Exponentials of derivations in prime characteristic

Sandro Mattarei

University of Lincoln
Bath, February 2016
S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings
Artin-Hasse exponentials

Laguerre polynomials

Taking a break from maths:

(1) Traditional exponentials in characteristic zero
(2) Truncated exponentials
(3) Application to gradings of algebras
(4) Artin-Hasse exponentials
(5) Laguerre polynomials

Derivations and automorphisms

Let A be a non-associative algebra over a field F.

- A derivation of A is a linear map $D: A \rightarrow A$ such that

$$
D(a \cdot b)=(D a) \cdot b+a \cdot(D b), \quad \text { for } a, b \in A
$$

Lemma

Assume char $(F)=0$. If D is a nilpotent derivation of A, then $\exp D=\sum_{k=0}^{\infty} D^{k} / k!$ is an automorphism of A.

- D being a derivation is equivalent to

$$
D \circ m=m \circ(D \otimes \mathrm{id}+\mathrm{id} \otimes D)
$$

where $m: A \otimes A \rightarrow A$ is the multiplication map.

- The Lemma follows from

$$
\exp (X+Y)=\exp (X) \cdot \exp (Y)
$$

after setting $X=D \otimes$ id and $Y=\mathrm{id} \otimes D$.

Proof of the Lemma

Proof.

Because

$$
D^{k} \circ m=m \circ(D \otimes \mathrm{id}+\mathrm{id} \otimes D)^{k}
$$

for $k \geq 0$, we have

$$
\begin{aligned}
(\exp D) \circ m & =m \circ \exp (D \otimes \mathrm{id}+\mathrm{id} \otimes D) \\
& =m \circ \exp (D \otimes \mathrm{id}) \circ \exp (\mathrm{id} \otimes D) \\
& =m \circ((\exp D) \otimes \mathrm{id}) \circ(\mathrm{id} \otimes(\exp D))
\end{aligned}
$$

Evaluating on $x \otimes y$, for $x, y \in A$, we get

$$
(\exp D)(x \cdot y)=(\exp D)(x) \cdot(\exp D)(y)
$$

and hence $\exp D$ is an automorphism of A.

Example: A polynomial algebra

Example

Let $A=F[X], D=d / d X, \alpha, \beta \in F$. Then

- $\exp (\beta D) f(X)=f(X+\beta) \quad$ (Taylor's formula);
- $\exp (\alpha X D) f(X)=f\left(e^{\alpha} X\right) \quad$ (if e^{α} makes sense).
- In fact, all automorphisms of $F[X]$ as an F-algebra are given by substitutions $X \mapsto a X+b$, for $a \in F^{*}, b \in F$.
- The derivation algebra is much larger,

$$
W_{1}=\operatorname{Der}(F[X])=\bigoplus_{k \geq-1} \operatorname{Der}(F[X])_{k}=\bigoplus_{k \geq-1} F \cdot X^{k+1} D
$$

but exp does not apply to derivations of positive degree.

Example: The Lie algebra W_{1}

- $W_{1}=\operatorname{Der}(F[X])$ is the Lie algebra of polynomial vector fields on the line (usually with $F=\mathbb{R}$ or \mathbb{C}).
- W_{1} has a \mathbb{Z}-graded basis given by the $X^{i+1} D$, where $D=d / d X$, this element having degree i, for $i \geq-1$.
- Lie bracket:

$$
\left[X^{i+1} D, X^{j+1} D\right]=(j-i) X^{i+j+1} D
$$

In particular, consider the inner derivation ad $D=[D, \cdot]$.

Example

Lie algebra $W_{1}=\operatorname{Der}(F[X])$.
Then $\exp (\operatorname{ad} D)$ is an automorphism of W_{1}. Explicitly:

$$
\exp (\operatorname{ad} D) X^{i+1} D=(X+1)^{i+1} D
$$

Exponentials in positive characteristic

From now on assume char $(F)=p>0$.

