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A moduli problem

X Kahlerian smooth manifold,

G compact Lie group,

g Lie algebra of G,

E smooth principal G-bundle over X.
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A moduli problem

X Kahlerian smooth manifold,

G compact Lie group,
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E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kahler
structure

(1){ pairs (g, A) satisfying suitable PDE }/N

A connection on E, g Kahler metric on X.
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g Lie algebra of G,

E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kahler
structure

(1){ pairs (g, A) satisfying suitable PDE }/N
A connection on E, g Kahler metric on X.

Problem 1 of this talk: Find a well suited PDE for (1)
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A moduli problem

X Kahlerian smooth manifold,

G compact Lie group,

g Lie algebra of G,

E smooth principal G-bundle over X.

A moduli problem: Construct a moduli space with a Kahler
structure

(1){ pairs (g, A) satisfying suitable PDE }/N

A connection on E, g Kahler metric on X.
Problem 1 of this talk: Find a well suited PDE for (1)

Relation with physics: interaction between gauge fields and gravity.
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Strategy

e Look for a PDE with symplectic interpretation: its solutions are
points in the symplectic reduction

121(0)/G

of a suitable space P O s, 1(0) parameterizing Kihler structures on X and
holomorphic structures on a bundle associated to the G-bundle E.
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Strategy

e Look for a PDE with symplectic interpretation: its solutions are
points in the symplectic reduction

1a'(0)/G

of a suitable space P O s, 1(0) parameterizing Kihler structures on X and
holomorphic structures on a bundle associated to the G-bundle E.

e We rely on the symplectic interpretation of two fundamental
equations in Kahler geometry:

1) the Hermite—Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kahler metric (cscK).

Once we have our nice PDE ...
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Strategy

e Look for a PDE with symplectic interpretation: its solutions are
points in the symplectic reduction

-1 =
ta (0)/G
of a suitable space P O s, 1(0) parameterizing Kihler structures on X and

holomorphic structures on a bundle associated to the G-bundle E.

e We rely on the symplectic interpretation of two fundamental
equations in Kahler geometry:

1) the Hermite—Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kahler metric (cscK).

Once we have our nice PDE ...

Problem 2 of this talk: Use the symplectic interpretation for
finding:
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Strategy

e Look for a PDE with symplectic interpretation: its solutions are
points in the symplectic reduction

pa'(0)/G
of a suitable space P O s, 1(0) parameterizing Kihler structures on X and

holomorphic structures on a bundle associated to the G-bundle E.

e We rely on the symplectic interpretation of two fundamental
equations in Kahler geometry:

1) the Hermite—Yang-Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kahler metric (cscK).

Once we have our nice PDE ...

Problem 2 of this talk: Use the symplectic interpretation for
finding: families of examples and obstructions to the existence of
solutions.
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Moment maps
(X,w) = symplectic manifold,

G = Lie group with Lie algebra g,
G x X — X, left G-action preserving w.
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Moment maps

(X,w) = symplectic manifold,
G = Lie group with Lie algebra g,
G x X — X, left G-action preserving w.

Suppose that 9 a G-equivariant moment map i.e. 3 ;1: X — g* such that

d{p, () =w(Ye,-) and  p(g-x) = Ad(g) - u(x),

for all g € G and ( € g, where Y, = %r:o exp(tC) - x € T, X.
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Moment maps

(X,w) = symplectic manifold,
G = Lie group with Lie algebra g,
G x X — X, left G-action preserving w.
Suppose that 9 a G-equivariant moment map i.e. 3 ;1: X — g* such that
d{p, () =w(Ye,-) and  p(g-x) = Ad(g) - u(x),

for all g € G and ( € g, where Y, = %t:O exp(tC) - x € T, X.
Symplectic quotient (Marsden & Weinstein '74): If we have a “good”

action then ;2~%(0)/G inherits a natural symplectic structure.
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Moment maps

(X,w) = symplectic manifold,
G = Lie group with Lie algebra g,
G x X — X, left G-action preserving w.
Suppose that 9 a G-equivariant moment map i.e. 3 ;1: X — g* such that
d<,u7 C) = w(Yﬁv ) and ,u(g ' X) = Ad(g)_l : M(X)>
for all g € G and ( € g, where Y, = %t:O exp(tC) - x € T, X.

Symplectic quotient (Marsden & Weinstein '74): If we have a “good”
action then ;2~%(0)/G inherits a natural symplectic structure.

Kahler quotient (Guillemin & Stenberg '82): If (X, J,w) is K&hler and
we have a “good” action of G ~ (X, w, J) then 11~1(0)/G inherits a
natural Kahler structure.
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Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.

LAC, MGF & OGP (ICMAT) Kahler & Yang-Mills Bath (27 Nov 2009) 5 /20



Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.
E G-bundle over X, A connection on E, F4 curvature of A

LAC, MGF & OGP (ICMAT) Kahler & Yang—Mills Bath (27 Nov 2009) 5/ 20



Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.

E G-bundle over X, A connection on E, F4 curvature of A

A = {connections A on E}
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J complex structure and g metric.
E G-bundle over X, A connection on E, F4 curvature of A
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G = {automorphisms g: E — E covering the identity on X} ~ A.
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Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.

E G-bundle over X, A connection on E, F4 curvature of A

A = {connections A on E}

G = {automorphisms g: E — E covering the identity on X} ~ A.
The infinite-dimensional manifold A has a Kahler structure (w4, [4,84)
preserved by G.

wa(ao,a1) = / (a0 Aa1) Aw™ L, [qa0 = —ap(J-) with a; € Q' (adE).
X
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Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.

E G-bundle over X, A connection on E, F4 curvature of A

A = {connections A on E}

G = {automorphisms g: E — E covering the identity on X} ~ A.

The infinite-dimensional manifold A has a Kahler structure (w4, [4,84)
preserved by G.

wa(ao,a1) = / (a0 Aa1) Aw™ L, [qa0 = —ap(J-) with a; € Q' (adE).
X
Moment map(Atiyah—-Bott ('83) & Donaldson): j4: A — (LieG)*

(na(A),¢) = /X(Q AFA) Aw™ ¢ €adE = LieG.
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Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.

E G-bundle over X, A connection on E, F4 curvature of A

A = {connections A on E}

G = {automorphisms g: E — E covering the identity on X} ~ A.

