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What is hydrodynamic integrability?

I A test for ‘integrability’ of ‘dispersionless’ systems of PDEs.
I Introduced by E. Ferapontov and K. Khusnutdinova [FeKh].
I Applies to systems which can be written in

translation-invariant quasilinear first order form.
I ‘Integrable’ means system has sufficiently many

‘hydrodynamic reductions’ (⇒ Lots of solutions given by
nonlinear superpositions of plane waves.)

I Known to be equivalent to integrability by dispersionless Lax
pair in some cases [BFT,DFKN1,DFKN2,FHK].

I Computationally intensive: need symbolic computer algebra.
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Quasilinear first order systems
A (translation-invariant first order) quasilinear system is a PDE
system of the form [Tsa]

(1) A1(ϕ)∂x1ϕ+ · · ·+ An(ϕ)∂xnϕ = 0

on maps ϕ : Rn → Rs , where Aj : Rs → Mk×s(R).

Example. An N-component hydrodynamic system is a system of
the form

(2) ∂xj Ra = µaj(R)∂x1Ra

for j ∈ {2, . . . n}, a ∈ {1, . . .N} and functions µaj of
R = (R1, . . .RN) which satisfy the compatibility conditions
∂bµaj = γab(R)(µbj − µaj) for all a 6= b and j ∈ {2, . . . n}.

An N-component hydrodynamic reduction of (1) is an ansatz
ϕ = F (R1, . . .RN) s.t. ϕ satisfies (1) if and only if R satisfies (2).
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Example: dispersionless KP
Dispersionless limit of the Kadomtsev–Petviashvili equation:

(dKP) (ut + uux )x = uyy .

Put into quasilinear first order form:

uy − vx = 0 = ut + uux − vy .

Substitute u = U(R1, . . .RN) and v = V (R1, . . .RN) with

∂tRa = λa(R1, . . .RN)∂xRa and ∂y Ra = µa(R1, . . .RN)∂xRa,

using ux =
∑

a(∂aU)∂xRa etc. to get∑
a

(µa ∂aU − ∂aV )∂xRa = 0 =
∑

a

(
(λa + U) ∂aU − µa ∂aV

)
∂xRa

so require µa ∂aU = ∂aV and (λa + U) ∂aU = µa ∂aV for all a.
In particular λa + U = µ2

a (the dispersion relation).
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Method of hydrodynamic reductions
In general, the condition for functions F (r1, . . . rN) and
µaj(r1, . . . rN) to define a hydrodynamic reduction of a quasilinear
system (1) is itself a PDE system.

For dKP, after eliminating V by ∂aV = µa ∂aU and λa = µ2
a − U,

the PDE system for U and µa to define a hydrodynamic reduction
is that for all a 6= b,

∂bµa = ∂bU
µb − µa

, ∂a∂bU = 2 ∂aU ∂bU
(µb − µa)2 ,

Definition. A quasilinear system (1) is integrable by
hydrodynamic reductions if the PDE system for N-component
reductions is compatible for all N ≥ 2.
(It then admits solutions depending on N functions of 1-variable.)

In fact the 2-component system is always compatible and it is
enough to check N = 3 [FeKh].
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Hydrodynamic integrability of dKP

In the dKP case, a tedious computation of the derivatives of the
system yields

∂c(∂bµa) = ∂bU ∂cU (µb+µc−2µa)
(µb−µc )2(µb−µa)(µc−µa) ,(3)

∂c(∂a∂bU) = 4∂aU ∂bU ∂cU ((µa)2+(µb)2+(µc )2−µaµb−µaµc−µbµc )
(µa−µb)2(µa−µc )2(µb−µc )2 ,(4)

for all distinct a, b, c.

Since the RHS of (3) is symmetric in b, c and the RHS of (4) is
totally symmetric in a, b, c, the system is compatible.

This is how the method works for one specific PDE with just one
quadratic nonlinearity.

For anything remotely general, the computations are brutal.
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What is going on?

Two clues to some underlying geometric meaning.
I The dispersion relation. For dKP, this says

[z0, z1, z2] = [1, λa, µa] is a point on z0z1 + uz2
0 = z2

2 .
This quadric is the characteristic variety of dKP.
For general hydrodynamic reductions, the characteristic
momenta ωa =

∑n
j=1 µaj dxj are on the characteristic variety.

