Coupled equations for Kähler metrics and Yang-Mills connections

Mario García-Fernández Joint work with:
Luis Álvarez-Cónsul and Oscar García-Prada
ICMAT (CSIC-UAM-UC3M-UCM)

Bath (27 Nov 2009)

A moduli problem

```
X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G,
E smooth principal G-bundle over }X\mathrm{ .
```

Construct a moduli space with a Kähler
structure


```
A connection on E,g Kähler metric on X.
```


A moduli problem

X Kählerian smooth manifold,
G compact Lie group,
\mathfrak{g} Lie algebra of G,
E smooth principal G-bundle over X.
Construct a moduli space with a Kähler
structure

A moduli problem

X Kählerian smooth manifold,
G compact Lie group,
\mathfrak{g} Lie algebra of G,
E smooth principal G-bundle over X.
A moduli problem: Construct a moduli space with a Kähler structure

$$
\text { (1) }\{\text { pairs }(g, A) \text { satisfying suitable PDE }\} / \sim
$$

A connection on E, g Kähler metric on X.
Find a well suited PDE for (1)
Relation with physics: interaction between gauge fields and gravity.

A moduli problem

X Kählerian smooth manifold,
G compact Lie group,
\mathfrak{g} Lie algebra of G,
E smooth principal G-bundle over X.
A moduli problem: Construct a moduli space with a Kähler structure

$$
\text { (1) }\{\text { pairs }(g, A) \text { satisfying suitable PDE }\} / \sim
$$

A connection on E, g Kähler metric on X.
Problem 1 of this talk: Find a well suited PDE for (1)
Relation with physics: interaction between gauge fields and gravity.

A moduli problem

X Kählerian smooth manifold,
G compact Lie group,
\mathfrak{g} Lie algebra of G,
E smooth principal G-bundle over X.
A moduli problem: Construct a moduli space with a Kähler structure

$$
\text { (1) }\{\text { pairs }(g, A) \text { satisfying suitable PDE }\} / \sim
$$

A connection on E, g Kähler metric on X.
Problem 1 of this talk: Find a well suited PDE for (1)
Relation with physics: interaction between gauge fields and gravity.

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:
 2) the constant scalar curvature equation for a Kähler metric (csck) Once we have our nice PDE ...

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

1) the Hermite-Yang-Mills (HYM) equations for a connection and

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

1) the Hermite-Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kähler metric (cscK).

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

1) the Hermite-Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

1) the Hermite-Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...
Problem 2 of this talk: Use the symplectic interpretation for finding:

Strategy

- Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$$
\mu_{\alpha}^{-1}(0) / \widetilde{\mathcal{G}}
$$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

- We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

1) the Hermite-Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...
Problem 2 of this talk: Use the symplectic interpretation for finding: families of examples and obstructions to the existence of solutions.

Moment maps

$(X, \omega)=$ symplectic manifold,
$G=$ Lie group with Lie algebra \mathfrak{g},
$G \times X \rightarrow X$, left G-action preserving ω.

Moment maps

$(X, \omega)=$ symplectic manifold,
$G=$ Lie group with Lie algebra \mathfrak{g},
$G \times X \rightarrow X$, left G-action preserving ω.
Suppose that \exists a G-equivariant moment map

Moment maps

$(X, \omega)=$ symplectic manifold,
$G=$ Lie group with Lie algebra \mathfrak{g},
$G \times X \rightarrow X$, left G-action preserving ω.
Suppose that \exists a G-equivariant moment map i.e. $\exists \mu: X \rightarrow \mathfrak{g}^{*}$ such that

$$
d\langle\mu, \zeta\rangle=\omega\left(Y_{\zeta}, \cdot\right) \quad \text { and } \quad \mu(g \cdot x)=\operatorname{Ad}(g)^{-1} \cdot \mu(x)
$$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta \mid x}=\frac{d}{d t} t=0$ exp $(t \zeta) \cdot x \in T_{x} X$.
Symplectic quotient (Marsden \& Weinstein '74): If we have
action then $\mu^{-1}(0) / G$ inherits a natural symplectic structure.
Kähler quotient (Guillemin \& Stenberg '82): If (X, J, ω) is Kähler and

Moment maps

$(X, \omega)=$ symplectic manifold,
$G=$ Lie group with Lie algebra \mathfrak{g},
$G \times X \rightarrow X$, left G-action preserving ω.
Suppose that \exists a G-equivariant moment map i.e. $\exists \mu: X \rightarrow \mathfrak{g}^{*}$ such that

$$
d\langle\mu, \zeta\rangle=\omega\left(Y_{\zeta}, \cdot\right) \quad \text { and } \quad \mu(g \cdot x)=\operatorname{Ad}(g)^{-1} \cdot \mu(x)
$$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta \mid x}=\frac{d}{d t} t=0$ exp $(t \zeta) \cdot x \in T_{x} X$.
Symplectic quotient (Marsden \& Weinstein '74): If we have a "good" action then $\mu^{-1}(0) / G$ inherits a natural symplectic structure.

Moment maps

$(X, \omega)=$ symplectic manifold,
$G=$ Lie group with Lie algebra \mathfrak{g},
$G \times X \rightarrow X$, left G-action preserving ω.
Suppose that \exists a G-equivariant moment map i.e. $\exists \mu: X \rightarrow \mathfrak{g}^{*}$ such that

$$
d\langle\mu, \zeta\rangle=\omega\left(Y_{\zeta}, \cdot\right) \quad \text { and } \quad \mu(g \cdot x)=\operatorname{Ad}(g)^{-1} \cdot \mu(x)
$$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta \mid x}=\frac{d}{d t} t=0$ exp $(t \zeta) \cdot x \in T_{x} X$.
Symplectic quotient (Marsden \& Weinstein '74): If we have a "good" action then $\mu^{-1}(0) / G$ inherits a natural symplectic structure.

Kähler quotient (Guillemin \& Stenberg '82): If (X, J, ω) is Kähler and we have a "good" action of $G \curvearrowright(X, \omega, J)$ then $\mu^{-1}(0) / G$ inherits a natural Kähler structure.

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
E-bundle over X, A connection on E, F_{A} curvature of A

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
$E G$-bundle over X, A connection on E, F_{A} curvature of A $\mathcal{A}=\{$ connections A on $E\}$

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
$E G$-bundle over X, A connection on E, F_{A} curvature of A
$\mathcal{A}=\{$ connections A on $E\}$
$\mathcal{G}=\{$ automorphisms $g: E \rightarrow E$ covering the identity on $X\} \curvearrowright \mathcal{A}$.

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
E G-bundle over X, A connection on E, F_{A} curvature of A
$\mathcal{A}=\{$ connections A on $E\}$
$\mathcal{G}=\{$ automorphisms $g: E \rightarrow E$ covering the identity on $X\} \curvearrowright \mathcal{A}$.
The infinite-dimensional manifold \mathcal{A} has a Kähler structure $\left(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}}\right)$ preserved by \mathcal{G}.

$$
\omega_{\mathcal{A}}\left(a_{0}, a_{1}\right)=\int_{X}\left(a_{0} \wedge a_{1}\right) \wedge \omega^{n-1}, I_{\mathcal{A}} a_{0}=-a_{0}(J \cdot) \quad \text { with } a_{j} \in \Omega^{1}(\operatorname{ad} E)
$$

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
E-bundle over X, A connection on E, F_{A} curvature of A
$\mathcal{A}=\{$ connections A on $E\}$
$\mathcal{G}=\{$ automorphisms $g: E \rightarrow E$ covering the identity on $X\} \curvearrowright \mathcal{A}$.
The infinite-dimensional manifold \mathcal{A} has a Kähler structure $\left(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}}\right)$ preserved by \mathcal{G}.

$$
\omega_{\mathcal{A}}\left(a_{0}, a_{1}\right)=\int_{X}\left(a_{0} \wedge a_{1}\right) \wedge \omega^{n-1}, I_{\mathcal{A}} a_{0}=-a_{0}(J \cdot) \quad \text { with } a_{j} \in \Omega^{1}(\operatorname{ad} E)
$$

Moment map(Atiyah-Bott ('83) \& Donaldson): $\mu_{\mathcal{A}}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{G})^{*}$

$$
\left\langle\mu_{\mathcal{A}}(A), \zeta\right\rangle=\int_{X}\left(\zeta \wedge F_{A}\right) \wedge \omega^{n-1} \quad \zeta \in \operatorname{ad} E \equiv \operatorname{Lie} \mathcal{G}
$$

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
E-bundle over X, A connection on E, F_{A} curvature of A
$\mathcal{A}=\{$ connections A on $E\}$
$\mathcal{G}=\{$ automorphisms $g: E \rightarrow E$ covering the identity on $X\} \curvearrowright \mathcal{A}$.
The infinite-dimensional manifold \mathcal{A} has a Kähler structure $\left(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}}\right)$ preserved by \mathcal{G}.

