Kac-Moody Root Systems and M-theory.

Part O: Some motivating comments.
0.1. What is M-theory?
0.2. Why Kac-Moody Algebras are \& Interest to M-theorists.

Part I: The Root System of E_{11}.
1.1 A Very Brief Introduction to Kac-Moody Algebras.
1.2 Decomposition of Dynkin Diagrams and their Lie Algebras.
1.3. (Almost) A Construction of the root system of E_{11}.

Part II: M-theary Solutions and E_{11}
2.1. Constructing Lagrangians invariant under coset symmetries.
2.2. The $\frac{S L(2, \mathbb{R})}{S 0(1,1)}$ sigma model.
2.3. Space-time.
2.4. 1 Parameter Solutions of M-theory: Branes.
2.5. 2 Parameter Solutions \& unconventional spacetime signature.

Some motivating comments.

What is M-theory?

String theories in 100 are unified by U-duality.

[mitten '95].

The low energy description of M-theory is the maximal supergravity theory in 110, whose bosonic part is:

$$
\mathcal{L}=R * 1-\frac{1}{2} F_{4} n * F_{4}+\frac{1}{6} F_{4} n F_{4} \wedge A_{3} \quad \text { where } \quad F_{4}=4 d A_{3}
$$

E.H. term. K.E. for Self-interaction

$$
\text { gauge } f: e l d, A_{3} \text {. }
$$

term.
"Chern-Simons term".

Comments:

1. it describes the degrees of freedom of an alf-bein, e_{μ}^{a}, and a 3-form gauge field $A_{\mu_{1}} \mu_{2} \mu_{3}$.

Comparison with Maxwell's electromagnetic field A μ which sources a point charge will lead you to
surmise correctly that $A_{\mu, \mu_{2} \mu_{3}}$ sources a membrane (the M2-brane).
2. its equations of motion are $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-\frac{1}{2} \frac{1}{3}, F_{\mu \mu_{\mu} \mu_{\mu} \mu_{3}} F_{\nu}^{\mu_{1} \mu_{2} \mu_{3}}+\frac{1}{2} \frac{1}{4} g_{\mu \nu \nu} F_{\mu_{1,} \mu_{2} \mu_{0} \mu_{4}} F^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=0$

$$
\partial^{\mu} F_{\mu \mu_{1} \mu_{2} \mu_{3}}+\frac{1}{2} \varepsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \cdots \mu_{11}} F^{\mu_{4} \mu_{3} \mu_{6} \mu_{7}} F^{\mu_{8} \mu_{9} \mu_{10} \mu_{11}}=0 .
$$

3. It has simple solutions: the pp-wave, the M2-brane, the MS-brane and the KK6-brane.
4. M-theory must agree with SuGra at low energies but must also. include all the string excitations in
the 100 string theories.

Which Kac-Moody algebras are relevant to M-theory?

The two pioneering arguments:

1. Dimensional Reduction. (See the lectures on Kaluza-Klein theory by Chris Pope)

The rough idea: make one of the spatial dimensions compact, typically S^{\prime}, and lat the cyde shrink to small volume. Excitations of the circle (f., example) are stamping waves satisfying $n \lambda=2 \pi R$ where R is
the radius of the circle, λ the wavelength if the wave and $n \in \mathbb{Z}$. Such waves have energy

$$
E=\hbar \nu=\hbar\left(\frac{1}{\lambda}\right)=\frac{n \hbar}{2 \pi R} \quad \text { hence } \quad R \rightarrow 0 \Rightarrow E \rightarrow \infty \text { if } n \neq 0 \text {. }
$$

So small radii imply very high-eneggy excitations (t.. high to have been rendud in our colliders). Hence one may neglect the impact of the small compact coordinate in the low energy theory. In practise the effect on
the Gid content of the theory is to neglect the compact index egg. consider the metric being reduced in one-dimension (call it x^{5}) from SD to $4 D$:
$g_{m v} \longrightarrow g_{m n}, g_{m s} \equiv A_{m}$ and $g_{s s} \equiv \varnothing$.
From a theory of gravity in SD emerges a theory of gravity, a vector (dectromagntism) and a scale. This
was the original doservation of Kaluza in '21 and Klan in '26 made to propose a SD unification of
gravity and edecteromagotism. The scalar was an unwanted extra, but it is the scalars appearing in
the dimensional reduction of SuGra that give the first motivation for. Kac-Moody algebra in M-theory.

As ..e reduces the IID SuGra the scalars that appear in $D=10,9,8 \ldots$ have the symmetries in the Lagrangian
of a coset $G / K(G)$ of greater complexity as the reduction descends t. Fewer dimensions:
D.

$$
G / K(G) .
$$

Deakin diagram for G.

The early observation of Julia was that these hidden symmetries ought to continue and he argued for
E_{9} and E_{10} in $D=2$ and $D=1$.
[Julia '78,'80,'85]

The extension would be that E_{11} should appear in $D=0$. Peter West argued that E_{11} was a symmetry of an
extension of SuGra in 2001, N.B. E11 should be a symmetry of M-theory in 110 .
$E_{\text {a }}, E_{10}$ and E_{11} are all Kac-Moody algebras.
2. Cosmological Billiards.

At the start of the millenium a different line of investigation led Damour. Henneaux and Nicolai to see the
fingerprints of E_{10} within IID SuGra. They ware considering the physics in the vicinity of a cosmological
singularity where they allowed the SuGre fields to depend in ally time, t. The greatly simplified equations
of motion had a solution which was identical to null-geoderic motion of a coset of $E_{10}: \quad{ }^{10} K\left(E_{10}\right)$.

Later Englert and Houart extended this picture t. restore space and time to an equal footing
and their construction was called the brane σ-model and the coset symmetry was enlarged to $E_{11 /} /\left(E_{6}.\right)$.

This is the setting we will work in for this talk and our aims are two-f.ld (time-permitting):

1. To construct the root system of E_{11}.
2. T. use the brane s-model to build solutions of M-theory.

Root Systems.

Given a Dyakin diagram (or equivalently a Cartan matrix) a set pf generators in the algebra are singled out: those collections $\left\{H_{i}, E_{i}, F_{i}\right\}$ which form the st (2) algebras for each node.

