Reflection groups and q-reflection groups

Yuri Bazlov

Geometry seminar

24 November 2009

Reflections $V=$ vector space over $\mathbb{k}, \operatorname{dim} V$ is finite.
$s \in G L(V)$ is a (pseudo)reflection if s is of finite order, $\operatorname{codim} V^{s}=1$.

- real reflections $(\mathbb{k}=\mathbb{R})$:

$$
s \sim \operatorname{diag}(1,1, \ldots, 1,-1)
$$

reflecting hyperplane $=\operatorname{ker}(I d-s)$

- complex reflections $(\mathbb{k}=\mathbb{C})$:

$$
s \sim \operatorname{diag}(1,1, \ldots, 1, \varepsilon)
$$

$\varepsilon \neq 1$ a root of 1

- char $\mathbb{k}>0$: s may not be diagonalisable

Finite reflection groups (subgps of $G L(V)$ generated by reflections)
NB: Finiteness is a very strong condition!
Only very special arrangements of reflecting hyperplanes
("mirrors") lead to finite reflection groups.
Reflection groups over $\mathbb{Q}=$ Weyl groups (extremely important in the theory of semisimple Lie algebras)

Real reflection groups $=$ Coxeter groups

Complex reflection groups

Finite reflection groups: classification over \mathbb{Q} and \mathbb{R}
A reflection group can be characterised by the set of \pm normals to mirrors (roots)

- For example: $\mathbb{R}^{n+1} \ni\left\{e_{i}-e_{j}: 1 \leq i \neq j \leq n+1\right\}$ reflections $s_{i j}: e_{i} \leftrightarrow e_{j}$ generate symmetric group S_{n+1} (Weyl group of type $A_{n}, n \geq 1$)
- Weyl group of type $B_{n}, n \geq 2$:
$\mathbb{R}^{n} \ni\left\{ \pm e_{i} \pm e_{j}: 1 \leq i \neq j \leq n\right\} \cup\left\{ \pm e_{i}: 1 \leq i \leq n\right\}$ reflection-generators $s_{i j}: e_{i} \leftrightarrow e_{j}, t_{i}: e_{i} \leftrightarrow-e_{i}$ (hyperoctahedral group, order $2^{n} n$!)
- Also, $D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$ are Weyl groups $I_{2}(m), H_{3}, H_{4}$ are "extra" Coxeter groups

Root systems of D_{4} and E_{8}
(planar projection of the polytope which is the convex hull of the root system)

Complex reflection groups

The Shephard - Todd classification of finite complex reflection groups (1954)

They all are direct products of the following groups:

- $G=G(m, p, n) \leq G L_{n}(\mathbb{C}), \quad p \mid m$ (invertible $n \times n$ matrices with exactly n non-zero entries which are m th roots of 1 , their product is an (m / p) th root of 1)
- $G=$ one of the exceptional groups G_{4}, \ldots, G_{37}.

Notation: $S(V)^{G}=\{p$ in $S(V): g(p)=p \quad \forall g \in G\}$

The Chevalley - Shephard - Todd theorem (1955)

Assume that char $\mathbb{k}=0$. A finite $G<G L(V)$ is a complex reflection group, if and only if $S(V)^{G}$ is a polynomial algebra.

Remark on generators of $S(V)^{G}$
$S(V)$ is an algebra of polynomials in $n=\operatorname{dim} V$ variables.
If $G<G L(V)$ is a finite complex reflection group, $S(V)^{G}$ has n algebraically independent generators p_{1}, \ldots, p_{n}.
Moreover, p_{1}, \ldots, p_{n} may be chosen to be homogeneous.
p_{1}, \ldots, p_{n} are not unique, but $\left\{d_{1}, \ldots, d_{n}\right\}=\left\{\operatorname{deg} p_{1}, \ldots, \operatorname{deg} p_{n}\right\}$ is uniquely determined by G (degrees of G).
One has $d_{1} d_{2} \ldots d_{n}=|G|$.
Example $G=\mathbb{S}_{n}$ symmetric group $\leq G L_{n}(\mathbb{C})$
p_{1}, \ldots, p_{n} are, e.g., elementary symmetric polynomials in n variables

Degrees: $d_{1}=1, d_{2}=2, \ldots, d_{n}=n$

Generalisations of the C-S-T theorem
(1) char $\mathbb{k}>0$.

