S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponential

Laguerre polynomials

Exponentials of derivations in prime characteristic

Sandro Mattarei

University of Lincoln

Bath, February 2016

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Taking a break from maths:

Summary

Exponentials of derivations

- S Mattarei

- 1 Traditional exponentials in characteristic zero
- 2 Truncated exponentials
- 3 Application to gradings of algebras
- 4 Artin-Hasse exponentials
- **5** Laguerre polynomials

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Derivations and automorphisms

Let A be a non-associative algebra over a field F.

• A derivation of A is a linear map $D: A \rightarrow A$ such that

 $D(a \cdot b) = (Da) \cdot b + a \cdot (Db), \text{ for } a, b \in A.$

Lemma

Assume char(*F*) = 0. If *D* is a nilpotent derivation of *A*, then $\exp D = \sum_{k=0}^{\infty} D^k / k!$ is an automorphism of *A*.

• D being a derivation is equivalent to

$$D \circ m = m \circ (D \otimes \operatorname{id} + \operatorname{id} \otimes D),$$

where $m : A \otimes A \rightarrow A$ is the multiplication map.

• The Lemma follows from

$$\exp(X+Y)=\exp(X)\cdot\exp(Y)$$

after setting $X = D \otimes id$ and $Y = id \otimes D$.

Proof of the Lemma

Exponentials of derivations

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Proof.

Because

$$D^k \circ m = m \circ (D \otimes \mathsf{id} + \mathsf{id} \otimes D)^k$$

for $k \ge 0$, we have

$$(\exp D) \circ m = m \circ \exp(D \otimes \operatorname{id} + \operatorname{id} \otimes D)$$
$$= m \circ \exp(D \otimes \operatorname{id}) \circ \exp(\operatorname{id} \otimes D)$$
$$= m \circ ((\exp D) \otimes \operatorname{id}) \circ (\operatorname{id} \otimes (\exp D))$$

Evaluating on $x \otimes y$, for $x, y \in A$, we get

 $(\exp D)(x \cdot y) = (\exp D)(x) \cdot (\exp D)(y)$

and hence exp D is an automorphism of A.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Example: A polynomial algebra

Example

Let A = F[X], D = d/dX, $\alpha, \beta \in F$. Then

- $\exp(\beta D)f(X) = f(X + \beta)$ (Taylor's formula);
- $\exp(\alpha XD)f(X) = f(e^{\alpha}X)$ (if e^{α} makes sense).
- In fact, all automorphisms of *F*[*X*] as an *F*-algebra are given by substitutions *X* → *aX* + *b*, for *a* ∈ *F*^{*}, *b* ∈ *F*.
- The derivation algebra is much larger,

$$W_1 = \operatorname{Der}(F[X]) = \bigoplus_{k \ge -1} \operatorname{Der}(F[X])_k = \bigoplus_{k \ge -1} F \cdot X^{k+1} D,$$

but exp does not apply to derivations of positive degree.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Example: The Lie algebra W_1

- W₁ = Der(F[X]) is the Lie algebra of polynomial vector fields on the line (usually with F = ℝ or ℂ).
- W_1 has a \mathbb{Z} -graded basis given by the $X^{i+1}D$, where D = d/dX, this element having degree *i*, for $i \ge -1$.
- Lie bracket:

$$[X^{i+1}D, X^{j+1}D] = (j-i)X^{i+j+1}D.$$

In particular, consider the inner derivation ad $D = [D, \cdot]$.

Example

Lie algebra $W_1 = \text{Der}(F[X])$. Then $\exp(\text{ad } D)$ is an automorphism of W_1 . Explicitly:

$$\exp(\operatorname{ad} D)X^{i+1}D = (X+1)^{i+1}D$$

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials From now on assume char(F) = p > 0.

 For exp(D) to make sense we need at least D^p = 0, but then what we really apply is the *truncated exponential*

$$E(D) = \sum_{k=0}^{p-1} D^k / k!$$

- This is defined for any derivation *D* but it *need not* be an automorphism, even when $D^{p} = 0$.
- In the theory of modular Lie algebras, this is *good*: certain *E*(*D*) can be used to pass from some torus to another torus with more desirable properties (*toral switching:* [Winter 1969], [Block-Wilson 1982], [Premet 1986/89]).

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

What fails with the truncated exponential

We compute $E(X) \cdot E(Y)$,

and find

$$E(X) \cdot E(Y) - E(X+Y) = \sum_{k=p}^{2p-2} \sum_{i=k+1-p}^{p-1} \frac{X^i Y^{k-i}}{i!(k-i)!}.$$

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials • The term with k = p in $E(X) \cdot E(Y) - E(X + Y)$ is

$$\frac{1}{p!}\sum_{i=1}^{p-1} \binom{p}{i} X^{i} Y^{p-i} = \frac{(X+Y)^{p} - X^{p} - Y^{p}}{p!}.$$

• Modulo p it can also be written as

$$\sum_{i=1}^{p-1} \frac{(-1)^i}{i} X^i Y^{p-i}.$$

The obstruction formula

Exponentials of derivations

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials • Setting *X* = *D* ⊗ id and *Y* = id ⊗*D* yields the obstruction formula

$$E(D)x \cdot E(D)y - E(D)(xy) = \sum_{k=p}^{2p-2} \sum_{i=k+1-p}^{p-1} \frac{(D^i x)(D^{k-i} y)}{i!(k-i)!},$$

for *D* any derivation of *A*, and $x, y \in A$.

