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İlke Çanakçı
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Overview

• Cluster algebras were introduced by Fomin and Zelevinsky
[FZ1] with the desire of creating an algebraic framework for the
study of (dual) canonical bases in Lie theory.

• Cluster algebras are defined by generators and relations, and
the set of generators is constructed recursively from some initial
data (x,Q) called seed, where x = (x1, · · · , xn) and Q is a
quiver.

• Cluster algebras form a class of combinatorially defined
commutative algebras, and the set of generators of a cluster
algebra, cluster variables, is obtained by an iterative process
called seed mutation.

• The cluster variables are rational functions in several
variables x1, x2, · · · , xn by construction.

• However, by a well-known result in [FZ1] they can be expressed
as Laurent polynomials in x1, x2, · · · , xn with integer
coefficients.
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Overview

• Cluster algebras from surfaces, introduced in [FST], have a
geometric interpretation in surfaces.

• A surface cluster algebra A is associated to a surface S with
boundary that has finitely many marked points.

• Cluster variables are in bijection with certain curves [FST],
called arcs. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associate a connected graph, called the
snake graph to each arc in the surface to obtain a direct
formula, the expansion formula, for cluster variables of surface
cluster algebras.

xγ = 1
cross (γ,T )

∑
P`Gγ

x(P)y(P)
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İlke Çanakçı

Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Overview
• Cluster algebras from surfaces, introduced in [FST], have a

geometric interpretation in surfaces.

• A surface cluster algebra A is associated to a surface S with
boundary that has finitely many marked points.

1

2

3

γ1

γ2

• Cluster variables are in bijection with certain curves [FST],
called arcs. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associate a connected graph, called the
snake graph to each arc in the surface to obtain a direct
formula, the expansion formula, for cluster variables of surface
cluster algebras.

xγ = 1
cross (γ,T )

∑
P`Gγ

x(P)y(P)
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Overview
• Cluster algebras from surfaces, introduced in [FST], have a

geometric interpretation in surfaces.

• A surface cluster algebra A is associated to a surface S with
boundary that has finitely many marked points.

1

2

3

γ1

γ2

γ3

γ4γ5

γ6

• Cluster variables are in bijection with certain curves [FST],
called arcs. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associate a connected graph, called the
snake graph to each arc in the surface to obtain a direct
formula, the expansion formula, for cluster variables of surface
cluster algebras.

xγ = 1
cross (γ,T )

∑
P`Gγ

x(P)y(P)
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İlke Çanakçı
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Motivation

Let A(S ,M) cluster algebra associated to a surface (S ,M).

We have the following situation:

Question
“How much can we recover from snake graphs themselves?”

In particular,

• When do the two arcs corresponding to two snake graphs cross?

• What are the snake graphs corresponding to the skein relations?
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Motivation

Let A(S ,M) cluster algebra associated to a surface (S ,M).

We have the following situation:

cluster variable ←→[FST]

arc −→[MSW]

snake graph

Question
“How much can we recover from snake graphs themselves?”

In particular,

• When do the two arcs corresponding to two snake graphs cross?

• What are the snake graphs corresponding to the skein relations?
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İlke Çanakçı
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Surface Cluster Algebras

• Let S be a connected oriented 2-dimensional Riemann surface
with nonempty boundary, and let M be a nonempty finite subset
of the boundary of S , such that each boundary component of S
contains at least one point of M. The elements of M are called
marked points. The pair (S ,M) is called a bordered surface
with marked points.

g = 2

g = 1

g = 0

b = 1 b = 2

İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 6 / 35



On surface
cluster algebras
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Surface Cluster Algebras

Definition
An arc γ in (S ,M) is a curve in S , considered up to isotopy, such
that:

• the endpoints of γ are in M;

• γ does not cross itself;

• except for the endpoints, γ is disjoint from the boundary of S ;
and

• γ does not cut out a monogon or a bigon.

Remark
Curves that connect two marked points and lie entirely on the
boundary of S without passing through a third marked point are
boundary segments. Note that boundary segments are not arcs.
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Surface Cluster Algebras

Definition
For any two arcs γ, γ′ in S , let e(γ, γ′) be the minimal number of
crossings of arcs α and α′, where α and α′ range over all arcs
isotopic to γ and γ′, respectively. We say that arcs γ and γ′ are
compatible if e(γ, γ′) = 0.