Serre (1970s) proved that if $S(V)^{G}$ is polynomial, then G is a reflection group, and for any proper subspace $W \subset V, H=$ the stabiliser of W has polynomial $S(W)^{H}$.
Kemper, Malle (1997) proved "if and only if" (using a classification of pseudoreflection groups due to Kantor, Wagner, Zalesskii, Serezhin).
(2) Replace $S(V)$ with some noncommutative algebra, on which the group G acts.
(In other words, consider a "noncommutative space" with an action of G.)

Below is a particular case of this:
$V=\mathbb{C}$-span of $x_{1}, \ldots, x_{n} ; \mathbf{q}=\left\{q_{i j}\right\}_{i, j=1}^{n}, q_{i i}=1, q_{i j} q_{j i}=1 \forall i, j$
$S_{\mathbf{q}}(V)=\left\langle x_{1}, \ldots, x_{n} \mid x_{i} x_{j}=q_{i j} x_{j} x_{i}\right\rangle$ "the algebra of
q-polynomials"

Problem 1: Find finite G such that G acts on $S_{\mathbf{q}}(V)$ and $S_{\mathbf{q}}(V)^{G}$ is also a q^{\prime}-polynomial algebra.
(" q-reflection groups"?)
B.-Berenstein, 2009:
instead of solving Problem 1, solved a different problem (Problem 2 below) such that:

- if $q_{i j}=1 \forall i, j$ (the commutative case), the solution to Problem 1 AND to Problem 2 are reflection groups.

The semidirect product $S(V) \rtimes G$
To see what Problem 2 is about, condider the following.
Definition: The semidirect product $S(V) \rtimes G$ is the algebra generated by V and by the algebra $\mathbb{C} G$ subject to relations
$g \cdot v=g(v) \cdot g$ for $g \in G, v \in V ; \quad\left[v_{1}, v_{2}\right]=0 \forall v_{1}, v_{2} \in V$.
Important property: if x_{1}, \ldots, x_{n} are a basis of V,

$$
\left\{x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} g \mid k_{i} \in \mathbb{Z}_{\geq 0}, g \in G\right\}
$$

is a basis of $S(V) \rtimes G$.
In other words, $S(V) \rtimes G$ is $S(V) \otimes \mathbb{C} G$ as a vector space.

Drinfeld's degenerate affine Hecke algebra
Drinfeld (1985) suggested the following deformation of the defining relations of $S(V) \rtimes G$. Let A be the algebra generated by V and by the algebra $\mathbb{C} G$ subject to relations
$g \cdot v=g(v) \cdot g$ for $g \in G, v \in V ; \quad\left[v_{1}, v_{2}\right]=\sum_{g \in G} a_{g}\left(v_{1}, v_{2}\right) g$. Here $a_{g}: V \times V \rightarrow \mathbb{C}$ are bilinear forms.

Clearly, the above set

$$
\left\{x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} g\right\}
$$

of monomials spans A, but it may now be linearly dependent, and A may be "strictly smaller" than $S(V) \otimes \mathbb{C} G$.

The set $\left\{a_{g}: g \in G\right\} \subset(V \otimes V)^{*}$ is called admissible, if the monomials (\dagger) are a basis of A.

