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A moduli problem

X Kählerian smooth manifold,
G compact Lie group,
g Lie algebra of G ,
E smooth principal G -bundle over X .

A moduli problem: Construct a moduli space with a Kähler
structure

(1)

{
pairs (g ,A) satisfying suitable PDE

}/
∼

A connection on E , g Kähler metric on X .

Problem 1 of this talk: Find a well suited PDE for (1)

Relation with physics: interaction between gauge fields and gravity.
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Strategy

• Look for a PDE with symplectic interpretation: its solutions are
points in the symplectic reduction

µ−1
α (0)/G̃

of a suitable space P ⊃ µ−1
α (0) parameterizing Kähler structures on X and

holomorphic structures on a bundle associated to the G -bundle E .

• We rely on the symplectic interpretation of two fundamental
equations in Kähler geometry:

1) the Hermite–Yang–Mills (HYM) equations for a connection and
2) the constant scalar curvature equation for a Kähler metric (cscK).

Once we have our nice PDE ...

Problem 2 of this talk: Use the symplectic interpretation for
finding: families of examples and obstructions to the existence of
solutions.
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Moment maps

(X , ω) = symplectic manifold,

G = Lie group with Lie algebra g,

G × X → X , left G -action preserving ω.

Suppose that ∃ a G -equivariant moment map i.e. ∃ µ : X → g∗ such that

d〈µ, ζ〉 = ω(Yζ , ·) and µ(g · x) = Ad(g)−1 · µ(x),

for all g ∈ G and ζ ∈ g, where Yζ|x = d
dt t=0

exp(tζ) · x ∈ TxX .

Symplectic quotient (Marsden & Weinstein ’74): If we have a “good”
action then µ−1(0)/G inherits a natural symplectic structure.

Kähler quotient (Guillemin & Stenberg ’82): If (X , J, ω) is Kähler and
we have a “good” action of G y (X , ω, J) then µ−1(0)/G inherits a
natural Kähler structure.
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Example 1: The Hermite–Yang–Mills equations
(X , ω, J, g) smooth compact Kähler manifold: ω symplectic structure,
J complex structure and g metric.
E G -bundle over X , A connection on E , FA curvature of A
A = {connections A on E}
G = {automorphisms g : E → E covering the identity on X}y A.

The infinite-dimensional manifold A has a Kähler structure (ωA, IA, gA)
preserved by G.

ωA(a0, a1) =

∫
X

(a0 ∧ a1) ∧ ωn−1, IAa0 = −a0(J·) with aj ∈ Ω1(adE ).

Moment map(Atiyah–Bott (’83) & Donaldson): µA : A → (LieG)∗

〈µA(A), ζ〉 =

∫
X

(ζ ∧ FA) ∧ ωn−1 ζ ∈ adE ≡ LieG.

G y A1,1 = {A ∈ A : F 0,2
A = 0} ≡ holomorphic struct. on E c = E ×G G c

HYM equations:
ΛωFA = z , F 0,2

A = 0, z ∈ z (centre of g).
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Example 2: The constant scalar curvature equation

(X , ω) smooth compact symplectic manifold of Kähler type.

J={complex structures on X compatible with ω}
H={ Hamiltonian symplectomorphisms of (X , ω)}y J

The infinite-dimensional (singular) manifold J has a Kähler structure
(ωJ , IJ , gJ ) preserved by H. Given bj ∈ TJJ ⊂ Ω0(EndTX ),

ωJ |J(b0, b1) =

∫
X

tr(J · b0 · b1)
ωn

n!
, IJ b0 = Jb0.

Moment map (Fujiki(1992)–Donaldson(1997)): µJ : J → (LieH)∗

〈µJ (J), φ〉 = −
∫

X
φ(SJ − Ŝ)

ωn

n!

φ ∈ C∞(X )/R ∼= LieH Ŝ =
1

Vol(X )

∫
X

SJ
ωn

n!

CscK equation: SJ = Ŝ , J ∈ J .
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ωn

n!

φ ∈ C∞(X )/R ∼= LieH Ŝ =
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The infinite-dimensional (singular) manifold J has a Kähler structure
(ωJ , IJ , gJ ) preserved by H. Given bj ∈ TJJ ⊂ Ω0(EndTX ),

ωJ |J(b0, b1) =

∫
X

tr(J · b0 · b1)
ωn

n!
, IJ b0 = Jb0.