Definition
A triangulation is a maximal collection of pairwise compatible arcs
(together with all boundary segments).

1
2

3

4

5

6
7
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İlke Çanakçı
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Surface Cluster Algebras

Definition
Triangulations are connected to each other by sequences of flips.
Each flip replaces a single arc γ in a triangulation T by a (unique)
arc γ′ 6= γ that, together with the remaining arcs in T , forms a new
triangulation.
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İlke Çanakçı
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 9 / 35



On surface
cluster algebras
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Surface Cluster Algebras

Definition
Triangulations are connected to each other by sequences of flips.
Each flip replaces a single arc γ in a triangulation T by a (unique)
arc γ′ 6= γ that, together with the remaining arcs in T , forms a new
triangulation.

1
2

3

4

5

6
7

1
2

3

4

5

6
7
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İlke Çanakçı
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Surface Cluster Algebras
Theorem (FST,FT)
For cluster algebras from surfaces

• there are bijections

{ arcs } −→ { cluster variables }
γ 7→ xγ

{ triangulations } −→ { clusters }
T = {τ1, · · · , τn} 7→ xT = {xτ1 , · · · , xτn}

• The triangulation T\{τk} ∪ {τ ′k} obtained by flipping the arc τk
corresponds to the mutation µk(xT ) = xT\{xτk

} ∪ {xτ ′
k
}.

Definition
The surface cluster algebra A = A(S ,M) associated to a surface
(S ,M) is a Z-subalgebra of Q(x1, · · · , xn) generated by all cluster
variables xγ .
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Snake graphs and perfect
matchings

For each arc γ in a surface (S ,M,T ), we associate a weighted graph
Gγ , called snake graph, from γ and T .
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7

γ

A perfect matching P of a graph G is a subset of the set of edges
of G such that each vertex of G is incident to exactly one edge in P.
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İlke Çanakçı
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İlke Çanakçı
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İlke Çanakçı
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Expansion formula

The authors in [MSW] gives an explicit formula, called expansion
formula, for cluster variables. The formula is given by

xγ =
1

cross (γ,T )

∑
P`Gγ

x(P)y(P)

where the sum is over all perfect matchings P of Gγ .
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İlke Çanakçı
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x(P) = x2x3x2
4 x6x7
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Applying the formula, the cluster variable corresponding to the arc γ
is given by

xγ =
1

x1x2x3x4x5x6x7
(x1x2x3x2

5 x6 + y4 x1x2x5x6 + y7 x1x2x3x2
5 +

y3y4 x1x4x5x6 + y4y7 x1x2x5 + y6y7 x1x2x3x5x7 +

y2y3y4 x3x4x5x6 + y3y4y7 x1x4x5 + y4y6y7 x1x2x7 +

y1y2y3y4 x2x3x4x5x6 + y2y3y4y7 x3x4x5 + y3y4y6y7 x1x4x7 +

y4y5y6y7 x1x2x4x6x7 + y1y2y3y4y7 x2x3x4x5 + y2y3y4y6y7 x3x4x7 +

y3y4y5y6y7 x1x2
4 x6x7 + y1y2y3y4y6y7 x2x3x4x7 +

y2y3y4y5y6y7 x3x2
4 x6x7 + y1y2y3y4y5y6y7 x2x3x2

4 x6x7).
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Our results

• We introduce the notion of an abstract snake graph, which is
not necessarily related to an arc in a surface.

• We define what it means for two abstract snake graphs to
cross.

• Given two crossing snake graphs, we construct the resolution of
the crossing as two pairs of snake graphs from the original pair
of crossing snake graphs.

• We then prove that there is a bijection ϕ between the set of
perfect matchings of the two crossing snake graphs and the set
of perfect matchings of the resolution.

• We then apply our constructions to snake graphs arising from
unpunctured surfaces.

• We then extend our results to self-crossing snake graphs
associated to self-crossing arcs in a surface.
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Abstract Snake Graphs
Definition
A snake graph G is a connected graph in R2 consisting of a finite
sequence of tiles G1,G2, . . . ,Gd with d ≥ 1, such that for each
i = 1, . . . , d − 1

(i) Gi and Gi+1 share exactly one edge ei and this edge is either the
north edge of Gi and the south edge of Gi+1 or the east edge of
Gi and the west edge of Gi+1.