The infinite-dimensional manifold A has a Kahler structure (w4, [4,84)
preserved by G.

wa(ao,a1) = / (a0 Aa1) Aw™ L, [qa0 = —ap(J-) with a; € Q' (adE).
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Example 1: The Hermite—Yang—Mills equations

(X,w, J, g) smooth compact Kahler manifold: w symplectic structure,
J complex structure and g metric.

E G-bundle over X, A connection on E, F4 curvature of A

A = {connections A on E}

G = {automorphisms g: E — E covering the identity on X} ~ A.

The infinite-dimensional manifold A has a Kahler structure (w4, [4,84)
preserved by G.

wa(ao,a1) = / (a0 Aa1) Aw™ L, [qa0 = —ap(J-) with a; € Q' (adE).
X

Moment map(Atiyah—-Bott ('83) & Donaldson): j4: A — (LieG)*
(na(A),¢) = / ((AFa)Aw™ ! ( €adE = LieG.
X

G AV ={Ac A: Fg,z = 0} = holomorphic struct. on E€ = E x5 G°

HYM equations:
NFa=2z, F3?=0, z¢&j/centreof g).
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Example 2: The constant scalar curvature equation

(X,w) smooth compact symplectic manifold of Kahler type.
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Example 2: The constant scalar curvature equation

(X,w) smooth compact symplectic manifold of Kahler type.
J={complex structures on X compatible with w}
‘H={ Hamiltonian symplectomorphisms of (X,w)} ~ J
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Example 2: The constant scalar curvature equation

(X,w) smooth compact symplectic manifold of Kahler type.
J={complex structures on X compatible with w}
H={ Hamiltonian symplectomorphisms of (X,w)} ~ J
The infinite-dimensional (singular) manifold 7 has a Kahler structure
(wr,17,87) preserved by H. Given b; € T,J C Q%(End TX),

n

w
WJ|J(b0, bl) = /Xtr(J . bo . bl)ﬁ’ /jbo = Jbo.
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Example 2: The constant scalar curvature equation

(X,w) smooth compact symplectic manifold of Kahler type.
J={complex structures on X compatible with w}
H={ Hamiltonian symplectomorphisms of (X,w)} ~ J

The infinite-dimensional (singular) manifold 7 has a Kahler structure
(wr,17,87) preserved by H. Given b; € T,J C Q%(End TX),

n

w
WJ|J(b0, bl) = / tr(J - bg - bl)ﬁ’ I.7bg = Jbg.

Moment map (Fujiki(1992)-Donaldson(1997)): ,uj J — (LieH)*

(s /¢@— e

¢ € C(X)/R = LieH Szl/ SE
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Example 2: The constant scalar curvature equation

(X,w) smooth compact symplectic manifold of Kahler type.
J={complex structures on X compatible with w}
H={ Hamiltonian symplectomorphisms of (X,w)} ~ J
The infinite-dimensional (singular) manifold 7 has a Kahler structure
(wr,17,87) preserved by H. Given b; € T,J C Q%(End TX),

n

w
WJ|J(b0, bl) = / tr(J - bg - bl)ﬁ’ I.7bg = Jbg.

Moment map (Fujiki(1992)-Donaldson(1997)): ,uj J — (LieH)*

(s /¢@— e

oo ~ : fa 1 wn

CscK equation: S,=38, JeJ. J
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.
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Phase space: J x A.
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.
Group of symmetries: 1 — G — G/—> H — 1, with ém J x A.
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.
Phase space: J x A.
Group of symmetries: 1 — G — G/—> H — 1, with ém J x A.
4o

Symplectic structure: w, = apws + Fi)!wA' 0 # ap,a1 € R.
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.
Phase space: J x A.
Group of symmetries: 1 — G — 5—> H — 1, with ém J x A.
4o

Symplectic structure: w, = apws + Fi)!wfh 0 # ap,a1 € R.

Remarks:

LAC, MGF & OGP (ICMAT) Kahler & Yang—Mills Bath (27 Nov 2009)

7/20



Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.
Phase space: J x A.
Group of symmetries: 1 — G — §—> H — 1, with ém J x A.
Symplectic structure: w, = apws + %wfl, 0 # ap,a1 € R.

.
Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,
given by I(J,A)(bv a) = (Jb7 _a(J))
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Coupled equations for Kahler metrics and connections

(X,w), G, E, J and A as before.
Phase space: J x A.
Group of symmetries: 1 — G — §—> H — 1, with ém J x A.
Symplectic structure: w, = apws + %wfl, 0 # ap,a1 € R.

Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,
given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.

Group of symmetries: 1 — G — §—> H — 1, with ém J x A.

Symplectic structure: w, = apws + %wfl, 0 # ap,a1 € R.
Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,

given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G?
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.

Group of symmetries: 1 — G — G — H — 1, with G ~ T x A.

Symplectic structure: w, = apws + ( ) rwAa, 0# ag,a1 € R.
Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,

given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G? Geometry: It preserves |, w, and the complex submanifold

P={(J,A) e T x A: Ac A"}
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.

Group of symmetries: 1 — G — G—H—1 withG~ J x A

Symplectic structure: w, = apws + %wfl, 0 # ap,a1 € R.
Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,

given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G? Geometry: It preserves |, w, and the complex submanifold
P ={(J,A) € J x A: Ac A '}= Kihler structure on X with fixed
w + holomorphic structure on E€ over X.
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.
Group of symmetries: 1 — G — §—> H — 1, with gm J x A.
Symplectic structure: w, = apws + ( ) rwAa, 0# ag,a1 € R.

Remarks:
e 7 x A has an integrable complex structure that fibers over (7, /7) ,
given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!
e Why G? Geometry: It preserves |, w, and the complex submanifold
P={UJA)eTxA Ac Aﬂ’l}z Kahler structure on X with fixed
w + holomorphic structure on E€ over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge
field) = Diff(E)°.
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.

Group of symmetries: 1 — G — §—> H — 1, with g~m J x A.