$$
\omega_{\mathcal{A}}\left(a_{0}, a_{1}\right)=\int_{X}\left(a_{0} \wedge a_{1}\right) \wedge \omega^{n-1}, I_{\mathcal{A}} a_{0}=-a_{0}(J \cdot) \quad \text { with } a_{j} \in \Omega^{1}(\operatorname{ad} E)
$$

Moment map(Atiyah-Bott ('83) \& Donaldson): $\mu_{\mathcal{A}}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{G})^{*}$

$$
\begin{gathered}
\left\langle\mu_{\mathcal{A}}(A), \zeta\right\rangle=\int_{X}\left(\zeta \wedge F_{A}\right) \wedge \omega^{n-1} \quad \zeta \in \operatorname{ad} E \equiv \operatorname{Lie} \mathcal{G} \\
\mathcal{G} \curvearrowright \mathcal{A}^{1,1}=\left\{A \in \mathcal{A}: F_{A}^{0,2}=0\right\} \equiv \text { holomorphic struct. on } E^{c}=E \times{ }_{G} G^{c}
\end{gathered}
$$

Example 1: The Hermite-Yang-Mills equations

(X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.
E-bundle over X, A connection on E, F_{A} curvature of A
$\mathcal{A}=\{$ connections A on $E\}$
$\mathcal{G}=\{$ automorphisms $g: E \rightarrow E$ covering the identity on $X\} \curvearrowright \mathcal{A}$.
The infinite-dimensional manifold \mathcal{A} has a Kähler structure $\left(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}}\right)$ preserved by \mathcal{G}.

$$
\omega_{\mathcal{A}}\left(a_{0}, a_{1}\right)=\int_{X}\left(a_{0} \wedge a_{1}\right) \wedge \omega^{n-1}, I_{\mathcal{A}} a_{0}=-a_{0}(J \cdot) \quad \text { with } a_{j} \in \Omega^{1}(\operatorname{ad} E)
$$

Moment $\operatorname{map}\left(\right.$ Atiyah-Bott ('83) \& Donaldson): $\mu_{\mathcal{A}}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{G})^{*}$

$$
\left\langle\mu_{\mathcal{A}}(A), \zeta\right\rangle=\int_{X}\left(\zeta \wedge F_{A}\right) \wedge \omega^{n-1} \quad \zeta \in \operatorname{ad} E \equiv \operatorname{Lie} \mathcal{G}
$$

$\mathcal{G} \curvearrowright \mathcal{A}^{1,1}=\left\{A \in \mathcal{A}: F_{A}^{0,2}=0\right\} \equiv$ holomorphic struct. on $E^{c}=E \times{ }_{G} G^{c}$
HYM equations:

$$
\Lambda_{\omega} F_{A}=z, \quad F_{A}^{0,2}=0, \quad z \in \mathfrak{z}(\text { centre of } \mathfrak{g})
$$

Example 2: The constant scalar curvature equation

(X, ω) smooth compact symplectic manifold of Kähler type.

Example 2: The constant scalar curvature equation

(X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J}=\{$ complex structures on X compatible with $\omega\}$ $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X, \omega)\} \curvearrowright \mathcal{J}$

Moment map (Fujiki(1992)-Donaldson(1997)): $\mu_{\mathcal{J}}: \mathcal{J} \rightarrow($ Lie $\mathcal{H})$

Example 2: The constant scalar curvature equation

(X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J}=\{$ complex structures on X compatible with $\omega\}$ $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X, \omega)\} \curvearrowright \mathcal{J}$
The infinite-dimensional (singular) manifold \mathcal{J} has a Kähler structure $\left(\omega_{\mathcal{J}}, I_{\mathcal{J}}, g_{\mathcal{J}}\right)$ preserved by \mathcal{H}. Given $b_{j} \in T_{J} \mathcal{J} \subset \Omega^{0}($ End $T X)$,

$$
\omega_{\mathcal{J} \mid J}\left(b_{0}, b_{1}\right)=\int_{X} \operatorname{tr}\left(J \cdot b_{0} \cdot b_{1}\right) \frac{\omega^{n}}{n!}, \quad I_{\mathcal{J}} b_{0}=J b_{0}
$$

Example 2: The constant scalar curvature equation

(X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J}=\{$ complex structures on X compatible with $\omega\}$ $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X, \omega)\} \curvearrowright \mathcal{J}$
The infinite-dimensional (singular) manifold \mathcal{J} has a Kähler structure $\left(\omega_{\mathcal{J}}, I_{\mathcal{J}}, g_{\mathcal{J}}\right)$ preserved by \mathcal{H}. Given $b_{j} \in T_{J} \mathcal{J} \subset \Omega^{0}($ End $T X)$,

$$
\omega_{\mathcal{J} \mid J}\left(b_{0}, b_{1}\right)=\int_{X} \operatorname{tr}\left(J \cdot b_{0} \cdot b_{1}\right) \frac{\omega^{n}}{n!}, \quad I_{\mathcal{J}} b_{0}=J b_{0}
$$

Moment map (Fujiki(1992)-Donaldson(1997)): $\mu_{\mathcal{J}}: \mathcal{J} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\begin{gathered}
\left\langle\mu_{\mathcal{J}}(J), \phi\right\rangle=-\int_{X} \phi\left(S_{J}-\hat{S}\right) \frac{\omega^{n}}{n!} \\
\phi \in C^{\infty}(X) / \mathbb{R} \cong \operatorname{Lie} \mathcal{H} \quad \hat{S}=\frac{1}{\operatorname{Vol}(X)} \int_{X} S_{J} \frac{\omega^{n}}{n!}
\end{gathered}
$$

Example 2: The constant scalar curvature equation

(X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J}=\{$ complex structures on X compatible with $\omega\}$ $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X, \omega)\} \curvearrowright \mathcal{J}$
The infinite-dimensional (singular) manifold \mathcal{J} has a Kähler structure $\left(\omega_{\mathcal{J}}, I_{\mathcal{J}}, g_{\mathcal{J}}\right)$ preserved by \mathcal{H}. Given $b_{j} \in T_{\mathcal{J}} \mathcal{J} \subset \Omega^{0}(E n d T X)$,

$$
\omega_{\mathcal{J} \mid J}\left(b_{0}, b_{1}\right)=\int_{X} \operatorname{tr}\left(J \cdot b_{0} \cdot b_{1} \frac{\omega^{n}}{n!}, \quad I_{\mathcal{J}} b_{0}=J b_{0} .\right.
$$

Moment map (Fujiki(1992)-Donaldson(1997)): $\mu_{\mathcal{J}}: \mathcal{J} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\begin{gathered}
\left\langle\mu_{\mathcal{J}}(J), \phi\right\rangle=-\int_{X} \phi\left(S_{J}-\hat{S}\right) \frac{\omega^{n}}{n!} \\
\phi \in C^{\infty}(X) / \mathbb{R} \cong \operatorname{Lie} \mathcal{H} \quad \hat{S}=\frac{1}{\operatorname{Vol}(X)} \int_{X} S_{J} \frac{\omega^{n}}{n!}
\end{gathered}
$$

CscK equation:
 $$
S_{J}=\hat{S}, \quad J \in \mathcal{J} .
$$

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers $\operatorname{over}\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers $\operatorname{over}\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers $\operatorname{over}\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$?

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\}$

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves $\mathbf{I}, \omega_{\alpha}$ and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\} \equiv$ Kähler structure on X with fixed $\omega+$ holomorphic structure on E^{c} over X.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves $\mathbf{I}, \omega_{\alpha}$ and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\} \equiv$ Kähler structure on X with fixed $\omega+$ holomorphic structure on E^{c} over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G}$.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves $\mathbf{I}, \omega_{\alpha}$ and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\} \equiv$ Kähler structure on X with fixed $\omega+$ holomorphic structure on E^{c} over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G} . \widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup preserving ω_{α} and I.

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\} \equiv$ Kähler structure on X with fixed $\omega+$ holomorphic structure on E^{c} over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G} . \widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup preserving ω_{α} and I.
- Why ω_{α} ?

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\} \equiv$ Kähler structure on X with fixed $\omega+$ holomorphic structure on E^{c} over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G} . \widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup preserving ω_{α} and I.
- Why ω_{α} ? For simplicity (following cscK \& HYM).

Coupled equations for Kähler metrics and connections $(X, \omega), G, E, \mathcal{J}$ and \mathcal{A} as before.

Phase space: $\mathcal{J} \times \mathcal{A}$.
Group of symmetries: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.
Symplectic structure: $\omega_{\alpha}=\alpha_{0} \omega_{\mathcal{J}}+\frac{4 \alpha_{1}}{(n-1)!} \omega_{\mathcal{A}}, 0 \neq \alpha_{0}, \alpha_{1} \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $\left(\mathcal{J}, I_{\mathcal{J}}\right)$, given by $\mathbf{I}_{(J, A)}(b, a)=(J b,-a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_{1}}{\alpha_{0}}>0!!!$
- Why $\widetilde{\mathcal{G}}$? Geometry: It preserves $\mathbf{I}, \omega_{\alpha}$ and the complex submanifold $\mathcal{P}=\left\{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{j}^{1,1}\right\} \equiv$ Kähler structure on X with fixed $\omega+$ holomorphic structure on E^{c} over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G} . \widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup preserving ω_{α} and I.
- Why ω_{α} ? For simplicity (following cscK \& HYM).