- For $\exp (D)$ to make sense we need at least $D^{p}=0$, but then what we really apply is the truncated exponential

$$
E(D)=\sum_{k=0}^{p-1} D^{k} / k!
$$

- This is defined for any derivation D but it need not be an automorphism, even when $D^{p}=0$.
- In the theory of modular Lie algebras, this is good: certain $E(D)$ can be used to pass from some torus to another torus with more desirable properties (toral switching: [Winter 1969], [Block-Wilson 1982], [Premet 1986/89]).

Exponentials of derivations

What fails with the truncated exponential

S. Mattarei

We compute $E(X) \cdot E(Y)$,

$$
\begin{array}{ccccccc}
1 & Y & \frac{Y^{2}}{2!} & \frac{Y^{3}}{3!} & \cdots & \cdots & \frac{Y^{p-1}}{(p-1)!} \\
X & X Y & \frac{X Y^{2}}{2!} & & & \frac{X Y^{p-2}}{(p-2)!} & \frac{X Y^{p-1}}{(p-1)!} \\
\frac{X^{2}}{2!} & \frac{X^{2} Y}{2!} & & & \frac{X^{2} Y^{p-3}}{2!(p-3)!} & \frac{X^{2} Y^{p-2}}{2!(p-2)!} & \frac{X^{2} Y^{p-1}}{2!(p-1)!} \\
\frac{X^{3}}{3!} & & & & & & \vdots \\
\vdots & & \frac{X^{p-3} Y^{2}}{(p-3)!2!} & & & & \\
\vdots & \frac{X^{p-2} Y}{(p-2)!} & \frac{X^{p-2} Y^{2}}{(p-2)!2!} & & & & \\
\frac{X^{p-1}}{(p-1)!} & \frac{X^{p-1} Y}{(p-1)!} & \frac{X^{p-1} Y^{2}}{(p-1)!2!} & \cdots & & \cdots & \frac{X^{p-1} Y^{p-1}}{(p-1)!(p-1)!}
\end{array}
$$

and find

$$
E(X) \cdot E(Y)-E(X+Y)=\sum_{k=p}^{2 p-2} \sum_{i=k+1-p}^{p-1} \frac{X^{i} Y^{k-i}}{i!(k-i)!}
$$

Exponentials of derivations
S. Mattarei

Ordinary

A closer look at the term of degree p

- The term with $k=p$ in $E(X) \cdot E(Y)-E(X+Y)$ is

$$
\frac{1}{p!} \sum_{i=1}^{p-1}\binom{p}{i} X^{i} Y^{p-i}=\frac{(X+Y)^{p}-X^{p}-Y^{p}}{p!} .
$$

- Modulo p it can also be written as

$$
\sum_{i=1}^{p-1} \frac{(-1)^{i}}{i} X^{i} Y^{p-i}
$$

The obstruction formula

- Setting $X=D \otimes$ id and $Y=\mathrm{id} \otimes D$ yields the obstruction formula

$$
E(D) x \cdot E(D) y-E(D)(x y)=\sum_{k=p}^{2 p-2} \sum_{i=k+1-p}^{p-1} \frac{\left(D^{i} x\right)\left(D^{k-i} y\right)}{i!(k-i)!}
$$

for D any derivation of A, and $x, y \in A$.

- In particular, if p is odd and $D^{(p+1) / 2}=0$, then $E(D)$ is an automorphism of A.

Example: A truncated polynomial ring

Example

If $A=F[X] /\left(X^{p}\right)$ and $D=d / d X$, then $D^{p}=0$, and

$$
E(D) X^{k}=(X+1)^{k} \quad \text { for } 0 \leq k<p
$$

Here $X^{p}=0$, but $(X+1)^{p}=1$, and hence
$E(D)$ is not an automorphism of A.

- However,

$$
A=F 1 \oplus F X \oplus \cdots \oplus F X^{p-1}
$$

is a \mathbb{Z}-grading of A, and $E(D)$ maps it to

$$
A=F 1 \oplus F(X+1) \oplus \cdots \oplus F(X+1)^{p-1}
$$

which is a (genuine) $\mathbb{Z} / p \mathbb{Z}$-grading of A.

Why did $E(D)$ turn a grading into another?

