Coupled equations for Kähler metrics and Yang–Mills connections

Mario García-Fernández Joint work with: Luis Álvarez-Cónsul and Oscar García-Prada

ICMAT (CSIC-UAM-UC3M-UCM)

Bath (27 Nov 2009)

X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G,
E smooth principal G-bundle over X

A moduli problem: Construct a moduli space with a Kähler structure

(1) $\left\{ \text{ pairs } (g, A) \text{ satisfying suitable PDE } \right\} / c$

A connection on E, g Kähler metric on X.

Problem 1 of this talk: Find a well suited PDE for (1) Relation with physics: interaction between gauge fields and a

X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G,
E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kähler structure

(1) $\left\{ \text{ pairs } (g, A) \text{ satisfying suitable PDE } \right\} / e^{-1}$

A connection on E, g Kähler metric on X.

Problem 1 of this talk: Find a well suited PDE for (1)

Relation with physics: interaction between gauge fields and gravity.

X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G,
E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kähler structure

(1)
$$\left\{ \text{ pairs } (g, A) \text{ satisfying suitable PDE } \right\} / \sim$$

A connection on E, g Kähler metric on X.

Problem 1 of this talk: Find a well suited PDE for (1) Relation with physics: interaction between gauge fields and gravity.

X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G,
E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kähler structure

(1)
$$\left\{ \text{ pairs } (g, A) \text{ satisfying suitable PDE } \right\} / \sim$$

A connection on E, g Kähler metric on X.

Problem 1 of this talk: Find a well suited PDE for (1)

Relation with physics: interaction between gauge fields and gravity.

X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G,
E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kähler structure

(1)
$$\left\{ \text{ pairs } (g, A) \text{ satisfying suitable PDE } \right\} / \sim$$

A connection on E, g Kähler metric on X.

Problem 1 of this talk: Find a well suited PDE for (1) **Relation with physics:** interaction between gauge fields and gravity.

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{lpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite-Yang-Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

$\mu_{lpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite-Yang-Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{lpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite–Yang–Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{lpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite–Yang–Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{\alpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite-Yang-Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{\alpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite-Yang-Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{\alpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite-Yang-Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

• Look for a PDE with symplectic interpretation: its solutions are points in the symplectic reduction

 $\mu_{\alpha}^{-1}(0)/\widetilde{\mathcal{G}}$

of a suitable space $\mathcal{P} \supset \mu_{\alpha}^{-1}(0)$ parameterizing Kähler structures on X and holomorphic structures on a bundle associated to the G-bundle E.

• We rely on the symplectic interpretation of two fundamental equations in Kähler geometry:

the Hermite-Yang-Mills (HYM) equations for a connection and
 the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

 $(X, \omega) =$ symplectic manifold, G = Lie group with Lie algebra g, $G \times X \rightarrow X$, left G-action preserving ω .

Suppose that \exists a *G*-equivariant **moment map** i.e. $\exists \mu \colon X \to \mathfrak{g}^*$ such that

 $d\langle \mu, \zeta \rangle = \omega(Y_{\zeta}, \cdot) \text{ and } \mu(g \cdot x) = \operatorname{Ad}(g)^{-1} \cdot \mu(x),$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta|x} = rac{d}{dt}_{t=0} \exp(t\zeta) \cdot x \in \mathcal{T}_x X$.

Symplectic quotient (Marsden & Weinstein '74): If we have a "good" action then $\mu^{-1}(0)/G$ inherits a natural symplectic structure.

 $(X, \omega) =$ symplectic manifold, G = Lie group with Lie algebra g, $G \times X \rightarrow X$, left G-action preserving ω .

Suppose that \exists a *G*-equivariant **moment map** i.e. $\exists \mu : X \to g^*$ such that

 $d\langle \mu, \zeta \rangle = \omega(Y_{\zeta}, \cdot) \text{ and } \mu(g \cdot x) = \operatorname{Ad}(g)^{-1} \cdot \mu(x),$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta|x} = rac{d}{dt}_{t=0} \exp(t\zeta) \cdot x \in T_x X$.

Symplectic quotient (Marsden & Weinstein '74): If we have a "good" action then $\mu^{-1}(0)/G$ inherits a natural symplectic structure.

 $(X, \omega) =$ symplectic manifold, G = Lie group with Lie algebra \mathfrak{g} , $G \times X \to X$, left G-action preserving ω .

Suppose that \exists a *G*-equivariant **moment map** i.e. $\exists \mu \colon X \to \mathfrak{g}^*$ such that

 $d\langle \mu,\zeta
angle=\omega(Y_{\zeta},\cdot) \quad ext{and} \quad \mu(g\cdot x)= ext{Ad}(g)^{-1}\cdot \mu(x),$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta|x} = \frac{d}{dt}_{t=0} \exp(t\zeta) \cdot x \in T_x X$.

Symplectic quotient (Marsden & Weinstein '74): If we have a "good" action then $\mu^{-1}(0)/G$ inherits a natural symplectic structure.

 (X, ω) = symplectic manifold, G = Lie group with Lie algebra g, $G \times X \to X$, left *G*-action preserving ω .

Suppose that \exists a *G*-equivariant **moment map** i.e. $\exists \mu \colon X \to \mathfrak{g}^*$ such that

$$d\langle \mu,\zeta
angle=\omega(Y_\zeta,\cdot) \quad ext{and} \quad \mu(g\cdot x)= ext{Ad}(g)^{-1}\cdot \mu(x),$$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta|x} = \frac{d}{dt}_{t=0} \exp(t\zeta) \cdot x \in T_x X$.

Symplectic quotient (Marsden & Weinstein '74): If we have a "good" action then $\mu^{-1}(0)/G$ inherits a natural symplectic structure.

 (X, ω) = symplectic manifold, G = Lie group with Lie algebra g, $G \times X \rightarrow X$, left G-action preserving ω .

Suppose that \exists a *G*-equivariant **moment map** i.e. $\exists \mu \colon X \to \mathfrak{g}^*$ such that

$$d\langle \mu,\zeta
angle=\omega(Y_\zeta,\cdot) \quad ext{and} \quad \mu(g\cdot x)= ext{Ad}(g)^{-1}\cdot \mu(x),$$

for all $g \in G$ and $\zeta \in \mathfrak{g}$, where $Y_{\zeta|x} = \frac{d}{dt}_{t=0} \exp(t\zeta) \cdot x \in T_x X$.

Symplectic quotient (Marsden & Weinstein '74): If we have a "good" action then $\mu^{-1}(0)/G$ inherits a natural symplectic structure.

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over *X*, *A* connection on *E*, *F*_A curvature of *A* $A = \{$ connections *A* on *E* $\}$

 $\mathcal{G}=\{ ext{automorphisms } m{g}\colon m{E} om{E} ext{ covering the identity on }X\} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold A has a Kähler structure (ω_A , I_A , g_A) preserved by G.

 $\omega_{\mathcal{A}}(a_0, a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}} \colon \mathcal{A} \to (\mathsf{Lie}\,\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A), \zeta \rangle = \int_{X} (\zeta \wedge F_A) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad}E \equiv \mathrm{Lie}\mathcal{G}.$$

 $\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon F_A^{0,2} = 0\} \equiv$ holomorphic struct. on $E^c = E imes_G G^c$

HYM equations: $\Lambda_{\omega}F_{\mathcal{A}}=z, \quad F_{\mathcal{A}}^{0,2}=0, \quad z\in\mathfrak{z} \ (\textit{centre of }\mathfrak{g}).$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

4 = {connections A on E}

 $\mathcal{G}=\{ ext{automorphisms } m{g}\colon m{E} om{E} ext{ covering the identity on } X\} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold A has a Kähler structure (ω_A , I_A , g_A) preserved by G.

 $\omega_{\mathcal{A}}(a_0, a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}} \colon \mathcal{A} \to (\mathsf{Lie}\,\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A),\zeta
angle = \int_{X} (\zeta \wedge F_{A}) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad}E \equiv \mathrm{Lie}\mathcal{G}.$$

 $\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon F_A^{0,2} = 0\} \equiv$ holomorphic struct. on $E^c = E imes_G G^c$

HYM equations: $\Lambda_{\omega}F_{A}=z, \quad F_{A}^{0,2}=0, \quad z\in\mathfrak{z} \ (centre \ of \ \mathfrak{g}).$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

$$A = \{ connections A on E \}$$

 $\mathcal{G}=\{ ext{automorphisms } m{g}\colon m{E} om{E} ext{ covering the identity on }X\} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold A has a Kähler structure (ω_A , I_A , g_A) preserved by G.

$$\omega_{\mathcal{A}}(a_0,a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}} \colon \mathcal{A} \to (\mathsf{Lie}\,\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A),\zeta
angle = \int_X (\zeta \wedge F_A) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad} E \equiv \mathrm{Lie} \mathcal{G}.$$

 $\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon F_A^{0,2} = 0\} \equiv$ holomorphic struct. on $E^c = E imes_G G^c$

HYM equations: $\Lambda_{\omega}F_A = z, \quad F_A^{0,2} = 0, \quad z \in \mathfrak{z} \text{ (centre of g).}$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

$$A = \{ \text{connections } A \text{ on } E \}$$

 $\mathcal{G} = \{ \text{automorphisms } g \colon E \to E \text{ covering the identity on } X \} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold A has a Kähler structure (ω_A , I_A , g_A) preserved by \mathcal{G} .

$$\omega_{\mathcal{A}}(a_0, a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}} \colon \mathcal{A} \to (\text{Lie}\,\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A), \zeta \rangle = \int_{X} (\zeta \wedge F_A) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad}E \equiv \mathrm{Lie}\mathcal{G}.$$

 $\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon F_A^{0,2} = 0\} \equiv$ holomorphic struct. on $E^c = E imes_G G^c$

HYM equations: $\Lambda_{\omega}F_A = z, \quad F_A^{0,2} = 0, \quad z \in \mathfrak{z} \ (centre \ of \ \mathfrak{g}).$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

 $\mathcal{G} = \{ \text{automorphisms } g \colon E \to E \text{ covering the identity on } X \} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold \mathcal{A} has a Kähler structure $(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}})$ preserved by \mathcal{G} .

$$\omega_{\mathcal{A}}(a_0,a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}} \colon \mathcal{A} \to (\mathsf{Lie}\,\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A),\zeta
angle = \int_X (\zeta \wedge F_A) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad} E \equiv \mathrm{Lie} \mathcal{G}.$$

 $\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon \mathit{F}_A^{0,2} = 0\} \equiv$ holomorphic struct. on $\mathit{E^c} = \mathit{E} imes_{\mathit{G}} \mathit{G^c}$

HYM equations: $\Lambda_{\omega}F_{A} = z, \quad F_{A}^{0,2} = 0, \quad z \in \mathfrak{z} \text{ (centre of } \mathfrak{g}\text{).}$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

 $\mathcal{G} = \{ \text{automorphisms } g \colon E \to E \text{ covering the identity on } X \} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold \mathcal{A} has a Kähler structure $(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}})$ preserved by \mathcal{G} .

$$\omega_{\mathcal{A}}(a_0, a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}} : \mathcal{A} \to (\text{Lie }\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A), \zeta \rangle = \int_{X} (\zeta \wedge F_{A}) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad}E \equiv \mathrm{Lie}\mathcal{G}.$$

$$\mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon F_{A}^{0,2} = 0\} \equiv \text{holomorphic struct. on } E^{c} = E \times_{G} G^{c}$$

HYM equations:

$$F_A^{0,2}=0, \quad z\in\mathfrak{z} \ (\ centre \ of \ \mathfrak{g})$$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

 $\mathcal{G} = \{ \text{automorphisms } g \colon E \to E \text{ covering the identity on } X \} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold \mathcal{A} has a Kähler structure $(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}})$ preserved by \mathcal{G} .

$$\omega_{\mathcal{A}}(a_0, a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}}: \mathcal{A} \rightarrow (\text{Lie }\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A), \zeta \rangle = \int_{X} (\zeta \wedge F_{A}) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad}E \equiv \mathrm{Lie}\mathcal{G}.$$

$$\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{ A \in \mathcal{A} \colon F_{A}^{0,2} = 0 \} \equiv \text{holomorphic struct. on } E^{c} = E \times_{G} G^{c}$$

HYM equations: $\Lambda_{\omega}F_{A} = z, \quad F_{A}^{0,2} = 0, \quad z \in \mathfrak{z} \text{ (centre of } \mathfrak{g}\text{).}$

 (X, ω, J, g) smooth compact Kähler manifold: ω symplectic structure, J complex structure and g metric.