Problem 1: We find a solution if $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$ is Hamiltonian.

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?

Lie group extensions and Hamiltonian actions
Question: Is $\tilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.

Lie group extensions and Hamiltonian actions
Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \mathrm{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0$.

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}($ Lie $\widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of

$$
0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0
$$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$-equivariant map $\sigma_{\theta}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\omega_{\mathcal{A}}\left(Y_{\theta \perp \phi}, \cdot\right)=\left\langle\mu_{\mathcal{G}},(d \theta) \phi\right\rangle+d\left\langle\sigma_{\theta}, \phi\right\rangle, \text { for all } \phi \in \operatorname{Lie} \mathcal{H}
$$

where $\theta^{\perp}=\mathrm{Id}-\theta: \operatorname{Lie} \mathcal{H} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta \perp_{\phi}}$ is the inf. action on \mathcal{A}.

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}($ Lie $\widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of

$$
0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0
$$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$-equivariant map $\sigma_{\theta}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\omega_{\mathcal{A}}\left(Y_{\theta \perp^{\phi}}, \cdot\right)=\left\langle\mu_{\mathcal{G}},(d \theta) \phi\right\rangle+d\left\langle\sigma_{\theta}, \phi\right\rangle, \text { for all } \phi \in \operatorname{Lie} \mathcal{H}
$$

where $\theta^{\perp}=\mathrm{Id}-\theta$: Lie $\mathcal{H} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp} \phi}$ is the inf. action on \mathcal{A}. Example: If $\mathcal{A}=\{\cdot\}, \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$.

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}($ Lie $\widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of

$$
0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0
$$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$-equivariant map $\sigma_{\theta}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\omega_{\mathcal{A}}\left(Y_{\theta \perp \phi}, \cdot\right)=\left\langle\mu_{\mathcal{G}},(d \theta) \phi\right\rangle+d\left\langle\sigma_{\theta}, \phi\right\rangle, \text { for all } \phi \in \operatorname{Lie} \mathcal{H}
$$

where $\theta^{\perp}=\mathrm{Id}-\theta: \operatorname{Lie} \mathcal{H} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp} \phi}$ is the inf. action on \mathcal{A}. Example: If $\mathcal{A}=\{\cdot\}, \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. but ...

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}($ Lie $\widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of

$$
0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0
$$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$-equivariant map $\sigma_{\theta}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\omega_{\mathcal{A}}\left(Y_{\theta \perp^{\phi}}, \cdot\right)=\left\langle\mu_{\mathcal{G}},(d \theta) \phi\right\rangle+d\left\langle\sigma_{\theta}, \phi\right\rangle, \text { for all } \phi \in \operatorname{Lie} \mathcal{H}
$$

where $\theta^{\perp}=\mathrm{Id}-\theta: \operatorname{Lie} \mathcal{H} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta \perp_{\phi}}$ is the inf. action on \mathcal{A}. Example: If $\mathcal{A}=\{\cdot\}, \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. but ... In our case: the vertical projection $\theta_{A}: T E \rightarrow V E$ defined by any connection $A \in \mathcal{A}$ defines an element $\theta: \mathcal{A} \rightarrow W$ in \mathcal{W}.

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of

$$
0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0 .
$$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$-equivariant map $\sigma_{\theta}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\omega_{\mathcal{A}}\left(Y_{\theta \perp \phi}, \cdot\right)=\left\langle\mu_{\mathcal{G}},(d \theta) \phi\right\rangle+d\left\langle\sigma_{\theta}, \phi\right\rangle \text {, for all } \phi \in \operatorname{Lie} \mathcal{H},
$$

where $\theta^{\perp}=\mathrm{Id}-\theta$: Lie $\mathcal{H} \rightarrow \mathrm{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp} \phi}$ is the inf. action on \mathcal{A}. Example: If $\mathcal{A}=\{\cdot\}, \mathcal{W} \neq \emptyset \Rightarrow \mathrm{Lie} \widetilde{\mathcal{G}} \cong \mathrm{Lie} \mathcal{G} \rtimes \mathrm{Lie} \mathcal{H}$. but ... In our case: the vertical projection $\theta_{A}: T E \rightarrow V E$ defined by any connection $A \in \mathcal{A}$ defines an element $\theta: \mathcal{A} \rightarrow W$ in \mathcal{W}. Finally,

Lie group extensions and Hamiltonian actions

Question: Is $\widetilde{\mathcal{G}} \curvearrowright\left(\mathcal{J} \times \mathcal{A}, \omega_{\alpha}\right)$ Hamiltonian?
Recall: $1 \rightarrow \mathcal{G} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1$ and the $\widetilde{\mathcal{G}}$-action is symplectic.
It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.
General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,
$\mathcal{W}:=\widetilde{\mathcal{G}}$-equivariant smooth maps $\theta: \mathcal{A} \rightarrow W$ where
$W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of

$$
0 \rightarrow \operatorname{Lie} \mathcal{G} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \mathcal{H} \rightarrow 0 .
$$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$-equivariant map $\sigma_{\theta}: \mathcal{A} \rightarrow(\text { Lie } \mathcal{H})^{*}$

$$
\omega_{\mathcal{A}}\left(Y_{\theta \perp \phi}, \cdot\right)=\left\langle\mu_{\mathcal{G}},(d \theta) \phi\right\rangle+d\left\langle\sigma_{\theta}, \phi\right\rangle, \text { for all } \phi \in \operatorname{Lie} \mathcal{H},
$$

where $\theta^{\perp}=\mathrm{Id}-\theta$: Lie $\mathcal{H} \rightarrow \mathrm{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp} \phi}$ is the inf. action on \mathcal{A}. Example: If $\mathcal{A}=\{\cdot\}, \mathcal{W} \neq \emptyset \Rightarrow \mathrm{Lie} \widetilde{\mathcal{G}} \cong \mathrm{Lie} \mathcal{G} \rtimes \mathrm{Lie} \mathcal{H}$. but ... In our case: the vertical projection $\theta_{A}: T E \rightarrow V E$ defined by any connection $A \in \mathcal{A}$ defines an element $\theta: \mathcal{A} \rightarrow W$ in \mathcal{W}. Finally,

$$
\left\langle\sigma_{\theta}(A), \phi\right\rangle=-\int_{X} \phi\left(\Lambda_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c^{\prime}\right) \cdot \frac{\omega^{n}}{n!} .
$$

Coupled equations for Kähler metrics and connections This proves that ...

Coupled equations for Kähler metrics and connections
 This proves that ...

Proposition [-, L. Álvarez Cónsul, O. García Prada]

For any α_{0} and α_{1} there exists a $\widetilde{\mathcal{G}}$-equivariant moment map $\mu_{\alpha}: \mathcal{J} \times \mathcal{A} \rightarrow$ Lie $\widetilde{\mathcal{G}}^{*}$ for the $\widetilde{\mathcal{G}}$-action. If $\zeta \in \operatorname{Lie} \mathcal{G}$, covering $\phi \in C^{\infty}(X) / \mathbb{R} \cong$ Lie \mathcal{H} then,

$$
\left\langle\mu_{\alpha}(J, A), \zeta\right\rangle=-\int_{X}\left(\phi\left(\alpha_{0} S_{J}+\alpha_{1} \Lambda_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c\right)-4 \alpha_{1}\left(\theta_{A} \zeta, \Lambda_{\omega} F_{A}\right)\right) \cdot \frac{\omega^{n}}{n!}
$$

Coupled equations for Kähler metrics and connections

This proves that ...

Proposition
 Álvarez Cónsul, O. García Prada]

For any α_{0} and α_{1} there exists a $\widetilde{\mathcal{G}}$-equivariant moment map $\mu_{\alpha}: \mathcal{J} \times \mathcal{A} \rightarrow$ Lie $\widetilde{\mathcal{G}}^{*}$ for the $\widetilde{\mathcal{G}}$-action. If $\zeta \in$ Lie \mathcal{G}, covering $\phi \in C^{\infty}(X) / \mathbb{R} \cong$ Lie \mathcal{H} then,

$$
\left\langle\mu_{\alpha}(J, A), \zeta\right\rangle=-\int_{X}\left(\phi\left(\alpha_{0} S_{J}+\alpha_{1} \Lambda_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c\right)-4 \alpha_{1}\left(\theta_{A} \zeta, \Lambda_{\omega} F_{A}\right)\right) \cdot \frac{\omega^{n}}{n!}
$$

The $\widetilde{\mathcal{G}}$-action preserves the complex submanifold $\mathcal{P}=\{(J, A) \in \mathcal{J} \times \mathcal{A}$: $\left.A \in \mathcal{A}_{j}^{1,1}\right\}$.