Each generate., E_{i} is associated with a simple positive root vector encoded in the definition of the Cartan matrix by $\left[H_{i}, E_{j}\right]=A_{i j} E_{j}=2 \frac{\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} E_{j}$. The Carton matrix contains
the inner products of the simple positive roots which allows one to geometrise the root system.

The simplest nontrivial root system belongs to SL $(3, \mathbb{R})$ whose Dynkin diagram is:

$$
Q_{2}-\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

The simple positive roots have inner product

$$
\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\frac{1}{2}\left(\alpha_{1}\right)^{2} A_{12}=-\frac{1}{2}\left(\alpha_{1}\right)^{2} \equiv-1
$$

where in the last step we normalised $\left(\alpha_{1}\right)^{2}=\left(\alpha_{2}\right)^{2}=2$ for simplicity.

Hence $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\left|\alpha_{1} \backslash\right| \alpha_{2} \backslash \cos \theta_{12}=2 \cos \theta_{12}=-1 \Rightarrow \theta_{12}=\frac{2 \pi}{3}$.

There exists a root β for every generator E_{β} in the algebra defined with respect
to the Carton sub-algebra and the simple positive ropes (for the casewhere $\left(\alpha_{i}\right)^{2}=2 \quad \forall$.)

$$
\left[H_{i}, E_{\beta}\right]=\left\langle\alpha_{i}, \beta\right\rangle E_{\beta} \quad \forall i
$$

So, if we know the algebra we can construct all the roots and likewise if we know all
the roots we con construct the algebra.

It is Frequently simpler to work with the root system:

- Root vectors add while in the algebra one must commute matrices:

Suppose that $\left[E_{\alpha_{1}}, E_{\alpha_{2}}\right]=E_{\alpha_{3}}$ in some algebra then

$$
\begin{aligned}
{\left[H_{i}, E_{\alpha_{3}}\right] } & =\left[H_{i},\left[E_{\alpha_{1}}, E_{\alpha_{2}}\right]\right] \\
& =-\left[E_{\alpha_{1}}\left[E_{\alpha_{2}}, H_{i}\right]\right]-\left[E_{\alpha_{2}},\left[H_{i}, E_{\alpha_{1}}\right]\right] \\
& =\left\langle\alpha_{i}, \alpha_{2}\right\rangle\left[E_{\alpha_{1}} E_{\alpha_{2}}\right]+\left\langle\alpha_{i}, \alpha_{1}\right\rangle\left[E_{\left.\alpha_{1}, E_{\alpha_{2}}\right]}\right. \\
& =\left\langle\alpha_{1}, \alpha_{1}+\alpha_{2}\right\rangle E_{\alpha_{3}} . \\
& \Rightarrow \alpha_{3}=\alpha_{1}+\alpha_{2} .
\end{aligned}
$$

- For Kac-Moody algebras the Matrix representations will (without a great inspiration) be of infinite rank, while the roots will (foe afirite Dyankin dinggan) reside in a finite-dimensional vector space.

Before completing the root system for SL $(3, R)$ let us introduce the defining relations for a

Kac-M.ody algebra where the simple roots all have $\left(\alpha_{i}\right)^{2}=2$:

A Very Brief Introduction to Kac-Moody Algebras.

Given an appropriate Cartan matrix $A_{i \text { is a Kac-M.ody algebra is formed of (Cherallay) }}^{\text {a }}$
generators E_{i}, F_{i} and H_{i} such that $\forall i$ is

$$
\left[H_{i}, H_{j}\right]=0, \quad\left[H_{i}, E_{j}\right]=\left\langle\alpha_{i}, \alpha_{j}\right\rangle E_{j}, \quad\left[H_{i}, F_{j}\right]=-\left\langle\alpha_{i}, \alpha_{j}\right\rangle F_{j}, \quad\left[E_{i}, F_{j}\right]=\delta_{i j} H_{j}
$$

and the Serve relations:

$$
\left.\begin{array}{l}
{\left[E_{i},\left[E_{i}, \ldots\left[E_{i}, E_{j}\right] \ldots\right]\right]=0} \\
{\left[F_{i},\left[F_{i}, \ldots\left[F_{i}, F_{j}\right] \ldots\right]\right]=0}
\end{array}\right\}
$$

where there are $\left(1-A_{i j}\right)$ commutators.

Comments.

1. If $\operatorname{det}\left(A_{i j}\right)>0$ the above relations define. finite Lie algebra, if $\operatorname{det}\left(A_{i j}\right) \leqslant 0$ then the algebra is a K.a-M. .dy algebra.
2. The Sere relations guarantee that the adjoint representation is irreducible.

The Serve relations are worth exploring in detail as they will give a simple route to construct the root system of a Kac-M.ody algebra.

The Serve Relations and Root Systems.

Recalling that we have limited our focus to root systems where simple roots all have
the same langth-squared (normalised to 2) [Such algebras are called simply-taced].

There are three distinct entries in the Cartan matrix:

	$A_{i i}$	$1-A_{i j}$	Cere Relation.
$(i=j)$.	2.	-1.	$\left[E_{i}, E_{i}\right]=0$.
	0.	1.	$\left[E_{i}, E_{j}\right]=0$.
	-1.	2.	$\left[E_{i},\left[E_{i}, E_{j}\right]\right]=0 . \quad \Rightarrow\left[E_{i}, E_{j}\right]=E_{i+j}$

Starting from the simple roots α_{1}, the Sore relations tell us that $\alpha_{i}+\alpha_{j}$, is a root
if $\quad\left\langle\alpha_{i}, \alpha_{j}\right\rangle=-1$. In this case we observe that $\left(\alpha_{i}+\alpha_{j}\right)^{2}=\left(\alpha_{i}\right)^{2}+2\left\langle\alpha_{i}, \alpha_{j}\right\rangle+\left(\alpha_{j}\right)^{2}$

$$
\begin{aligned}
& =2-2+2 \\
& =2 .
\end{aligned}
$$

Consider now adding a third simple root to obtain $\alpha_{i}+\alpha_{j}+\alpha_{k}$. This is a root if the commutator $\left[E_{k},\left[E_{i}, E_{j}\right]\right]=E_{i+j+k}$ is not trivial.