- PBW-type basis
- A is a flat deformation of $S(V) \rtimes G$

The following conditions are necessary for $\left\{a_{g}: g \in G\right\}$ to be admissible: for $v_{i} \in V, g \in G$,

- $\left[v_{1}, v_{2}\right]=-\left[v_{2}, v_{1}\right], \quad$ so a_{g} is skew-symmetric;
- $g \cdot\left[v_{1}, v_{2}\right]=\left[g\left(v_{1}\right), g\left(v_{2}\right)\right] \cdot g$, so $a_{h}\left(v_{1}, v_{2}\right)=a_{g h g^{-1}}\left(g\left(v_{1}\right), g\left(v_{2}\right)\right)$;
- $\left[\left[v_{1}, v_{2}\right], v_{3}\right]+\left[\left[v_{2}, v_{3}\right], v_{1}\right]+\left[\left[v_{3}, v_{1}\right], v_{2}\right]=0$ (Jacobi identity), which rewrites as
$g \neq 1, a_{g} \neq 0 \quad \Rightarrow \quad \operatorname{ker}\left(a_{g}\right)=V^{g}$ and $\operatorname{codim}\left(V^{g}\right)=2$.
Here $V^{g}=\{v \in V: g(v)=v\}$.
Drinfeld claimed that the above conditions are sufficient for $\left\{a_{g}\right\}$ to be admissible. This claim is true.
Definition A, which is a flat deformation of $S(V) \rtimes G$, is called a degenerate affine Hecke algebra.
Problem 2(D): Find such A for a given $G<\mathrm{GL}(V)$. ([Dr'85]:
$G=S_{n}$ or Coxeter gp.)

History
Q. Why study flat deformations of $S(V) \rtimes G$?
A. Representation theory, geometry (orbifolds V / G), Lie theory etc.

For example:

- Lusztig (1989) introduced the "graded affine Hecke algebra" of a Weyl group G, a deformation of the semidirect product relation in $S(V) \rtimes G$.
- Etingof, Ginzburg (2002) introduced the symplectic reflection algebras which are degenerate affine Hecke algebras for G which preserves a symplectic form ω on V.
(Both were done without knowing about Drinfeld's earlier construction.)

Particular case: The split symplectic case
$G<\mathrm{GL}(V)$, the algebra to be deformed is $S\left(V \oplus V^{*}\right) \rtimes G$.
There is always a non-trivial deformation, the Heisenberg-Weyl algebra $\mathcal{A}(V)$:

$$
\begin{gathered}
\forall x, x^{\prime} \in V^{*}, v, v^{\prime} \in V \\
{\left[x, x^{\prime}\right]=0, \quad\left[v, v^{\prime}\right]=0, \quad[v, x]=\langle v, x\rangle \cdot 1}
\end{gathered}
$$

where \langle,$\rangle is the canonical pairing between V$ and V^{*}.
$\mathcal{A}(V)$ is the most straightforward quantisation of the phase space $V \oplus V^{*}$.

If $\langle\xi, x\rangle \cdot 1$ is replaced by an expression in $\mathbb{C} G$ and the deformation is still flat, one has a rational Cherednik algebra of G.
These are introduced and classified in [EG, Invent. Math., '02] and correspond to complex reflection groups.
Problem 2: Find finite G for which there is a q-analogue of the rational Cherednik algebra of G.

Dunkl operators
$\frac{\partial}{\partial v}, v \in V$, are commuting operators on $S\left(V^{*}\right)$.
NB: $\frac{\partial}{\partial v} p=[v, p]$ in the algebra $\mathcal{A}(V)$, where $p \in S\left(V^{*}\right)$.
Deformation: Replace $\mathcal{A}(V) \cong S\left(V \oplus V^{*}\right)$ with a rational
Cherednik algebra $H_{C}(G) \cong S\left(V \oplus V^{*}\right) \otimes \mathbb{C} G$ of $G<\mathrm{GL}(V)$:

$$
\nabla_{v} p=\frac{\partial p}{\partial v}+\sum_{s} c_{s} \cdot \alpha_{s}(v) \cdot \frac{p-s(p)}{\alpha_{s}}, \text { where }
$$

- s runs over complex reflections in $G<G L(V)$
- c_{s} are scalar parameters such that $c_{g s g^{-1}}=c_{s}$ for all $g \in G$
- $\alpha_{s} \in V^{*}$ is the root of $s: s(v)=v-\alpha_{s}(v) \alpha_{s}^{\vee}$ for some $\alpha_{s}^{\vee} \in V$

These operators were first introduced by Dunkl (1989) for Coxeter groups (in harmonic analysis).