Symplectic structure: w, = apws + ( ) rwAa, 0# ag,a1 € R.
Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,

given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G? Geometry: It preserves |, w, and the complex submanifold
P={UJA)eTxA Ac Aﬁ’l}z Kahler structure on X with fixed
w + holomorphic structure on E€ over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge
field) = Diff(E)°. GC Diff(E)® “biggest” subgroup preserving w,
and I.
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.
Group of symmetries: 1 — G — §—> H — 1, with g~m J x A.
Symplectic structure: w, = apws + ( ) rwAa, 0# ag,a1 € R.

Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,
given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G? Geometry: It preserves |, w, and the complex submanifold
P={UJA)eTxA Ac Aﬁ’l}z Kahler structure on X with fixed
w + holomorphic structure on E€ over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge
field) = Diff(E)°. G ¢ Diff(E)® “biggest” subgroup preserving w,
and I.

e Why w,?
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.

Group of symmetries: 1 — G — §—> H — 1, with g~m J x A.

Symplectic structure: w, = apws + ( ) rwAa, 0# ag,a1 € R.
Remarks:

e 7 x A has an integrable complex structure that fibers over (7, /7) ,

given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G? Geometry: It preserves |, w, and the complex submanifold
P={UJA)eTxA Ac Aﬁ’l}z Kahler structure on X with fixed
w + holomorphic structure on E€ over X.

Physics: Natural group of symmetries for (J, A) (grav. field + gauge
field) = Diff(E)°. GC Diff(E)® “biggest” subgroup preserving w,
and I.

e Why w,? For simplicity (following cscK & HYM).
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Coupled equations for Kahler metrics and connections
(X,w), G, E, J and A as before.

Phase space: J x A.
Group of symmetries: 1 — G — §—> H — 1, with g~m J x A.
Symplectic structure: w, = apws + ( ) rwAa, 0# ag,a1 € R.

Remarks:
e 7 x A has an integrable complex structure that fibers over (7, /7) ,
given by I 4)(b, a) = (Jb, —a(J-)) and w,, is Kahler if 51 > 0O!!!

e Why G? Geometry: It preserves |, w, and the complex submanifold
P={UJA)eTxA Ac Aﬁ’l}z Kahler structure on X with fixed
w + holomorphic structure on E€ over X.
Physics: Natural group of symmetries for (J, A) (grav. field + gauge
field) = Diff(E)°. G ¢ Diff(E)® “biggest” subgroup preserving w,
and I.
e Why w,? For simplicity (following cscK & HYM).

Problem 1: We find a solution if G ~ 7 x A is Hamiltonian.
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Lie group extensions and Hamiltonian actions
Question: Is G ~ (J x A,w,) Hamiltonian?
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Lie group extensions and Hamiltonian actions
Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 — G — G — H — 1 and the G-action is symplectic.
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Lie group extensions and Hamiltonian actions
Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 — G — G — H — 1 and the G-action is symplectic.

It is enough to prove that G ~ A is Hamiltonian.
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Lie group extensions and Hamiltonian actions
Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 — G — G — H — 1 and the G-action is symplectic.

It is enough to prove that G ~ A is Hamiltonian.

General fact for extensions: If G ~ A is Hamiltonian and W # (),
W= Qv—equivariant smooth maps 0: A — W where

W C Hom(Lie &, Lie G) affine space of vector space splittings of
0 — LieG — LieG — LieH — 0.
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Lie group extensions and Hamiltonian actions
Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 — G — G — H — 1 and the G-action is symplectic.
It is enough to prove that G ~ A is Hamiltonian.
General fact for extensions: If G ~ A is Hamiltonian and W # (),
W= Qv—equivariant smooth maps 0: A — W where
W C Hom(Lie 5, Lie G) affine space~of vector space splittings of
0 — LieG — LieG — LieH — 0.
then, G ~ A is Hamiltonian < 3 a G-equivariant map oy: A — (Lie H)*
wA(YgLe: ) = (ug, (d0)d) + d(og, ¢), for all ¢ € Lie™H,
where 6+ = 1d —6: LieH — LieG and Y14 is the inf. action on A.
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Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 - g — § — H — 1 and the g—action is symplectic.

It is enough to prove that G ~ A is Hamiltonian.

General fact for extensions: If G ~ A is Hamiltonian and W # (),
W= g—equivariant smooth maps 0: A — W where

W C Hom(Lie Qv, Lie G) affine space of vector space splittings of
0 — LieG — LieG — LieH — 0.
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wA(Ygis:) = (g, (d6)8) + d(og, @), for all ¢ € LieH,
where 0+ = Id —0: LieH — LieG and Yp14 is the inf. action on A.

Example: If A= {-}, W # 0 = LieG = LieG x Lie H. but ...
In our case: the vertical projection 04: TE — VE defined by any
connection A € A defines an element #: A — W in W.
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Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 - g — § — H — 1 and the g—action is symplectic.

It is enough to prove that G ~ A is Hamiltonian.
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wA(Ygis:) = (g, (d6)8) + d(og, @), for all ¢ € LieH,
where 0+ = Id —0: LieH — LieG and Yp14 is the inf. action on A.

Example: If A= {-}, W # 0 = LieG = LieG x Lie H. but ...
In our case: the vertical projection 04: TE — VE defined by any
connection A € A defines an element 6: A — W in V. Finally,
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Lie group extensions and Hamiltonian actions
Question: Is G ~ (J x A,w,) Hamiltonian?
Recall: 1 - g — § — H — 1 and the g—action is symplectic.

It is enough to prove that G ~ A is Hamiltonian.

General fact for extensions: If G ~ A is Hamiltonian and W # (),
W= g—equivariant smooth maps 0: A — W where

W C Hom(Lie Qv, Lie G) affine space of vector space splittings of
0 — LieG — LieG — LieH — 0.

then, G ~ A is Hamiltonian < 3 a G-equivariant map oy: A — (Lie H)*
wA(YgLe: ) = (ug, (d0)d) + d(og, ¢), for all ¢ € Lie™H,
where 6+ = 1d —6: LieH — LieG and Yp1, is the inf. action on A.

Example: If A={-}, W+# 0 = LieG =~ LieG x Lie H. but ...

In our case: the vertical projection 04: TE — VE defined by any

connection Ac A defines an element 0: A — W in W. FinaIIy,
<09 ——fX /\2 FA/\FA)—C) w’
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Coupled equations for Kahler metrics and connections
This proves that ...
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Coupled equations for Kahler metrics and connections
This proves that ...