(ii) Gi and Gj have no edge in common whenever |i − j | ≥ 2.

(ii) Gi and Gj are disjoint whenever |i − j | ≥ 3.

Example

G
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Abstract Snake Graphs
Definition
A snake graph G is a connected graph in R2 consisting of a finite
sequence of tiles G1,G2, . . . ,Gd with d ≥ 1, such that for each
i = 1, . . . , d − 1

(i) Gi and Gi+1 share exactly one edge ei and this edge is either the
north edge of Gi and the south edge of Gi+1 or the east edge of
Gi and the west edge of Gi+1.

(ii) Gi and Gj have no edge in common whenever |i − j | ≥ 2.

(ii) Gi and Gj are disjoint whenever |i − j | ≥ 3.

Example

G
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Example

G

G1

Notation

• G = (G1,G2, . . . ,Gd)

• G[i , i + t] = (Gi ,Gi+1, . . . ,Gi+t)

• We denote by ei the interior edge between the tiles Gi and Gi+1.
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Local Overlaps

Definition
We say two snake graphs G1 and G2 have a local overlap G if G is a
maximal subgraph contained in both G1 and G2.

Notation: G ∼= G1[s, · · · , t] ∼= G2[s ′, · · · , t ′].

Example

G1 G2

G

Therefore G is a local overlap of G1 and G2.

• Note that two snake graphs may have several overlaps.
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Sign Function
Definition
A sign function f on a snake graph G is a map f from the set of
edges of G to {+,−} such that on every tile in G the north and the
west edge have the same sign, the south and the east edge have the
same sign and the sign on the north edge is opposite to the sign on
the south edge.

Example
A sign function on G1 and G2

−
+−

+

G1

++
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following conditions hold.
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İlke Çanakçı
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Resolution: Definition

Assumption: We will assume that s > 1, t < d , s ′ = 1 and t ′ < d ′.
For all other cases, see [CS].

We define four connected snakegraphs as follows.

• G3 = G1[1, t] ∪ G2[t′ + 1, d ′],

• G4 = G2[1, t′] ∪ G1[t + 1, d ],

• G5 = G1[1, k] where k < s − 1 is the largest integer such that the sign
on the interior edge between tiles k and k + 1 is the same as the sign
on the interior edge of tiles s − 1 and s,

• G6 = G2[d ′, t′ + 1] ∪ G1[t + 1, d ] where the two subgraphs are glued
along the south Gt+1 and the north of G ′

t′+1 if Gt+1 is north of Gt in
G1.

Definition
The resolution of the crossing of G1 and G2 in G is defined to be
(G3 t G4,G5 t G6) and is denoted by Res G(G1,G2).
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Resolution: Definition

Assumption: We will assume that s > 1, t < d , s ′ = 1 and t ′ < d ′.
For all other cases, see [CS].
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İlke Çanakçı
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Bijection of Perfect Matchings

• Let Match (G ) denote the set of all perfect matchings of the
graph G and
Match (Res G(G1,G2)) = Match (G3 t G4) ∪Match (G5 t G6).

Theorem (CS)
Let G1,G2 be two snake graphs. Then there is a bijection

Match (G1 t G2) −→ Match (Res G(G1,G2))

• Note that we construct the bijection map and its inverse map
explicitly.
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 25 / 35



On surface
cluster algebras
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

’Idea’ of proof

G1 G2

G3

G4

G5

G6
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

’Idea’ of proof

G1 G2

G3

G4

G5

G6
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 26 / 35



On surface
cluster algebras
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İlke Çanakçı
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 26 / 35



On surface
cluster algebras

İlke Çanakçı

Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

‘Idea’ of proof

G1 G2

G3

G4

G5

G6
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İlke Çanakçı
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 27 / 35



On surface
cluster algebras
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Relation to Cluster Algebras

Let γ1 and γ2 be two arcs and G1 and G2 their corresponding snake
graphs.

Theorem (CS)
γ1 and γ2 cross if and only if G1 and G2 cross as snake graphs.