Moment map (Fujiki(1992)–Donaldson(1997)): µJ : J → (LieH)∗

〈µJ (J), φ〉 = −
∫

X
φ(SJ − Ŝ)

ωn

n!

φ ∈ C∞(X )/R ∼= LieH Ŝ =
1

Vol(X )

∫
X

SJ
ωn

n!

CscK equation: SJ = Ŝ , J ∈ J .
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Coupled equations for Kähler metrics and connections
(X , ω), G , E , J and A as before.

Phase space: J ×A.

Group of symmetries: 1→ G → G̃ → H → 1, with G̃ y J ×A.

Symplectic structure: ωα = α0ωJ + 4α1
(n−1)!ωA, 0 6= α0, α1 ∈ R.

Remarks:

• J ×A has an integrable complex structure that fibers over (J , IJ ) ,
given by I(J,A)(b, a) = (Jb,−a(J·)) and ωα is Kähler if α1

α0
> 0!!!

• Why G̃? Geometry: It preserves I, ωα and the complex submanifold
P = {(J,A) ∈ J ×A: A ∈ A1,1

J }≡ Kähler structure on X with fixed
ω + holomorphic structure on E c over X .
Physics: Natural group of symmetries for (J,A) (grav. field + gauge
field) ⇒ Diff(E )G . G̃ ⊂ Diff(E )G “biggest” subgroup preserving ωα
and I.

• Why ωα? For simplicity (following cscK & HYM).

Problem 1: We find a solution if G̃ y J ×A is Hamiltonian.
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Lie group extensions and Hamiltonian actions
Question: Is G̃ y (J ×A, ωα) Hamiltonian?

Recall: 1→ G → G̃ → H → 1 and the G̃-action is symplectic.

It is enough to prove that G̃ y A is Hamiltonian.
General fact for extensions: If G y A is Hamiltonian and W 6= ∅,

W := G̃-equivariant smooth maps θ : A →W where

W ⊂ Hom(Lie G̃, LieG) affine space of vector space splittings of

0→ LieG → Lie G̃ → LieH → 0.

then, G̃ y A is Hamiltonian ⇔ ∃ a G̃-equivariant map σθ : A → (LieH)∗

ωA(Yθ⊥φ, ·) = 〈µG , (dθ)φ〉+ d〈σθ, φ〉, for all φ ∈ LieH,
where θ⊥ = Id−θ : LieH → Lie G̃ and Yθ⊥φ is the inf. action on A.

Example: If A = {·}, W 6= ∅ ⇒ Lie G̃ ∼= LieG o LieH. but ...
In our case: the vertical projection θA : TE → VE defined by any
connection A ∈ A defines an element θ : A →W in W. Finally,

〈σθ(A), φ〉 = −
∫
X φ(Λ2

ω(FA ∧ FA)− c ′) · ωn

n! .
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Coupled equations for Kähler metrics and connections
This proves that ...

Proposition [—, L. Álvarez Cónsul, O. Garćıa Prada]

For any α0 and α1 there exists a G̃-equivariant moment map µα : J ×A → Lie G̃∗
for the G̃-action. If ζ ∈ Lie G̃, covering φ ∈ C∞(X )/R ∼= Lie H then,

〈µα(J,A), ζ〉 = −
∫

X

(
φ(α0SJ + α1Λ2

ω(FA ∧ FA)− c)− 4α1(θAζ,ΛωFA)
)
· ω

n

n!

The G̃-action preserves the complex submanifold P = {(J,A) ∈ J ×A:
A ∈ A1,1

J }. ⇒ µα : P → Lie G̃∗ and the conditions

µα(J,A) = 0, (J,A) ∈ P
defines (completely!) coupled equations for (ω, J, g ,A) that can be
written as follows (after a suitable shift by z ∈ z, the center of g):

Definition: ΛωFA = z ,

F 0,2J
A = 0,
α0Sg + α1Λ2

ω(FA ∧ FA) = c .