Proposition [—, L. Alvarez Cénsul, O. Garcia Prada]

For any ag and oy there exists a g -equivariant moment map fi,: J x A — Lie Q*
for the G-action. If ¢ € Lie G, covering ¢ € C>°(X)/R = Lie M then,

(ta(J,A), ) = _/ (6(0Ss + arNZ(Fa A Fa) = €) = 401 (04C, A Fa)) - w_r
% n!
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For any ag and oy there exists a g -equivariant moment map fi,: J x A — Lie Q*
for the G-action. If ¢ € Lie G, covering ¢ € C>°(X)/R = Lie M then,
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</~LO¢(J,A), C> = —/X (¢(a05J + OélAi(FA A\ FA) — C) — 4041(9A<7AwFA)) . %

The G-action preserves the complex submanifold P = {(J, A) € J x A:
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Coupled equations for Kahler metrics and connections
This proves that ...

Proposition [—, L. Alvarez Cénsul, O. Garcia Prada]

For any ag and oy there exists a g -equivariant moment map fi,: J x A — Lie Q*
for the G-action. If ¢ € Lie G, covering ¢ € C>°(X)/R = Lie M then,

n
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The G- actlon preserves the complex submanifold P = {(J,A) € J x A:
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Coupled equations for Kahler metrics and connections
This proves that ...

Proposition

For any ag and oy there exists a g -equivariant moment map fi,: J x A — Lie Q*
for the G-action. If ¢ € Lie G, covering ¢ € C>°(X)/R = Lie M then,

n

(1o (45 A), ) = —/X (#(a0Ss + 1N (Fa A Fa) — ) — 4a1(0aC, Ao Fa)) - %

The G- actlon preserves the complex submanifold P = {(J,A) € J x A:
Ac AJ }. = po P — Lie G* and the conditions

Ma(JaA):Oa (J>A)€7D

defines (completely!) coupled equations for (w, J, g, A) that can be
written as follows (after a suitable shift by z € 3, the center of g):
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Coupled equations for Kahler metrics and connections
This proves that ...

Proposition

For any ag and oy there exists a g -equivariant moment map fi,: J x A — Lie g*
for the G-action. If ¢ € Lie G, covering ¢ € C>°(X)/R = Lie M then,

n

(1o (45 A), ) = —/X (#(a0Ss + 1N (Fa A Fa) — ) — 4a1(0aC, Ao Fa)) - %

The G- actlon preserves the complex submanifold P = {(J,A) € J x A:
Ac A } =l : P — Lie G* and the conditions

Ma(JaA):Oa (J>A)€73

defines (completely!) coupled equations for (w, J, g, A) that can be
written as follows (after a suitable shift by z € 3, the center of g):

Definition: AoFp = z,
Fa =0, (1)
@Sy + ca1N3(Fa A Fa) = c.
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HYM: 1. Construction of moduli spaces with Kihler structure =
= Donaldson’s invariants for smooth 4-manifolds (1990).
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= Donaldson’s invariants for smooth 4-manifolds (1990).

2. Special solutions of the Yang—Mills equation: critical points of
the Yang-Mills functional A — ||Fa|?> (physicists interested).
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Kahler geometry.
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2. Moduli problem for projective varieties:
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HYM: 1. Construction of moduli spaces with Kihler structure =
= Donaldson’s invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang—-Mills equation: critical points of
the Yang-Mills functional A — ||Fa||? (physicists interested). The
Hitchin—Kobayashi correspondence (Donaldson and Uhlenbeck—Yau)
relating the existence of solutions to the HYM equation with the Mumford
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Kahler geometry.Three natural notions (that can be seen as uniformizers
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Kahler—Einstein metrics = cscK metrics = extremal metrics =
= critical points of the Calabi Functional g — fX Sg%volg, for Kahler
metrics g in a fixed Kahler class. CscK metrics = absolute minimizers.

2. Moduli problem for projective varieties:Yau-Tian-Donaldson'’s
conjecture relating existence of cscK metrics on a compact complex
manifold with the stability of the manifold
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Why HYM and cscK?

HYM: 1. Construction of moduli spaces with Kihler structure =
= Donaldson’s invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang—-Mills equation: critical points of
the Yang-Mills functional A — ||Fa||? (physicists interested). The
Hitchin—Kobayashi correspondence (Donaldson and Uhlenbeck—Yau)
relating the existence of solutions to the HYM equation with the Mumford
stability of bundles = algebraic criterion for finding YM connections.
CscK: 1. Calabi’s problem (1954, 1982): Find preferred metrics in
Kahler geometry.Three natural notions (that can be seen as uniformizers
of the complex structure):

Kahler—Einstein metrics = cscK metrics = extremal metrics =
= critical points of the Calabi Functional g — fx 5§V01g, for Kahler
metrics g in a fixed Kahler class. CscK metrics = absolute minimizers.

2. Moduli problem for projective varieties:Yau-Tian-Donaldson'’s
conjecture relating existence of cscK metrics on a compact complex
manifold with the stability of the manifold = numerical approximation of
Kahler-Einstein metrics and Weyl-Petterson metrics on moduli spaces.
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CYI\/I(g,A):/(aoS —2a1|FA| ) —I— 201 - ||FA|| (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g.
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Given real constants ag and a1 € R consider the following functional.

CYM(g,A):/(OzoS —2a1|FA| ) —I— 201 - ||FA|| (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CYI\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.

Proposition [—, L. Alvarez Cénsul, O. Garcia Prada]

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

LAC, MGF & OGP (ICMAT) Kahler & Yang-Mills Bath (27 Nov 2009) 1 /20



Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CYI\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.