Lemma

If D is a derivation of A with $D^{p}=0$, for $x, y \in A$ we have

$$
E(D) x \cdot E(D) y-E(D)(x y)=E(D) \sum_{i=1}^{p-1} \frac{(-1)^{i}}{i}\left(D^{i} x\right)\left(D^{p-i} y\right)
$$

- The sum at the RHS equals the term with $k=p$ of the obstruction formula. That is the primary obstruction cocycle

$$
\operatorname{Sq}_{p}(D)=\sum_{i=1}^{p-1} \frac{D^{i}}{i!} \smile \frac{D^{p-i}}{(p-i)!} \in Z^{2}(A, A)
$$

which arises in Gerstenhaber's deformation theory.

Theorem (grading switching with $D^{p}=0$)

- Let $A=\bigoplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let D be a derivation of A, homogeneous of degree d, with $m \mid p d$, such that $D^{p}=0$.

Then

$$
A=\bigoplus_{k} E(D) A_{k}
$$

is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.

- In our example with $A=F[X] /\left(X^{p}\right)$, its derivation $D=d / d X$ had degree -1 , and A was graded over \mathbb{Z}, but then also over $\mathbb{Z} / m \mathbb{Z}$ with $m=p$.
- Less trivial application: construction of gradings over a group having elements of order p^{2}.

Two basic methods to produce gradings

- If $D \in \operatorname{Der}(A)$ and $\quad A_{\alpha}=\bigcup_{i>0} \operatorname{ker}\left((D-\alpha \cdot \mathrm{id})^{i}\right)$, then $A=\bigoplus_{\alpha \in F} A_{\alpha}$ is a grading over the additive group of F (or a subgroup).
- With $\psi \in \operatorname{Aut}(A)$ in place of D we get a grading $A=\bigoplus_{\alpha \in F^{*}} A_{\alpha}$ over the multiplicative group of F.
- Combining the two methods one can get gradings over any f.g. abelian group with no elements of order p^{2}.
- These methods alone are unable to produce genuine $\mathbb{Z} / p^{s} \mathbb{Z}$-gradings with $s>1$, which do occur in practice.
- 'genuine' means that the grading does not simply come from a $\mathbb{Z} / m \mathbb{Z}$-grading with $m=0$ or a larger power of p by viewing the degrees modulo p^{s}.
- The Artin-Hasse exponential series

$$
E_{p}(X)=\exp \left(X+\frac{X^{p}}{p}+\frac{X^{p^{2}}}{p^{2}}+\cdots\right)=\prod_{i=0}^{\infty} \exp \left(\frac{X^{p^{i}}}{p^{i}}\right)
$$

has coefficients in the (rational) p-adic integers.

- For example, the term of degree p is $\frac{(p-1)!+1}{p!} X^{p}$.

Lemma

There exist integers $a_{i j}$, with $a_{i j}=0$ if $p \nmid i+j$, such that for D a nilpotent derivation of A, and for $x, y \in A$, we have

$$
E_{p}(D) x \cdot E_{p}(D) y-E_{p}(D)(x y)=E_{p}(D) \sum_{i, j>0} a_{i j} D^{i} x \cdot D^{j} y
$$

- Proof: $E_{p}(X) \cdot E_{p}(Y)=E_{p}(X+Y) \cdot\left(1+\sum a_{i j} X^{i} Y^{j}\right)$

Artin-Hasse exponentials and gradings

Theorem (grading switching for nilpotent D)

- Let $A=\bigoplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let D be a nilpotent derivation of A, homogeneous of degree d, with $m \mid p d$.

Then

$$
A=\bigoplus_{k} E_{p}(D) A_{k}
$$

is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.
圊 S. Mattarei
Artin-Hasse exponentials of derivations
J. Algebra 294 (2005), 1-18

- $W(1: n)=\bigoplus_{i=-1}^{p^{n}-2} F E_{i}$, with

$$
\left[E_{i}, E_{j}\right]=\left(\binom{i+j+1}{j}-\binom{i+j+1}{i}\right) E_{i+j} .
$$

- Because $\left[E_{-1}, E_{j}\right]=E_{j-1}$ we have $\left(\operatorname{ad} E_{-1}\right)^{p^{n}}=0$.

Theorem

$W(1: n)$ has a genuine $\mathbb{Z} / p^{r} \mathbb{Z}$-grading, for each $1 \leq r \leq n$.