 (1)
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Why HYM and cscK?
HYM: 1. Construction of moduli spaces with Kähler structure ⇒
⇒ Donaldson’s invariants for smooth 4-manifolds (1990).
2. Special solutions of the Yang–Mills equation: critical points of
the Yang-Mills functional A→ ‖FA‖2 (physicists interested).The
Hitchin–Kobayashi correspondence (Donaldson and Uhlenbeck–Yau)
relating the existence of solutions to the HYM equation with the Mumford
stability of bundles ⇒ algebraic criterion for finding YM connections.
CscK: 1. Calabi’s problem (1954, 1982): Find preferred metrics in
Kähler geometry.Three natural notions (that can be seen as uniformizers
of the complex structure):

Kähler–Einstein metrics⇒ cscK metrics⇒ extremal metrics ≡
≡ critical points of the Calabi Functional g →

∫
X S2

g volg , for Kähler
metrics g in a fixed Kähler class. CscK metrics ≡ absolute minimizers.

2. Moduli problem for projective varieties:Yau-Tian-Donaldson’s
conjecture relating existence of cscK metrics on a compact complex
manifold with the stability of the manifold ⇒ numerical approximation of
Kähler–Einstein metrics and Weyl–Petterson metrics on moduli spaces.
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Variational interpretation of the coupled equations
Given real constants α0 and α1 ∈ R consider the following functional.

CYM(g ,A) =

∫
X

(α0Sg − 2α1|FA|2)2 · volg + 2α1 · ‖FA‖2, (2)

where g is a Riemannian metric on X , A is a connection on E and volg is
the volume form of g . Note that J 3 J → g = ω(·, J·), fixing ω.

Proposition [—, L. Álvarez Cónsul, O. Garćıa Prada]

The solutions to the coupled equations (1) on J ×A are the absolute minimizers

of CYM : J ×A → R (after suitable re-scaling of the coupling constants).

Given a pair (g ,A), consider ĝ = π∗g + t · gV (θA·, θA·) on Tot(E ), with
t = 2α1

α0
> 0.Then (Tot(E ), ĝ)→ (X , g) is a Riemannian submersion with

totally geodesic fibers and so
Sĝ = Sg −

2α1

α0
|FA|2

Therefore CYM = C + YM and if (X , J, ω, g ,A), with F 0,2
A = 0, is a

solution to the coupled equations (1) then Sĝ = const. Moreover, if A is
irreducible ĝ Einstein⇒ (1)⇒ Sĝ = const.
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Given a pair (g ,A), consider ĝ = π∗g + t · gV (θA·, θA·) on Tot(E ), with
t = 2α1

α0
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LAC, MGF & OGP (ICMAT) Kähler & Yang–Mills Bath (27 Nov 2009) 11 / 20



Variational interpretation of the coupled equations
Given real constants α0 and α1 ∈ R consider the following functional.

CYM(g ,A) =

∫
X

(α0Sg − 2α1|FA|2)2 · volg + 2α1 · ‖FA‖2, (2)

where g is a Riemannian metric on X , A is a connection on E and volg is
the volume form of g . Note that J 3 J → g = ω(·, J·), fixing ω.
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Sĝ = Sg −

2α1

α0
|FA|2

Therefore CYM = C + YM and if (X , J, ω, g ,A), with F 0,2
A = 0, is a

solution to the coupled equations (1) then Sĝ = const. Moreover, if A is
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First examples of solutions
We fix a compact complex manifold (X , J) and a G -bundle over X .
Consider the equations for (ω,A), with ω ∈ [ω] and A ∈ A1,1.
Trivial examples:

The system of equations (1) decouples when dimC X = 1 since
(FA ∧ FA) = 0. Solutions = stable holomorphic bundles over (X , J).

If E = L, or if E es projectively flat, with c1(E ) = λ[ω] then the
coupled equations admit decoupled solutions: cscK + HYM.

Remark: In both cases ∃ a solution to FA = λω, which implies
Lie G̃ = LieG n LieH.
Less trivial examples:

The coupled equations (1) have solutions on Homogenous
holomorphic bundles E c over homogeneous Kähler manifolds if the
bundle comes from an irreducible representation (≡ ∃ HYM
connection). Proof: invariant structures and representation theory.

Solutions are given by simultaneous solutions for the cases
α1 = 0, α0 6= 0 and α0 = 0, α1 6= 0.
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An existence criterion
In the previous examples the Kähler metric on (X , J) is always cscK. Are
there any examples of solutions (ω,A) with ω non cscK?