E G-bundle over X, A connection on E, F_A curvature of A

 $\mathcal{G} = \{ \text{automorphisms } g \colon E \to E \text{ covering the identity on } X \} \curvearrowright \mathcal{A}.$

The infinite-dimensional manifold \mathcal{A} has a Kähler structure $(\omega_{\mathcal{A}}, I_{\mathcal{A}}, g_{\mathcal{A}})$ preserved by \mathcal{G} .

$$\omega_{\mathcal{A}}(a_0, a_1) = \int_X (a_0 \wedge a_1) \wedge \omega^{n-1}, \ I_{\mathcal{A}}a_0 = -a_0(J \cdot) \quad \text{with } a_j \in \Omega^1(\mathrm{ad} E).$$

Moment map(Atiyah–Bott ('83) & Donaldson): $\mu_{\mathcal{A}}: \mathcal{A} \to (\text{Lie }\mathcal{G})^*$

$$\langle \mu_{\mathcal{A}}(A), \zeta \rangle = \int_{X} (\zeta \wedge F_A) \wedge \omega^{n-1} \qquad \zeta \in \mathrm{ad}E \equiv \mathrm{Lie}\mathcal{G}.$$

 $\mathcal{G} \curvearrowright \mathcal{A}^{1,1} = \{A \in \mathcal{A} \colon F_A^{0,2} = 0\} \equiv \text{holomorphic struct. on } E^c = E \times_G G^c$

HYM equations:

$$\Lambda_{\omega}F_{A}=z, \quad F_{A}^{0,2}=0, \quad z\in\mathfrak{z} \ (\textit{centre of }\mathfrak{g}).$$

LAC, MGF & OGP (ICMAT)

20

 (X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J} = \{ \text{complex structures on } X \text{ compatible with } \omega \}$ $\mathcal{H} = \{ \text{Hamiltonian symplectomorphisms of } (X, \omega) \} \frown \mathcal{J}$

The infinite-dimensional (singular) manifold $\mathcal J$ has a Kähler structure $(\omega_{\mathcal J}, I_{\mathcal J}, g_{\mathcal J})$ preserved by $\mathcal H$. Given $b_j \in T_J \mathcal J \subset \Omega^0(\operatorname{End} TX)$,

$$\omega_{\mathcal{J}|J}(b_0, b_1) = \int_X \operatorname{tr}(J \cdot b_0 \cdot b_1) \frac{\omega^n}{n!}, \qquad I_{\mathcal{J}} b_0 = J b_0.$$

Moment map (Fujiki(1992)–Donaldson(1997)): $\mu_{\mathcal{J}} : \mathcal{J} \to (\text{Lie}\,\mathcal{H})^*$

$$\langle \mu_{\mathcal{J}}(J), \phi
angle = -\int_X \phi(S_J - \hat{S}) rac{\omega^n}{n!}$$

$$\phi \in C^{\infty}(X)/\mathbb{R} \cong \mathrm{Lie}\mathcal{H} \qquad \hat{S} = \frac{1}{\mathrm{Vol}(X)} \int_X S_J \frac{\omega^n}{n!}$$

Solution: $S_J = \hat{S}, \qquad J \in \mathcal{J}.$

 (X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J} = \{ \text{complex structures on } X \text{ compatible with } \omega \}$ $\mathcal{H} = \{ \text{ Hamiltonian symplectomorphisms of } (X, \omega) \} \curvearrowright \mathcal{J}$

The infinite-dimensional (singular) manifold $\mathcal J$ has a Kähler structure $(\omega_{\mathcal J}, I_{\mathcal J}, g_{\mathcal J})$ preserved by $\mathcal H$. Given $b_j \in T_J \mathcal J \subset \Omega^0(\operatorname{End} TX)$,

$$\omega_{\mathcal{J}|J}(b_0, b_1) = \int_X \operatorname{tr}(J \cdot b_0 \cdot b_1) \frac{\omega^n}{n!}, \qquad I_{\mathcal{J}} b_0 = J b_0.$$

Moment map (Fujiki(1992)–Donaldson(1997)): $\mu_{\mathcal{J}} : \mathcal{J} \to (\text{Lie}\,\mathcal{H})^*$

$$\langle \mu_{\mathcal{J}}(J), \phi
angle = -\int_X \phi(S_J - \hat{S}) rac{\omega^n}{n!}$$

$$\phi \in \mathcal{C}^{\infty}(X)/\mathbb{R} \cong \mathrm{Lie}\mathcal{H} \qquad \hat{S} = \frac{1}{\mathrm{Vol}(X)} \int_{X} S_{J} \frac{\omega^{n}}{n!}$$

Solution: $S_J = \hat{S}, \qquad J \in \mathcal{J}.$

Kähler & Yang-Mills

 (X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J} = \{ \text{complex structures on } X \text{ compatible with } \omega \}$

 $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X,\omega)\} \curvearrowright \mathcal{J}$

The infinite-dimensional (singular) manifold \mathcal{J} has a Kähler structure $(\omega_{\mathcal{J}}, I_{\mathcal{J}}, g_{\mathcal{J}})$ preserved by \mathcal{H} . Given $b_j \in \mathcal{T}_J \mathcal{J} \subset \Omega^0(\operatorname{End} TX)$,

$$\omega_{\mathcal{J}|J}(b_0, b_1) = \int_X \operatorname{tr}(J \cdot b_0 \cdot b_1) \frac{\omega^n}{n!}, \qquad I_{\mathcal{J}} b_0 = J b_0.$$

Moment map (Fujiki(1992)–Donaldson(1997)): $\mu_{\mathcal{J}} : \mathcal{J} \to (\text{Lie}\,\mathcal{H})^*$

$$\langle \mu_{\mathcal{J}}(J), \phi
angle = -\int_X \phi(S_J - \hat{S}) rac{\omega^n}{n!}$$

$$\phi \in \mathcal{C}^{\infty}(X)/\mathbb{R} \cong \mathrm{Lie}\mathcal{H} \qquad \hat{S} = \frac{1}{\mathrm{Vol}(X)} \int_X S_J \frac{\omega^n}{n!}$$

:K equation: $S_J = \hat{S}, \qquad J \in \mathcal{J}$

LAC, MGF & OGP (ICMAT)

Kähler & Yang-Mills

 (X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J} = \{ \text{complex structures on } X \text{ compatible with } \omega \}$

 $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X,\omega)\} \curvearrowright \mathcal{J}$

The infinite-dimensional (singular) manifold \mathcal{J} has a Kähler structure $(\omega_{\mathcal{J}}, I_{\mathcal{J}}, g_{\mathcal{J}})$ preserved by \mathcal{H} . Given $b_j \in \mathcal{T}_J \mathcal{J} \subset \Omega^0(\operatorname{End} TX)$,

$$\omega_{\mathcal{J}|J}(b_0, b_1) = \int_X \operatorname{tr}(J \cdot b_0 \cdot b_1) \frac{\omega^n}{n!}, \qquad I_{\mathcal{J}}b_0 = Jb_0.$$

Moment map (Fujiki(1992)–Donaldson(1997)): $\mu_{\mathcal{J}} : \mathcal{J} \to (\mathsf{Lie}\,\mathcal{H})^*$

$$\langle \mu_{\mathcal{J}}(J), \phi \rangle = -\int_{X} \phi(S_J - \hat{S}) \frac{\omega^n}{n!}$$

 $\phi \in C^{\infty}(X)/\mathbb{R} \cong \text{Lie}\mathcal{H} \qquad \hat{S} = \frac{1}{\text{Vol}(X)} \int_X S_J \frac{\omega^n}{n!}$

equation:
$$S_J = \hat{S}, \quad J \in \mathcal{J}.$$

LAC, MGF & OGP (ICMAT)

Kähler & Yang-Mills

 (X, ω) smooth compact symplectic manifold of Kähler type. $\mathcal{J} = \{ \text{complex structures on } X \text{ compatible with } \omega \}$

 $\mathcal{H}=\{$ Hamiltonian symplectomorphisms of $(X,\omega)\} \curvearrowright \mathcal{J}$

The infinite-dimensional (singular) manifold \mathcal{J} has a Kähler structure $(\omega_{\mathcal{J}}, I_{\mathcal{J}}, g_{\mathcal{J}})$ preserved by \mathcal{H} . Given $b_j \in \mathcal{T}_J \mathcal{J} \subset \Omega^0(\operatorname{End} TX)$,

$$\omega_{\mathcal{J}|J}(b_0, b_1) = \int_X \operatorname{tr}(J \cdot b_0 \cdot b_1) \frac{\omega^n}{n!}, \qquad I_{\mathcal{J}} b_0 = J b_0.$$

Moment map (Fujiki(1992)–Donaldson(1997)): $\mu_{\mathcal{J}} : \mathcal{J} \to (\mathsf{Lie}\,\mathcal{H})^*$

$$\langle \mu_{\mathcal{J}}(J), \phi \rangle = -\int_{X} \phi(S_J - \hat{S}) \frac{\omega^n}{n!}$$

 $\phi \in C^{\infty}(X)/\mathbb{R} \cong \text{Lie}\mathcal{H} \qquad \hat{S} = \frac{1}{\text{Vol}(X)} \int_X S_J \frac{\omega^n}{n!}$

CscK equation: $S_J = \hat{S}, \qquad J \in \mathcal{J}.$

LAC, MGF & OGP (ICMAT)

Kähler & Yang–Mills

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}, \ 0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!! • Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A} : A \in \mathcal{A}_J^{1,1}\} \equiv$ Kähler structure on X with fixed ω + holomorphic structure on E^c over X. Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) \Rightarrow Diff $(E)^G$. $\widetilde{\mathcal{G}} \subset$ Diff $(E)^G$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Problem 1: We find a solution if $\widehat{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$ is Hamiltonian.

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}, \ 0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $\mathbf{I}_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!! • Why $\widetilde{\mathcal{G}}$? Geometry: It preserves $\mathbf{I}, \omega_{\alpha}$ and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\} \equiv$ Kähler structure on X with fixed ω + holomorphic structure on E^c over X. Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) \Rightarrow Diff $(E)^G$. $\widetilde{\mathcal{G}} \subset$ Diff $(E)^G$ "biggest" subgroup preserving ω_{α} and \mathbf{I} .

• Why ω_{α} ? For simplicity (following cscK & HYM).