Proposition [—, L. Alvarez Cénsul, O. Garcia Prada]

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider g =g + t - gy(0a-,04-) on Tot(E), with
t =22 > 0.
ag
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CYI\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.
Proposition

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider g =g + t - gy(0a-,04-) on Tot(E), with
t= 20% > 0.Then (Tot(E), g) — (X, g) is a Riemannian submersion with
totally geodesic fibers
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CYI\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.
Proposition

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider g =g + t - gy(0a-,04-) on Tot(E), with
t= 20% > 0.Then (Tot(E), g) — (X, g) is a Riemannian submersion with
totally geodesic fibers and so o
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CY/\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.
Proposition

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider g =g + t - gy(0a-,04-) on Tot(E), with
t= 20% > 0.Then (Tot(E), g) — (X, g) is a Riemannian submersion with
totally geodesic fibers and so

Sg =Sz —

Therefore CYM = C + YM

LI
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CY/\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.
Proposition

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider g =g + t - gy(0a-,04-) on Tot(E), with
t= 20% > 0.Then (Tot(E), g) — (X, g) is a Riemannian submersion with
totally geodesic fibers and so 2a1

% = %~ ~IFa §
Therefore CYM = C + YM and if (X, J,w,g, A), with F3? =0, is a
solution to the coupled equations (1) then Sz = const.
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Variational interpretation of the coupled equations
Given real constants ag and a1 € R consider the following functional.

CY/\/I(g,A):/(aoS — 201 |Fal?)?- g + 207 - | Fall?, (2)
X

where g is a Riemannian metric on X, A is a connection on E and vol, is
the volume form of g. Note that 7 > J — g = w(-, J-), fixing w.
Proposition

The solutions to the coupled equations (1) on J x A are the absolute minimizers
of CYM: J x A — R (after suitable re-scaling of the coupling constants).

Given a pair (g, A), consider g =g + t - gy(0a-,04-) on Tot(E), with
t= 20% > 0.Then (Tot(E), g) — (X, g) is a Riemannian submersion with
totally geodesic fibers and so o

S = S5~ 2IFal’

Therefore CYM = C + YM and if (X, J,w,g, A), with F3? =0, is a
solution to the coupled equations (1) then Sz = const. Moreover, if A is
irreducible g Einstein = (1) = S; = const.
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First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.
Consider the equations for (w, A), with w € [w] and A € ALY,
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First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.
Consider the equations for (w, A), with w € [w] and A € AL

Trivial examples:
@ The system of equations (1) decouples when dimgc X = 1 since
(Fa A Fa) = 0. Solutions = stable holomorphic bundles over (X, J)

o If E =L, orif E es projectively flat, with ¢;(E) = A[w] then the
coupled equations admit decoupled solutions: cscK + HYM.
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Trivial examples:
@ The system of equations (1) decouples when dimgc X = 1 since
(Fa A Fa) = 0. Solutions = stable holomorphic bundles over (X, J)
o If E =1L, orif E es projectively flat, with c;(E) = A[w] then the
coupled equations admit decoupled solutions: cscK + HYM.

Rerpvark: In both cases 3 a solution to F4 = Aw, which implies
LieG = LieG x LieH.
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First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.

Consider the equations for (w, A), with w € [w] and A € AL
Trivial examples:

@ The system of equations (1) decouples when dimgc X = 1 since
(Fa A Fa) = 0. Solutions = stable holomorphic bundles over (X, J).
o If E =1L, orif E es projectively flat, with c;(E) = A[w] then the
coupled equations admit decoupled solutions: cscK + HYM.
Rerpvark: In both cases 3 a solution to F4 = Aw, which implies
LieG = LieG x Lie H.
Less trivial examples:

@ The coupled equations (1) have solutions on Homogenous
holomorphic bundles £¢ over homogeneous Kahler manifolds if the

bundle comes from an irreducible representation (= 3 HYM
connection).
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First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.

Consider the equations for (w, A), with w € [w] and A € AL
Trivial examples:

@ The system of equations (1) decouples when dimgc X = 1 since
(Fa A Fa) = 0. Solutions = stable holomorphic bundles over (X, J).
o If E =1L, orif E es projectively flat, with c;(E) = A[w] then the
coupled equations admit decoupled solutions: cscK + HYM.
Re@ark: In both cases 3 a solution to F4 = Aw, which implies
LieG = LieG x Lie H.
Less trivial examples:

@ The coupled equations (1) have solutions on Homogenous
holomorphic bundles £¢ over homogeneous Kahler manifolds if the
bundle comes from an irreducible representation (= 3 HYM
connection). Proof: invariant structures and representation theory.
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First examples of solutions

We fix a compact complex manifold (X, J) and a G-bundle over X.
Consider the equations for (w, A), with w € [w] and A € AL
Trivial examples:

@ The system of equations (1) decouples when dimg X = 1 since
(Fa A Fa) = 0. Solutions = stable holomorphic bundles over (X, J).

o If E =1L, orif E es projectively flat, with c;(E) = A[w] then the
coupled equations admit decoupled solutions: cscK + HYM.

Re@ark: In both cases 3 a solution to F4 = Aw, which implies
LieG = LieG x Lie H.
Less trivial examples:

@ The coupled equations (1) have solutions on Homogenous
holomorphic bundles £¢ over homogeneous Kahler manifolds if the
bundle comes from an irreducible representation (= 3 HYM
connection). Proof: invariant structures and representation theory.

@ Solutions are given by simultaneous solutions for the cases
a1 =0,a0 #0and ag = 0,1 # 0.
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An existence criterion
In the previous examples the Kahler metric on (X, J) is always cscK.
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An existence criterion

In the previous examples the Kahler metric on (X, J) is always cscK. Are
there any examples of solutions (w, A) with w non cscK?
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An existence criterion

In the previous examples the Kahler metric on (X, J) is always cscK. Are
there any examples of solutions (w, A) with w non cscK?

Theorem

Let (X, L) be a compact polarised manifold, G¢ be a complex reductive Lie group
and E€ be a holomorphic G°-bundle over X. If there exists a cscK metric

w € ¢1(L), X has finite automorphism group and E€ is stable with respect to L
then, given a pair of positive real constants ag,a; > 0 with small ratio

0 < 2% << 1, there exists a solution (wa,As) to (1) with these coupling
constants and w, € ci(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing w and moving J or viceversa).
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An existence criterion

In the previous examples the Kahler metric on (X, J) is always cscK. Are
there any examples of solutions (w, A) with w non cscK?

Theorem

Let (X, L) be a compact polarised manifold, G¢ be a complex reductive Lie group
and E€ be a holomorphic G°-bundle over X. If there exists a cscK metric

w € ¢1(L), X has finite automorphism group and E€ is stable with respect to L
then, given a pair of positive real constants ag,a; > 0 with small ratio

0 < 2% << 1, there exists a solution (wa,As) to (1) with these coupling
constants and w, € ci(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing w and moving J or viceversa). Idea (fixing w):
suppose G has a complexification gf that extends the G-action on P.
Consider the map L: L|eg — Lie g* ¢ — pale' )
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An existence criterion

In the previous examples the Kahler metric on (X, J) is always cscK. Are
there any examples of solutions (w, A) with w non cscK?