By the Jacobi identity we have:

$$
\left[E_{k},\left[E_{i}, E_{j}\right]\right]=-\left[E_{i},\left[E_{j}, E_{k}\right]\right]-\left[E_{j},\left[E_{k}, E_{i}\right]\right]
$$

The right-hand-side is nontrivial if $\left\langle\alpha_{j}, \alpha_{k}\right\rangle=-1$ or $\left\langle\alpha_{k}, \alpha_{i}\right\rangle=-1$ or even both are true.

This means that if $\alpha_{i}+\alpha_{j}+\alpha_{k}$ is a root then

$$
\begin{aligned}
\left(\alpha_{i}+\alpha_{j}+\alpha_{k}\right)^{2} & =\left(\alpha_{i}\right)^{2}+\left(\alpha_{j}\right)^{2}+\left(\alpha_{k}\right)^{2}+2\left\langle\alpha_{i}, \alpha_{j}\right\rangle+2\left\langle\alpha_{i}, \alpha_{k}\right\rangle+2\left\langle\alpha_{j}, \alpha_{k}\right\rangle \\
& = \begin{cases}2 & \text { if only one of }\left\langle\alpha_{i}, \alpha_{k}\right\rangle \text { or }\left\langle\alpha_{j}, \alpha_{k}\right\rangle \text { equals }-1 . \\
0 & \text { if }\left\langle\alpha_{i}, \alpha_{k}=-1=\left\langle\alpha_{j}, \alpha_{k}\right\rangle=-1 .\right.\end{cases}
\end{aligned}
$$

This line of argument can be generalised to non-simple roots so that we can say that the roots of any simply-1aced Dynkin diagram satisfy $\beta^{2}=2,0,-2,-4,-6 \ldots$

This is almost, but not quite, a sufficient algebraic condition to find all roots of E11.

Let us return to $S L(3, \mathbb{R})$ and complete the construction of its root system.

Recall we have that $\left(\alpha_{1}\right)^{2}=\left(\alpha_{2}\right)^{2}=2$ and $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=-1$ and now we wish to.

Find all $\beta=n \alpha_{1}+m \alpha_{2}$ where $n, m \in \mathbb{Z}$ such that $\beta^{2}=2,0,-2, \ldots$

So $\quad \beta^{2}=2 n^{2}+2 m^{2}-2 n m=2(n+m)^{2}-6 n m$

For $n=0$ we have $2 m^{2} \leqslant 2 \Rightarrow m= \pm 1$.
$n=1$ we have $2+2 m^{2}-2 m \leq 2$

$$
\Rightarrow m^{2}-m \leq 0 \Rightarrow m=0 \text { or } m=1 \text {. }
$$

$n=2$ we have $8+2 m^{2}-8 m \leqslant 2$.

$$
\Rightarrow m^{2}-4 m+6 \leq 0
$$

$(m-2)^{2}+2 \leqslant 0 \quad \Rightarrow$ no solutions.
W. also have that $(-\beta)^{2} \leqslant 2$.

Hence the root system of $\operatorname{SL}(3, R)$ is

At this point we may realise that we might have employed the Weyl reflections (reflections in the planes perpendicular to the roots) starting from just the simple positive roots to construct the root system. The reason being that reflections preserve inner products and the inner products contain all the information in the root system.

For semisimple Lie algebras the root systems are finite, ice. there are finite solutions
t. $(\beta)^{2} \leqslant 2$, this is because there are only roots of positive length-squared.

For affine Kac-M.ody algebras there exists a root of length-squared zero (a null root) whose inner product with the simple positive roots α_{i} is zero ie.

$$
\langle\delta, \delta\rangle=0 \quad \text { and } \quad\left\langle\alpha_{i}, \delta\right\rangle=0 .
$$

So that one can construct an infinite set of roots of the form $\alpha_{i}+n \delta \quad n \in \mathbb{Z}$ as

$$
\left(\alpha_{i}+n \delta\right)^{2}=\left(\alpha_{i}\right)^{2}+2 n\left\langle\delta, \alpha_{i}\right\rangle+n^{2}\langle\delta, \delta\rangle=2 \text {. }
$$

For general Kac-Moody algebras there are roots of negative langth-squared t.. (imaginary roots) and the root systems are also infinite, and of faster growth than the affine case.

In passing through the example of $S L(3, R)$ it is useful t. highlight that a canonical
matrix representation of the generators exists which has a simple extension to all $S L(N, \mathbb{R})$:

$$
\begin{array}{lll}
H_{1}=\left(\begin{array}{ccc}
\vdots & 0 & 0 \\
0 & -1 & 0 \\
0 & 0
\end{array}\right) & E_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \equiv K_{2}^{\prime} & F_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \equiv K^{2} \\
H_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) & E_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \equiv K_{3}^{2} & F_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \equiv K_{2}^{3} \\
& E_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \equiv K_{3}^{\prime} & F_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \equiv K^{3}
\end{array}
$$

For $S L(N, R)$ algebras the matrices K^{\prime} j, which are $N \times N$ matrices with a 1 at row i, column j, but is otherwise filled with zeroes, give. representation of the $\frac{N}{2}(N-1)$ positive generators and their transposes represent the negative generators.

Let us now graduate t. the main example of this talk: E_{1}.

The Roots of E ${ }_{11}$.

Deakin diagram:

The problem: Find all coefficients $m_{i} \in \mathbb{Z}$ such that for $\beta \equiv \sum_{i=1}^{\prime \prime} m_{i} \alpha_{i}, \quad \beta^{2} \leq 2$.

We will solve the problem in a way that allows us to grade the roots and collect them into highest weight representations of the SL(II, R) sub-algebra formed from nodes 1 to 10 above.

To do this we note that it is straightforward to split β into a root in SL(II, R)
and a multiple of α_{11} :

$$
\beta=\sum_{i=1}^{10} m_{i} \alpha_{i}+m_{11} \alpha_{11}=\sum_{i=1}^{10} m_{i} \alpha_{i}+m_{11}\left(\gamma-\lambda_{8}\right)=m_{11} \gamma-m_{11} \lambda_{8}+\sum_{i=1}^{10} m_{i} \alpha_{i}=m_{11} \gamma-\Lambda_{\beta}
$$

Where $\alpha_{11}=\gamma-\lambda_{8}$ where λ_{i} are fundamental weights of $S L(I I, R)$ satisfying $\left\langle\lambda_{i}, \alpha_{j}\right\rangle \equiv \delta_{i j}$
and γ is orthogonal t. the roots of $S L(11, \mathbb{R})$. Hence $\left\langle\alpha_{11}, \alpha_{8}\right\rangle=\left\langle\gamma-\lambda_{8}, \alpha_{8}\right\rangle=-1$ as required.
Λ_{β} is a weight of $S(I I, R)$ associated to β labelled by the unique highest weight.