Problem 1: We find a solution if $\widehat{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$ is Hamiltonian.

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$.

Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}, \ 0 \neq \alpha_0, \alpha_1 \in \mathbb{R}.$

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,\mathcal{A})}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0!!!$

• Why $\overline{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G}$. $\tilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Problem 1: We find a solution if $\widehat{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$ is Hamiltonian.

 $\begin{array}{l} \mbox{Phase space: } \mathcal{J}\times\mathcal{A}.\\ \mbox{Group of symmetries: } 1\rightarrow\mathcal{G}\rightarrow\widetilde{\mathcal{G}}\rightarrow\mathcal{H}\rightarrow1,\mbox{ with }\widetilde{\mathcal{G}}\curvearrowright\mathcal{J}\times\mathcal{A}.\\ \mbox{Symplectic structure: } \omega_{\alpha}=\alpha_{0}\omega_{\mathcal{J}}+\frac{4\alpha_{1}}{(n-1)!}\omega_{\mathcal{A}},\mbox{ } 0\neq\alpha_{0},\alpha_{1}\in\mathbb{R}. \end{array}$

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $\mathbf{I}_{(J,A)}(b, \mathbf{a}) = (Jb, -\mathbf{a}(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!! • Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A} : A \in \mathcal{A}_J^{1,1}\} \equiv$ Kähler structure on X with fixed ω + holomorphic structure on E^c over X. Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^G$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^G$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Problem 1: We find a solution if $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} imes \mathcal{A}$ is Hamiltonian.
Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $\mathbf{I}_{(J,\mathcal{A})}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!! • Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, \mathcal{A}) \in \mathcal{J} \times \mathcal{A}: \mathcal{A} \in \mathcal{A}_J^{1,1}\} \equiv$ Kähler structure on X with fixed ω + holomorphic structure on E^c over X. Physics: Natural group of symmetries for (J, \mathcal{A}) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{\mathcal{G}}$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{\mathcal{G}}$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,A)}(b,a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!!

• Why $\overline{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A} : A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{\mathcal{G}}$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{\mathcal{G}}$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0!!!$

• Why $\overline{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A} : A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{\mathcal{G}}$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{\mathcal{G}}$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

- $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0!!!$
- Why $\tilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) \Rightarrow Diff $(E)^{G}$. $\widetilde{\mathcal{G}} \subset$ Diff $(E)^{G}$ "biggest" subgroup preserving ω_{α} and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,\mathcal{A})}(b,a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!!

• Why $\hat{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X. Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup proceeding ω .

and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,\mathcal{A})}(b,a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!!

• Why \mathcal{G} ? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{\mathcal{G}}$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{\mathcal{G}}$ "biggest" subgroup preserving ω_{α} and **I**.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $\mathbf{I}_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!! • Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\} \equiv$ Kähler structure on X with fixed ω + holomorphic structure on E^c over X. Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^G$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^G$ "biggest" subgroup preserving ω_{α}

and I.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,\mathcal{A})}(b,a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!!

• Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv K$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^G$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^G$ "biggest" subgroup preserving ω_{α} and **I**.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Problem 1: We find a solution if $\widehat{\mathcal{G}} \cap \mathcal{J} \times \mathcal{A}$ is Hamiltonian.

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0!!!$

• Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv \text{K}$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^G$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^G$ "biggest" subgroup preserving ω_{α} and **I**.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,A)}(b, a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0!!!$

• Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv \text{K}$ ähler structure on X with fixed ω + holomorphic structure on E^{c} over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^G$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^G$ "biggest" subgroup preserving ω_{α} and **I**.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Phase space: $\mathcal{J} \times \mathcal{A}$.

Group of symmetries: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$, with $\widetilde{\mathcal{G}} \curvearrowright \mathcal{J} \times \mathcal{A}$. Symplectic structure: $\omega_{\alpha} = \alpha_0 \omega_{\mathcal{J}} + \frac{4\alpha_1}{(n-1)!} \omega_{\mathcal{A}}$, $0 \neq \alpha_0, \alpha_1 \in \mathbb{R}$.

Remarks:

• $\mathcal{J} \times \mathcal{A}$ has an integrable complex structure that fibers over $(\mathcal{J}, I_{\mathcal{J}})$, given by $I_{(J,\mathcal{A})}(b,a) = (Jb, -a(J \cdot))$ and ω_{α} is Kähler if $\frac{\alpha_1}{\alpha_0} > 0$!!!

• Why $\widetilde{\mathcal{G}}$? Geometry: It preserves I, ω_{α} and the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{J}^{1,1}\} \equiv \text{Kähler structure on } X \text{ with fixed } \omega + \text{holomorphic structure on } E^{c} \text{ over } X.$

Physics: Natural group of symmetries for (J, A) (grav. field + gauge field) $\Rightarrow \operatorname{Diff}(E)^{G}$. $\widetilde{\mathcal{G}} \subset \operatorname{Diff}(E)^{G}$ "biggest" subgroup preserving ω_{α} and **I**.

• Why ω_{α} ? For simplicity (following cscK & HYM).

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian. **General fact for extensions:** If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$, $\mathcal{W} := \widetilde{\mathcal{G}}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to W$ where $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^{*}$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} - \theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = -\int_{X} \phi(\Lambda_{\omega}^{2}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) - c') \cdot \frac{\omega^{n}}{n!}.$

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian. **General fact for extensions:** If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$, $\mathcal{W} := \widetilde{\mathcal{G}}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to W$ where $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of **vector space splittings** $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0$.

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^* \omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} - \theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = -\int_{X} \phi(\Lambda^{2}_{\omega}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) - c') \cdot \frac{\omega^{n}}{n!}$.

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$, $\mathcal{W} := \widetilde{\mathcal{G}}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to W$ where $\mathcal{W} \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of **vector space splittings** o $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\text{Lie}\,\mathcal{H})^*$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \text{Lie}\,\mathcal{H}$, where $\theta^{\perp} = \text{Id} - \theta \colon \text{Lie}\,\mathcal{H} \to \text{Lie}\,\widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \text{Lie}\,\widetilde{\mathcal{G}} \cong \text{Lie}\,\mathcal{G} \rtimes \text{Lie}\,\mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = -\int_{X} \phi(\Lambda_{\omega}^{2}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) - c') \cdot \frac{\omega^{n}}{n!}$.

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W} := \widetilde{\mathcal{G}}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to W$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \ \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\text{Lie}\,\mathcal{H})^*$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \text{Lie}\,\mathcal{H}$, where $\theta^{\perp} = \text{Id} - \theta$: Lie $\mathcal{H} \to \text{Lie}\,\widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \text{Lie}\,\widetilde{\mathcal{G}} \cong \text{Lie}\,\mathcal{G} \rtimes \text{Lie}\,\mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = -\int_{X} \phi(\Lambda^{2}_{\omega}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) - c') \cdot \frac{\omega^{n}}{n!}$.

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W}:=\widetilde{\mathcal{G}} ext{-equivariant smooth maps } heta\colon\mathcal{A} o\mathcal{W}$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^* \omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} - \theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . Example: If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. but ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = -\int_{X} \phi(\Lambda^{2}_{\omega}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) - c') \cdot \frac{\omega^{n}}{n!}$.

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W}:=\widetilde{\mathcal{G}} ext{-equivariant smooth maps } heta\colon\mathcal{A} o\mathcal{W}$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^*$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$,

where $\theta^{\perp} = \operatorname{Id} - \theta$: Lie $\mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. but ...

In our case: the vertical projection $\theta_A \colon TE \to VE$ defined by any connection $A \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(A), \phi \rangle = -\int_X \phi(\Lambda^2_{\omega}(F_A \wedge F_A) - c') \cdot \frac{\omega^n}{n!}.$

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W}:=\widetilde{\mathcal{G}} ext{-equivariant smooth maps } heta\colon\mathcal{A} o\mathcal{W}$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists$ a $\widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^*$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} -\theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} .

Example: If $\mathcal{A} = \{\cdot\}$, $\mathcal{W} \neq \emptyset \Rightarrow \text{Lie } \widetilde{\mathcal{G}} \cong \text{Lie } \mathcal{G} \rtimes \text{Lie } \mathcal{H}$. but ...

In our case: the vertical projection $\theta_A \colon TE \to VE$ defined by any connection $A \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(A), \phi \rangle = -\int_X \phi(\Lambda^2_{\omega}(F_A \wedge F_A) - c') \cdot \frac{\omega^n}{n!}.$

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W} := \mathcal{G}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to \mathcal{W}$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^{*}$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} - \theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}$, $\mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to \mathcal{W}$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = - \langle \phi (\Lambda^{2}(F_{\Phi} \land F_{\Phi}) - \sigma') \colon \mathscr{U}^{0}$

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W} := \mathcal{G}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to \mathcal{W}$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^{*}$ $\omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} - \theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}$, $\mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to \mathcal{W}$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = - \langle \omega \phi (\Lambda^{2}(\mathcal{E}_{\mathcal{A}} \land \mathcal{E}_{\mathcal{A}}) - c' \rangle \colon \widetilde{\omega}^{n}$

Recall: $1 \to \mathcal{G} \to \widetilde{\mathcal{G}} \to \mathcal{H} \to 1$ and the $\widetilde{\mathcal{G}}$ -action is symplectic.

It is enough to prove that $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian.

General fact for extensions: If $\mathcal{G} \curvearrowright \mathcal{A}$ is Hamiltonian and $\mathcal{W} \neq \emptyset$,

 $\mathcal{W} := \mathcal{G}$ -equivariant smooth maps $\theta \colon \mathcal{A} \to \mathcal{W}$ where

 $W \subset \operatorname{Hom}(\operatorname{Lie} \widetilde{\mathcal{G}}, \operatorname{Lie} \mathcal{G})$ affine space of vector space splittings of $0 \to \operatorname{Lie} \mathcal{G} \to \operatorname{Lie} \widetilde{\mathcal{G}} \to \operatorname{Lie} \mathcal{H} \to 0.$

then, $\widetilde{\mathcal{G}} \curvearrowright \mathcal{A}$ is Hamiltonian $\Leftrightarrow \exists a \widetilde{\mathcal{G}}$ -equivariant map $\sigma_{\theta} \colon \mathcal{A} \to (\operatorname{Lie} \mathcal{H})^* \omega_{\mathcal{A}}(Y_{\theta^{\perp}\phi}, \cdot) = \langle \mu_{\mathcal{G}}, (d\theta)\phi \rangle + d\langle \sigma_{\theta}, \phi \rangle$, for all $\phi \in \operatorname{Lie} \mathcal{H}$, where $\theta^{\perp} = \operatorname{Id} - \theta \colon \operatorname{Lie} \mathcal{H} \to \operatorname{Lie} \widetilde{\mathcal{G}}$ and $Y_{\theta^{\perp}\phi}$ is the inf. action on \mathcal{A} . **Example:** If $\mathcal{A} = \{\cdot\}, \ \mathcal{W} \neq \emptyset \Rightarrow \operatorname{Lie} \widetilde{\mathcal{G}} \cong \operatorname{Lie} \mathcal{G} \rtimes \operatorname{Lie} \mathcal{H}$. **but** ... In our case: the vertical projection $\theta_{\mathcal{A}} \colon TE \to VE$ defined by any connection $\mathcal{A} \in \mathcal{A}$ defines an element $\theta \colon \mathcal{A} \to W$ in \mathcal{W} . Finally, $\langle \sigma_{\theta}(\mathcal{A}), \phi \rangle = -\int_{Y} \phi(\Lambda^{2}_{\omega}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) - c') \cdot \frac{\omega^{n}}{\sigma!}$.