Coupled equations for Kähler metrics and connections

This proves that ...

Proposition
 Álvarez Cónsul, O. García Prada]

For any α_{0} and α_{1} there exists a $\widetilde{\mathcal{G}}$-equivariant moment map $\mu_{\alpha}: \mathcal{J} \times \mathcal{A} \rightarrow$ Lie $\widetilde{\mathcal{G}}^{*}$ for the $\widetilde{\mathcal{G}}$-action. If $\zeta \in$ Lie \mathcal{G}, covering $\phi \in C^{\infty}(X) / \mathbb{R} \cong$ Lie \mathcal{H} then,

$$
\left\langle\mu_{\alpha}(J, A), \zeta\right\rangle=-\int_{X}\left(\phi\left(\alpha_{0} S_{J}+\alpha_{1} \Lambda_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c\right)-4 \alpha_{1}\left(\theta_{A} \zeta, \Lambda_{\omega} F_{A}\right)\right) \cdot \frac{\omega^{n}}{n!}
$$

The $\widetilde{\mathcal{G}}$-action preserves the complex submanifold $\mathcal{P}=\{(J, A) \in \mathcal{J} \times \mathcal{A}$: $\left.A \in \mathcal{A}_{j}^{1,1}\right\} . \Rightarrow \mu_{\alpha}: \mathcal{P} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}$

Coupled equations for Kähler metrics and connections

This proves that ...

Proposition
 Álvarez Cónsul, O. García Prada]

For any α_{0} and α_{1} there exists a $\widetilde{\mathcal{G}}$-equivariant moment map $\mu_{\alpha}: \mathcal{J} \times \mathcal{A} \rightarrow$ Lie $\widetilde{\mathcal{G}}^{*}$ for the $\widetilde{\mathcal{G}}$-action. If $\zeta \in$ Lie $\widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X) / \mathbb{R} \cong$ Lie \mathcal{H} then,

$$
\left\langle\mu_{\alpha}(J, A), \zeta\right\rangle=-\int_{X}\left(\phi\left(\alpha_{0} S_{J}+\alpha_{1} \wedge_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c\right)-4 \alpha_{1}\left(\theta_{A} \zeta, \Lambda_{\omega} F_{A}\right)\right) \cdot \frac{\omega^{n}}{n!}
$$

The $\widetilde{\mathcal{G}}$-action preserves the complex submanifold $\mathcal{P}=\{(J, A) \in \mathcal{J} \times \mathcal{A}$: $\left.A \in \mathcal{A}_{j}^{1,1}\right\} . \Rightarrow \mu_{\alpha}: \mathcal{P} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}$ and the conditions

$$
\mu_{\alpha}(J, A)=0, \quad(J, A) \in \mathcal{P}
$$

Coupled equations for Kähler metrics and connections

This proves that ...

Proposition
 Álvarez Cónsul, O. García Prada]

For any α_{0} and α_{1} there exists a $\widetilde{\mathcal{G}}$-equivariant moment map $\mu_{\alpha}: \mathcal{J} \times \mathcal{A} \rightarrow$ Lie $\widetilde{\mathcal{G}}^{*}$ for the $\widetilde{\mathcal{G}}$-action. If $\zeta \in$ Lie $\widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X) / \mathbb{R} \cong$ Lie \mathcal{H} then,

$$
\left\langle\mu_{\alpha}(J, A), \zeta\right\rangle=-\int_{X}\left(\phi\left(\alpha_{0} S_{J}+\alpha_{1} \wedge_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c\right)-4 \alpha_{1}\left(\theta_{A} \zeta, \Lambda_{\omega} F_{A}\right)\right) \cdot \frac{\omega^{n}}{n!}
$$

The $\widetilde{\mathcal{G}}$-action preserves the complex submanifold $\mathcal{P}=\{(J, A) \in \mathcal{J} \times \mathcal{A}$: $\left.A \in \mathcal{A}_{j}^{1,1}\right\} . \Rightarrow \mu_{\alpha}: \mathcal{P} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}$ and the conditions

$$
\mu_{\alpha}(J, A)=0, \quad(J, A) \in \mathcal{P}
$$

defines (completely!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Coupled equations for Kähler metrics and connections

This proves that ...

Proposition

Álvarez Cónsul, O. García Prada]

For any α_{0} and α_{1} there exists a $\widetilde{\mathcal{G}}$-equivariant moment map $\mu_{\alpha}: \mathcal{J} \times \mathcal{A} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}$ for the $\widetilde{\mathcal{G}}$-action. If $\zeta \in$ Lie $\widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X) / \mathbb{R} \cong$ Lie \mathcal{H} then,

$$
\left\langle\mu_{\alpha}(J, A), \zeta\right\rangle=-\int_{X}\left(\phi\left(\alpha_{0} S_{J}+\alpha_{1} \wedge_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)-c\right)-4 \alpha_{1}\left(\theta_{A} \zeta, \Lambda_{\omega} F_{A}\right)\right) \cdot \frac{\omega^{n}}{n!}
$$

The $\widetilde{\mathcal{G}}$-action preserves the complex submanifold $\mathcal{P}=\{(J, A) \in \mathcal{J} \times \mathcal{A}$: $\left.A \in \mathcal{A}_{j}^{1,1}\right\} . \Rightarrow \mu_{\alpha}: \mathcal{P} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}$ and the conditions

$$
\mu_{\alpha}(J, A)=0, \quad(J, A) \in \mathcal{P}
$$

defines (completely!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$
\left.\begin{array}{l}
\Lambda_{\omega} F_{A}=z \\
F_{A}^{0,2}=0 \tag{1}\\
\alpha_{0} S_{g}+\alpha_{1} \Lambda_{\omega}^{2}\left(F_{A} \wedge F_{A}\right)=c .
\end{array}\right\}
$$

Why HYM and cscK?

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested).

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections.

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem $(1954,1982)$: Find preferred metrics in Kähler geometry.

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem $(1954,1982)$: Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler-Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem $(1954,1982)$: Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler-Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the Calabi Functional $g \rightarrow \int_{X} S_{g}^{2}$ volg , for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem $(1954,1982)$: Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler-Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the Calabi Functional $g \rightarrow \int_{X} S_{g}^{2}$ vol ${ }_{g}$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.
2. Moduli problem for projective varieties:

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem $(1954,1982)$: Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler-Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the Calabi Functional $g \rightarrow \int_{X} S_{g}^{2}$ volg , for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.
2. Moduli problem for projective varieties:Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold

Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow\left\|F_{A}\right\|^{2}$ (physicists interested). The Hitchin-Kobayashi correspondence (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem $(1954,1982)$: Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler-Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the Calabi Functional $g \rightarrow \int_{X} S_{g}^{2}$ volg , for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.
2. Moduli problem for projective varieties:Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold \Rightarrow numerical approximation of Kähler-Einstein metrics and Weyl-Petterson metrics on moduli spaces.

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2}, \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g.

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2} \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2} \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

[-, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2} \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

[-, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g}=\pi^{*} g+t \cdot g V\left(\theta_{A^{*}}, \theta_{A^{\cdot}}\right)$ on $\operatorname{Tot}(E)$, with $t=\frac{2 \alpha_{1}}{\alpha_{0}}>0$.

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2} \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g}=\pi^{*} g+t \cdot g_{V}\left(\theta_{A^{*}}, \theta_{A^{\cdot}}\right)$ on $\operatorname{Tot}(E)$, with $t=\frac{2 \alpha_{1}}{\alpha_{0}}>0$. Then $(\operatorname{Tot}(E), \hat{g}) \rightarrow(X, g)$ is a Riemannian submersion with totally geodesic fibers

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2} \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g}=\pi^{*} g+t \cdot g_{V}\left(\theta_{A^{*}}, \theta_{A^{\cdot}}\right)$ on $\operatorname{Tot}(E)$, with $t=\frac{2 \alpha_{1}}{\alpha_{0}}>0$. Then $(\operatorname{Tot}(E), \hat{g}) \rightarrow(X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$
\mathrm{So}_{\hat{\mathrm{g}}}=S_{g}-\frac{2 \alpha_{1}}{\alpha_{0}}\left|F_{A}\right|^{2}
$$

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2} \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g}=\pi^{*} g+t \cdot g_{V}\left(\theta_{A^{\cdot}}, \theta_{A^{*}}\right)$ on $\operatorname{Tot}(E)$, with $t=\frac{2 \alpha_{1}}{\alpha_{0}}>0$. Then $(\operatorname{Tot}(E), \hat{g}) \rightarrow(X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$
\mathrm{so}_{\hat{\mathrm{g}}}=S_{g}-\frac{2 \alpha_{1}}{\alpha_{0}}\left|F_{A}\right|^{2}
$$

Therefore $C Y M=C+Y M$

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2}, \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g}=\pi^{*} g+t \cdot g_{V}\left(\theta_{A^{*}}, \theta_{A^{\cdot}}\right)$ on $\operatorname{Tot}(E)$, with $t=\frac{2 \alpha_{1}}{\alpha_{0}}>0$. Then $(\operatorname{Tot}(E), \hat{g}) \rightarrow(X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$
\mathrm{so}_{\hat{\mathrm{g}}}=S_{g}-\frac{2 \alpha_{1}}{\alpha_{0}}\left|F_{A}\right|^{2}
$$

Therefore $C Y M=C+Y M$ and if (X, J, ω, g, A), with $F_{A}^{0,2}=0$, is a solution to the coupled equations (1) then $S_{\hat{g}}=$ const.