The root $\alpha_{11}=\gamma-\lambda_{8}$ is associated with the highest weight of the $S L(11, R)$ tensor representation with three antisymmetric indices, ie. $E_{\alpha_{11}}=R^{\text {aiolI. }}$. The addition of $\operatorname{SL}(11, \mathbb{R})$ roots lowers the index labels, e.g. $E_{\alpha_{11}+\alpha_{8}}=R^{8 \text { No" }}$ (recall that $E_{\alpha_{8}}=K_{9}^{8}$ and $\left[K_{9}, R^{n 10 " 1}\right]=R^{\text {sion in }}$). $\alpha_{0} \alpha_{11} \alpha_{0}+\alpha_{11}$

Fortunately it is not necessary to already have an intimate knowledge of the algebra ko identify the SL(II, R) tensor irreps that appear in the decomposition of E_{11} into highest weights of SL(II, R) and
a level m, Instead by making a choice of basis for a, we can have a quick way to read
off the highest weight of $S(I 1, \mathbb{R})$. We choose:
$\alpha_{1}=e_{i}-e_{i . .}$ for $i=$ to $_{0}$ to (compare with K_{i+1} the corresponding generator of $\operatorname{SL}(11, \mathbb{R})$)

$$
\alpha_{11}=e_{a}+e_{10}+e_{11} \quad\left(\text { compare with } E_{\alpha_{11}}=R^{\text {ala" }}\right) \text {. }
$$

then we have $\beta=\sum_{i=1}^{n} m_{i} \alpha_{i}=\sum_{i=1}^{n} w_{i} \cdot e_{i}$
where for roots corresponding to the highest weight of $\Lambda_{\beta} w$: are the widths of the SL(II,R)

Young tableau, the sign of the e.coefficiant indicates where the corresponding index is covariant (-ve)
-r contravariant (tie),
e.g. given a simple root $\alpha_{1}=e_{1}-e_{2}$ we may read of the tensor K_{2}^{\prime}
or $\alpha_{11}=e_{a}+e_{10 t} e_{11}$ we read off $R^{n \prime o n}$.
and if β is a highest weight under the $S L(I I, \mathbb{R})$ action then $\beta \equiv \sum_{i=1}^{W} w_{i}$ ai the Young tableau is

$$
R^{a_{1} \ldots a_{11} l b_{1} \ldots b_{n} l c_{1} \ldots c_{1} \backslash d_{1} \ldots a_{1} b l e_{\ldots} \ldots e_{a} l \ldots l i_{1} i_{2} j j}
$$

We are able to pick such an embedding into $\mathbb{R}^{\prime \prime}$ so long as we can define an inner product
on $\mathbb{R}^{\prime \prime}$ such that inner products of E_{11} 's simple roots are reproduced.

This is achieved by

$$
\left\langle\beta_{1}, \beta_{2}\right\rangle=\sum_{i=1}^{\prime \prime} \omega^{(1)} \omega^{(2)}-\frac{1}{a} \sum_{i=1}^{n} \omega_{i}^{(1)} \sum_{j=1}^{\prime \prime} \omega_{j}^{(2)}
$$

where $\beta_{1} \equiv \sum_{i=1}^{\prime \prime} \omega_{i}^{(1)} e_{i}$ and $\beta_{2} \equiv \sum_{i=1}^{\prime \prime} \omega_{i}^{(2)} e_{i}$. The $-\frac{1}{a}$ comes from $\left(\alpha_{11}\right)^{2}=2$.
Note that $\sum_{i=1}^{\prime \prime} w_{i}=$ the number of boxes on the corresponding Young tableau $\equiv \# \#_{\beta}$.

Furthermore at level $L \equiv m_{11}$ each generator is formed from L commutators of $R^{\mu, \mu_{2} \mu_{3}}$ so $\#_{\beta}=3 L$, hence,

$$
\left\langle\beta_{1}, \beta_{2}\right\rangle=\sum_{i=1}^{\prime \prime} \omega^{(1)}: \omega^{(2)}-L^{(1)} L^{(2)}
$$

and importantly for our construction of the root space:

$$
\beta^{2}=\sum_{i=1}^{n}\left(\omega_{i}\right)^{2}-L^{2}
$$

where L is the level of β.

To restate our problem in the context of Young tableaux: at \level L we aim to find Young tadhaux

Formed of 3L boxes satisfying $\beta^{2} \leq 2$.

We will reed a helpful trick: moving a box on a Young tableau one column to the left reduces β^{2} by 2 .

$$
w_{i} \rightarrow w_{i}-1
$$

$$
w_{j} \rightarrow w_{j+1}
$$

such that $\omega_{i}=\omega_{j}+2$.

$$
\begin{aligned}
\therefore \beta_{2}^{2} & =\left(w_{1}\right)^{2}+\ldots\left(w_{i}-1\right)^{2}+\ldots+\left(w_{j}+1\right)^{2}+\ldots+\left(w_{n}\right)^{2}-L^{2} \\
& =\sum_{i=1}^{n}\left(w_{i}\right)^{2}-L^{2}-2 w_{i}+2 w_{j}+2 \\
& =\beta_{1}^{2}-2 .
\end{aligned}
$$

Let us construct the roots of E_{11} at each level L as Young Tableau:

Level

$$
0 \quad \alpha_{i}, i=1, \ldots 10 \quad k_{j}
$$

$$
1 \quad]_{2} \quad R^{\mu_{1} \mu_{2} \mu_{3}} \text {. }
$$

$\beta_{3}{ }^{2}$ Length-squared.