Proposition [--, L. Álvarez Cónsul, O. García Prada]

For any $lpha_0$ and $lpha_1$ there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_lpha \colon \mathcal{J} imes \mathcal{A} o \mathsf{Lie} \, \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \mathsf{Lie} \, \widetilde{\mathcal{G}}$, covering $\phi \in C^\infty(X)/\mathbb{R} \cong \mathsf{Lie} \, \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta\rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A})\right) \cdot \frac{\omega^{n}}{n!}$$

The \mathcal{G} -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{I}^{1,1}\}. \Rightarrow \mu_{\alpha} : \mathcal{P} \to \text{Lie} \widetilde{\mathcal{G}}^{*} \text{ and the conditions}$

$$\mu_{\alpha}(J,A) = 0, \qquad (J,A) \in \mathcal{P}$$

defines (**completely**!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$\left. \begin{array}{l} \Lambda_{\omega}F_{A}=z, \\ F_{A}^{0,2_{J}}=0, \\ \alpha_{0}S_{g} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A}\wedge F_{A})=c. \end{array} \right\}$$

Proposition [---, L. Álvarez Cónsul, O. García Prada]

For any α_0 and α_1 there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_{\alpha} \colon \mathcal{J} \times \mathcal{A} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \operatorname{Lie} \widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X)/\mathbb{R} \cong \operatorname{Lie} \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta \rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A}) \right) \cdot \frac{\omega''}{n!}$$

The \mathcal{G} -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\}. \Rightarrow \mu_{\alpha} : \mathcal{P} \to \mathsf{Lie} \widetilde{\mathcal{G}}^* \text{ and the conditions}$

$$\mu_{\alpha}(J,A) = 0, \qquad (J,A) \in \mathcal{P}$$

defines (**completely**!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$\left. \begin{array}{l} \Lambda_{\omega}F_{A}=z, \\ F_{A}^{0,2_{J}}=0, \\ \alpha_{0}S_{g} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A}\wedge F_{A})=c. \end{array} \right\}$$

Proposition [---, L. Álvarez Cónsul, O. García Prada]

For any α_0 and α_1 there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_{\alpha} \colon \mathcal{J} \times \mathcal{A} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \operatorname{Lie} \widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X)/\mathbb{R} \cong \operatorname{Lie} \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta \rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A}) \right) \cdot \frac{\omega^{n}}{n!}$$

The $\overline{\mathcal{G}}$ -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\}$. $\Rightarrow \mu_{\alpha} : \mathcal{P} \to \text{Lie}\,\overline{\mathcal{G}}^*$ and the conditions

 $\mu_{lpha}(J,A)=0, \qquad (J,A)\in \mathcal{P}$

defines (**completely**!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$\left. \begin{array}{l} \Lambda_{\omega}F_{A}=z,\\ F_{A}^{0,2_{J}}=0,\\ \alpha_{0}S_{g}+\alpha_{1}\Lambda_{\omega}^{2}(F_{A}\wedge F_{A})=c. \end{array} \right\}$$

Proposition [---, L. Álvarez Cónsul, O. García Prada]

For any α_0 and α_1 there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_{\alpha} \colon \mathcal{J} \times \mathcal{A} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \operatorname{Lie} \widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X)/\mathbb{R} \cong \operatorname{Lie} \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta \rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A}) \right) \cdot \frac{\omega^{n}}{n!}$$

The $\widetilde{\mathcal{G}}$ -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\}$. $\Rightarrow \mu_{\alpha} : \mathcal{P} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ and the conditions

 $\mu_{lpha}(J,A)=0, \qquad (J,A)\in \mathcal{P}$

defines (**completely**!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$\left. \begin{array}{l} \Lambda_{\omega}F_{A}=z,\\ F_{A}^{0,2_{J}}=0,\\ \alpha_{0}S_{g}+\alpha_{1}\Lambda_{\omega}^{2}(F_{A}\wedge F_{A})=c. \end{array} \right\}$$

LAC, MGF & OGP (ICMAT)

Kähler & Yang-Mills

Proposition [---, L. Álvarez Cónsul, O. García Prada]

For any α_0 and α_1 there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_{\alpha} \colon \mathcal{J} \times \mathcal{A} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \operatorname{Lie} \widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X)/\mathbb{R} \cong \operatorname{Lie} \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta\rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A})\right) \cdot \frac{\omega''}{n!}$$

The \mathcal{G} -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\}$. $\Rightarrow \mu_{\alpha} : \mathcal{P} \to \text{Lie} \widetilde{\mathcal{G}}^*$ and the conditions

$$\mu_{\alpha}(J,A) = 0, \qquad (J,A) \in \mathcal{P}$$

defines (**completely**!) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$\left. \begin{array}{l} \Lambda_{\omega}F_{A} = z, \\ F_{A}^{0,2_{J}} = 0, \\ \alpha_{0}S_{g} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) = c. \end{array} \right\}$$
 (1)

Proposition [---, L. Álvarez Cónsul, O. García Prada]

For any α_0 and α_1 there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_{\alpha} \colon \mathcal{J} \times \mathcal{A} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \operatorname{Lie} \widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X)/\mathbb{R} \cong \operatorname{Lie} \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta \rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A}) \right) \cdot \frac{\omega^{n}}{n!}$$

The \mathcal{G} -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_{I}^{1,1}\}$. $\Rightarrow \mu_{\alpha} : \mathcal{P} \to \text{Lie} \widetilde{\mathcal{G}}^{*}$ and the conditions

$$\mu_{lpha}(J,A)=0, \qquad (J,A)\in \mathcal{P}$$

defines (**completely!**) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

Proposition [---, L. Álvarez Cónsul, O. García Prada]

For any α_0 and α_1 there exists a $\widetilde{\mathcal{G}}$ -equivariant moment map $\mu_{\alpha} \colon \mathcal{J} \times \mathcal{A} \to \operatorname{Lie} \widetilde{\mathcal{G}}^*$ for the $\widetilde{\mathcal{G}}$ -action. If $\zeta \in \operatorname{Lie} \widetilde{\mathcal{G}}$, covering $\phi \in C^{\infty}(X)/\mathbb{R} \cong \operatorname{Lie} \mathcal{H}$ then,

$$\langle \mu_{\alpha}(J,A),\zeta\rangle = -\int_{X} \left(\phi(\alpha_{0}S_{J} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) - c) - 4\alpha_{1}(\theta_{A}\zeta,\Lambda_{\omega}F_{A})\right) \cdot \frac{\omega^{n}}{n!}$$

The \mathcal{G} -action preserves the complex submanifold $\mathcal{P} = \{(J, A) \in \mathcal{J} \times \mathcal{A}: A \in \mathcal{A}_J^{1,1}\}$. $\Rightarrow \mu_{\alpha} : \mathcal{P} \to \text{Lie} \widetilde{\mathcal{G}}^*$ and the conditions

$$\mu_{lpha}(J,A)=0, \qquad (J,A)\in \mathcal{P}$$

defines (**completely!**) coupled equations for (ω, J, g, A) that can be written as follows (after a suitable shift by $z \in \mathfrak{z}$, the center of \mathfrak{g}):

Definition:

$$\begin{cases} \Lambda_{\omega}F_{A} = z, \\ F_{A}^{0,2_{J}} = 0, \\ \alpha_{0}S_{g} + \alpha_{1}\Lambda_{\omega}^{2}(F_{A} \wedge F_{A}) = c. \end{cases}$$
 (1)

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990). 2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested).The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK:** 1. Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. *Moduli problem for projective varieties*:Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow

⇒ Donaldson's invariants for smooth 4-manifolds (1990). 2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested).The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles ⇒ algebraic criterion for finding YM connections. **CscK: 1.** Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry.Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK: 1.** Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold \Rightarrow numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

HYM: 1. *Construction of moduli spaces with Kähler structure* \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The

Hitchin–Kobayashi correspondence (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK: 1. Calabi's problem** (1954, 1982): **Find preferred metrics in Kähler geometry.** Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold \Rightarrow numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin-Kobayashi correspondence** (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. *Moduli problem for projective varieties*:Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin-Kobayashi correspondence** (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. CscK: 1. Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. *Moduli problem for projective varieties*:Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang-Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin-Kobayashi correspondence** (Donaldson and Uhlenbeck-Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK:** 1. Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. *Moduli problem for projective varieties*:Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

LAC, MGF & OGP (ICMAT)

Kähler & Yang–Mills

HYM: 1. *Construction of moduli spaces with Kähler structure* \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK: 1.** *Calabi's problem* (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.
Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kähler structure \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK: 1.** *Calabi's problem* (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold \Rightarrow numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

Why HYM and cscK?

HYM: 1. *Construction of moduli spaces with Kähler structure* \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK: 1.** *Calabi's problem* (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold ⇒ numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

Why HYM and cscK?

HYM: 1. *Construction of moduli spaces with Kähler structure* \Rightarrow \Rightarrow Donaldson's invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang–Mills equation: critical points of the Yang-Mills functional $A \rightarrow ||F_A||^2$ (physicists interested). The **Hitchin–Kobayashi correspondence** (Donaldson and Uhlenbeck–Yau) relating the existence of solutions to the HYM equation with the Mumford stability of bundles \Rightarrow algebraic criterion for finding YM connections. **CscK:** 1. Calabi's problem (1954, 1982): Find preferred metrics in Kähler geometry. Three natural notions (that can be seen as uniformizers of the complex structure):

Kähler–Einstein metrics \Rightarrow cscK metrics \Rightarrow extremal metrics \equiv \equiv critical points of the *Calabi Functional* $g \rightarrow \int_X S_g^2 \operatorname{vol}_g$, for Kähler metrics g in a fixed Kähler class. CscK metrics \equiv absolute minimizers.

2. Moduli problem for projective varieties: Yau-Tian-Donaldson's conjecture relating existence of cscK metrics on a compact complex manifold with the stability of the manifold \Rightarrow numerical approximation of Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [—, L. Alvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM \colon \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [—, L. Alvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM \colon \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A \cdot, \theta_A \cdot)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so $S_2 = S_2 - \frac{2\alpha_1}{|E_A|^2}$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A \cdot, \theta_A \cdot)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so $S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{J,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^* g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so $S_A = S = \frac{2\alpha_1}{|E_A|^2}$

$$S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^*g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so $2\alpha_1 = 12$

$$S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein $\Rightarrow (1) \Rightarrow S_{\hat{g}} = const$.

Given real constants α_0 and $\alpha_1 \in \mathbb{R}$ consider the following functional.

$$CYM(g, A) = \int_X (\alpha_0 S_g - 2\alpha_1 |F_A|^2)^2 \cdot \mathrm{vol}_g + 2\alpha_1 \cdot ||F_A||^2,$$
 (2)

where g is a Riemannian metric on X, A is a connection on E and vol_g is the volume form of g. Note that $\mathcal{J} \ni J \to g = \omega(\cdot, J \cdot)$, fixing ω .