Variational interpretation of the coupled equations

Given real constants α_{0} and $\alpha_{1} \in \mathbb{R}$ consider the following functional.

$$
\begin{equation*}
\operatorname{CYM}(g, A)=\int_{X}\left(\alpha_{0} S_{g}-2 \alpha_{1}\left|F_{A}\right|^{2}\right)^{2} \cdot \operatorname{vol}_{g}+2 \alpha_{1} \cdot\left\|F_{A}\right\|^{2}, \tag{2}
\end{equation*}
$$

where g is a Riemannian metric on X, A is a connection on E and vol_{g} is the volume form of g. Note that $\mathcal{J} \ni J \rightarrow g=\omega(\cdot, J \cdot)$, fixing ω.

Proposition

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $C Y M: \mathcal{J} \times \mathcal{A} \rightarrow \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g}=\pi^{*} g+t \cdot g_{V}\left(\theta_{A^{*}}, \theta_{A^{\cdot}}\right)$ on $\operatorname{Tot}(E)$, with $t=\frac{2 \alpha_{1}}{\alpha_{0}}>0$. Then $(\operatorname{Tot}(E), \hat{g}) \rightarrow(X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$
S_{\hat{g}}=S_{g}-\frac{2 \alpha_{1}}{\alpha_{0}}\left|F_{A}\right|^{2}
$$

Therefore $C Y M=C+Y M$ and if (X, J, ω, g, A), with $F_{A}^{0,2}=0$, is a solution to the coupled equations (1) then $S_{\hat{g}}=$ const. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow(1) \Rightarrow S_{\hat{g}}=$ const.

First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X. Consider the equations for (ω, A), with $\omega \in[\omega]$ and $A \in \mathcal{A}^{1,1}$.

First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X. Consider the equations for (ω, A), with $\omega \in[\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\operatorname{dim}_{\mathbb{C}} X=1$ since $\left(F_{A} \wedge F_{A}\right)=0$. Solutions $=$ stable holomorphic bundles over (X, J).
- If $E=L$, or if E es projectively flat, with $c_{1}(E)=\lambda[\omega]$ then the coupled equations admit decoupled solutions: cscK + HYM.

First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X. Consider the equations for (ω, A), with $\omega \in[\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\operatorname{dim}_{\mathbb{C}} X=1$ since $\left(F_{A} \wedge F_{A}\right)=0$. Solutions $=$ stable holomorphic bundles over (X, J).
- If $E=L$, or if E es projectively flat, with $c_{1}(E)=\lambda[\omega]$ then the coupled equations admit decoupled solutions: cscK + HYM.
Remark: In both cases \exists a solution to $F_{A}=\lambda \omega$, which implies Lie $\widetilde{\mathcal{G}}=\operatorname{Lie} \mathcal{G} \ltimes \operatorname{Lie} \mathcal{H}$.

First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.
Consider the equations for (ω, A), with $\omega \in[\omega]$ and $A \in \mathcal{A}^{1,1}$.
Trivial examples:

- The system of equations (1) decouples when $\operatorname{dim}_{\mathbb{C}} X=1$ since $\left(F_{A} \wedge F_{A}\right)=0$. Solutions $=$ stable holomorphic bundles over (X, J).
- If $E=L$, or if E es projectively flat, with $c_{1}(E)=\lambda[\omega]$ then the coupled equations admit decoupled solutions: cscK + HYM.
Remark: In both cases \exists a solution to $F_{A}=\lambda \omega$, which implies $\operatorname{Lie} \widetilde{\mathcal{G}}=\operatorname{Lie} \mathcal{G} \ltimes \operatorname{Lie} \mathcal{H}$.
Less trivial examples:
- The coupled equations (1) have solutions on Homogenous holomorphic bundles E^{c} over homogeneous Kähler manifolds if the bundle comes from an irreducible representation ($\equiv \exists$ HYM connection).

First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.
Consider the equations for (ω, A), with $\omega \in[\omega]$ and $A \in \mathcal{A}^{1,1}$.
Trivial examples:

- The system of equations (1) decouples when $\operatorname{dim}_{\mathbb{C}} X=1$ since $\left(F_{A} \wedge F_{A}\right)=0$. Solutions $=$ stable holomorphic bundles over (X, J).
- If $E=L$, or if E es projectively flat, with $c_{1}(E)=\lambda[\omega]$ then the coupled equations admit decoupled solutions: cscK + HYM.
Remark: In both cases \exists a solution to $F_{A}=\lambda \omega$, which implies Lie $\widetilde{\mathcal{G}}=\operatorname{Lie} \mathcal{G} \ltimes \operatorname{Lie} \mathcal{H}$.
Less trivial examples:
- The coupled equations (1) have solutions on Homogenous holomorphic bundles E^{c} over homogeneous Kähler manifolds if the bundle comes from an irreducible representation ($\equiv \exists$ HYM connection). Proof: invariant structures and representation theory.

First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X. Consider the equations for (ω, A), with $\omega \in[\omega]$ and $A \in \mathcal{A}^{1,1}$.
Trivial examples:

- The system of equations (1) decouples when $\operatorname{dim}_{\mathbb{C}} X=1$ since $\left(F_{A} \wedge F_{A}\right)=0$. Solutions $=$ stable holomorphic bundles over (X, J).
- If $E=L$, or if E es projectively flat, with $c_{1}(E)=\lambda[\omega]$ then the coupled equations admit decoupled solutions: cscK + HYM.
Remark: In both cases \exists a solution to $F_{A}=\lambda \omega$, which implies $\operatorname{Lie} \widetilde{\mathcal{G}}=\operatorname{Lie} \mathcal{G} \ltimes \operatorname{Lie} \mathcal{H}$.
Less trivial examples:
- The coupled equations (1) have solutions on Homogenous holomorphic bundles E^{c} over homogeneous Kähler manifolds if the bundle comes from an irreducible representation ($\equiv \exists$ HYM connection). Proof: invariant structures and representation theory.
- Solutions are given by simultaneous solutions for the cases $\alpha_{1}=0, \alpha_{0} \neq 0$ and $\alpha_{0}=0, \alpha_{1} \neq 0$.

An existence criterion

In the previous examples the Kähler metric on (X, J) is always cscK.

An existence criterion

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non \csc ?

An existence criterion

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non \csc ?

Theorem

Let (X, L) be a compact polarised manifold, G^{c} be a complex reductive Lie group and E^{c} be a holomorphic G^{c}-bundle over X. If there exists a cscK metric $\omega \in c_{1}(L), X$ has finite automorphism group and E^{c} is stable with respect to L then, given a pair of positive real constants $\alpha_{0}, \alpha_{1}>0$ with small ratio $0<\frac{\alpha_{1}}{\alpha_{0}} \ll 1$, there exists a solution ($\omega_{\alpha}, A_{\alpha}$) to (1) with these coupling constants and $\omega_{\alpha} \in c_{1}(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa).

An existence criterion

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non \csc ?

Theorem

Let (X, L) be a compact polarised manifold, G^{c} be a complex reductive Lie group and E^{c} be a holomorphic G^{c}-bundle over X. If there exists a cscK metric $\omega \in c_{1}(L), X$ has finite automorphism group and E^{c} is stable with respect to L then, given a pair of positive real constants $\alpha_{0}, \alpha_{1}>0$ with small ratio $0<\frac{\alpha_{1}}{\alpha_{0}} \ll 1$, there exists a solution ($\omega_{\alpha}, A_{\alpha}$) to (1) with these coupling constants and $\omega_{\alpha} \in c_{1}(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^{c}$ that extends the $\widetilde{\mathcal{G}}$-action on \mathcal{P}. Consider the map $\operatorname{L}: \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}: \zeta \rightarrow \mu_{\alpha}\left(e^{\mathbf{i} \zeta}\right)$.

An existence criterion

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non \csc ?