X ruled out by root length (Sore relations).

$$
\text { 3. } \quad \prod_{6} \times \sqrt[3]{9}=\prod_{0} \oplus \prod_{\substack{8 \\ \beta_{8,1}}}^{7_{4}^{2}} \oplus \cdots
$$

We can complete the prescription for finding all the coots by noting that $\delta=e_{3}+\cdots+e^{\prime \prime}$

$$
\left(\beta_{3}+n \delta\right)^{2}=2, \quad\left(\beta_{6}+n \delta\right)^{2}=2 \text { and }\left(\beta_{3,1}+n \delta\right)^{2}=2 .
$$

This gives a real root at any level of length-squared 2 as $\beta_{3}+n \delta$ has level $n+1$ $\beta_{6}+n \delta$ has level $n+2$
$\beta_{s, i}+n \delta$ has level $n+3$.

From these real roots we may construct all roots at any level by hand, egg. at level 6 we have:

$$
\begin{aligned}
& \text { 4. } 100^{2} \sqrt[115]{52^{2}} \\
& \int_{-2} \int_{-2}^{0-9} \\
& {[117]_{-4}}
\end{aligned}
$$

There is a caveat in our replacement of Sere cations with a condition on the root length we have
discarded properties of the algebra coming from the symmetries of the Lie bracket. In particular the Jacobi
identity which projects out some generators has been lock, the first example is as as

$$
\begin{aligned}
& {\left[R^{123},\left[R^{456}, R^{789}\right]\right]+\left[R^{456},\left[R^{789}, R^{123}\right]\right]+\left[R^{789},\left[R^{123}, R^{456}\right]\right]=0} \\
& \therefore . R^{123456789}+R^{456789123}+R^{789123456}=3 R^{12346789}=0
\end{aligned}
$$

The null root appears as a weight within the $R^{\left.\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{0}\right)^{\mu} \mu_{0}, \mu_{0} l v}$, when $\nu \notin\left\{\mu_{1}, \ldots, \mu_{0}\right\}$.

Part II: M-theory and E_{N}.

Recall the low energy bosonic description of M-theory is 110 bosonie supergemity:

$$
\mathcal{L}=R * 1-\frac{1}{2} F_{4} n * F_{4}+\frac{1}{6} F_{4} \wedge F_{4} \wedge A_{3} .
$$

This is a Lagrangian describing the elf-bein e_{μ}^{a} (gravity) and $A_{\mu, \mu_{2} \mu_{3}}$ (gangetheory)

The Hodge dual $* F_{4} \equiv G_{7}=2 A_{6}+\ldots$ where A_{6} is a six-Corm $A_{\text {r. }} \mu_{2} \mu_{3} \mu_{4} \mu_{5} \mu_{5} \mu_{6}$.

If one were to extend this theory so that the dual of the gravity degrees of freedom are also included this would require the addition of a field $A_{\mu_{1}, \ldots \mu_{8} l}^{a}$ as $* \partial_{\mu_{1}} e_{\mu_{2}}^{a}=\partial_{\mu_{3}} A_{\mu_{4} \ldots \mu_{11}}{ }^{a}+\ldots$

Supergravity.

These fields are the algebra coefficients of the level $0,1,2$ and 3 generators of E_{11}.

This is more than a coincidence of the tensor index structure: the corresponding roots of $E_{\text {"I }}$
can be used to reconstruct the solutions of supgegravity precisely.

The Brave s-model.

The Lagrangian should be invariant under the coset $E_{11} / K\left(E_{11}\right)$ where $K\left(E_{11}\right)$ is a real-form of E_{11} : a mathematical .bjact which deserves more investigation. $K\left(E_{11}\right)$ is the extension of $S O(1,10)$
a raal-form of $S O(11)$ relevant to supergravity and E_{11}.
How does one construct a Lagrangian for scalars taking values in $E_{11} / K\left(E_{11}\right)$?

The ingredients are:

- a coset representative in Bored (upper triangular gauge):

$$
g=\underbrace{\exp (\varnothing \cdot H)}_{\text {gravity }} \underbrace{\exp (C \cdot E)}_{\text {gauge. }}
$$

where $\phi \equiv \varnothing(\varepsilon), c \equiv C(\xi)$

- the Maurer-Cartan form:

$$
\nu \equiv d g \cdot g^{-1}=P+Q
$$

where $Q \in K\left(E_{11}\right)$ and $P \in E_{11} \backslash K\left(E_{11}\right)$.

The Lagrangian:

$$
\mathcal{L}=\eta^{-1}(P \mid P) \quad \text { where } \quad(M \mid N)=\operatorname{Tr}(M N) \text { and } \eta \text { is the lapse fundion. }
$$

η is included to guarantee that the Action $\int d_{\mathcal{L}} \mathcal{L}$ is invariant under the reparameterisation of \mathcal{E}.
\mathcal{L} is invariant under a global transformation go (i.e. g. does not kepend on \mathcal{L}):

$$
g \rightarrow 9 \cdot 9 .
$$

as this leaves the Maurer-Cartan form unchanged:

$$
\nu \rightarrow d\left(g \cdot g_{0}\right)\left(g \cdot g_{0}\right)^{-1}=(d g \cdot) g \circ g_{0}^{-1} g=d g \cdot g^{-1}=v .
$$

The local transformation under $K\left(E_{11}\right)$ given by:

$$
g \rightarrow k g
$$

where $k \equiv k(\varepsilon) \in k\left(E_{11}\right)$
transform ν as:

$$
v=d(k \cdot g)(k \cdot g)^{-1}=d k \cdot k^{-1}+k v k^{-1}
$$

hence $P \rightarrow k P k^{-1}$ and $Q \rightarrow k Q k^{-1}+d k k^{-1}$, leaving \mathcal{L} unchanged.

Abstractly the equations of motion are:

$$
\begin{aligned}
(P, P) & =0 \\
d P-[Q, P] & =0
\end{aligned}
$$

(from varying η).

These define a null geodesic on the coset.
We are unable t. larry this procedure out for $E_{11} / K\left(E_{11}\right)$ instead we may use it for coset
$G / K(G)$ where $G \subset E_{11}$. We will Find that:
(i.) bane solutions are given by null geodesics on $\operatorname{SL}(2, \mathbb{R}) /$ So $(1,1)$
(ii.) bound states of brakes are given by null geodesics on $K(G)$ where $R m k(G)>1$.

Along the way we will highlight ambiguities in this construction and investigate its meaning for spacetime.