Proposition [---, L. Álvarez Cónsul, O. García Prada]

The solutions to the coupled equations (1) on $\mathcal{J} \times \mathcal{A}$ are the absolute minimizers of $CYM: \mathcal{J} \times \mathcal{A} \to \mathbb{R}$ (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider $\hat{g} = \pi^*g + t \cdot g_V(\theta_A, \theta_A)$ on $\operatorname{Tot}(E)$, with $t = \frac{2\alpha_1}{\alpha_0} > 0$. Then $(\operatorname{Tot}(E), \hat{g}) \to (X, g)$ is a Riemannian submersion with totally geodesic fibers and so

$$S_{\hat{g}} = S_g - \frac{2\alpha_1}{\alpha_0} |F_A|^2$$

Therefore CYM = C + YM and if (X, J, ω, g, A) , with $F_A^{0,2} = 0$, is a solution to the coupled equations (1) then $S_{\hat{g}} = const$. Moreover, if A is irreducible \hat{g} Einstein \Rightarrow (1) \Rightarrow $S_{\hat{g}} = const$.

We fix a compact complex manifold (X, J) and a *G*-bundle over *X*. Consider the equations for (ω, A) , with $\omega \in [\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

• The system of equations (1) decouples when $\dim_{\mathbb{C}} X = 1$ since $(F_A \wedge F_A) = 0$. Solutions = stable holomorphic bundles over (X, J).

If E = L, or if E es projectively flat, with c₁(E) = λ[ω] then the coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases \exists a solution to $F_A = \lambda \omega$, which implies Lie $\tilde{\mathcal{G}} = \text{Lie } \mathcal{G} \ltimes \text{Lie } \mathcal{H}$.

Less trivial examples:

 The coupled equations (1) have solutions on Homogenous holomorphic bundles E^c over homogeneous Kähler manifolds if the bundle comes from an irreducible representation (≡ ∃ HYM connection). Proof: invariant structures and representation theory.

• Solutions are given by simultaneous solutions for the cases $\alpha_1 = 0, \alpha_0 \neq 0$ and $\alpha_0 = 0, \alpha_1 \neq 0$.

We fix a compact complex manifold (X, J) and a *G*-bundle over *X*. Consider the equations for (ω, A) , with $\omega \in [\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\dim_{\mathbb{C}} X = 1$ since $(F_A \wedge F_A) = 0$. Solutions = stable holomorphic bundles over (X, J).
- If E = L, or if E es projectively flat, with c₁(E) = λ[ω] then the coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases \exists a solution to $F_A = \lambda \omega$, which implies Lie $\tilde{\mathcal{G}} = \text{Lie } \mathcal{G} \ltimes \text{Lie } \mathcal{H}$.

Less trivial examples:

- The coupled equations (1) have solutions on Homogenous holomorphic bundles E^c over homogeneous Kähler manifolds if the bundle comes from an irreducible representation (≡ ∃ HYM connection). Proof: invariant structures and representation theory.
- Solutions are given by simultaneous solutions for the cases $\alpha_1 = 0, \alpha_0 \neq 0$ and $\alpha_0 = 0, \alpha_1 \neq 0$.

We fix a compact complex manifold (X, J) and a *G*-bundle over *X*. Consider the equations for (ω, A) , with $\omega \in [\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\dim_{\mathbb{C}} X = 1$ since $(F_A \wedge F_A) = 0$. Solutions = stable holomorphic bundles over (X, J).
- If E = L, or if E es projectively flat, with c₁(E) = λ[ω] then the coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases \exists a solution to $F_A = \lambda \omega$, which implies $\text{Lie } \widetilde{\mathcal{G}} = \text{Lie } \mathcal{G} \ltimes \text{Lie } \mathcal{H}.$

Less trivial examples:

- The coupled equations (1) have solutions on Homogenous holomorphic bundles E^c over homogeneous Kähler manifolds if the bundle comes from an irreducible representation (≡ ∃ HYM connection). Proof: invariant structures and representation theory.
- Solutions are given by simultaneous solutions for the cases $\alpha_1 = 0, \alpha_0 \neq 0$ and $\alpha_0 = 0, \alpha_1 \neq 0$.

We fix a compact complex manifold (X, J) and a *G*-bundle over *X*. Consider the equations for (ω, A) , with $\omega \in [\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\dim_{\mathbb{C}} X = 1$ since $(F_A \wedge F_A) = 0$. Solutions = stable holomorphic bundles over (X, J).
- If E = L, or if E es projectively flat, with c₁(E) = λ[ω] then the coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases \exists a solution to $F_A = \lambda \omega$, which implies Lie $\widetilde{\mathcal{G}} = \text{Lie } \mathcal{G} \ltimes \text{Lie } \mathcal{H}$.

Less trivial examples:

 The coupled equations (1) have solutions on Homogenous holomorphic bundles *E^c* over homogeneous Kähler manifolds if the bundle comes from an irreducible representation (≡ ∃ HYM connection). Proof: invariant structures and representation theory.
Solutions are given by simultaneous solutions for the cases

$$\alpha_1 = 0, \alpha_0 \neq 0$$
 and $\alpha_0 = 0, \alpha_1 \neq 0$.

We fix a compact complex manifold (X, J) and a *G*-bundle over *X*. Consider the equations for (ω, A) , with $\omega \in [\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\dim_{\mathbb{C}} X = 1$ since $(F_A \wedge F_A) = 0$. Solutions = stable holomorphic bundles over (X, J).
- If E = L, or if E es projectively flat, with c₁(E) = λ[ω] then the coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases \exists a solution to $F_A = \lambda \omega$, which implies Lie $\widetilde{\mathcal{G}} = \text{Lie } \mathcal{G} \ltimes \text{Lie } \mathcal{H}$.

Less trivial examples:

 The coupled equations (1) have solutions on Homogenous holomorphic bundles E^c over homogeneous Kähler manifolds if the bundle comes from an irreducible representation (≡ ∃ HYM connection). Proof: invariant structures and representation theory.

• Solutions are given by simultaneous solutions for the cases $\alpha_1 = 0, \alpha_0 \neq 0$ and $\alpha_0 = 0, \alpha_1 \neq 0$.

LAC, MGF & OGP (ICMAT)

Kähler & Yang-Mills

We fix a compact complex manifold (X, J) and a *G*-bundle over *X*. Consider the equations for (ω, A) , with $\omega \in [\omega]$ and $A \in \mathcal{A}^{1,1}$. Trivial examples:

- The system of equations (1) decouples when $\dim_{\mathbb{C}} X = 1$ since $(F_A \wedge F_A) = 0$. Solutions = stable holomorphic bundles over (X, J).
- If E = L, or if E es projectively flat, with c₁(E) = λ[ω] then the coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases \exists a solution to $F_A = \lambda \omega$, which implies Lie $\widetilde{\mathcal{G}} = \text{Lie } \mathcal{G} \ltimes \text{Lie } \mathcal{H}$.

Less trivial examples:

- The coupled equations (1) have solutions on Homogenous holomorphic bundles E^c over homogeneous Kähler manifolds if the bundle comes from an irreducible representation (≡ ∃ HYM connection). Proof: invariant structures and representation theory.
- Solutions are given by simultaneous solutions for the cases $\alpha_1 = 0, \alpha_0 \neq 0$ and $\alpha_0 = 0, \alpha_1 \neq 0$.

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non cscK?

Theorem [—, L. Álvarez Cónsul, O. García Prada]

Let (X, L) be a compact polarised manifold, G^c be a complex reductive Lie group and E^c be a holomorphic G^c -bundle over X. If there exists a cscK metric $\omega \in c_1(L)$, X has finite automorphism group and E^c is stable with respect to Lthen, given a pair of positive real constants $\alpha_0, \alpha_1 > 0$ with small ratio $0 < \frac{\alpha_1}{\alpha_0} << 1$, there exists a solution $(\omega_\alpha, A_\alpha)$ to (1) with these coupling constants and $\omega_\alpha \in c_1(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^c$ that extends the $\widetilde{\mathcal{G}}$ -action on \mathcal{P} . Consider the map L: Lie $\widetilde{\mathcal{G}} \to \text{Lie } \widetilde{\mathcal{G}}^* \colon \zeta \to \mu_{\alpha}(e^{i\zeta})$. Then, $\langle dL_0(\zeta_0, \zeta_1) \rangle = \omega_{\alpha}(Y_{\zeta_1}, |Y_{\zeta_0}),$

where Y_{ζ_j} is the infinitesimal action of ζ_j on \mathcal{P} . If $\widetilde{\mathcal{G}}_l \subset \operatorname{Aut}(E^c)$ is finite

<u>dL₀ is an isomorphism. But *G^c* does not exist</u>

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non cscK?

Theorem [—, L. Álvarez Cónsul, O. García Prada]

Let (X, L) be a compact polarised manifold, G^c be a complex reductive Lie group and E^c be a holomorphic G^c -bundle over X. If there exists a cscK metric $\omega \in c_1(L)$, X has finite automorphism group and E^c is stable with respect to Lthen, given a pair of positive real constants $\alpha_0, \alpha_1 > 0$ with small ratio $0 < \frac{\alpha_1}{\alpha_0} << 1$, there exists a solution $(\omega_\alpha, A_\alpha)$ to (1) with these coupling constants and $\omega_\alpha \in c_1(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^c$ that extends the $\widetilde{\mathcal{G}}$ -action on \mathcal{P} . Consider the map L: Lie $\widetilde{\mathcal{G}} \to \text{Lie } \widetilde{\mathcal{G}}^* \colon \zeta \to \mu_{\alpha}(e^{\mathbf{i}\,\zeta})$. Then, $\langle dL_0(\zeta_0, \zeta_1) \rangle = \omega_{\alpha}(Y_{\zeta_1}, |Y_{\zeta_0}),$

where Y_{ζ_j} is the infinitesimal action of ζ_j on \mathcal{P} . If $\widetilde{\mathcal{G}}_I \subset \operatorname{Aut}(E^c)$ is finite dI_c is an isomorphism. But $\widetilde{\mathcal{G}}_i^c$ does not exist

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non cscK?

Theorem [---, L. Álvarez Cónsul, O. García Prada]

Let (X, L) be a compact polarised manifold, G^c be a complex reductive Lie group and E^c be a holomorphic G^c -bundle over X. If there exists a cscK metric $\omega \in c_1(L)$, X has finite automorphism group and E^c is stable with respect to Lthen, given a pair of positive real constants $\alpha_0, \alpha_1 > 0$ with small ratio $0 < \frac{\alpha_1}{\alpha_0} << 1$, there exists a solution $(\omega_\alpha, A_\alpha)$ to (1) with these coupling constants and $\omega_\alpha \in c_1(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose \tilde{G} has a complexification \tilde{G}^c that extends the \tilde{G} -action on \mathcal{P} . Consider the map L: Lie $\tilde{G} \rightarrow \text{Lie } \tilde{G}^* : \zeta \rightarrow \mu_{\alpha}(e^{i\zeta})$. Then, $\langle dL_0(\zeta_0, \zeta_1) = \omega_{\alpha}(Y_{\zeta_1}, |Y_{\zeta_0}),$

where Y_{ζ_j} is the infinitesimal action of ζ_j on \mathcal{P} . If $\widetilde{\mathcal{G}}_I \subset \operatorname{Aut}(E^c)$ is finite

<u>dL₀ is an isomorphism. But *G*^c does not exist</u>

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non cscK?