Theorem

Let (X, L) be a compact polarised manifold, G^{c} be a complex reductive Lie group and E^{c} be a holomorphic G^{c}-bundle over X. If there exists a cscK metric $\omega \in c_{1}(L), X$ has finite automorphism group and E^{c} is stable with respect to L then, given a pair of positive real constants $\alpha_{0}, \alpha_{1}>0$ with small ratio $0<\frac{\alpha_{1}}{\alpha_{0}} \ll 1$, there exists a solution ($\omega_{\alpha}, A_{\alpha}$) to (1) with these coupling constants and $\omega_{\alpha} \in c_{1}(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^{c}$ that extends the $\widetilde{\mathcal{G}}$-action on \mathcal{P}. Consider the map $L: \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}: \zeta \rightarrow \mu_{\alpha}\left(e^{\mathbf{i} \zeta}\right)$. Then,

$$
\left\langle d L_{0}\left(\zeta_{0}, \zeta_{1}\right\rangle=\omega_{\alpha}\left(Y_{\zeta_{1}}, I Y_{\zeta_{0}}\right),\right.
$$

where $Y_{\zeta_{j}}$ is the infinitesimal action of ζ_{j} on \mathcal{P}. If $\widetilde{\mathcal{G}_{l}} \subset \operatorname{Aut}\left(E^{c}\right)$ is finite $d L_{0}$ is an isomorphism.

An existence criterion

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non \csc ?

Theorem

Let (X, L) be a compact polarised manifold, G^{c} be a complex reductive Lie group and E^{c} be a holomorphic G^{c}-bundle over X. If there exists a cscK metric $\omega \in c_{1}(L), X$ has finite automorphism group and E^{c} is stable with respect to L then, given a pair of positive real constants $\alpha_{0}, \alpha_{1}>0$ with small ratio $0<\frac{\alpha_{1}}{\alpha_{0}} \ll 1$, there exists a solution ($\omega_{\alpha}, A_{\alpha}$) to (1) with these coupling constants and $\omega_{\alpha} \in c_{1}(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^{c}$ that extends the $\widetilde{\mathcal{G}}$-action on \mathcal{P}. Consider the map $L: \operatorname{Lie} \widetilde{\mathcal{G}} \rightarrow \operatorname{Lie} \widetilde{\mathcal{G}}^{*}: \zeta \rightarrow \mu_{\alpha}\left(e^{\mathbf{i} \zeta}\right)$. Then,

$$
\left\langle d L_{0}\left(\zeta_{0}, \zeta_{1}\right\rangle=\omega_{\alpha}\left(Y_{\zeta_{1}}, I Y_{\zeta_{0}}\right),\right.
$$

where $Y_{\zeta_{j}}$ is the infinitesimal action of ζ_{j} on \mathcal{P}. If $\widetilde{\mathcal{G}_{l}} \subset \operatorname{Aut}\left(E^{c}\right)$ is finite $d L_{0}$ is an isomorphism. But $\widetilde{\mathcal{G}}^{c}$ does not exist ...

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau).

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E.

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification.

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification. Let A be a connection that determines a point in M_{k}. Then, A is irreducible and so we can apply our Theorem obtaining solutions $\left(\omega_{\alpha}, A_{\alpha}\right)$ to (1) for small $0<\alpha=\frac{\alpha_{1}}{\alpha_{0}}$.

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification. Let A be a connection that determines a point in M_{k}. Then, A is irreducible and so we can apply our Theorem obtaining solutions $\left(\omega_{\alpha}, A_{\alpha}\right)$ to (1) for small $0<\alpha=\frac{\alpha_{1}}{\alpha_{0}}$.
How can we assure that ω_{α} is not cscK?

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification. Let A be a connection that determines a point in M_{k}. Then, A is irreducible and so we can apply our Theorem obtaining solutions $\left(\omega_{\alpha}, A_{\alpha}\right)$ to (1) for small $0<\alpha=\frac{\alpha_{1}}{\alpha_{0}}$.
How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}}-\alpha\left|F_{A_{\alpha}}\right|^{2}=$ const. Since $\left(\omega_{\alpha}, A_{\alpha}\right) \rightarrow(\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $\left|F_{A}\right|^{2}$ is not a constant function on X.

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification. Let A be a connection that determines a point in M_{k}. Then, A is irreducible and so we can apply our Theorem obtaining solutions $\left(\omega_{\alpha}, A_{\alpha}\right)$ to (1) for small $0<\alpha=\frac{\alpha_{1}}{\alpha_{0}}$.
How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}}-\alpha\left|F_{A_{\alpha}}\right|^{2}=$ const. Since $\left(\omega_{\alpha}, A_{\alpha}\right) \rightarrow(\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $\left|F_{A}\right|^{2}$ is not a constant function on X. Take A near to the boundary of the moduli space (bubbling).

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification. Let A be a connection that determines a point in M_{k}. Then, A is irreducible and so we can apply our Theorem obtaining solutions $\left(\omega_{\alpha}, A_{\alpha}\right)$ to (1) for small $0<\alpha=\frac{\alpha_{1}}{\alpha_{0}}$.
How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}}-\alpha\left|F_{A_{\alpha}}\right|^{2}=$ const. Since $\left(\omega_{\alpha}, A_{\alpha}\right) \rightarrow(\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $\left|F_{A}\right|^{2}$ is not a constant function on X. Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit?

Examples

Example: Let X be a high degree hypersurface of \mathbb{P}^{3}. Then, $\exists K E$ metric $\omega \in c_{1}(X)$ (in particular cscK) (Aubin \& Yau). Moreover, $c_{1}(X)<0 \Rightarrow \operatorname{Aut}(X)$ finite.
Let E be a smooth $S U(2)$-bundle over X with second Chern number $k=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_{k} of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification. Let A be a connection that determines a point in M_{k}. Then, A is irreducible and so we can apply our Theorem obtaining solutions $\left(\omega_{\alpha}, A_{\alpha}\right)$ to (1) for small $0<\alpha=\frac{\alpha_{1}}{\alpha_{0}}$.
How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}}-\alpha\left|F_{A_{\alpha}}\right|^{2}=$ const. Since $\left(\omega_{\alpha}, A_{\alpha}\right) \rightarrow(\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $\left|F_{A}\right|^{2}$ is not a constant function on X. Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit?Locally yes.

Examples on \mathbb{C}^{2}

Consider $\mathbb{C}^{2} \times S U(2)$, the trivial bundle over \mathbb{C}^{2}.

Examples on \mathbb{C}^{2}

Consider $\mathbb{C}^{2} \times S U(2)$, the trivial bundle over \mathbb{C}^{2}. Let ω be the euclidean metric on \mathbb{C}^{2} (Kähler) and consider the basic 1 -instanton (in quaternionic notation $\mathbb{C}^{2} \equiv \mathbb{H}$)

$$
A=\operatorname{Im} \frac{\bar{x} d x}{1+|x|^{2}}=\frac{1}{2} \cdot \frac{\bar{x} d x-d \bar{x} x}{1+|x|^{2}}
$$

where $x=x_{1}+x_{2} \cdot \mathbf{i}+x_{3} \cdot \mathbf{j}+x_{4} \cdot \mathbf{k}$, with curvature

$$
F_{A}=\frac{d \bar{x} \wedge d x}{\left(1+|x|^{2}\right)^{2}}
$$

Examples on \mathbb{C}^{2}

Consider $\mathbb{C}^{2} \times S U(2)$, the trivial bundle over \mathbb{C}^{2}. Let ω be the euclidean metric on \mathbb{C}^{2} (Kähler) and consider the basic 1 -instanton (in quaternionic notation $\mathbb{C}^{2} \equiv \mathbb{H}$)

$$
A=\operatorname{Im} \frac{\bar{x} d x}{1+|x|^{2}}=\frac{1}{2} \cdot \frac{\bar{x} d x-d \bar{x} x}{1+|x|^{2}}
$$

where $x=x_{1}+x_{2} \cdot \mathbf{i}+x_{3} \cdot \mathbf{j}+x_{4} \cdot \mathbf{k}$, with curvature

$$
F_{A}=\frac{d \bar{x} \wedge d x}{\left(1+|x|^{2}\right)^{2}}
$$

Then $\left|F_{A}\right|^{2}=\frac{24}{\left(1+|x|^{2}\right)^{4}}$.

Examples on \mathbb{C}^{2}

Consider $\mathbb{C}^{2} \times S U(2)$, the trivial bundle over \mathbb{C}^{2}. Let ω be the euclidean metric on \mathbb{C}^{2} (Kähler) and consider the basic 1 -instanton (in quaternionic notation $\mathbb{C}^{2} \equiv \mathbb{H}$)

$$
A=\operatorname{Im} \frac{\bar{x} d x}{1+|x|^{2}}=\frac{1}{2} \cdot \frac{\bar{x} d x-d \bar{x} x}{1+|x|^{2}}
$$

where $x=x_{1}+x_{2} \cdot \mathbf{i}+x_{3} \cdot \mathbf{j}+x_{4} \cdot \mathbf{k}$, with curvature

$$
F_{A}=\frac{d \bar{x} \wedge d x}{\left(1+|x|^{2}\right)^{2}}
$$

Then $\left|F_{A}\right|^{2}=\frac{24}{\left(1+|x|^{2}\right)^{4}}$.