Theorem

Let (X, L) be a compact polarised manifold, G¢ be a complex reductive Lie group
and E€ be a holomorphic G°-bundle over X. If there exists a cscK metric

w € ¢1(L), X has finite automorphism group and E€ is stable with respect to L
then, given a pair of positive real constants ag,a; > 0 with small ratio

0 < 2% << 1, there exists a solution (wa,As) to (1) with these coupling
constants and w, € ci(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing w and moving J or viceversa). Idea (fixing w):
suppose G has a complexification gf that extends the G-action on P.
Consider the map L: L|eg — Lie g* ¢ — pale' ) Then,

(dLo(Co, C1) = wa(Yer: 1Y4,),
where Y¢, is the infinitesimal action of (; on P. If G C Aut(E®) is finite

dLg is an isomorphism.
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An existence criterion

In the previous examples the Kahler metric on (X, J) is always cscK. Are
there any examples of solutions (w, A) with w non cscK?

Theorem

Let (X, L) be a compact polarised manifold, G¢ be a complex reductive Lie group
and E€ be a holomorphic G°-bundle over X. If there exists a cscK metric

w € ¢1(L), X has finite automorphism group and E€ is stable with respect to L
then, given a pair of positive real constants ag,a; > 0 with small ratio

0 < 2% << 1, there exists a solution (wa,As) to (1) with these coupling
constants and w, € ci(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing w and moving J or viceversa). Idea (fixing w):
suppose G has a complexification gf that extends the G-action on P.
Consider the map L: L|eg — Lie g* ¢ — pale' ) Then,

(dLo(Co, C1) = wa(Yer: 1Y4,),
where Y¢, is the infinitesimal action of (; on P. If G C Aut(E®) is finite

dLg is an isomorphism. But éc does not exist ...

LAC, MGF & OGP (ICMAT) Kahler & Yang-Mills Bath (27 Nov 2009) 13 /20



Examples

Example: Let X be a high degree hypersurface of P2. Then, 3 KE metric
w € c1(X) (in particular cscK) (Aubin & Yau).
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Examples

Example: Let X be a high degree hypersurface of P2. Then, 3 KE metric
w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,
c1(X) < 0 = Aut(X) finite.
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Examples

Example: Let X be a high degree hypersurface of P2. Then, 3 KE metric
w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where A is a connection on E.
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Examples

Example: Let X be a high degree hypersurface of P2. Then, 3 KE metric
w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jx tr Fa A Fa € Z, where Ais a connection on E. If k > 0, the
moduli space My of Anti-Self-Dual (ASD) connections A on E with
respect to w is non-empty, non-compact but admits a compactification.
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Examples

Example: Let X be a high degree hypersurface of P3. Then, 3 KE metric

w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where Ais a connection on E. If k > 0, the

moduli space My of Anti-Self-Dual (ASD) connections A on E with

respect to w is non-empty, non-compact but admits a compactification.Let

A be a connection that determines a point in M. Then, A is irreducible

and so we can apply our Theorem obtaining solutions (w,, A,) to (1) for
1

small 0 < o = &L,
g
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Examples

Example: Let X be a high degree hypersurface of P3. Then, 3 KE metric
w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where Ais a connection on E. If k > 0, the
moduli space My of Anti-Self-Dual (ASD) connections A on E with
respect to w is non-empty, non-compact but admits a compactification.Let
A be a connection that determines a point in M. Then, A is irreducible

and so we can apply our Theorem obtaining solutions (w,, A,) to (1) for

small 0 < o = g—;
How can we assure that w,, is not cscK?
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Examples

Example: Let X be a high degree hypersurface of P3. Then, 3 KE metric
w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where Ais a connection on E. If k > 0, the
moduli space My of Anti-Self-Dual (ASD) connections A on E with
respect to w is non-empty, non-compact but admits a compactification.Let
A be a connection that determines a point in M. Then, A is irreducible
and so we can apply our Theorem obtaining solutions (w,, A,) to (1) for
small 0 < o = g—;

How can we assure that w, is not cscK? Recall that the scalar equation in
(1) is equivalent to S, — a|Fa,|? = const. Since (wa, As) — (w, A)
uniformly as o — 0 it is enough to take A such that |F4|? is not a
constant function on X.
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Examples

Example: Let X be a high degree hypersurface of P3. Then, 3 KE metric

w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where Ais a connection on E. If k > 0, the

moduli space My of Anti-Self-Dual (ASD) connections A on E with

respect to w is non-empty, non-compact but admits a compactification.Let

A be a connection that determines a point in M. Then, A is irreducible

and so we can apply our Theorem obtaining solutions (w,, A,) to (1) for
1

small 0 < o = &L,
g

How can we assure that w, is not cscK? Recall that the scalar equation in
(1) is equivalent to S, — a|Fa,|? = const. Since (wa, As) — (w, A)
uniformly as o — 0 it is enough to take A such that |F4|? is not a
constant function on X.Take A near to the boundary of the moduli space

(bubbling).
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Examples

Example: Let X be a high degree hypersurface of P3. Then, 3 KE metric

w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where Ais a connection on E. If k > 0, the

moduli space My of Anti-Self-Dual (ASD) connections A on E with

respect to w is non-empty, non-compact but admits a compactification.Let

A be a connection that determines a point in M. Then, A is irreducible

and so we can apply our Theorem obtaining solutions (w,, A,) to (1) for
1

small 0 < o = &L,
g

How can we assure that w, is not cscK? Recall that the scalar equation in
(1) is equivalent to S, — a|Fa,|? = const. Since (wa, As) — (w, A)
uniformly as o — 0 it is enough to take A such that |F4|? is not a
constant function on X.Take A near to the boundary of the moduli space

(bubbling). Can we make this argument explicit?
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Examples

Example: Let X be a high degree hypersurface of P3. Then, 3 KE metric

w € c1(X) (in particular cscK) (Aubin & Yau). Moreover,

c1(X) < 0 = Aut(X) finite.