Theorem [---, L. Álvarez Cónsul, O. García Prada]

Let (X, L) be a compact polarised manifold, G^c be a complex reductive Lie group and E^c be a holomorphic G^c -bundle over X. If there exists a cscK metric $\omega \in c_1(L)$, X has finite automorphism group and E^c is stable with respect to Lthen, given a pair of positive real constants $\alpha_0, \alpha_1 > 0$ with small ratio $0 < \frac{\alpha_1}{\alpha_0} << 1$, there exists a solution $(\omega_\alpha, A_\alpha)$ to (1) with these coupling constants and $\omega_\alpha \in c_1(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\tilde{\mathcal{G}}$ has a complexification $\tilde{\mathcal{G}}^c$ that extends the $\tilde{\mathcal{G}}$ -action on \mathcal{P} . Consider the map L: Lie $\tilde{\mathcal{G}} \to \text{Lie } \tilde{\mathcal{G}}^* \colon \zeta \to \mu_{\alpha}(e^{\mathbf{i}\,\zeta})$. Then, $\langle dL_0(\zeta_0, \zeta_1) \rangle = \omega_{\alpha}(Y_{\zeta_1}, IY_{\zeta_0})$.

where Y_{ζ_j} is the infinitesimal action of ζ_j on \mathcal{P} . If $\mathcal{G}_I \subset \operatorname{Aut}(E^c)$ is finite dI_c is an isomorphism. But $\widetilde{\mathcal{G}}^c$ does not exist

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non cscK?

Theorem [---, L. Álvarez Cónsul, O. García Prada]

Let (X, L) be a compact polarised manifold, G^c be a complex reductive Lie group and E^c be a holomorphic G^c -bundle over X. If there exists a cscK metric $\omega \in c_1(L)$, X has finite automorphism group and E^c is stable with respect to Lthen, given a pair of positive real constants $\alpha_0, \alpha_1 > 0$ with small ratio $0 < \frac{\alpha_1}{\alpha_0} << 1$, there exists a solution $(\omega_\alpha, A_\alpha)$ to (1) with these coupling constants and $\omega_\alpha \in c_1(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^c$ that extends the $\widetilde{\mathcal{G}}$ -action on \mathcal{P} . Consider the map L: Lie $\widetilde{\mathcal{G}} \to \text{Lie } \widetilde{\mathcal{G}}^* \colon \zeta \to \mu_{\alpha}(e^{i\zeta})$. Then, $\langle dL_0(\zeta_0, \zeta_1 \rangle = \omega_{\alpha}(Y_{\zeta_1}, \mathbf{I} Y_{\zeta_0}),$ where Y_{ζ_j} is the infinitesimal action of ζ_j on \mathcal{P} . If $\widetilde{\mathcal{G}}_I \subset \text{Aut}(E^c)$ is finite dL_0 is an isomorphism. But $\widetilde{\mathcal{G}}^c$ does not exist ω .

LAC, MGF & OGP (ICMAT)

Kähler & Yang–Mills

In the previous examples the Kähler metric on (X, J) is always cscK. Are there any examples of solutions (ω, A) with ω non cscK?

Theorem [---, L. Álvarez Cónsul, O. García Prada]

Let (X, L) be a compact polarised manifold, G^c be a complex reductive Lie group and E^c be a holomorphic G^c -bundle over X. If there exists a cscK metric $\omega \in c_1(L)$, X has finite automorphism group and E^c is stable with respect to Lthen, given a pair of positive real constants $\alpha_0, \alpha_1 > 0$ with small ratio $0 < \frac{\alpha_1}{\alpha_0} << 1$, there exists a solution $(\omega_\alpha, A_\alpha)$ to (1) with these coupling constants and $\omega_\alpha \in c_1(L)$.

Proof: Deformation argument using the Implicit Function Theorem in Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω): suppose $\widetilde{\mathcal{G}}$ has a complexification $\widetilde{\mathcal{G}}^c$ that extends the $\widetilde{\mathcal{G}}$ -action on \mathcal{P} . Consider the map L: Lie $\widetilde{\mathcal{G}} \to \text{Lie } \widetilde{\mathcal{G}}^* : \zeta \to \mu_{\alpha}(e^{\mathbf{i}\,\zeta})$. Then, $\langle dL_0(\zeta_0, \zeta_1) \rangle = \omega_{\alpha}(Y_{\zeta_1}, \mathbf{I}Y_{\zeta_0}),$ where Y_{ζ_j} is the infinitesimal action of ζ_j on \mathcal{P} . If $\widetilde{\mathcal{G}}_I \subset \text{Aut}(E^c)$ is finite dL_0 is an isomorphism. But $\widetilde{\mathcal{G}}^c$ does not exist ...

LAC, MGF & OGP (ICMAT)

Kähler & Yang–Mills

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let E be a smooth SU(2)-bundle over X with second Chern number $k = \frac{1}{8\pi^2} \int_X \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification.Let A be a connection that determines a point in M_k . Then, A is irreducible and so we can apply our Theorem obtaining solutions ($\omega_{\alpha}, A_{\alpha}$) to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_0}$.

How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}} - \alpha |F_{A_{\alpha}}|^2 = const$. Since $(\omega_{\alpha}, A_{\alpha}) \rightarrow (\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $|F_A|^2$ is not a constant function on X. Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit? Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth *SU*(2)-bundle over *X* with second Chern number $k = \frac{1}{8\pi^2} \int_X \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where *A* is a connection on *E*. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections *A* on *E* with respect to ω is non-empty, non-compact but admits a compactification.Let *A* be a connection that determines a point in M_k . Then, *A* is irreducible and so we can apply our Theorem obtaining solutions ($\omega_{\alpha}, A_{\alpha}$) to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_0}$. How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\alpha} = -\alpha |E_{\alpha}|^2 = \operatorname{const} Since (\omega_{\alpha}, A_{\alpha}) \to (\omega, A)$.

uniformly as $\alpha \to 0$ it is enough to take A such that $|F_A|^2$ is not a constant function on X.Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit?Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth SU(2)-bundle over X with second Chern number $k = \frac{1}{2\pi^2} \int_X \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth SU(2)-bundle over X with second Chern number $k = \frac{1}{\alpha - 2} \int_{Y} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification.Let

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth SU(2)-bundle over *X* with second Chern number $k = \frac{1}{8\pi^2} \int_X \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where *A* is a connection on *E*. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections *A* on *E* with respect to ω is non-empty, non-compact but admits a compactification.Let *A* be a connection that determines a point in M_k . Then, *A* is irreducible and so we can apply our Theorem obtaining solutions (ω_α , A_α) to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_0}$.

How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}} - \alpha |F_{A_{\alpha}}|^2 = const$. Since $(\omega_{\alpha}, A_{\alpha}) \rightarrow (\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $|F_A|^2$ is not a constant function on X.Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit?Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth SU(2)-bundle over *X* with second Chern number $k = \frac{1}{8\pi^2} \int_X \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where *A* is a connection on *E*. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections *A* on *E* with respect to ω is non-empty, non-compact but admits a compactification.Let *A* be a connection that determines a point in M_k . Then, *A* is irreducible and so we can apply our Theorem obtaining solutions (ω_α , A_α) to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_0}$.

How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}} - \alpha |F_{A_{\alpha}}|^2 = const$. Since $(\omega_{\alpha}, A_{\alpha}) \rightarrow (\omega, A)$ uniformly as $\alpha \rightarrow 0$ it is enough to take A such that $|F_A|^2$ is not a constant function on X.Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit?Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth SU(2)-bundle over X with second Chern number $k = \frac{1}{\alpha - 2} \int_{Y} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification.Let A be a connection that determines a point in M_k . Then, A is irreducible and so we can apply our Theorem obtaining solutions $(\omega_{\alpha}, A_{\alpha})$ to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_2}$. How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}} - \alpha |F_{A_{\alpha}}|^2 = const.$ Since $(\omega_{\alpha}, A_{\alpha}) \to (\omega, A)$ uniformly as $\alpha \to 0$ it is enough to take A such that $|F_A|^2$ is not a

constant function on X. Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit? Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let *E* be a smooth SU(2)-bundle over *X* with second Chern number $k = \frac{1}{8\pi^2} \int_X \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where *A* is a connection on *E*. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections *A* on *E* with respect to ω is non-empty, non-compact but admits a compactification.Let *A* be a connection that determines a point in M_k . Then, *A* is irreducible and so we can apply our Theorem obtaining solutions (ω_α, A_α) to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_0}$. How can we assure that ω_α is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_\alpha} - \alpha |F_{A_\alpha}|^2 = const$. Since (ω_α, A_α) $\to (\omega, A)$ uniformly as $\alpha \to 0$ it is enough to take *A* such that $|F_A|^2$ is not a

constant function on X.Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit?Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let E be a smooth SU(2)-bundle over X with second Chern number $k = \frac{1}{\alpha - 2} \int_{Y} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification.Let A be a connection that determines a point in M_k . Then, A is irreducible and so we can apply our Theorem obtaining solutions $(\omega_{\alpha}, A_{\alpha})$ to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_2}$. How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}} - \alpha |F_{A_{\alpha}}|^2 = const.$ Since $(\omega_{\alpha}, A_{\alpha}) \to (\omega, A)$ uniformly as $\alpha \to 0$ it is enough to take A such that $|F_A|^2$ is not a

constant function on X. Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit? Locally yes.

Example: Let X be a high degree hypersurface of \mathbb{P}^3 . Then, $\exists KE$ metric $\omega \in c_1(X)$ (in particular cscK) (Aubin & Yau). Moreover, $c_1(X) < 0 \Rightarrow \operatorname{Aut}(X)$ finite.

Let E be a smooth SU(2)-bundle over X with second Chern number $k = \frac{1}{\alpha - 2} \int_{Y} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$, where A is a connection on E. If $k \gg 0$, the moduli space M_k of Anti-Self-Dual (ASD) connections A on E with respect to ω is non-empty, non-compact but admits a compactification.Let A be a connection that determines a point in M_k . Then, A is irreducible and so we can apply our Theorem obtaining solutions $(\omega_{\alpha}, A_{\alpha})$ to (1) for small $0 < \alpha = \frac{\alpha_1}{\alpha_2}$. How can we assure that ω_{α} is not cscK? Recall that the scalar equation in (1) is equivalent to $S_{\omega_{\alpha}} - \alpha |F_{A_{\alpha}}|^2 = const.$ Since $(\omega_{\alpha}, A_{\alpha}) \to (\omega, A)$ uniformly as $\alpha \to 0$ it is enough to take A such that $|F_A|^2$ is not a

constant function on X. Take A near to the boundary of the moduli space (bubbling). Can we make this argument explicit? Locally yes.

Examples on \mathbb{C}^2

Consider $\mathbb{C}^2 \times SU(2)$, the trivial bundle over \mathbb{C}^2 .Let ω be the euclidean metric on \mathbb{C}^2 (Kähler) and consider the basic 1-instanton (in quaternionic notation $\mathbb{C}^2 \equiv \mathbb{H}$)

$$A = \operatorname{Im} \frac{\overline{x} dx}{1+|x|^2} = \frac{1}{2} \cdot \frac{\overline{x} dx - d\overline{x}x}{1+|x|^2}$$

where $x = x_1 + x_2 \cdot \mathbf{i} + x_3 \cdot \mathbf{j} + x_4 \cdot \mathbf{k}$, with curvature
$$F_A = \frac{d\overline{x} \wedge dx}{(1+|x|^2)^2}.$$

Then $|F_A|^2 = \frac{24}{(1+|x|^2)^4}$.

Theorem

Let $k \in \mathbb{Z}$. For each $\alpha \in \mathbb{R}$ there exists a solution $(\omega_{\alpha}, A_{\alpha})$ of the coupled equations with coupling constant α and fixed topological invariant $k = \frac{1}{8\pi^2} \int_{\mathbb{C}^2} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$. The metric ω_{α} is an assymptotically euclidean Kähler metric and for each α there exists a *k*-instanton A'_{α} , such that A_{α} converges assymptotically to A' at infinity.

