker(ag) = V g and codim(V g) = 2.
Here V g = fv 2 V : g(v) = vg.

Drinfeld claimed that the above conditions are sufficient for fagg
to be admissible. This claim is true.

Definition A, which is a flat deformation of S(V )oG , is called a
degenerate affine Hecke algebra.

Problem 2(D): Find such A for a given G < GL(V ). ([Dr’85]:
G = Sn or Coxeter gp.)



History

Q. Why study flat deformations of S(V )oG?

A. Representation theory, geometry (orbifolds V =G), Lie theory
etc.

For example:

• Lusztig (1989) introduced the “graded affine Hecke algebra” of
a Weyl group G , a deformation of the semidirect product
relation in S(V )oG .

• Etingof, Ginzburg (2002) introduced the symplectic
reflection algebras which are degenerate affine Hecke
algebras for G which preserves a symplectic form ! on V .

(Both were done without knowing about Drinfeld’s earlier
construction.)



Particular case: The split symplectic case

G < GL(V ), the algebra to be deformed is S(V �V �)oG .

There is always a non-trivial deformation, the Heisenberg-Weyl
algebra A(V ):

8x ; x 0 2 V �; v ; v 0 2 V

[x ; x 0] = 0; [v ; v 0] = 0; [v ; x ] = hv ; x i � 1;

where h ; i is the canonical pairing between V and V �.

A(V ) is the most straightforward quantisation of the phase space
V �V �.

If h�; x i � 1 is replaced by an expression in CG and the deformation
is still flat, one has a rational Cherednik algebra of G .

These are introduced and classified in [EG, Invent. Math., ’02] and
correspond to complex reflection groups.
Problem 2: Find finite G for which there is a q-analogue of the
rational Cherednik algebra of G .



Dunkl operators

@

@v
, v 2 V , are commuting operators on S(V �).

NB:
@

@v
p = [v ; p] in the algebra A(V ), where p 2 S(V �).

Deformation: Replace A(V ) �= S(V �V �) with a rational
Cherednik algebra HC (G) �= S(V �V �)
CG of G < GL(V ):

rvp =
@p

@v
+
X

s

cs � �s(v) �
p � s(p)

�s

, where

• s runs over complex reflections in G < GL(V )

• cs are scalar parameters such that cgsg�1 = cs for all g 2 G

• �s 2 V � is the root of s : s(v) = v ��s(v)�
_
s for some �_s 2 V

These operators were first introduced by Dunkl (1989) for Coxeter
groups (in harmonic analysis).



Dunkl operators commute

Theorem [Du,EG]: rv (polynomials) � polynomials,
rurv = rvru

Proof (using rational Cherednik algebras): HC (G) acts on S(V �)
via induced representation. The action of v 2 V is via the Dunkl
operator rv . But v 2 V commute in HC (G).

Example for G = Sn :

ri =
@

@xi
+ c
P
j 6=i

1

xi � xj
(1� sij )

r1; : : : ;rn act on C[x1; : : : ; xn ] and commute.



Braided doubles

The rational Cherenik algebra is a flat deformation of

A(V )oG �= S(V )
CG 
S(V �) (triangular decomposition).

[EG] prove this, using the Koszul deformation principle.
[B.-Berenstein, Adv. Math. ’09] introduce braided doubles (a more
general class of algebras defined by triangular decomposition):

T (V )=I�
H 
T (W )=I+ where V ;W are modules over a
Hopf algebra H , I� are two-sided ideals, [V ;W ] � H .
Example (the differential calculus on a noncommutative space):

Y is a space with a braiding 	 2 End(Y 
Y ),

i.e., (Id 
	)(	
 Id)(Id 
	) = (	
 Id)(Id 
	)(	
 Id).

 braided Weyl algebra A(Y ;	) �= B(Y )
B(Y �).

Here B(Y ), B(Y �) are Nichols algebras which have relations
that depend on 	.



Anticommuting Dunkl operators

Theorem [B.-Berenstein] If D = T (V )=I�
kG 
T (W )=I+ is
a minimal braided double, there exist a finite-dimensional braided
space (Y ;	) so that D embeds in A(Y ;	)oG .

Thus, one may look for algebras with triangular decomposition and
with given relations among certain subalgebras of braided Weyl
algebras A(Y ;	)oG .

For example [B.-Berenstein, Selecta Math. ’09]:

Let x 1; : : : ; xn be anticommuting variables, x ix j = �x j x i , i 6= j

Look for algebras of the form
Chv1; : : : ; vni
CG 
Chx 1; : : : ; xni, x iv j � (�1)�ij v j x i 2 CG



Classification of “anticommutative Cherednik algebras”

Theorem 1 (Solution to Problem 2) The above algebras with
triangular decomposition exist for, and only for, the following
groups:

• G = G(m ; p;n), (m=p) even

• G = G(m ; p;n)+, (m=p) even, (m=2p) odd

Definition For finite G < GL(V ), consider the character
det : G ! C� and put C = det(G) (finite cyclic group). Then

G+ = fg 2 G : det(g) 2 C2g

(the subgroup of even elements of G).

(NB Either G+ = G or jG : G+j = 2)

Smallest group in rank n : G = G(2; 1;n)+ = even elements in
the Coxeter group of type Bn (denoted B+

n )



Anticommuting Dunkl operators for B+
n

ri = @i + c
X

j 6=i

xi + xj

x 2i � x 2j
(1� �ij ) +

xi � xj

x 2i � x 2j
(1� �ji ) ,

i = 1; : : : ;n

• @i are anticommuting skew-derivations of Chx 1; : : : ; xni
• �ij is an automorphism of Chx 1; : : : ; xni of order 4,

�ij (x i ) = x j ; �ij (x j ) = �x i ; �ij (x k ) = x k ; k 6= i ; j :

• NB x 2i � x 2j is central in Chx 1; : : : ; xni, division is
well-defined; x 2i � x 2j 6= (x i � x j )(x i + x j )

Theorem 2 ri (skew-polynomials) � skew-polynomials,
rirj = �rjri for i 6= j



Questions • What is Chx 1; : : : ; xniG?

— i.e., can the above class of groups be characterised by
polynomiality of the invariants?

Example Chx 1; : : : ; xniB
+
n is polynomial and is generated by

• x 2k1 + � � �+ x 2kn , k = 1; 2; : : : ;n � 1;

• x 1x 2 : : : xn ,

That is, B+
n (not a reflection group in the usual sense) has

polynomial “anticommutative invariants” and has exponents
2; 4; : : : ; 2(n � 1);n .

NB: the product of the exponents is precisely jB+
n j.



Kirkman, Kuzmanovich, Zhang (2009) proved [independently of
B.-B.]:

Sq(V )G is q 0-polynomial, if and only if G is one of the above B.-B.
groups.

(This settles the C-S-T theorem for Sq(V )G — Problem 1 is now
solved.)



• The algebra of q-commuting variables x1; : : : ; xn (the quantum
hyperplane):

if q 6= �1, need to consider finite-dimensional quotients of Manin’s
quantum group GLq(n ;C);

“Dunkl operators” will be a deformation of the Wess-Zumino
braided differential calculus.

Thank you.