Theorem

Let $k \in \mathbb{Z}$. For each $\alpha \in \mathbb{R}$ there exists a solution ($\omega_{\alpha}, A_{\alpha}$) of the coupled equations with coupling constant α and fixed topological invariant $k=\frac{1}{8 \pi^{2}} \int_{\mathbb{C}^{2}} \operatorname{tr} F_{A} \wedge F_{A} \in \mathbb{Z}$. The metric ω_{α} is an assymptotically euclidean Kähler metric and for each α there exists a k-instanton A_{α}^{\prime}, such that A_{α} converges assymptotically to A^{\prime} at infinity.

From symplectic geometry to algebraic geometry

Construct a moduli space with a

structure of variety or separated scheme

Can we use our coupled system (1) to give an adapted stability condition for (3)?

From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a structure of variety or separated scheme
(3) $\left\{\begin{array}{c}\text { semiestable pairs with 'fixed invariants': } \\ \text { projective variety }+ \text { bundle } \\ \text { (projective scheme }+ \text { coherent sheaf) }\end{array}\right\} / \sim$

Can we use our coupled system (1) to give an adapted stability condition for (3)?

From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a structure of variety or separated scheme

Can we use our coupled system (1) to give an adapted stability condition for (3)?

Strategy: the Kempf-Ness Theorem

$G^{c}=$ complexification of a compact Lie group G, $V=$ representation of G^{c}, $X \subset \mathbb{P}(V)$, projective variety, G^{c}-invariant.

Strategy: the Kempf-Ness Theorem

$G^{c}=$ complexification of a compact Lie group G,
$V=$ representation of G^{c},
$X \subset \mathbb{P}(V)$, projective variety, G^{c}-invariant.
\exists a G-equivariant moment map $\mu: X \rightarrow(\text { Lie } G)^{*}$
\exists linearization of the G^{c}-action, i.e. $L=\mathcal{O}_{X}(1)$ is a G^{c}-bundle over X.

Strategy: the Kempf-Ness Theorem

$$
\begin{aligned}
& G^{c}=\text { complexification of a compact Lie group } G, \\
& V=\text { representation of } G^{c}, \\
& X \subset \mathbb{P}(V), \text { projective variety, } G^{c} \text {-invariant. }
\end{aligned}
$$

\exists a G-equivariant moment map $\mu: X \rightarrow(\text { Lie } G)^{*}$
\exists linearization of the G^{c}-action, i.e. $L=\mathcal{O}_{X}(1)$ is a G^{c}-bundle over X.
The Kempf-Ness Theorem tell us that for every $x \in X$:

$$
\begin{aligned}
& x \text { is } G I T \text {-stable } \Longleftrightarrow \\
& \exists g \in G^{c} \text { such that } \mu(g \cdot x)=0 \text { and } \\
& \text { the } G^{c} \text {-stabilizer of } x \text { is finite. } .
\end{aligned}
$$

Strategy: the Kempf-Ness Theorem

$$
\begin{aligned}
& G^{c}=\text { complexification of a compact Lie group } G, \\
& V=\text { representation of } G^{c}, \\
& X \subset \mathbb{P}(V), \text { projective variety, } G^{c} \text {-invariant. }
\end{aligned}
$$

\exists a G-equivariant moment map $\mu: X \rightarrow(\text { Lie } G)^{*}$
\exists linearization of the G^{c}-action, i.e. $L=\mathcal{O}_{X}(1)$ is a G^{c}-bundle over X.
The Kempf-Ness Theorem tell us that for every $x \in X$:

$$
\begin{aligned}
& x \text { is GIT-stable } \Longleftrightarrow \exists g \in G^{c} \text { such that } \mu(g \cdot x)=0 \text { and } \\
& \text { the } G^{c} \text {-stabilizer of } x \text { is finite. }
\end{aligned}
$$

The stability of a point can be checked (Hilbert-Mumford) computing, for any $\lambda: \mathbb{C}^{*} \rightarrow G^{c}$,

$$
\text { weight of the } \mathbb{C}^{*} \text { - action on } L_{\mid x_{0}}=\left\langle\mu\left(x_{0}\right), \zeta\right\rangle
$$

where $x_{0}=\lim _{t \rightarrow 0} \lambda(t) \cdot x$ and ζ is the generator of $S^{1} \subset \mathbb{C}^{*}$-action on $L_{\left.\right|_{x_{0}}}$.

Strategy: the Kempf-Ness Theorem

$G^{c}=$ complexification of a compact Lie group G,
$V=$ representation of G^{c},
$X \subset \mathbb{P}(V)$, projective variety, G^{c}-invariant.
\exists a G-equivariant moment map $\mu: X \rightarrow(\text { Lie } G)^{*}$
\exists linearization of the G^{c}-action, i.e. $L=\mathcal{O}_{X}(1)$ is a G^{c}-bundle over X.
The Kempf-Ness Theorem tell us that for every $x \in X$:
x is GIT-stable $\Longleftrightarrow \exists g \in G^{c}$ such that $\mu(g \cdot x)=0$ and
the G^{c}-stabilizer of x is finite.

The stability of a point can be checked (Hilbert-Mumford) computing, for any $\lambda: \mathbb{C}^{*} \rightarrow G^{c}$,

$$
\text { weight of the } \mathbb{C}^{*} \text { - action on } L_{\mid x_{0}}=\left\langle\mu\left(x_{0}\right), \zeta\right\rangle
$$

where $x_{0}=\lim _{t \rightarrow 0} \lambda(t) \cdot x$ and ζ is the generator of $S^{1} \subset \mathbb{C}^{*}$-action on $L_{\mid x_{0}} \cdot x$ is stable $\Longleftrightarrow\left\langle\mu\left(x_{0}\right), \zeta\right\rangle>0$ for any non-trivial λ.

α-K-stability

To apply the previous picture we have a problem

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$.

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$. Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$. Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).
Let $(X, L)=$ smooth compact (complex) polarised manifold and $E=$ vector bundle over X.

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$. Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).
Let $(X, L)=$ smooth compact (complex) polarised manifold and $E=$ vector bundle over X. Taking $k \gg 0$, we can consider $X \subset \mathbb{P}\left(V_{k}\right)$, $V_{k}=H^{0}\left(X, L^{k}\right)^{*}$. Hence, X defines a point on $\operatorname{Hilb}^{P}, P(k)=\chi\left(X, L^{k}\right)$.

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$. Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).
Let $(X, L)=$ smooth compact (complex) polarised manifold and $E=$ vector bundle over X. Taking $k \gg 0$, we can consider $X \subset \mathbb{P}\left(V_{k}\right)$, $V_{k}=H^{0}\left(X, L^{k}\right)^{*}$. Hence, X defines a point on $\operatorname{Hilb}^{P}, P(k)=\chi\left(X, L^{k}\right)$.
There exists a proper scheme

$$
\text { Quot }^{P_{E}} \rightarrow \operatorname{Hilb}^{P}
$$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_{E}(k)=\chi\left(X, E \otimes L^{k}\right)$.

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$. Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).
Let $(X, L)=$ smooth compact (complex) polarised manifold and $E=$ vector bundle over X. Taking $k \gg 0$, we can consider $X \subset \mathbb{P}\left(V_{k}\right)$, $V_{k}=H^{0}\left(X, L^{k}\right)^{*}$. Hence, X defines a point on $\operatorname{Hilb}^{P}, P(k)=\chi\left(X, L^{k}\right)$.
There exists a proper scheme

$$
\text { Quot }^{P_{E}} \rightarrow \operatorname{Hilb}^{P}
$$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_{E}(k)=\chi\left(X, E \otimes L^{k}\right)$. Let $W_{k}=H^{0}\left(X, E \times L^{k}\right)$. The group $G_{k}=G L\left(V_{k}\right) \times G L\left(W_{k}\right) \curvearrowright$ Quot $^{P_{E}}$ and for any $\lambda: \mathbb{C}^{*} \rightarrow G_{k}$

$$
\epsilon_{0}=\lim _{\lambda(t) \rightarrow 0} \lambda(t) \cdot[(X, E)] \in \operatorname{Quot}^{P_{E}}
$$

α-K-stability

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^{c}$. Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).
Let $(X, L)=$ smooth compact (complex) polarised manifold and $E=$ vector bundle over X. Taking $k \gg 0$, we can consider $X \subset \mathbb{P}\left(V_{k}\right)$, $V_{k}=H^{0}\left(X, L^{k}\right)^{*}$. Hence, X defines a point on $\operatorname{Hilb}^{P}, P(k)=\chi\left(X, L^{k}\right)$.
There exists a proper scheme

$$
\text { Quot }^{P_{E}} \rightarrow \operatorname{Hilb}^{P}
$$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_{E}(k)=\chi\left(X, E \otimes L^{k}\right)$. Let $W_{k}=H^{0}\left(X, E \times L^{k}\right)$. The group $G_{k}=G L\left(V_{k}\right) \times G L\left(W_{k}\right) \curvearrowright$ Quot $^{P_{E}}$ and for any $\lambda: \mathbb{C}^{*} \rightarrow G_{k}$

$$
\epsilon_{0}=\lim _{\lambda(t) \rightarrow 0} \lambda(t) \cdot[(X, E)] \in \operatorname{Quot}^{P_{E}}
$$

We take $\left(X_{0}, L_{0}, E_{0}\right)$ representing ϵ_{0}, endowed with a natural \mathbb{C}^{*}-action and measure a weight F_{α}.