Let E be a smooth SU(2)-bundle over X with second Chern number

k = # Jxtr Fa A Fa € Z, where Ais a connection on E. If k > 0, the

moduli space My of Anti-Self-Dual (ASD) connections A on E with

respect to w is non-empty, non-compact but admits a compactification.Let

A be a connection that determines a point in M. Then, A is irreducible

and so we can apply our Theorem obtaining solutions (w,, A,) to (1) for
1

small 0 < o = &L,
g

How can we assure that w, is not cscK? Recall that the scalar equation in
(1) is equivalent to S, — a|Fa,|? = const. Since (wa, As) — (w, A)
uniformly as o — 0 it is enough to take A such that |F4|? is not a
constant function on X.Take A near to the boundary of the moduli space

(bubbling). Can we make this argument explicit?Locally yes.
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Examples on C?
Consider C2 x SU(2), the trivial bundle over C.
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Examples on C?

Consider C? x SU(2), the trivial bundle over C?.Let w be the euclidean

metric on C2 (Kahler) and consider the basic 1-instanton (in quaternionic
notation C? = H)

A1 xXdx 1 Xdx — dxx

= m --—=-+: —
1+x[2 2 14+ |x]2 "’

where x = x1 + xp - i +x3 - j + x4 - k, with curvature

£, dx N dx
AT A+ xR
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Examples on C?

Consider C? x SU(2), the trivial bundle over C?.Let w be the euclidean

metric on C2 (Kahler) and consider the basic 1-instanton (in quaternionic

notation C? = H)

A1 xXdx 1 Xdx — dxx

= m --—=-+: —
1+x[2 2 14+ |x]2 "’

where x = x1 + xp - i +x3 - j + x4 - k, with curvature

Fa dx N dx

T AP
Then |FA|2 = (1+2‘j‘2)4-
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Examples on C?
Consider C? x SU(2), the trivial bundle over C?.Let w be the euclidean
metric on C2 (Kahler) and consider the basic 1-instanton (in quaternionic
notation C? = H)
xXdx 1 Xdx — dxx
A=Im——— = - - ———,
1+x[2 2 1+|x?
where x = x1 + xp - i +x3 - j + x4 - k, with curvature
dx A dx
Fp=——-.
(1+ [x]2)
Then |Fal® = 775y
Theorem
Let k € Z. For each « € R there exists a solution (w,, A, ) of the coupled
equations with coupling constant « and fixed topological invariant
k = 8—7172 fCZ tr Fa A Fa € Z. The metric w,, is an assymptotically euclidean Kahler
metric and for each « there exists a k-instanton A/, such that A, converges
assymptotically to A’ at infinity.

.
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From symplectic geometry to algebraic geometry
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From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a
structure of variety or separated scheme

semiestable pairs with ‘fixed invariants’:
(3){ projective variety + bundle }/N
)

(projective scheme + coherent sheaf
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From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a
structure of variety or separated scheme

semiestable pairs with ‘fixed invariants’:
(3){ projective variety + bundle }/N
(projective scheme + coherent sheaf)

Can we use our coupled system (1) to give an adapted stability
condition for (3)?
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Strategy: the Kempf—Ness Theorem

G°¢ = complexification of a compact Lie group G,
V' = representation of G°¢,
X C P(V), projective variety, GC-invariant.
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Strategy: the Kempf—Ness Theorem

G°¢ = complexification of a compact Lie group G,
V' = representation of G°¢,
X C P(V), projective variety, GC-invariant.

3 a G-equivariant moment map ;: X — (Lie G)*
3 linearization of the G¢-action, i.e. L = Ox(1) is a G-bundle over X.
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Strategy: the Kempf—Ness Theorem

G°¢ = complexification of a compact Lie group G,
V' = representation of G°¢,
X C P(V), projective variety, GC-invariant.

3 a G-equivariant moment map ;: X — (Lie G)*
3 linearization of the G¢-action, i.e. L = Ox(1) is a G-bundle over X.

The Kempf-Ness Theorem tell us that for every x € X:
3 g € G such that u(g - x) =0 and

x s GIT-stable <=y Ge_stabilizer of x is finite.
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Strategy: the Kempf—Ness Theorem

G°¢ = complexification of a compact Lie group G,
V' = representation of G°¢,
X C P(V), projective variety, GC-invariant.

3 a G-equivariant moment map ;: X — (Lie G)*
3 linearization of the G¢-action, i.e. L = Ox(1) is a G-bundle over X.

The Kempf-Ness Theorem tell us that for every x € X:
3 g € G such that u(g - x) =0 and

x s GIT-stable <=y Ge_stabilizer of x is finite.

The stability of a point can be checked (Hilbert-Mumford) computing, for
any A: C* — G¢,

weight of the C* — action onL,, = (u(x0), (),

where xo = lim; .o A(t) - x and ( is the generator of S* C C*-action on
Ly,
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Strategy: the Kempf—Ness Theorem

G°¢ = complexification of a compact Lie group G,
V' = representation of G°¢,
X C P(V), projective variety, GC-invariant.

3 a G-equivariant moment map ;: X — (Lie G)*
3 linearization of the G¢-action, i.e. L = Ox(1) is a G-bundle over X.

The Kempf-Ness Theorem tell us that for every x € X:

3 g € G such that u(g - x) =0 and

x s GIT-stable <=y Ge_stabilizer of x is finite.

The stability of a point can be checked (Hilbert-Mumford) computing, for
any A: C* — G¢,

weight of the C* — action onL,, = (u(x0), (),

where xo = lim; .o A(t) - x and ( is the generator of S* C C*-action on
L, x is stable <= (u(x0), () > 0 for any non-trivial A.
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a-K-stability

To apply the previous picture we have a problem
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To apply the previous picture we have a problem : there exists no Ge.
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a-K-stability

To apply the previous picture we have a problem : there exists no Ge.

Idea: consider finite dimensional ‘approximations’ of G, that can be always

complexified (adapt Donaldson's arguments for the cscK problem to our
problem).
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a-K-stability
To apply the previous picture we have a problem : there exists no G°.

Idea: consider finite dimensional ‘approximations’ of G, that can be always

complexified (adapt Donaldson's arguments for the cscK problem to our
problem).