I Papers [BFT,DFKN1,DFKN2,FHK] showing that for three
particular classes of systems, hydrodynamic reductions are
nice submanifolds with respect to some interesting geometric
structure on the codomain of ϕ.

Also inspiring ideas of A. Smith [Smi1,Smi2].

7



Plan for rest of talk

I Explain geometry of hydrodynamic reductions using the
‘characteristic correspondence’ of a quasilinear system.

I Use some algebraic geometry (projective embeddings) and
differential geometry (nets) to give a fairly general result
which unifies aforementioned observations of
[BFT,DFKN1,DFKN2,FHK].

(But no progress yet on the harder, computationally intensive parts
of these papers e.g. showing equivalence of hydrodynamic and Lax
integrability.)
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Quasilinear systems revisited

Natural context for quasilinear systems (QLS):
I Maps ϕ : M → Σ where M is an affine space modelled on an

n-dimensional vector space t and Σ is an s-manifold.
I Have dϕ = 〈ψ, dx〉 ∈ Ω1(M, ϕ∗T Σ) where

I ψ ∈ C∞(M, t∗ ⊗ ϕ∗T Σ) and
I dx ∈ Ω1(M, t) is the tautological isomorphism TM ∼= M × t.

I QLS is ψ ∈ C∞(M, ϕ∗Ψ) for a vector subbundle Ψ ≤ t∗ ⊗T Σ
over Σ (locally defined as kernel of some A : t∗ ⊗ T Σ→ Rk).

Hydrodynamic case: Σ has coordinates ra : a ∈ A = {1, . . . s} and
functions µa : Σ→ t∗ s.t. Ψ is spanned by µa ⊗ ∂ra : a ∈ A.

Equivalently, setting ωa = 〈µa, dx〉, the 2-forms ωa ∧ dra pull back
to zero by (id , ϕ) : M → M × Σ.

(A very simple exterior differential system whose compatibility
condition is dωa ∧ dra = 0 ∀ a ∈ A.)
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The characteristic correspondence
Projective bundle P(t∗ ⊗ T Σ)→ Σ has subbundle R with fibre

Rp := {[ξ ⊗ Z ] : ξ ∈ t∗, Z ∈ TpΣ}

i.e., rank one tensors – Segre image of P(t∗)× P(TpΣ).

Definition. Let Ψ ≤ t∗ ⊗ T Σ be a QLS.
I Rank one variety of Ψ is RΨ := R∩ P(Ψ).
I Characteristic and cocharacteristic varieties of Ψ are

projections χΨ and CΨ of RΨ to Σ× P(t∗) and P(T Σ) resp.
I Characteristic correspondence of Ψ:

RΨ

Σ× P(t∗) ≥ χΨ

πχ
�

CΨ ≤ P(T Σ)

πC-

(Assumed smooth double fibration.)
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Examples
I Hydrodynamic system: χΨ = {[µa] : a ∈ A},
CΨ = {[∂ra ] : a ∈ A}, RΨ = {[µa ⊗ ∂ra ] : a ∈ A}.

I dKP: ϕ = (u, v) : M = R3 → Σ = R2. Then Ψ(u,v) is
{(ux , uy , ut)⊗ (1, 0) + (uy , ut + uux , vt)⊗ (0, 1)} and rank one
elts have (ux , uy , ut) and (uy , ut + uux , vt) lin. dep., giving

RΨ
(u,v) = {(λ2, λµ, µ2 − uλ2)⊗ (λ, µ) : λ, µ ∈ R}.

Then CΨ = P1, and χΨ is a u-dependent conic in P2.
I For Σ ⊆ t∗ ⊗ V ⊆ Grn(t⊕ V ), ϕ : M → Σ is derivative of

u : M → V iff ψ(x) ∈ Ψϕ(x) with
Ψp := t∗ ⊗ TpΣ ∩ S2t∗ ⊗ V ⊆ t∗ ⊗ t∗ ⊗ V . Then

χΨ
p = {[ξ] ∈ P(t∗) : ξ ⊗ v ∈ TpΣ for some v ∈ V }
CΨ

p = {[ξ ⊗ v ] ∈ P(TpΣ)}
RΨ

p = {[ξ ⊗ ξ ⊗ v ] ∈ P(t∗ ⊗ TpΣ)}.