- Proof: Apply grading switching to $A=W(1: n)$ with the \mathbb{Z}-grading viewed modulo p^{r}, and $D=\left(\operatorname{ad} E_{-1}\right)^{p^{r-1}}$. Then $E_{p}(D)$ maps that grading to a $\mathbb{Z} / p^{r} \mathbb{Z}$-grading.

Application: a grading of a Block algebra

Theorem (M. Avitabile and SM, 2005)

The simple Lie algebra $H(2 ; \mathbf{n} ; \Phi(\tau))^{(1)}$ has a grading over a finite cyclic group, for which
'the corresponding infinite dimensional loop algebra is a thin Lie algebra with certain properties.'

- The grading is produced from some known grading by applying the Artin-Hasse exponential of a derivation D which satisfies only $D^{2 p}=0$.
- If $F(X) \in 1+X \mathbb{C}[[X]]$ satisfies $F(X+Y)=F(X) F(Y)$, then $F(X)=\exp (c X)$, for some $c \in \mathbb{C}$.
- Recall that $\left(E_{p}(X+Y)\right)^{-1} E_{p}(X) E_{p}(Y)$ has only terms of total degree a multiple of p.

Theorem (SM, 2006)
Let $F(X) \in 1+X \mathbb{F}_{p}[[X]]$, such that $(F(X+Y))^{-1} F(X) F(Y)$ has only terms of total degree a multiple of p. Then

$$
F(X)=E_{p}(c X) \cdot G\left(X^{p}\right)
$$

for some $c \in \mathbb{F}_{p}$ and $G(X) \in 1+X \mathbb{F}_{p}[[X]]$, where $E_{p}(X)$ is the Artin-Hasse exponential.

Motivation

- What follows appears in
(M. Avitabile and S. Mattarei
Laguerre polynomials of derivations Israel J. Math. 205 (2015), 109-126
- It finds one application (to thin Lie algebras) in

围 M. Avitabile and S. Mattarei
Nottingham Lie algebras with diamonds of finite and infinite type
J. Lie Theory 24 (2014), 268-274

- There we need a cyclic grading of $H(2 ; \mathbf{n} ; \Phi(1))$, an Albert-Zassenhaus algebra, obtained from a standard grading by grading switching with a derivation which is not nilpotent.

Laguerre polynomials

- The (generalized) Laguerre polynomial of degree $n \geq 0$ and parameter α is

$$
L_{n}^{(\alpha)}(X)=\sum_{k=0}^{n}\binom{\alpha+n}{n-k} \frac{(-X)^{k}}{k!} \in \mathbb{Q}[\alpha, X]
$$

- In the classical setting, $\alpha \in \mathbb{R}$ and >-1, and then

$$
\int_{0}^{\infty} e^{-X} X^{\alpha} \cdot L_{n}^{(\alpha)}(X) L_{m}^{(\alpha)}(X) d X=0 \quad \text { iff } n \neq m
$$

- $Y=L_{n}^{(\alpha)}(X) \in \mathbb{R}[X]$ satisfies the differential equation

$$
X Y^{\prime \prime}+(\alpha+1-X) Y^{\prime}+n Y=0
$$

Laguerre polynomials modulo p

Letting p be a prime and $n=p-1$, we find

$$
L_{p-1}^{(\alpha)}(X) \equiv\left(1-\alpha^{p-1}\right) \sum_{k=0}^{p-1} \frac{X^{k}}{(\alpha+k)(\alpha+k-1) \cdots(\alpha+1)}
$$

modulo p, with its special case

$$
L_{p-1}^{(0)}(X) \equiv E(X)=\sum_{k=0}^{p-1} X^{k} / k!\quad(\bmod p)
$$

$$
X \frac{d}{d X} L_{p-1}^{(\alpha)}(X) \equiv(X-\alpha) L_{p-1}^{(\alpha)}(X)+X^{p}-\left(\alpha^{p}-\alpha\right) \quad(\bmod p)
$$

- This is an analogue modulo p of the differential equation $\exp ^{\prime}(X)=\exp (X)$. For $\alpha=0$ it reads

$$
X E^{\prime}(X) \equiv X E(X)+X^{p} \quad(\bmod p)
$$

- Taking a further derivative we would get

$$
X Y^{\prime \prime}+(\alpha+1-X) Y^{\prime}-Y \equiv 0 \quad(\bmod p)
$$

for $Y=L_{p-1}^{(\alpha)}(X)$, which is the classical differential equation read modulo p.