Let (X, L) = smooth compact (complex) polarised manifold and E =
vector bundle over X.
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a-K-stability

To apply the previous picture we have a problem : there exists no Ge.
Idea: consider finite dimensional ‘approximations’ of G, that can be always
complexified (adapt Donaldson's arguments for the cscK problem to our
problem).

Let (X, L) = smooth compact (complex) polarised manifold and E =
vector bundle over X. Taking k >> 0, we can consider X C P(Vy),

Vi = HO(X, L¥)*. Hence, X defines a point on Hilb”, P(k) = x(X, L¥).
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a-K-stability

To apply the previous picture we have a problem : there exists no Ge.
Idea: consider finite dimensional ‘approximations’ of G, that can be always
complexified (adapt Donaldson's arguments for the cscK problem to our
problem).

Let (X, L) = smooth compact (complex) polarised manifold and E =
vector bundle over X. Taking k >> 0, we can consider X C P(Vy),

Vi = HO(X, L¥)*. Hence, X defines a point on Hilb”, P(k) = x(X, L¥).
There exists a proper scheme

Quot’= — Hilb”

which parametrises sheaves over the corresponding point on Hilb, with
Hilbert polynomial Pg(k) = x(X, E @ L¥).
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a-K-stability

To apply the previous picture we have a problem : there exists no Ge.
Idea: consider finite dimensional ‘approximations’ of G, that can be always
complexified (adapt Donaldson's arguments for the cscK problem to our
problem).

Let (X, L) = smooth compact (complex) polarised manifold and E =
vector bundle over X. Taking k >> 0, we can consider X C P(Vy),

Vi = HO(X, L¥)*. Hence, X defines a point on Hilb”, P(k) = x(X, L¥).
There exists a proper scheme

Quot’= — Hilb”

which parametrises sheaves over the corresponding point on Hilb, with
Hilbert polynomial Pg(k) = x(X, E @ LK). Let Wy = H(X, E x L¥). The
group Gy = GL(Vj) x GL(W)) ~ Quot”t and for any \: C* — G

€ = A(|ti)nl0A(t) [(X, E)] € Quot’E
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a-K-stability

To apply the previous picture we have a problem : there exists no Ge.
Idea: consider finite dimensional ‘approximations’ of G, that can be always
complexified (adapt Donaldson's arguments for the cscK problem to our
problem).

Let (X, L) = smooth compact (complex) polarised manifold and E =
vector bundle over X. Taking k >> 0, we can consider X C P(Vy),

Vi = HO(X, L¥)*. Hence, X defines a point on Hilb”, P(k) = x(X, L¥).
There exists a proper scheme

Quot’= — Hilb”

which parametrises sheaves over the corresponding point on Hilb, with
Hilbert polynomial Pg(k) = x(X, E @ LK). Let Wy = H(X, E x L¥). The
group Gy = GL(Vj) x GL(W)) ~ Quot”t and for any \: C* — G

= lim \¢t)-[(X,E)] € tFe
0= fm, (t) - [(X, E)] € Quo
We take (Xo, Lo, Eo) representing eg, endowed with a natural C*-action

and measure a weight F,.
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a-K-stability
C* (Xo, Lo, Eo):
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a-K-stability
C* (Xo, Lg, Eo)Z
Pi,(Eo) = Hilbert polynomial of Eg with respect to Ly,
wy,(Eo, k) = weight of the induced C*-action on det H°(Ey @ L¥)
WL(E(), k)
F(Eo, Lo, k) = 08
(o, Lo, k) kP, (Eo, k)

= Fo(Lo, Eo) + k= *F1(Lo, Eo) + k2 Fa(Lo, Eg) + O(k~3) with
F,'(Lo, E()) S Q
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a-K-stability

C* (Xo, Lg, Eo)Z

Pi,(Eo) = Hilbert polynomial of Eg with respect to Ly,

wy,(Eo, k) = weight of the induced C*-action on det H°(Ey @ L¥)

WL(Eo,k)
F(Ey, Lo, k) = —————
(o, Lo, k) kP, (Eo, k)

= Fo(Lo, Eo) + k= *F1(Lo, Eo) + k2 Fa(Lo, Eg) + O(k~3) with
F,'(Lo, E()) S Q
a-invariant of the C*-action on (X, Lo, Eo):

Fo(Xo, Lo, Eo) = Fi(Lo, Ox,) + o (F2(Lo, Eo) — F2(Lo, Ox,))
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a-K-stability

C* (Xo, Lg, Eo)Z

Pi,(Eo) = Hilbert polynomial of Eg with respect to Ly,

wy,(Eo, k) = weight of the induced C*-action on det H°(Ey @ L¥)

WL(Eo,k)
F(Ey, Lo, k) = —————
(o, Lo, k) kP, (Eo, k)

= Fo(Lo, Eo) + k= *F1(Lo, Eo) + k2 Fa(Lo, Eg) + O(k~3) with
F,'(Lo, E()) S Q

a-invariant of the C*-action on (X, Lo, Eo):

Fo(Xo, Lo, Eo) = Fi(Lo, Ox,) + o (F2(Lo, Eo) — F2(Lo, Ox,))

Proposition [—, L. Alvarez Cénsul, O. Garcia Prada]
If (Xo, Lo, Ep) is smooth then

Fo(Xo, Lo, Eo) ~ 11a(€),

with ( is the generator of the induced S* C C*-action on (Xy, Lo, Eo).
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a-K-stability

Recall: The group G, = GL(Vj) x GL(W,) ~ Quot" and for any
A C* — Gy

€ = A(Iti)nl)o)\(t) -[(X, E)] € Quot’e
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a-K-stability

Recall: The group G, = GL(Vj) x GL(W,) ~ Quot" and for any
A C* — Gy

€ = /\(Iti)nl)o)\(t) -[(X, E)] € Quot’e

We take (Xo, Lo, Eo) representing eg, endowed with a natural C*-action
and measure the number F,(Xo, Lo, Eo).

Conjecture [—, L. Alvarez Cénsul, O. Garcia Prada]

If there exists a solution (w, A) to the coupled equations (1) with w € ¢ (L) and
positive coupling constants « and g, then

Fo(Xo, Lo, Eo) > 0,

for any A\: C* — Gi and any k > 0, where o = ’”;7?;1’(
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