Examples on \mathbb{C}^2

Consider $\mathbb{C}^2 \times SU(2)$, the trivial bundle over \mathbb{C}^2 .Let ω be the euclidean metric on \mathbb{C}^2 (Kähler) and consider the basic 1-instanton (in quaternionic notation $\mathbb{C}^2 \equiv \mathbb{H}$)

$$A = \operatorname{Im} \frac{\overline{x} dx}{1 + |x|^2} = \frac{1}{2} \cdot \frac{\overline{x} dx - d\overline{x} x}{1 + |x|^2},$$

where $x = x_1 + x_2 \cdot \mathbf{i} + x_3 \cdot \mathbf{j} + x_4 \cdot \mathbf{k}$, with curvature

$$F_{\mathcal{A}} = rac{d\overline{x} \wedge dx}{(1+|x|^2)^2}.$$

Then $|F_A|^2 = \frac{24}{(1+|x|^2)^4}$.

Theorem

Let $k \in \mathbb{Z}$. For each $\alpha \in \mathbb{R}$ there exists a solution $(\omega_{\alpha}, A_{\alpha})$ of the coupled equations with coupling constant α and fixed topological invariant $k = \frac{1}{8\pi^2} \int_{\mathbb{C}^2} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$. The metric ω_{α} is an assymptotically euclidean Kähler metric and for each α there exists a *k*-instanton A'_{α} , such that A_{α} converges assymptotically to A' at infinity.
Examples on \mathbb{C}^2

Consider $\mathbb{C}^2 \times SU(2)$, the trivial bundle over \mathbb{C}^2 .Let ω be the euclidean metric on \mathbb{C}^2 (Kähler) and consider the basic 1-instanton (in quaternionic notation $\mathbb{C}^2 \equiv \mathbb{H}$)

$$A = \operatorname{Im} \frac{\overline{x} dx}{1 + |x|^2} = \frac{1}{2} \cdot \frac{\overline{x} dx - d\overline{x} x}{1 + |x|^2},$$

where $x = x_1 + x_2 \cdot \mathbf{i} + x_3 \cdot \mathbf{j} + x_4 \cdot \mathbf{k}$, with curvature

$$F_{\mathcal{A}} = rac{d\overline{x} \wedge dx}{(1+|x|^2)^2}.$$

Then $|F_A|^2 = \frac{24}{(1+|x|^2)^4}$.

Theorem

Let $k \in \mathbb{Z}$. For each $\alpha \in \mathbb{R}$ there exists a solution $(\omega_{\alpha}, A_{\alpha})$ of the coupled equations with coupling constant α and fixed topological invariant $k = \frac{1}{8\pi^2} \int_{\mathbb{C}^2} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$. The metric ω_{α} is an assymptotically euclidean Kähler metric and for each α there exists a *k*-instanton A'_{α} , such that A_{α} converges assymptotically to A' at infinity.

Examples on \mathbb{C}^2

Consider $\mathbb{C}^2 \times SU(2)$, the trivial bundle over \mathbb{C}^2 .Let ω be the euclidean metric on \mathbb{C}^2 (Kähler) and consider the basic 1-instanton (in quaternionic notation $\mathbb{C}^2 \equiv \mathbb{H}$)

$$A = \operatorname{Im} \frac{\overline{x} dx}{1 + |x|^2} = \frac{1}{2} \cdot \frac{\overline{x} dx - d\overline{x} x}{1 + |x|^2},$$

where $x = x_1 + x_2 \cdot \mathbf{i} + x_3 \cdot \mathbf{j} + x_4 \cdot \mathbf{k}$, with curvature

$$F_A = rac{d\overline{x} \wedge dx}{(1+|x|^2)^2}.$$

Then $|F_A|^2 = \frac{24}{(1+|x|^2)^4}$.

Theorem

Let $k \in \mathbb{Z}$. For each $\alpha \in \mathbb{R}$ there exists a solution $(\omega_{\alpha}, A_{\alpha})$ of the coupled equations with coupling constant α and fixed topological invariant $k = \frac{1}{8\pi^2} \int_{\mathbb{C}^2} \operatorname{tr} F_A \wedge F_A \in \mathbb{Z}$. The metric ω_{α} is an assymptotically euclidean Kähler metric and for each α there exists a *k*-instanton A'_{α} , such that A_{α} converges assymptotically to A' at infinity.

From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a structure of variety or separated scheme

semiestable pairs with 'fixed invariants':
projective variety + bundle
(projective scheme + coherent sheaf)

Can we use our coupled system (1) to give an adapted stability condition for (3)?

From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a structure of variety or separated scheme

 $(3) \left\{ \begin{array}{c} \text{semiestable pairs with 'fixed invariants':} \\ \text{projective variety + bundle} \\ \text{(projective scheme + coherent sheaf)} \end{array} \right\} / \sim$

Can we use our coupled system (1) to give an adapted stability condition for (3)?

From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a structure of variety or separated scheme

 $(3) \left\{ \begin{array}{c} \text{semiestable pairs with 'fixed invariants':} \\ \text{projective variety + bundle} \\ \text{(projective scheme + coherent sheaf)} \end{array} \right\} / \sim$

Can we use our coupled system (1) to give an adapted stability condition for (3)?

Strategy: the Kempf–Ness Theorem

 G^{c} = complexification of a compact Lie group G, V = representation of G^{c} , $X \subset \mathbb{P}(V)$, projective variety, G^{c} -invariant.

∃ a *G*-equivariant moment map μ : *X* → (Lie *G*)* ∃ **linearization** of the *G*^c-action, i.e. *L* = $\mathcal{O}_X(1)$ is a *G*^c-bundle over *X*.

The Kempf-Ness Theorem tell us that for every $x \in X$: $x \text{ is } GIT\text{-stable} \iff \exists g \in G^c \text{ such that } \mu(g \cdot x) = 0 \text{ and}$ $the G^c\text{-stabilizer of } x \text{ is finite.}$

The stability of a point can be checked (Hilbert–Mumford) computing, for any $\lambda \colon \mathbb{C}^* \to G^c$,

```
weight of the \mathbb{C}^* – action on L_{|x_0|} = \langle \mu(x_0), \zeta \rangle,
```

where $x_0 = \lim_{t\to 0} \lambda(t) \cdot x$ and ζ is the generator of $S^1 \subset \mathbb{C}^*$ -action on $L_{|x_0|}$. x is stable $\iff \langle \mu(x_0), \zeta \rangle > 0$ for any non-trivial λ .

LAC, MGF & OGP (ICMAT)

Strategy: the Kempf–Ness Theorem

 G^c = complexification of a compact Lie group G,

V = representation of G^c ,

 $X \subset \mathbb{P}(V)$, projective variety, G^c -invariant.

∃ a *G*-equivariant **moment map** μ : $X \to (\text{Lie } G)^*$ ∃ **linearization** of the *G*^c-action, i.e. $L = O_X(1)$ is a *G*^c-bundle over *X*.

The Kempf-Ness Theorem tell us that for every $x \in X$: $x \text{ is GIT-stable } \iff \exists g \in G^c \text{ such that } \mu(g \cdot x) = 0 \text{ and}$ $the G^c$ -stabilizer of x is finite.

The stability of a point can be checked (Hilbert–Mumford) computing, for any $\lambda\colon \mathbb{C}^* \to G^c$,

weight of the \mathbb{C}^* – action on $L_{|x_0|} = \langle \mu(x_0), \zeta \rangle$,

where $x_0 = \lim_{t\to 0} \lambda(t) \cdot x$ and ζ is the generator of $S^1 \subset \mathbb{C}^*$ -action on $L_{|x_0|}$. x is stable $\iff \langle \mu(x_0), \zeta \rangle > 0$ for any non-trivial λ .

LAC, MGF & OGP (ICMAT)

Strategy: the Kempf–Ness Theorem

 G^c = complexification of a compact Lie group G,

V = representation of G^c ,

 $X \subset \mathbb{P}(V)$, projective variety, G^c -invariant.

∃ a *G*-equivariant **moment map** μ : $X \to (\text{Lie } G)^*$ ∃ **linearization** of the *G*^c-action, i.e. $L = \mathcal{O}_X(1)$ is a *G*^c-bundle over *X*.

The Kempf-Ness Theorem tell us that for every $x \in X$: $x \text{ is GIT-stable} \iff \begin{array}{c} \exists g \in G^c \text{ such that } \mu(g \cdot x) = 0 \text{ and} \\ the G^c \text{ -stabilizer of } x \text{ is finite.} \end{array}$

The stability of a point can be checked (Hilbert–Mumford) computing, for any $\lambda\colon \mathbb{C}^* o G^c$,

weight of the \mathbb{C}^* – action on $L_{|x_0} = \langle \mu(x_0), \zeta \rangle$,

where $x_0 = \lim_{t \to 0} \lambda(t) \cdot x$ and ζ is the generator of $S^1 \subset \mathbb{C}^*$ -action on $\mathcal{L}_{|x_0|}$. x is stable $\iff \langle \mu(x_0), \zeta \rangle > 0$ for any non-trivial λ .

LAC, MGF & OGP (ICMAT)

Strategy: the Kempf-Ness Theorem

 G^c = complexification of a compact Lie group G,

V = representation of G^c ,

 $X \subset \mathbb{P}(V)$, projective variety, G^c -invariant.

∃ a *G*-equivariant **moment map** μ : $X \to (\text{Lie } G)^*$ ∃ **linearization** of the *G*^c-action, i.e. $L = \mathcal{O}_X(1)$ is a *G*^c-bundle over *X*.

The Kempf-Ness Theorem tell us that for every $x \in X$: $x \text{ is GIT-stable} \iff \begin{array}{c} \exists g \in G^c \text{ such that } \mu(g \cdot x) = 0 \text{ and} \\ the G^c \text{ -stabilizer of } x \text{ is finite.} \end{array}$

The stability of a point can be checked (Hilbert–Mumford) computing, for any $\lambda : \mathbb{C}^* \to G^c$,

weight of the \mathbb{C}^* – action on $L_{|x_0|} = \langle \mu(x_0), \zeta \rangle$,

where $x_0 = \lim_{t\to 0} \lambda(t) \cdot x$ and ζ is the generator of $S^1 \subset \mathbb{C}^*$ -action on $L_{|x_0}$. x is stable $\iff \langle \mu(x_0), \zeta \rangle > 0$ for any non-trivial λ .

LAC, MGF & OGP (ICMAT)

Strategy: the Kempf-Ness Theorem

 G^c = complexification of a compact Lie group G,

V = representation of G^c ,

 $X \subset \mathbb{P}(V)$, projective variety, G^c -invariant.

∃ a *G*-equivariant **moment map** μ : $X \to (\text{Lie } G)^*$ ∃ **linearization** of the *G*^c-action, i.e. $L = O_X(1)$ is a *G*^c-bundle over *X*.

The Kempf-Ness Theorem tell us that for every $x \in X$: $x \text{ is GIT-stable } \iff \begin{array}{c} \exists g \in G^c \text{ such that } \mu(g \cdot x) = 0 \text{ and} \\ the G^c \text{ -stabilizer of } x \text{ is finite.} \end{array}$

The stability of a point can be checked (Hilbert–Mumford) computing, for any $\lambda \colon \mathbb{C}^* \to G^c$,

weight of the \mathbb{C}^* – action on $L_{|x_0|} = \langle \mu(x_0), \zeta \rangle$,

where $x_0 = \lim_{t\to 0} \lambda(t) \cdot x$ and ζ is the generator of $S^1 \subset \mathbb{C}^*$ -action on $L_{|x_0}$. x is stable $\iff \langle \mu(x_0), \zeta \rangle > 0$ for any non-trivial λ .