Get many examples this way (including Ferapontov et al.).
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Hydrodynamic reductions revisited
Seek to write ϕ = S ◦ R with R : M → RN and S : RN → Σ so
that ϕ solves Ψ iff ∀ a ∈ A = {1, . . .N}, dRa ∧ 〈µa(R), dx〉 = 0
i.e., dRa = fa(R)〈µa(R), dx〉 for some functions fa.

dϕ = R∗dS ◦ dR =
∑
a∈A

dRa ⊗ ∂aS(R)Chain rule:

=
∑
a∈A

fa(R)〈µa(R), dx〉 ⊗ ∂aS(R) = 〈ψ, dx〉,

ψ =
∑
a∈A

fa(R)µa(R)⊗ ∂aS(R).where

Want many solns: µa ⊗ ∂aS ∈ Ψ
Definition. An N-component hydrodynamic reduction of a
QLS Ψ ≤ t∗ ⊗ T Σ is a map

(S, [µ1], . . . [µN ]) : RN → χΨ ×Σ · · · ×Σ χ
Ψ

(N-fold fibre product) s.t. µa ⊗ ∂aS is in Ψ for all a, and the
hydrodynamic system defined by µa is compatible.
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Main result

So far: turned simple-minded but fearsome calculus into abstract
nonsense geometry. No PDE person would call this progress.

So do we win anything?

Theorem. Let Ψ ≤ t∗ ⊗ T Σ be a compliant QLS. Then modulo
natural equivalences, generic N-component hydrodynamic
reductions of Ψ, with N ≤ dim Σ, correspond bijectively to
N-dimensional cocharacteristic nets in Σ.

Remaining business:
I Explain what is a compliant QLS (alg. geom.)
I Explain what is a cocharacteristic net (diff. geom.)
I Prove the theorem
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Algebraic geometry: projective embeddings

I χΨ and CΨ are fibrewise projective varieties in projectivized
vector bundles, and the corresponding dual tautological line
bundles pull back to line bundles Lχ → χΨ and LC → CΨ.

I For a line bundle L over a bundle of projective varieties over
Σ, let H0(L)→ Σ be the bundle of fibrewise regular sections.

I Have canonical maps Σ× t→ H0(Lχ) and T ∗Σ→ H0(LC)
given by restricting fibrewise sections of the dual tautological
line bundles to χΨ and CΨ.

I If χΨ and CΨ are not contained (fibrewise) in any hyperplane,
these maps are injective, hence fibrewise linear systems, and
surjectivity means that these linear systems are complete.

14



Compliant QLS
A QLS is compliant if the following conditions hold:

1. the characteristic correspondence maps are isomorphisms, and
we let ζΨ = πχ ◦ π−1

C be the induced isomorphism CΨ → χΨ;
2. the canonical maps Σ× t→ H0(Lχ) and T ∗Σ→ H0(LC) are

isomorphisms;
3. VΨ := H0(LC ⊗ (ζΨ)∗L∗χ)∗ → Σ is a nonzero vector bundle,

and the canonical vector bundle map T Σ→ t∗⊗VΨ—induced
by the transpose of the tensor product map

H0((ζΨ)∗Lχ)⊗ H0(LC ⊗ (ζΨ)∗L∗χ)→ H0(LC)

—is an embedding;
4. if rank(VΨ) ≥ 2, no 2-dimensional submanifold of Σ has rank

one tangent space in t∗ ⊗ VΨ.
Key point: under isomorphism in 1., LC is at least as ample as Lχ
by 3., so T Σ has a tensor product decomposition using 2.
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Differential geometry: nets
I A pre-net on an N-manifold Q is a direct sum decomposition

TQ =
⊕

j∈J Dj into rank one distributions Dj ≤ TQ for
j ∈ J := {1, . . .N}.

I A pre-net Dj : j ∈ J on Q is integrable if for every subset
I ⊆ J , DI :=

⊕
i∈I Di is an integrable distribution (i.e.,

tangent to a foliation with #I dimensional leaves); an
integrable pre-net is called a net.

Frobenius theorem gives characterizations of integrability.
Also need a special class of nets.

I If Dj : j ∈ J is a pre-net on Q, and TQ ≤ V ⊗ t∗ for a line
bundle V → Q and a vector space t∗, then each Di defines a
line subbundle Mi of Q × t∗.

I May then require that for any section Xi of Di , have
dXi Mj ≤ Mi ⊕Mj . If this holds then Dj : j ∈ J is a net and
will be called a conjugate net.

(Well known when Q is an affine space with translation group t.)
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Cocharacteristic nets

Let Ψ ≤ t∗ ⊗ T Σ be a compliant QLS with T Σ ≤ t∗ ⊗ VΨ.