The SL(2,R)/so(1,1) brave σ-model.

$$
g=\exp (\varnothing(\xi) H) \exp (C(\varepsilon) E)
$$

where $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $E=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ hence

$$
\begin{aligned}
g & =\left(\begin{array}{cc}
e^{\phi} & C e^{\phi} \\
0 & e^{-\phi}
\end{array}\right) \\
\nu & =\partial g \cdot g^{-1} \\
& =\partial \phi \cdot H+e^{2 \phi} \partial C E .
\end{aligned}
$$

Now as $Q=\operatorname{so}(1,1)$ then $k=E-F$ hence

$$
\begin{aligned}
& \nu=\underbrace{\partial \phi \cdot H+\frac{1}{2} e^{2 \phi} \partial C(E+F)}_{P}+\underbrace{\frac{1}{2} e^{2 \phi} \partial C(E-F)}_{Q} \\
& \therefore P=\binom{\partial \phi \cdot \frac{1}{2} e^{2 \phi} \partial C}{-\frac{1}{2} e^{2 \phi} \partial \cdot-\partial \phi .} \\
& \Rightarrow \quad \mathcal{L}=\eta^{-1}\left(2(\partial \phi)^{2}-\frac{1}{2} e^{\alpha \phi}(\partial C)^{2}\right) .
\end{aligned}
$$

The equations of motion for ϕ, C and η respectively are:

$$
\begin{array}{rlrl}
\partial^{2} \phi+\frac{1}{2}(\partial c)^{2} e^{4 \phi} & =0 & -[I] \\
\partial\left(\partial c e^{\alpha \phi}\right) & =0 & -[I I] \\
(\partial \phi)^{2}-\frac{1}{4}(\partial)^{2} e^{\alpha \phi} & =0 & & -[\text { III }]
\end{array}
$$

As $\partial\left(\partial e^{+x}\right)=0$ then $\partial c e^{+x}=A$ a constant. Substitution int. [III] gives:

$$
\begin{aligned}
(\partial \phi)^{2}=\frac{1}{4}\left(A e^{-4 \phi}\right)^{2} e^{\phi \phi}=\frac{1}{4} A^{2} e^{-4 \phi} \quad \Rightarrow \partial \phi & = \pm \frac{1}{2} A e^{-2 \phi} . \\
\int e^{2 \phi} \partial \phi & =\int \frac{1}{2} A d q \\
e^{2 \phi} & = \pm A_{q}+B \quad \therefore \phi=\frac{1}{2} \ln (\pm A q+B) .
\end{aligned}
$$

Let $N=a q+b$ then trivially N is a harmonic function in ε and $\phi=\frac{1}{2} \ln (N)$

$$
\partial C e^{+\phi}=A \quad \Rightarrow \partial C=A / N^{2}=\frac{\partial N}{N^{2}} \quad \Rightarrow \quad C=-N^{-1}+D
$$

Comment: If you have solved the SuGra equations this all sounds familiar, in that case a brave
solution is characterised by a harmonic function (no longer a trivial one) with field strength given by

$$
F=e^{2 \phi} \partial c
$$

In this simple model are all the necessary parts for a brave solution all that remains is to embed
the coset in $E_{11} / K\left(E_{11}\right)$ and identify ξ with a spacetime parameter.

Example: Level 1 - the M2 brane.

Let the embedding of $S L(2, \mathbb{R}) \subset E_{11}$ be:

$$
E \equiv E_{\alpha_{11}}=R^{a 1011}, F \equiv E_{-\alpha_{11}}=R_{11011} \text { and } H \equiv H_{\alpha 11}=-\frac{1}{3}\left(K^{1}+\ldots+K_{8}^{8}\right)+\frac{2}{3}\left(K_{a}^{a}+K_{10}^{10}+K_{11}^{\prime \prime}\right) \text {. }
$$

S. $g=\exp \left(\phi \cdot H_{\alpha_{4}}\right) \cdot \exp \left(C \cdot R^{a 1011}\right)=\exp \left(\frac{1}{2} \ln N \cdot H\right) \exp \left(\left(-N^{-1}+D\right) R^{a 1011}\right)$

Let h_{i} i denote coefficient of K^{i} : then we read off:

$$
h_{1}^{\prime}=h_{2}^{2}=\ldots=h_{8}^{8}=-\frac{1}{6} \ln N, h_{a}^{9}=h_{10}{ }^{10}=h_{11}^{\prime \prime}=\frac{2}{6} \ln N
$$

Noting that under $\hat{g} P_{\mu} g^{-1}=\exp \left(h_{a}^{b} K_{b}^{a}\right) P_{\mu} \exp \left(-h_{c}^{\alpha} K_{\alpha}^{c}\right) \quad$ where $\left[P_{\mu}, K_{b}^{a}\right]=\delta_{\mu}^{a} P_{b}$

$$
=\exp (-h)_{\mu}^{a} P_{a}+\ldots
$$

then $\exp (-h)_{\mu}^{a}=e_{\mu}^{a}$ the elf-bein, so $g_{\mu \nu}=e_{\mu \mu}^{a} e_{\nu}^{b} \eta_{a b}$ with x^{n} time-like gives:

$$
\left.d s^{2}=N^{1 / 3}\left(\left(d x^{\prime}\right)^{2}+\left(d x^{2}\right)^{2}+\ldots+\left(d x^{8}\right)^{2}\right)+N^{-2 / 3}\left(d x^{4}\right)^{2}+\left(d x^{10}\right)^{2}-\left(d x^{11}\right)^{2}\right)
$$

Supargravity dictionary:

$$
F_{\xi a 1011}=e^{2 \phi} \partial_{\varepsilon} C=N \partial_{\varepsilon} N^{-1}
$$

Embed in space time (using elf-bein)

$$
F_{\hat{\imath} \text { anti }}=\partial_{\hat{\imath}} N^{-1}
$$

Make the solution spherically symmetric $\Rightarrow N=b+\frac{9}{r^{6}} \quad\left(\right.$ bap $\left.\partial^{2} N=0\right)$

This is the full M2 brave solution of SuGra.
N.B. this means it solves 66 Einstein equations and 165 gauge Field equations, although in
practise only the same 3 equations we solved are nontrivial and distinct.
It describes a membrane from the root 国 whose worldudume directions are x^{a}, x^{10}
and $t^{\prime \prime}$.