Theorem [—, L. Álvarez Cónsul, O. Garćıa Prada]

Let (X , L) be a compact polarised manifold, G c be a complex reductive Lie group

and E c be a holomorphic G c -bundle over X . If there exists a cscK metric

ω ∈ c1(L), X has finite automorphism group and E c is stable with respect to L

then, given a pair of positive real constants α0, α1 > 0 with small ratio

0 < α1

α0
<< 1, there exists a solution (ωα,Aα) to (1) with these coupling

constants and ωα ∈ c1(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω):
suppose G̃ has a complexification G̃c that extends the G̃-action on P.
Consider the map L : Lie G̃ → Lie G̃∗ : ζ → µα(e i ζ). Then,

〈dL0(ζ0, ζ1〉 = ωα(Yζ1 , IYζ0),

where Yζj is the infinitesimal action of ζj on P. If G̃I ⊂ Aut(E c) is finite

dL0 is an isomorphism. But G̃c does not exist ...
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Let (X , L) be a compact polarised manifold, G c be a complex reductive Lie group

and E c be a holomorphic G c -bundle over X . If there exists a cscK metric

ω ∈ c1(L), X has finite automorphism group and E c is stable with respect to L

then, given a pair of positive real constants α0, α1 > 0 with small ratio

0 < α1

α0
<< 1, there exists a solution (ωα,Aα) to (1) with these coupling

constants and ωα ∈ c1(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω):
suppose G̃ has a complexification G̃c that extends the G̃-action on P.
Consider the map L : Lie G̃ → Lie G̃∗ : ζ → µα(e i ζ). Then,

〈dL0(ζ0, ζ1〉 = ωα(Yζ1 , IYζ0),

where Yζj is the infinitesimal action of ζj on P. If G̃I ⊂ Aut(E c) is finite

dL0 is an isomorphism. But G̃c does not exist ...
LAC, MGF & OGP (ICMAT) Kähler & Yang–Mills Bath (27 Nov 2009) 13 / 20



An existence criterion
In the previous examples the Kähler metric on (X , J) is always cscK. Are
there any examples of solutions (ω,A) with ω non cscK?
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constants and ωα ∈ c1(L).

Proof: Deformation argument using the Implicit Function Theorem in
Banach spaces (either fixing ω and moving J or viceversa). Idea (fixing ω):
suppose G̃ has a complexification G̃c that extends the G̃-action on P.
Consider the map L : Lie G̃ → Lie G̃∗ : ζ → µα(e i ζ). Then,

〈dL0(ζ0, ζ1〉 = ωα(Yζ1 , IYζ0),

where Yζj is the infinitesimal action of ζj on P. If G̃I ⊂ Aut(E c) is finite

dL0 is an isomorphism. But G̃c does not exist ...
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Examples

Example: Let X be a high degree hypersurface of P3. Then, ∃ KE metric
ω ∈ c1(X ) (in particular cscK) (Aubin & Yau). Moreover,
c1(X ) < 0⇒ Aut(X ) finite.
Let E be a smooth SU(2)-bundle over X with second Chern number
k = 1

8π2

∫
X tr FA ∧ FA ∈ Z, where A is a connection on E . If k � 0, the

moduli space Mk of Anti-Self-Dual (ASD) connections A on E with
respect to ω is non-empty, non-compact but admits a compactification.Let
A be a connection that determines a point in Mk . Then, A is irreducible
and so we can apply our Theorem obtaining solutions (ωα,Aα) to (1) for
small 0 < α = α1

α0
.

How can we assure that ωα is not cscK? Recall that the scalar equation in
(1) is equivalent to Sωα − α|FAα |2 = const. Since (ωα,Aα)→ (ω,A)
uniformly as α→ 0 it is enough to take A such that |FA|2 is not a
constant function on X .Take A near to the boundary of the moduli space
(bubbling). Can we make this argument explicit?Locally yes.
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Examples on C2

Consider C2 × SU(2), the trivial bundle over C2.Let ω be the euclidean
metric on C2 (Kähler) and consider the basic 1-instanton (in quaternionic
notation C2 ≡ H)

A = Im
xdx

1 + |x |2
=

1

2
· xdx − dxx

1 + |x |2
,

where x = x1 + x2 · i +x3 · j + x4 · k, with curvature

FA =
dx ∧ dx

(1 + |x |2)2
.

Then |FA|2 = 24
(1+|x |2)4 .