α-K-stability
 $\mathbb{C}^{*} \curvearrowright\left(X_{0}, L_{0}, E_{0}\right):$

$P_{L_{0}}\left(E_{0}\right)=$ Hilbert polynomial of E_{0} with respect to L_{0},
$w_{L_{0}}\left(E_{0}, k\right)=$ weight of the induced \mathbb{C}^{*}-action on $\operatorname{det} H^{0}\left(E_{0} \otimes L^{k}\right)$
$F\left(E_{0}, L_{0}, k\right)=\frac{w_{1}\left(E_{0}, k\right)}{k P_{L_{0}}\left(E_{0}, k\right)}$

$$
=F_{0}\left(L_{0}, E_{0}\right)+k^{-1} F_{1}\left(L_{0}, E_{0}\right)+k^{-2} F_{2}\left(L_{0}, E_{0}\right)+O\left(k^{-3}\right) \text { with }
$$

$F_{i}\left(L_{0}, E_{0}\right) \in \mathbb{Q}$.
n-invariant of the \mathbb{C}^{*}-action on $\left(X_{0}, L_{0}, E_{0}\right)$:

$$
F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right)=F_{1}\left(L_{0}, \mathcal{O}_{x_{0}}\right)+\alpha\left(F_{2}\left(L_{0}, E_{0}\right)-F_{2}\left(L_{0}, \mathcal{O}_{X_{0}}\right)\right)
$$

α-K-stability

$\mathbb{C}^{*} \curvearrowright\left(X_{0}, L_{0}, E_{0}\right)$:
$P_{L_{0}}\left(E_{0}\right)=$ Hilbert polynomial of E_{0} with respect to L_{0}, $w_{L_{0}}\left(E_{0}, k\right)=$ weight of the induced \mathbb{C}^{*}-action on $\operatorname{det} H^{0}\left(E_{0} \otimes L^{k}\right)$
$F\left(E_{0}, L_{0}, k\right)=\frac{w_{L}\left(E_{0}, k\right)}{k P_{L_{0}}\left(E_{0}, k\right)}$
$=F_{0}\left(L_{0}, E_{0}\right)+k^{-1} F_{1}\left(L_{0}, E_{0}\right)+k^{-2} F_{2}\left(L_{0}, E_{0}\right)+O\left(k^{-3}\right)$ with
$F_{i}\left(L_{0}, E_{0}\right) \in \mathbb{Q}$.
α-K-stability
$\mathbb{C}^{*} \curvearrowright\left(X_{0}, L_{0}, E_{0}\right)$:
$P_{L_{0}}\left(E_{0}\right)=$ Hilbert polynomial of E_{0} with respect to L_{0}, $w_{L_{0}}\left(E_{0}, k\right)=$ weight of the induced \mathbb{C}^{*}-action on $\operatorname{det} H^{0}\left(E_{0} \otimes L^{k}\right)$
$F\left(E_{0}, L_{0}, k\right)=\frac{w_{L}\left(E_{0}, k\right)}{k P_{L_{0}}\left(E_{0}, k\right)}$
$=F_{0}\left(L_{0}, E_{0}\right)+k^{-1} F_{1}\left(L_{0}, E_{0}\right)+k^{-2} F_{2}\left(L_{0}, E_{0}\right)+O\left(k^{-3}\right)$ with
$F_{i}\left(L_{0}, E_{0}\right) \in \mathbb{Q}$.
α-invariant of the \mathbb{C}^{*}-action on $\left(X_{0}, L_{0}, E_{0}\right)$:

$$
F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right)=F_{1}\left(L_{0}, \mathcal{O}_{X_{0}}\right)+\alpha\left(F_{2}\left(L_{0}, E_{0}\right)-F_{2}\left(L_{0}, \mathcal{O}_{X_{0}}\right)\right)
$$

α-K-stability
$\mathbb{C}^{*} \curvearrowright\left(X_{0}, L_{0}, E_{0}\right)$:
$P_{L_{0}}\left(E_{0}\right)=$ Hilbert polynomial of E_{0} with respect to L_{0}, $w_{L_{0}}\left(E_{0}, k\right)=$ weight of the induced \mathbb{C}^{*}-action on $\operatorname{det} H^{0}\left(E_{0} \otimes L^{k}\right)$

$$
F\left(E_{0}, L_{0}, k\right)=\frac{w_{L}\left(E_{0}, k\right)}{k P_{L_{0}}\left(E_{0}, k\right)}
$$

$$
=F_{0}\left(L_{0}, E_{0}\right)+k^{-1} F_{1}\left(L_{0}, E_{0}\right)+k^{-2} F_{2}\left(L_{0}, E_{0}\right)+O\left(k^{-3}\right) \text { with }
$$

$F_{i}\left(L_{0}, E_{0}\right) \in \mathbb{Q}$.
α-invariant of the \mathbb{C}^{*}-action on $\left(X_{0}, L_{0}, E_{0}\right)$:

$$
F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right)=F_{1}\left(L_{0}, \mathcal{O}_{x_{0}}\right)+\alpha\left(F_{2}\left(L_{0}, E_{0}\right)-F_{2}\left(L_{0}, \mathcal{O}_{X_{0}}\right)\right)
$$

Proposition

If $\left(X_{0}, L_{0}, E_{0}\right)$ is smooth then

$$
F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right) \sim \mu_{\alpha}(\zeta)
$$

with ζ is the generator of the induced $S^{1} \subset \mathbb{C}^{*}$-action on (X_{0}, L_{0}, E_{0}).

α-K-stability

Recall: The group $G_{k}=G L\left(V_{k}\right) \times G L\left(W_{k}\right) \curvearrowright \operatorname{Quot}^{P_{E}}$ and for any
$\lambda: \mathbb{C}^{*} \rightarrow G_{k}$

$$
\epsilon_{0}=\lim _{\lambda(t) \rightarrow 0} \lambda(t) \cdot[(X, E)] \in \operatorname{Quot}^{P_{E}}
$$

We take $\left(X_{0}, L_{0}, E_{0}\right)$ representing ϵ_{0}, endowed with a natural \mathbb{C}^{*}-action and measure the number $F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right)$.
\qquad
If there exists a solution (ω, A) to the coupled equations (1) with $\omega \in c_{1}(L)$ and positive coupling constants α_{0} and α_{1}, then

α-K-stability

Recall: The group $G_{k}=G L\left(V_{k}\right) \times G L\left(W_{k}\right) \curvearrowright \operatorname{Quot}^{P_{E}}$ and for any
$\lambda: \mathbb{C}^{*} \rightarrow G_{k}$

$$
\epsilon_{0}=\lim _{\lambda(t) \rightarrow 0} \lambda(t) \cdot[(X, E)] \in \operatorname{Quot}^{P_{E}}
$$

We take $\left(X_{0}, L_{0}, E_{0}\right)$ representing ϵ_{0}, endowed with a natural \mathbb{C}^{*}-action and measure the number $F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right)$.

If there exists a solution (ω, A) to the coupled equations (1) with $\omega \in c_{1}(L)$ and positive coupling constants α_{0} and α_{1}, then

α-K-stability

Recall: The group $G_{k}=G L\left(V_{k}\right) \times G L\left(W_{k}\right) \curvearrowright$ Quot $^{P_{E}}$ and for any
$\lambda: \mathbb{C}^{*} \rightarrow G_{k}$

$$
\epsilon_{0}=\lim _{\lambda(t) \rightarrow 0} \lambda(t) \cdot[(X, E)] \in \operatorname{Quot}^{P_{E}}
$$

We take $\left(X_{0}, L_{0}, E_{0}\right)$ representing ϵ_{0}, endowed with a natural \mathbb{C}^{*}-action and measure the number $F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right)$.

Conjecture [-, L. Álvarez Cónsul, O. García Prada]

If there exists a solution (ω, A) to the coupled equations (1) with $\omega \in c_{1}(L)$ and positive coupling constants α_{0} and α_{1}, then

$$
F_{\alpha}\left(X_{0}, L_{0}, E_{0}\right) \geq 0,
$$

for any $\lambda: \mathbb{C}^{*} \rightarrow G_{k}$ and any $k>0$, where $\alpha=\frac{r \pi^{2} \alpha_{1} k}{\alpha_{0}}$.