Higher Level Real Roots.
The level 2 root $\left\lvert\, \begin{gathered}\frac{1}{\frac{1}{0}} \\ \frac{0}{a} \\ \frac{8}{\frac{8}{6}} \\ \frac{7}{6}\end{gathered}\right.$ gives the spacetime solution of the fivebrane (using the $s(2, R) /$ so $(1,1)$
coset \& supergravity dictionary construction).

Other real roots all correspond to gauge fields of mixed symmetry.
The level 3 root gives a pure gravity solution. The KK 6 monopole.

Problems with mixed symmetry Fields

The mixed symmetry fields present immediate ambiguities for the supergrarity dictionary.
Consider the level 4 real root, corresponding to the highest weight of the a^{3}.
The gange-fidd $A_{3+567891011 / 91011}$ is treated as a scalar in the $\frac{S L(2, \mathbb{R})}{S 0(1,1)}$ coset model,
but at the point .t embedding the model in space-time the gauge field is imbued with the
structure of a mixed symmetry tensor ie.

$$
F_{q}=e^{2 \phi} \partial_{3} C \longrightarrow \quad d_{\varepsilon} A_{34567891011 \mid 11011} \in \begin{aligned}
& F_{\{3+\ldots 11 \mid a 1011} \equiv F_{1013} \\
& F_{34 \ldots 11 \mid\{91011} \equiv F_{914} .
\end{aligned}
$$

Both choices work ie. the null geodesic on $\operatorname{SL}(2, \mathbb{R}) /$ so(1,11 gives a solution to the equations of motion of both:

$$
S_{1}=\int R * 1-\frac{1}{2} F_{1013} \wedge *_{1} F_{101}^{3}
$$

and
dualise on the set of indices including the derivative index.

$$
S_{2}=\int R * 1-\frac{1}{2} F_{a 14} \wedge *_{2} F^{a \mid}
$$

But it is no longer evident how to relate these field strengths back to F 4 of SuGra

$$
\text { as: } \begin{aligned}
*_{1} F_{1013}=F_{113}=\partial_{v} A_{\mu_{1} \mu_{2} \mu_{3}} \\
*_{2} F_{914}=F_{q 17}=\partial_{v_{1}} A_{\mu_{1} \ldots \mu_{a 1 \nu_{2} \ldots v}} \quad \longrightarrow A_{3} \quad \begin{array}{l}
\text { level } 1 . \\
A_{916} .
\end{array} \quad \text { level } 5 .
\end{aligned}
$$

An extension of Hodge duality is required to write an E_{11} invariant action.
First steps: embed the Hodge duality within an affine duality [See Eq Multiplet of BPS States by Englert, Houart, Klein schmo, At, Nicolai \& Tabt:].

Interpretations of Mixed-symmetry Fields.

Fundamental idea: Break up the high level root into its low level parts, ie. play with
the Young tableau as if they were Lego bricks.

$$
a^{3}=\sqrt[8^{3}]{\square}
$$

(4) 3
$K_{K 6 .(\oplus)}^{M 2}$.

$$
\underline{\beta}_{1}=\underline{e}_{4}+\cdots+\underline{e}_{10}+2 \underline{e}_{1} \quad \beta_{2}=\underline{e}_{3}+\underline{e}_{4}+\underline{e}_{10}
$$

Now $\beta_{1} \cdot \beta_{2}=-1$ and $\beta_{1}^{2}=\beta_{2}^{2}=2$.

These form the root system of $S L(3 \backslash \mathbb{R}) \rightarrow$ we may construct the level \& solution
by solving the brake σ-model for $\frac{s(31 \mathbb{R})}{s O(1,2)}$.

There are simpler examples than this to commence with!
"Exotic E.nbrames as..."
[PPC 'ola
\& Kicinschmidt, Houart \& Hormund-Lindmann] "Somalgabraic Aspect.".]

For example consider $R^{8 i o "}=\left[K^{8} a, R^{\text {a"" }}\right]$ as an $S L(3 \mid \mathbb{R})$ sigma model. Lorentz ${ }^{\top}$ boot $M 2$
The solution describes two $M 2$ brands $R_{R^{\text {aio11 }}}^{N} \underbrace{}_{R^{81011}}$ boise parameter.

$$
\begin{aligned}
& H_{1}=-\frac{1}{3}\left(K_{1}^{1}+\ldots+K_{8}^{8}\right)+\frac{2}{3}\left(K_{9}^{9}+K_{10}^{10}+K_{111}^{\prime \prime}\right) \\
& H_{2}=K_{8}^{8}-K^{9} 9 \\
& E_{1}=R^{91011} \\
& E_{2}=K_{a}^{8} \\
& E_{12}=R^{81011} \\
& g=\exp \left(\phi_{1} H_{1}+\phi_{2} H_{2}\right) \exp \left(C_{1} E_{1}+C_{2} E_{2}+C_{12} E_{12}\right) .
\end{aligned}
$$

Null geodesic equations are solved by:

$$
\begin{aligned}
& \varnothing_{1}=\frac{1}{2} \ln N_{1}, \varnothing_{2}=\frac{1}{2} \ln N_{2} \\
& C_{1}=\frac{\tan \theta}{N_{1}}, C_{2}=\frac{\sin \theta}{N_{2}} \text { and } C_{12}=\frac{1}{2 \cos \theta}\left(\frac{\cos ^{2} \theta}{N_{1}}+\frac{1}{N_{2}}\right)
\end{aligned}
$$

where $N_{1}=1+Q\left\{\right.$ and $N_{2}=1+Q \cos ^{2} \theta . \varepsilon$.

Note the solution is described by 2 harmonic Cundions: $N_{1} \cdots N_{2}$ and an interpolating parameter θ. When $\theta=\pi / 2, N_{2}=1$ is trivial and the solution reduces t. that of the $\frac{s((2, R)}{\operatorname{sol}(1,1)}$ model. When $Q=0, N_{1}=N_{2}$ and the solution becomes a solution of another $\frac{S L(2, \mathbb{R})}{S O(1,1)}$ coset model inside E_{11}.