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^c.$

Idea: consider finite dimensional 'approximations' of $\hat{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P , $P(k) = \chi(X, L^k)$. There exists a proper scheme

 $\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t)\to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

To apply the previous picture we have a problem : there exists no $\widetilde{\mathcal{G}}^c$.

Idea: consider finite dimensional 'approximations' of $\widetilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P, $P(k) = \chi(X, L^k)$. There exists a proper scheme

 $\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t)\to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

To apply the previous picture we have a problem : there exists no $\tilde{\mathcal{G}}^c$. Idea: consider finite dimensional 'approximations' of $\tilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P , $P(k) = \chi(X, L^k)$. There exists a proper scheme

 $\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t)\to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

To apply the previous picture we have a problem : there exists no $\tilde{\mathcal{G}}^c$. Idea: consider finite dimensional 'approximations' of $\tilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P, $P(k) = \chi(X, L^k)$. There exists a proper scheme

 $\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t)\to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{lpha} .

To apply the previous picture we have a problem : there exists no $\tilde{\mathcal{G}}^c$. Idea: consider finite dimensional 'approximations' of $\tilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P , $P(k) = \chi(X, L^k)$. There exists a proper scheme

 $\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t) \to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

To apply the previous picture we have a problem : there exists no $\tilde{\mathcal{G}}^c$. Idea: consider finite dimensional 'approximations' of $\tilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P , $P(k) = \chi(X, L^k)$. There exists a proper scheme

 $\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \frown Quot^{P_E}$ and for any $\lambda : \mathbb{C}^* \to G_k$ $c_0 = \lim_{k \to \infty} \lambda(t) \cdot [(X, E)] \in \text{Quot}^{P_E}$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

To apply the previous picture we have a problem : there exists no $\tilde{\mathcal{G}}^c$. Idea: consider finite dimensional 'approximations' of $\tilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P , $P(k) = \chi(X, L^k)$. There exists a proper scheme

$$\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t)\to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

To apply the previous picture we have a problem : there exists no $\tilde{\mathcal{G}}^c$. Idea: consider finite dimensional 'approximations' of $\tilde{\mathcal{G}}$, that can be always complexified (adapt Donaldson's arguments for the cscK problem to our problem).

Let (X, L) = smooth compact (complex) polarised manifold and E = vector bundle over X. Taking k >> 0, we can consider $X \subset \mathbb{P}(V_k)$, $V_k = H^0(X, L^k)^*$. Hence, X defines a point on Hilb^P , $P(k) = \chi(X, L^k)$. There exists a proper scheme

$$\operatorname{Quot}^{P_E} \to \operatorname{Hilb}^P$$

which parametrises sheaves over the corresponding point on Hilb, with Hilbert polynomial $P_E(k) = \chi(X, E \otimes L^k)$. Let $W_k = H^0(X, E \times L^k)$. The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$

$$\epsilon_0 = \lim_{\lambda(t)\to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure a weight F_{α} .

$\alpha\text{-K-stability}$ $\mathbb{C}^* \curvearrowright (X_0, L_0, E_0):$ $P_{L_0}(E_0) = \text{Hilbert polynomial of } E_0 \text{ with respect to } L_0,$ $w_{L_0}(E_0, k) = \text{weight of the induced } \mathbb{C}^*\text{-action on det } H^0(E_0 \otimes L^k)$ $\sum_{k=1}^{N} (E_0, k)$

 $F(E_0, L_0, k) = \frac{E(E_0, K)}{kP_{L_0}(E_0, k)}$ = $F_0(L_0, E_0) + k^{-1}F_1(L_0, E_0) + k^{-2}F_2(L_0, E_0) + O(k^{-3})$ with $F_i(L_0, E_0) \in \mathbb{Q}$.

 α -invariant of the \mathbb{C}^* -action on (X_0, L_0, E_0) :

 $F_{\alpha}(X_0, L_0, E_0) = F_1(L_0, \mathcal{O}_{X_0}) + \alpha \left(F_2(L_0, E_0) - F_2(L_0, \mathcal{O}_{X_0}) \right)$

Proposition [--, L. Álvarez Cónsul, O. García Prada]

If (X_0, L_0, E_0) is smooth then

 $F_{\alpha}(X_0, L_0, E_0) \sim \mu_{\alpha}(\zeta),$

with ζ is the generator of the induced $S^1 \subset \mathbb{C}^*$ -action on (X_0,L_0,E_0)

LAC, MGF & OGP (ICMAT)

$\begin{aligned} \alpha-\mathsf{K-stability} \\ \mathbb{C}^* & \curvearrowright (X_0, L_0, E_0): \\ P_{L_0}(E_0) &= \text{Hilbert polynomial of } E_0 \text{ with respect to } L_0, \\ w_{L_0}(E_0, k) &= \text{weight of the induced } \mathbb{C}^*\text{-action on det } H^0(E_0 \otimes L^k) \\ F(E_0, L_0, k) &= \frac{w_L(E_0, k)}{kP_{L_0}(E_0, k)} \\ &= F_0(L_0, E_0) + k^{-1}F_1(L_0, E_0) + k^{-2}F_2(L_0, E_0) + O(k^{-3}) \text{ with } \\ F_i(L_0, E_0) \in \mathbb{Q}. \end{aligned}$

 α -invariant of the \mathbb{C}^* -action on (X_0, L_0, E_0) :

 $F_{\alpha}(X_0, L_0, E_0) = F_1(L_0, \mathcal{O}_{X_0}) + \alpha \left(F_2(L_0, E_0) - F_2(L_0, \mathcal{O}_{X_0}) \right)$

Proposition [--, L. Álvarez Cónsul, O. García Prada]

If (X_0, L_0, E_0) is smooth then

 $F_{\alpha}(X_0, L_0, E_0) \sim \mu_{\alpha}(\zeta),$

with ζ is the generator of the induced $S^1 \subset \mathbb{C}^*$ -action on (X_0, L_0, E_0)

$\alpha\text{-K-stability}$ $\mathbb{C}^* \curvearrowright (X_0, L_0, E_0):$ $P_{L_0}(E_0) = \text{Hilbert polynomial of } E_0 \text{ with respect to } L_0,$ $w_{L_0}(E_0, k) = \text{weight of the induced } \mathbb{C}^*\text{-action on det } H^0(E_0 \otimes L^k)$ $F(E_0, L_0, k) = \frac{w_L(E_0, k)}{kP_{L_0}(E_0, k)}$

 $= F_0(L_0, K_0) + k^{-1}F_1(L_0, E_0) + k^{-2}F_2(L_0, E_0) + O(k^{-3})$ with $F_i(L_0, E_0) \in \mathbb{Q}$.

 α -invariant of the \mathbb{C}^* -action on (X_0, L_0, E_0) :

 $F_{\alpha}(X_{0}, L_{0}, E_{0}) = F_{1}(L_{0}, \mathcal{O}_{X_{0}}) + \alpha \left(F_{2}(L_{0}, E_{0}) - F_{2}(L_{0}, \mathcal{O}_{X_{0}})\right)$

Proposition [--, L. Álvarez Cónsul, O. García Prada]

If (X_0, L_0, E_0) is smooth then

 $F_{\alpha}(X_0, L_0, E_0) \sim \mu_{\alpha}(\zeta),$

with ζ is the generator of the induced $S^1 \subset \mathbb{C}^*$ -action on (X_0,L_0,E_0)

$\alpha\text{-K-stability}$ $\mathbb{C}^* \curvearrowright (X_0, L_0, E_0):$ $P_{L_0}(E_0) = \text{Hilbert polynomial of } E_0 \text{ with respect to } L_0,$ $w_{L_0}(E_0, k) = \text{weight of the induced } \mathbb{C}^*\text{-action on det } H^0(E_0 \otimes L^k)$ $F(E_0, L_0, k) = \frac{w_L(E_0, k)}{kP_{L_0}(E_0, k)}$

 $= F_0(L_0, E_0) + k^{-1}F_1(L_0, E_0) + k^{-2}F_2(L_0, E_0) + O(k^{-3})$ with $F_i(L_0, E_0) \in \mathbb{Q}$.

 α -invariant of the \mathbb{C}^* -action on (X_0, L_0, E_0) :

 $F_{\alpha}(X_{0}, L_{0}, E_{0}) = F_{1}(L_{0}, \mathcal{O}_{X_{0}}) + \alpha \left(F_{2}(L_{0}, E_{0}) - F_{2}(L_{0}, \mathcal{O}_{X_{0}})\right)$

Proposition [--, L. Álvarez Cónsul, O. García Prada]

If (X_0, L_0, E_0) is smooth then

 $F_{\alpha}(X_0, L_0, E_0) \sim \mu_{\alpha}(\zeta),$

with ζ is the generator of the induced $S^1 \subset \mathbb{C}^*$ -action on (X_0, L_0, E_0) .

Recall: The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$ $\epsilon_0 = \lim_{\lambda(t) \to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure the number $F_{\alpha}(X_0, L_0, E_0)$.

Conjecture [--, L. Álvarez Cónsul, O. García Prada]

If there exists a solution (ω, A) to the coupled equations (1) with $\omega \in c_1(L)$ and positive coupling constants α_0 and α_1 , then

 $F_{\alpha}(X_0,L_0,E_0)\geq 0,$

for any $\lambda \colon \mathbb{C}^* \to G_k$ and any k > 0, where $\alpha = \frac{r\pi^2 \alpha_1 k}{\alpha_0}$.

Recall: The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$ $\epsilon_0 = \lim_{\lambda(t) \to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure the number $F_{\alpha}(X_0, L_0, E_0)$.

Conjecture [---, L. Álvarez Cónsul, O. García Prada]

If there exists a solution (ω, A) to the coupled equations (1) with $\omega \in c_1(L)$ and positive coupling constants α_0 and α_1 , then

 $F_{\alpha}(X_0,L_0,E_0)\geq 0,$

for any $\lambda \colon \mathbb{C}^* \to G_k$ and any k > 0, where $\alpha = \frac{r\pi^2 \alpha_1 k}{\alpha_0}$.

Recall: The group $G_k = GL(V_k) \times GL(W_k) \curvearrowright \operatorname{Quot}^{P_E}$ and for any $\lambda \colon \mathbb{C}^* \to G_k$ $\epsilon_0 = \lim_{\lambda(t) \to 0} \lambda(t) \cdot [(X, E)] \in \operatorname{Quot}^{P_E}$

We take (X_0, L_0, E_0) representing ϵ_0 , endowed with a natural \mathbb{C}^* -action and measure the number $F_{\alpha}(X_0, L_0, E_0)$.

Conjecture [--, L. Álvarez Cónsul, O. García Prada]

If there exists a solution (ω, A) to the coupled equations (1) with $\omega \in c_1(L)$ and positive coupling constants α_0 and α_1 , then

$$F_{\alpha}(X_0,L_0,E_0)\geq 0,$$

for any $\lambda \colon \mathbb{C}^* \to G_k$ and any k > 0, where $\alpha = \frac{r\pi^2 \alpha_1 k}{\alpha_0}$.