An N-dimensional cocharacteristic net in Σ is an N-dimensional
submanifold S : RN → Σ such that:

1. the net spanned by ∂aS : a ∈ A satisfies [∂aS] ∈ CΨ; and
2. if VΨ has rank one, the net is conjugate.

Clearly a hydrodynamic reduction defines a net satisfying 1.

Conversely, given such a net, the embedding of CΨ into P(t∗⊗VΨ)
gives ∂aS = µa ⊗ va for some local sections va of S∗VΨ.

The main point is to show that the compatibility of the
hydrodynamic system with characteristic momenta 〈µa, dx〉 is
equivalent to 2.
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Proof of Theorem
Choose a basis for t∗ and rescale characteristic momenta s.t.
µa1 = 1. Then have ∂bSk = µbk∂bS1 = µbkvb for k ∈ {1, . . . n}.

Differentiate by ∂a and commute partial derivatives to obtain

(5) (∂aµbk)∂bS1 − (∂bµak)∂aS1 = (µak − µbk)∂a∂bS1.

Dividing by µak − µbk , RHS is independent of k so( ∂aµbk
µak − µbk

− ∂aµb`
µa` − µb`

)
vb =

( ∂bµak
µak − µbk

− ∂bµa`
µa` − µb`

)
va.

Both sides are zero unless va and vb are lin. dep., i.e., multiples of
some v ∈ VΨ, say. But then span of ∂aS = µa ⊗ va and
∂bS = µb ⊗ vb is span{µa, µb} ⊗ span{v}, i.e., entirely rank one.

For rank(VΨ) > 1, the set where this holds has empty interior by
compliancy, so hydrodynamic compatibility condition is satisfied on
dense complement, hence everywhere by continuity.
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The rank one case
If ∂aµbk = γba(µak − µbk) for a 6= b, have

∂a∂bSk = (∂aµbk)∂bS1 + µbk ∂a∂bS1

= γba(µak − µbk)∂bS1 + µbk(γab∂aS1 + γba∂bS1)
= γab(va/vb)∂bSk + γba(vb/va)∂aSk

by (5) so S is conjugate.
Conversely, if S is conjugate with ∂a∂bSk = αab∂bSk + βab∂aSk for
a 6= b, then taking k = 1, have

∂a∂bS1 = αab∂bS1 + βab∂aS1 = αabvb + βabva.

On the other hand

µbk ∂a∂bS1 = ∂a∂bSk−(∂aµbk)∂bS1 = αabµbkvb+βabµakva−(∂aµbk)vb

Now eliminate ∂a∂bS1 to obtain

αabµbkvb + βabµbkva = αabµbkvb + βabµakva − (∂aµbk)vb

and hence ∂aµbk = βab(va/vb)(µak − µbk).
19



References
[BFT] P. A. Burovskii, E. V. Ferapontov and S. P. Tsarev, Second order
quasilinear PDEs and conformal structures in projective space, Int. J. Math. 21
(2010) 799–841.
[DFKN1] B. Doubrov, E. V. Ferapontov, B. Kruglikov and V. Novikov, On the
integrability in Grassmann geometries: integrable systems associated with
fourfolds in Gr(3,5), arXiv:1503.02274.
[DFKN2] B. Doubrov, E. V. Ferapontov, B. Kruglikov and V. Novikov,
Integrable systems in 4D associated with sixfolds in Gr(4,6), arXiv:1705.06999.
[FHK] E. V. Ferapontov, L. Hadjikos and K. R. Khusnutdinova, Integrable
equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian
Grassmannian, Int. Math. Res. Notices (2010) 496–535.
[FeKh] E. V. Ferapontov and K. R. Khusnutdinova, On the Integrability of
(2+1)-Dimensional Quasilinear Systems, Comm. Math. Phys. 248 (2004)
187–206.
[Smi1] A. D. Smith, Integrable GL(2) geometry and hydrodynamic partial
differential equations, Comm. Anal. Geom. 18 (2010) 743–790.
[Smi2] A. D. Smith, Towards generalized hydrodynamic integrability via the
characteristic variety, Fields Institute, Toronto (2013).
[Tsa] S. P. Tsarev, Geometry of hamiltonian systems of hydrodynamic type.
Generalized hodograph method, Izv. AN USSR Math. 54 (1990) 1048–1068.

20