Theorem (CS)
If γ1 and γ2 cross, then the snake graphs of the four arcs obtained by
smoothing the crossing are given by the resolution Res G(G1,G2)
of the crossing of the snake graphs G1 and G2 at the overlap G.

Remark
We do not assume that γ1 and γ2 cross only once. If the arcs cross
multiple times the theorem can be used to resolve any of the
crossings.
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Skein Relations

As a corollary we obtain a new proof of the skein relations [MW].

Corollary (CS)
Let γ1 and γ2 be two arcs which cross and let (γ3, γ4) and (γ5, γ6) be
the two pairs of arcs obtained by smoothing the crossing. Then

xγ1 xγ2 = xγ3 xγ4 + y(G̃)xγ5 xγ6

where G̃ = (G3 ∪ G4)\(G5 ∪ G6) and y(G̃) =
∏

Gi a tile in G̃

yi .

Remark

• Note that Musiker and Williams in [MW] use hyperbolic
geometry to prove the skein relations.

• Our proof is purely combinatorial. The key ingredient to our
proof is Theorem 17 where we show the bijection between the
perfect matchings.
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the two pairs of arcs obtained by smoothing the crossing. Then

xγ1 xγ2 = xγ3 xγ4 + y(G̃)xγ5 xγ6

where G̃ = (G3 ∪ G4)\(G5 ∪ G6) and y(G̃) =
∏

Gi a tile in G̃

yi .

Remark

• Note that Musiker and Williams in [MW] use hyperbolic
geometry to prove the skein relations.

• Our proof is purely combinatorial. The key ingredient to our
proof is Theorem 17 where we show the bijection between the
perfect matchings.
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 29 / 35



On surface
cluster algebras
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Self-crossing snake graphs and
band graphs

• Self-crossing arcs and closed loops appear naturally in the
process of smoothing crossings. Consider the following example.

Example
In this example we resolve two crossings of the following arcs.

Example (Band graph)

+

+
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Surface cluster
algebras

Abstract Snake
Graphs

Relation to
Cluster Algebras

Self-crossing
snake graphs

Application

Self-crossing snake graphs and
band graphs

• Self-crossing arcs and closed loops appear naturally in the
process of smoothing crossings. Consider the following example.

Example
In this example we resolve two crossings of the following arcs.

Example (Band graph)

+

+
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Self-crossing snake graphs

• Similar to the definition of a local overlap for two snake graphs,
we define the notion of self-overlap for abstract snake graphs.
Here we have two subcases.

• Self-overlap in the same direction

• without intersection

• with intersection

• Self-overlap in the opposite direction

• We then define what it means for a snake graph to self-cross in
a self-overlap.

• We give the resolution of a self-crossing snake graph which
consists of two snake graphs and a band graph.

• Finally, we show a bijection between perfect matchings of a
self-crossing snake graph with perfect matchings of its resolution.
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 31 / 35



On surface
cluster algebras
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İlke Çanakçı
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İlke Çanakçı (U. Leicester) On surface cluster algebras Geometry Seminar (U. Bath) 31 / 35



On surface
cluster algebras
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G1 G3 G◦4 G56

s

s ′
dt ′

t dt

s

s ′-1

s

geometric realization in the annulus:

east edge of Gd

Figure: Example of resolution of selfcrossing when s ′ < t and s = 1
together with geometric realization on the annulus. Here the snake graph
G56 is a single edge and the corresponding arc in the surface is a boundary
segment.
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G1 G3 G◦4 G56

1 s

s ′

d

t ′

t

d

t

1 s s ′-1s 1

t

d

geometric realization in the punctured disk:

s

Figure: Example of resolution of selfcrossing when s ′ < t together with
geometric realization on the punctured disk
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Dreaded torus
Definition (Upper cluster algebra)

U =
⋂

x seed

Z[x].

Theorem (C, Kyungyong Lee, S)
Let A be the cluster algebra associated to the dreaded torus and U
be its upper cluster algebra. Then A = U .

Sketch of proof. By [MM], it suffices to show that three particular
Laurent polynomials given by the band graphs of three loops X ,Y ,Z
belong to the cluster algebra.

1

1

2 2

4

3
X

X

1 2
•

•

•

•
3 4 3

2 1

2 1

X =
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