A modular functional equation for $L_{p-1}^{(\alpha)}(X)$
Now we turn the differential equation into an analogue of the functional equation $\exp (X) \cdot \exp (Y)=\exp (X+Y)$.

Theorem

Let α, β, X, Y be indeterminates, and consider the subring $R=\mathbb{F}_{p}\left[\alpha, \beta,\left((\alpha+\beta)^{p-1}-1\right)^{-1}\right]$ of $\mathbb{F}_{p}(\alpha, \beta)$. Then there exists rational expressions $c_{i}(\alpha, \beta) \in R$ such that

$$
\begin{aligned}
L_{p-1}^{(\alpha)}(X) L_{p-1}^{(\beta)}(Y) \equiv L_{p-1}^{(\alpha+\beta)}(X+Y) & \\
& \cdot\left(c_{0}(\alpha, \beta)+\sum_{i=1}^{p-1} c_{i}(\alpha, \beta) X^{i} Y^{p-i}\right)
\end{aligned}
$$

in $R[X, Y]$, modulo the ideal generated by $X^{p}-\left(\alpha^{p}-\alpha\right)$ and $Y^{p}-\left(\beta^{p}-\beta\right)$.

Laguerre polynomials and gradings (a model special case)

Theorem (grading switching with $D^{p^{2}}=D^{p}$)

- Let $A=\bigoplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let $D \in \operatorname{Der}(A)$, homogeneous of degree d, with $m \mid p d$, such that $D^{p^{2}}=D^{p}$;
- let $A=\bigoplus_{a \in \mathbb{F}_{p}} A^{(a)}$ be the decomposition of A into generalized eigenspaces for D;
- assuming $\mathbb{F}_{p^{p}} \subseteq F$, fix $\gamma \in F$ with $\gamma^{p}-\gamma=1$;
- let $\mathcal{L}_{\mathcal{D}}: A \rightarrow A$ be the linear map on A whose restriction to $A^{(a)}$ coincides with $L_{p-1}^{(a \gamma)}(D)$.
Then $A=\bigoplus_{k} \mathcal{L}_{\mathcal{D}}\left(A_{k}\right)$ is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.

Theorem (general grading switching)

- Let $A=\bigoplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let $D \in \operatorname{Der}(A)$, homogeneous of degree d, with $m \mid p d$, such that $D^{p^{r}}$ is diagonalizable over F;
- let $A=\bigoplus_{\rho \in \mathbb{F}} A^{(\rho)}$ be the decomposition of A into generalized eigenspaces for D;
- assuming F large enough, there is a p-polynomial $g(T) \in F[T]$, such that $g(D)^{p}-g(D)=D^{p^{r}}$; set $h(T)=\sum_{i=1}^{r-1} T^{p^{i}}$;
- let $\mathcal{L}_{\mathcal{D}}: A \rightarrow A$ be the linear map on A whose restriction to $A^{(\rho)}$ coincides with $L_{p-1}^{((g(\rho)-h(D))}(D)$.
Then $A=\bigoplus_{k} \mathcal{L}_{\mathcal{D}}\left(A_{k}\right)$ is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.

Comparison with toral switching

- On the subalgebra $A^{(0)}$ the map $\mathcal{L}_{\mathcal{D}}$ coincides with (a variation of) the Artin-Hasse exponential.
- When specialising to the toral switching setting we recover the formulas used there to map the old root spaces to the new ones.
- Toral switching
- applies some $E(\operatorname{ad} x)$ to a torus T to get a new torus (as the maximal torus in the centralizer of $E(\operatorname{ad} x) T$),
- and leaves to that the job of recovering the whole grading as a root space decomposition;
- hence the grading group has exponent p.
- Grading switching
- produces the whole grading at the same time (over a cyclic group, but this is not restrictive);
- applies to nonassociative algebras;
- is not restricted to gradings over groups of exponent p.