Dunkl operators commute
Theorem [Du,EG]: ∇_{v} (polynomials) \subseteq polynomials,
$\nabla{ }_{u} \nabla_{v}=\nabla_{v} \nabla_{u}$
Proof (using rational Cherednik algebras): $H_{C}(G)$ acts on $S\left(V^{*}\right)$ via induced representation. The action of $v \in V$ is via the Dunkl operator ∇_{v}. But $v \in V$ commute in $H_{C}(G)$.

Example for $G=\mathbb{S}_{n}$:
$\nabla_{i}=\frac{\partial}{\partial x_{i}}+c \sum_{j \neq i} \frac{1}{x_{i}-x_{j}}\left(1-s_{i j}\right)$
$\nabla_{1}, \ldots, \nabla_{n}$ act on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and commute.

Braided doubles

The rational Cherenik algebra is a flat deformation of
$\mathcal{A}(V) \rtimes G \cong S(V) \otimes \mathbb{C} G \otimes S\left(V^{*}\right)$ (triangular decomposition).
[EG] prove this, using the Koszul deformation principle.
[B.-Berenstein, Adv. Math. '09] introduce braided doubles (a more general class of algebras defined by triangular decomposition):
$T(V) / I^{-} \otimes H \otimes T(W) / I^{+}$where V, W are modules over a Hopf algebra $H, I^{ \pm}$are two-sided ideals, $[V, W] \subset H$.
Example (the differential calculus on a noncommutative space):
Y is a space with a braiding $\Psi \in \operatorname{End}(Y \otimes Y)$,
i.e., $(I d \otimes \Psi)(\Psi \otimes I d)(I d \otimes \Psi)=(\Psi \otimes I d)(I d \otimes \Psi)(\Psi \otimes I d)$.
\rightsquigarrow braided Weyl algebra $\mathcal{A}(Y, \Psi) \cong \mathcal{B}(Y) \otimes \mathcal{B}\left(Y^{*}\right)$.
Here $\mathcal{B}(Y), \mathcal{B}\left(Y^{*}\right)$ are Nichols algebras which have relations that depend on Ψ.

Anticommuting Dunkl operators
Theorem [B.-Berenstein] If $D=T(V) / I^{-} \otimes \mathbb{k} G \otimes T(W) / I^{+}$is a minimal braided double, there exist a finite-dimensional braided space (Y, Ψ) so that D embeds in $\mathcal{A}(Y, \Psi) \rtimes G$.
Thus, one may look for algebras with triangular decomposition and with given relations among certain subalgebras of braided Weyl algebras $\mathcal{A}(Y, \Psi) \rtimes G$.
For example [B.-Berenstein, Selecta Math. '09]:
Let $\underline{x}_{1}, \ldots, \underline{x}_{n}$ be anticommuting variables, $\underline{x}_{i} \underline{x}_{j}=-\underline{x}_{j} \underline{x}_{i}, i \neq j$
Look for algebras of the form $\mathbb{C}\left\langle\underline{v}_{1}, \ldots, \underline{v}_{n}\right\rangle \otimes \mathbb{C} G \otimes \mathbb{C}\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle, \underline{x}_{i} \underline{v}_{j}-(-1)^{\delta_{i j}} \underline{v}_{j} \underline{x}_{i} \in \mathbb{C} G$

Classification of "anticommutative Cherednik algebras"
Theorem 1 (Solution to Problem 2) The above algebras with triangular decomposition exist for, and only for, the following groups:

- $G=G(m, p, n), \quad(m / p)$ even
- $G=G(m, p, n)_{+}, \quad(m / p)$ even, $\quad(m / 2 p)$ odd

Definition For finite $G<G L(V)$, consider the character $\operatorname{det}: G \rightarrow \mathbb{C}^{\times}$and put $C=\operatorname{det}(G)$ (finite cyclic group). Then

$$
G_{+}=\left\{g \in G: \operatorname{det}(g) \in \mathcal{C}^{2}\right\}
$$

(the subgroup of even elements of G).
(NB Either $G_{+}=G$ or $\left|G: G_{+}\right|=2$)
Smallest group in rank n : $G=G(2,1, n)_{+}=$even elements in the Coxeter group of type B_{n}

Anticommuting Dunkl operators for B_{n}^{+}

$$
\underline{\nabla}_{i}=\underline{\partial}_{i}+c \sum_{j \neq i} \frac{x_{i}+x_{j}}{x_{i}^{2}-x_{j}^{2}}\left(1-\sigma_{i j}\right)+\frac{x_{i}-x_{j}}{x_{i}^{2}-x_{j}^{2}}\left(1-\sigma_{j i}\right)
$$

$i=1, \ldots, n$

- $\underline{\partial}_{i}$ are anticommuting skew-derivations of $\mathbb{C}\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$
- $\sigma_{i j}$ is an automorphism of $\mathbb{C}\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$ of order 4,

$$
\sigma_{i j}\left(\underline{x}_{i}\right)=\underline{x}_{j}, \quad \sigma_{i j}\left(\underline{x}_{j}\right)=-\underline{x}_{i}, \quad \sigma_{i j}\left(\underline{x}_{k}\right)=\underline{x}_{k}, \quad k \neq i, j .
$$

- NB $\underline{x}_{i}^{2}-\underline{x}_{j}^{2}$ is central in $\mathbb{C}\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$, division is well-defined; $\underline{x}_{i}^{2}-\underline{x}_{j}^{2} \neq\left(\underline{x}_{i}-\underline{x}_{j}\right)\left(\underline{x}_{i}+\underline{x}_{j}\right)$

Theorem $2 \nabla_{i}$ (skew-polynomials) \subseteq skew-polynomials, $\underline{\nabla_{i}} \underline{\nabla}_{j}=-\underline{\nabla_{j}} \underline{\nabla}_{i}$ for $i \neq j$

Questions • What is $\mathbb{C}\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle^{G}$?

- i.e., can the above class of groups be characterised by polynomiality of the invariants?

Example $\mathbb{C}\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle^{B_{n}^{+}}$is polynomial and is generated by

- $\underline{x}_{1}^{2 k}+\cdots+\underline{x}_{n}^{2 k}, \quad k=1,2, \ldots, n-1$;
- $\underline{x}_{1} \underline{x}_{2} \ldots \underline{x}_{n}$,

That is, B_{n}^{+}(not a reflection group in the usual sense) has polynomial "anticommutative invariants" and has exponents $2,4, \ldots, 2(n-1), n$.
NB: the product of the exponents is precisely $\left|B_{n}^{+}\right|$.

Kirkman, Kuzmanovich, Zhang (2009) proved [independently of B.-B.]:
$S_{\mathbf{q}}(V)^{G}$ is q^{\prime}-polynomial, if and only if G is one of the above B.-B. groups.
(This settles the C-S-T theorem for $S_{\mathbf{q}}(V)^{G}$ - Problem 1 is now solved.)

- The algebra of q-commuting variables x_{1}, \ldots, x_{n} (the quantum hyperplane):
if $q \neq-1$, need to consider finite-dimensional quotients of Manin's quantum group $G L_{q}(n, \mathbb{C})$;
"Dunkl operators" will be a deformation of the Wess-Zumino braided differential calculus.

Thank you.