Example: The Dyonic Membrane.

$$
\begin{aligned}
& \square=\begin{array}{l}
\square \\
B_{1}
\end{array}{ }^{\square} \quad \begin{array}{l}
\\
\square
\end{array} \\
& B_{1}+B_{2} \\
& \beta_{2} \\
& \text { MS. }=52+M 2 \text {. (where } x^{6} \text { is timeline). }
\end{aligned}
$$

$$
d s_{m 2,52}^{2}=\left(N_{1} N_{2}\right)^{\frac{1}{3}}\left(\left(d x^{1}\right)^{2}+\ldots+\left(d x^{5}\right)^{2}+N_{1}^{-1}\left(-\left(d x^{6}\right)^{2}+\left(d x^{7}\right)+\left(d x^{8}\right)^{2}\right)+N_{2}^{-1}\left(\left(d x^{9}\right)^{2}+\left(d x^{0}\right)^{2}+\left(d x^{11}\right)^{2}\right) .\right.
$$

When $\theta=\frac{\pi}{2}, N_{2}=1$ the solution is the M2 brave along $\left(x^{6}, x^{7}, x^{8}\right)$
$\theta=0, N_{2}=N_{1}$ the solution is the MS brave along $\left(x^{6}, x^{7}, x^{8}, x^{9}, x^{10}, x^{11}\right)$.

This is a bound state of an M2 brave and an MS brave first found in $N=8$ SuGra by

Iequierde, Lambent, Papadopailos \& Tounsend in '9S.

Other solutions of bound states of braces have been Found [PPC'II] For larger groups G
in the context of $D=10$ string theory (types IIA and IB).
e.y an $\frac{S L(4, R)}{S O(1,3)}$ null geodesic:

The $S O(1,3)$ orbit of the M2 brave gives the full solution.

Comments:

- All real roots of E_{11} can be interpreted as bound states of $M 2$ banes.
- Many branes are space-filling which presents a problem embedding \mathcal{E} in space -time transverse t. the brane world-volume, as the SuG-a dictionary suggests.
- General $G / K(G)$ cosets do not have G semisimple but G is Kac-Mody itself, or worse G may not be recognisable as a Dentin diagram.
- All boosts under $K\left(E_{11}\right)$ are extensions of the Lorentz group $S O(1,3)$ and on the same footing \Rightarrow that spacetime should be extended to an infinite-dimensional manifold, constructed from the $1^{\text {st }}$ fundamental representation of $E_{\text {I' }}(4 \mathbb{R})$, ie. the full theory has symmetries $\quad l_{1} \propto E_{11} / K\left(E_{11}\right) \quad\left(\kappa G . P_{a} \propto \frac{G L(4, \mathbb{R})}{S O(1,3)}\right)$.

Where are the coset?

Recall that the scalar cosets appeared in the dimensional reduction of Supra and that
the SuGra dictionary advocates embedding the null geodesic's parameter on the coset with a spacetime coordinate e.g. $\mathcal{Q} \longrightarrow x^{\hat{i}}$. However the coset space of $S((2, R) /$ so(1,1) is two-dimensional.

There is the possibility of considering a 2 -parameter solution (the world volume of a string moving on $\frac{S L(2, R)}{S O(1,1)}$) and embedding both parameters in spacetime [Work in prejeress with Surban Surkar.] The topology of $\frac{S L(2, R)}{S O(1,1)}$ is $S^{\prime} \times \mathbb{R}^{\prime}$. It is simple to see $S L(2, R) /$ so (1,1) as a single-sheetad hyperboloid:
Let $M \in \operatorname{si}(2, a) \backslash \operatorname{soc}(1,1)$ be $M=\exp (a H+b(E-F))=\left(\begin{array}{cc}\cosh (r)+\frac{a}{r} \sinh (r) . & \frac{b}{r} \sinh (r) . \\ -\frac{b}{r} \sinh (r) . & \cosh (r)-\frac{a}{r} \sinh (r) .\end{array}\right)$
where $r^{2}=a^{2}-b^{2}$. Now writing $x=\frac{b}{r} \sinh (r), y=\frac{a}{r} \sinh (r)$ and $z=\cosh (r)$:
$\operatorname{det} M=1 \Rightarrow x^{2}-y^{2}+z^{2}=1$. (Single-sheeted hyperboloid)

(spacetime event horizon)

The single-parameter solution is given by the path from $\mathbb{1}$ to the point where N becomes singular.
The solution has ne knowledge of the compact cycle on $\frac{S L(2, R)}{S 0(1,1)}$: this is due to fixing the Bored gauge in the set up of the brave σ-model. If two-parameter solutions on $\frac{S L(2, \mathbb{R})}{S O(1,1)}$ exist then
spacetime needs to be enlarged, as $\operatorname{dim}\left(\frac{G}{k}\right)=\operatorname{dim}(G)-\operatorname{dim}(k)>11$
when $G=S L(S, \mathbb{R})$

$$
K=5 o(1,4)
$$

$$
\text { N.0. } \operatorname{din}(S(S, \mathbb{R}))=24, \operatorname{dim}(S 0(1,4))=\frac{5}{2}(4)=10 \text {. }
$$

This offers another motivation for enlarging spacetime to have coordinates sitting in the fundamental
representation of E_{11}. [Kieinschmidt \& West '03].

In this setting the cosets would be geometrised in an enlarged spacetime.

Concluding Remarks.

- Much mathematical work is needed on the representation theory of E_{11} and $K\left(E_{11}\right)$ -see the attempts to construct spinor representations of $K\left(E_{10}\right)$ by Kieinschmidt \& Nicolai.
- Spacetime generalised in the manner described by E_{11} has produced many results recently under the title of Oouble-Field Theory [See Siegel. Hull,H.hm, Zweibach, Samtl-bean and dthers] and more recently exceptional Field theory [H.hm, Samtleben]
Both of these directions in solve mvest:gation of truncated versions \& the l_{L} coordinates:

$$
\begin{gathered}
P_{\ldots}, 2^{a b}, 2^{a_{1} \ldots a_{5}}, 2^{a_{1} \ldots, 1 b}, 2^{a_{1} \ldots a_{8}} \ldots \\
11 . . \\
165 \\
385
\end{gathered}
$$

- Recent progress has been made by Tumanor \& West by finding the equation of motion For the dual graviton.