Theorem

Let k ∈ Z. For each α ∈ R there exists a solution (ωα,Aα) of the coupled

equations with coupling constant α and fixed topological invariant

k = 1
8π2

∫
C2 tr FA ∧ FA ∈ Z. The metric ωα is an assymptotically euclidean Kähler

metric and for each α there exists a k-instanton A′α, such that Aα converges

assymptotically to A′ at infinity.
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From symplectic geometry to algebraic geometry

An algebro-geometric problem: Construct a moduli space with a
structure of variety or separated scheme

(3)

{ semiestable pairs with ‘fixed invariants’:
projective variety + bundle

(projective scheme + coherent sheaf)

}/
∼

Can we use our coupled system (1) to give an adapted stability
condition for (3)?
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Strategy: the Kempf–Ness Theorem

G c = complexification of a compact Lie group G ,

V = representation of G c ,

X ⊂ P(V ), projective variety, G c -invariant.

∃ a G -equivariant moment map µ : X → (Lie G )∗

∃ linearization of the G c -action, i.e. L = OX (1) is a G c -bundle over X .

The Kempf-Ness Theorem tell us that for every x ∈ X :

x is GIT-stable ⇐⇒ ∃ g ∈ G c such that µ(g · x) = 0 and
the G c -stabilizer of x is finite.

The stability of a point can be checked (Hilbert–Mumford) computing, for
any λ : C∗ → G c ,

weight of the C∗ − action onL|x0
= 〈µ(x0), ζ〉,

where x0 = limt→0 λ(t) · x and ζ is the generator of S1 ⊂ C∗-action on
L|x0

. x is stable ⇐⇒ 〈µ(x0), ζ〉 > 0 for any non-trivial λ.
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α-K-stability
To apply the previous picture we have a problem : there exists no G̃c .
Idea: consider finite dimensional ‘approximations’ of G̃, that can be always
complexified (adapt Donaldson’s arguments for the cscK problem to our
problem).
Let (X , L) = smooth compact (complex) polarised manifold and E =
vector bundle over X . Taking k >> 0, we can consider X ⊂ P(Vk),
Vk = H0(X , Lk)∗. Hence, X defines a point on HilbP , P(k) = χ(X , Lk).
There exists a proper scheme

QuotPE → HilbP

which parametrises sheaves over the corresponding point on Hilb, with
Hilbert polynomial PE (k) = χ(X ,E ⊗ Lk). Let Wk = H0(X ,E × Lk). The
group Gk = GL(Vk)× GL(Wk) y QuotPE and for any λ : C∗ → Gk

ε0 = lim
λ(t)→0

λ(t) · [(X ,E )] ∈ QuotPE

We take (X0, L0,E0) representing ε0, endowed with a natural C∗-action
and measure a weight Fα.
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α-K-stability
C∗ y (X0, L0,E0):
PL0(E0) = Hilbert polynomial of E0 with respect to L0,
wL0(E0, k) = weight of the induced C∗-action on det H0(E0 ⊗ Lk)

F (E0, L0, k) =
wL(E0, k)

kPL0(E0, k)
= F0(L0,E0) + k−1F1(L0,E0) + k−2F2(L0,E0) + O(k−3) with

Fi (L0,E0) ∈ Q.

α-invariant of the C∗-action on (X0, L0,E0):

Fα(X0, L0,E0) = F1(L0,OX0) + α (F2(L0,E0)− F2(L0,OX0))

Proposition [—, L. Álvarez Cónsul, O. Garćıa Prada]

If (X0, L0,E0) is smooth then

Fα(X0, L0,E0) ∼ µα(ζ),

with ζ is the generator of the induced S1 ⊂ C∗-action on (X0, L0,E0).
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α-K-stability

Recall: The group Gk = GL(Vk)× GL(Wk) y QuotPE and for any
λ : C∗ → Gk

ε0 = lim
λ(t)→0

λ(t) · [(X ,E )] ∈ QuotPE

We take (X0, L0,E0) representing ε0, endowed with a natural C∗-action
and measure the number Fα(X0, L0,E0).

Conjecture [—, L. Álvarez Cónsul, O. Garćıa Prada]

If there exists a solution (ω,A) to the coupled equations (1) with ω ∈ c1(L) and
positive coupling constants α0 and α1, then

Fα(X0, L0,E0) ≥ 0,

for any λ : C∗ → Gk and any k > 0, where α = rπ2α1k
α0

.
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