 In particular, if p is odd and D^{(p+1)/2} = 0, then E(D) is an automorphism of A.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Example: A truncated polynomial ring

Example

If
$$A = F[X]/(X^p)$$
 and $D = d/dX$, then $D^p = 0$, and

$$E(D)X^k = (X+1)^k$$
 for $0 \le k < p$.

Here $X^{p} = 0$, but $(X + 1)^{p} = 1$, and hence E(D) is not an automorphism of A.

• However,

$$A = F1 \oplus FX \oplus \cdots \oplus FX^{p-1}$$

is a \mathbb{Z} -grading of A, and E(D) maps it to

$$A = F1 \oplus F(X+1) \oplus \cdots \oplus F(X+1)^{p-1}$$

which is a (*genuine*) $\mathbb{Z}/p\mathbb{Z}$ -grading of *A*.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Why did E(D) turn a grading into another?

Lemma

If D is a derivation of A with $D^p = 0$, for $x, y \in A$ we have

$$E(D)x \cdot E(D)y - E(D)(xy) = E(D)\sum_{i=1}^{p-1} \frac{(-1)^i}{i} (D^i x) (D^{p-i} y).$$

• The sum at the RHS equals the term with *k* = *p* of the obstruction formula. That is the *primary obstruction cocycle*

$$\operatorname{Sq}_p(D) = \sum_{i=1}^{p-1} \frac{D^i}{i!} \smile \frac{D^{p-i}}{(p-i)!} \in Z^2(A, A)$$

which arises in Gerstenhaber's deformation theory.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Truncated exponentials and gradings

Theorem (grading switching with $D^p = 0$)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D be a derivation of A, homogeneous of degree d, with m | pd, such that D^p = 0.

Then

$$A = \bigoplus_k E(D)A_k$$

is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

- In our example with A = F[X]/(X^p), its derivation D = d/dX had degree −1, and A was graded over Z, but then also over Z/mZ with m = p.
- Less trivial application: construction of gradings over a group having elements of order *p*².

S. Mattarei

Ordinary exponential

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials • If $D \in \text{Der}(A)$ and $A_{\alpha} = \bigcup_{i>0} \text{ker}((D - \alpha \cdot \text{id})^i)$,

then $A = \bigoplus_{\alpha \in F} A_{\alpha}$ is a grading over the *additive* group of *F* (or a subgroup).

- With ψ ∈ Aut(A) in place of D we get a grading
 A = ⊕_{α∈F*} A_α over the *multiplicative* group of F.
- Combining the two methods one can get gradings over any f.g. abelian group with no elements of order *p*².
- These methods alone are unable to produce *genuine* $\mathbb{Z}/p^s\mathbb{Z}$ -gradings with s > 1, which do occur in practice.
- 'genuine' means that the grading does not simply come from a Z/mZ-grading with m = 0 or a larger power of p by viewing the degrees modulo p^s.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Weakening the condition $D^{p} = 0$

• The Artin-Hasse exponential series

$${\sf E}_{
ho}(X) = \expigg(X + rac{X^{
ho}}{
ho} + rac{X^{
ho^2}}{
ho^2} + \cdotsigg) = \prod_{i=0}^{\infty} \expigg(rac{X^{
ho^i}}{
ho^i}igg)$$

has coefficients in the (rational) *p*-adic integers.

• For example, the term of degree *p* is $\frac{(p-1)!+1}{p!}X^p$.

Lemma

There exist integers a_{ij} , with $a_{ij} = 0$ if $p \nmid i + j$, such that for *D* a nilpotent derivation of *A*, and for $x, y \in A$, we have

$$E_{
ho}(D)x \cdot E_{
ho}(D)y - E_{
ho}(D)(xy) = E_{
ho}(D)\sum_{i,j>0}a_{ij}D^{i}x \cdot D^{j}y.$$

• Proof: $E_{\rho}(X) \cdot E_{\rho}(Y) = E_{\rho}(X+Y) \cdot \left(1 + \sum a_{ij}X^{i}Y^{j}\right)$

S. Mattarei

Ordinary exponential

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Theorem (grading switching for nilpotent *D*)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D be a nilpotent derivation of A, homogeneous of degree d, with m | pd.

Then

$$A = \bigoplus_k E_p(D)A_k$$

is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

S. Mattarei Artin-Hasse exponentials of derivations *J. Algebra* **294** (2005), 1–18

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Application: gradings of a Zassenhaus algebra

•
$$W(1:n) = \bigoplus_{i=-1}^{p^n-2} FE_i$$
, with

$$[E_i, E_j] = \left(\binom{i+j+1}{j} - \binom{i+j+1}{i} \right) E_{i+j}.$$

• Because $[E_{-1}, E_j] = E_{j-1}$ we have $(ad E_{-1})^{p^n} = 0$.

Theorem

W(1:n) has a genuine $\mathbb{Z}/p^r\mathbb{Z}$ -grading, for each $1 \leq r \leq n$.

• Proof: Apply grading switching to A = W(1 : n) with the \mathbb{Z} -grading viewed modulo p^r , and $D = (\operatorname{ad} E_{-1})^{p^{r-1}}$. Then $E_p(D)$ maps that grading to a $\mathbb{Z}/p^r\mathbb{Z}$ -grading.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials Theorem (M. Avitabile and SM, 2005)

The simple Lie algebra $H(2; \mathbf{n}; \Phi(\tau))^{(1)}$ has a grading over a finite cyclic group, for which 'the corresponding infinite dimensional loop algebra is a thin Lie algebra with certain properties.'

• The grading is produced from some known grading by applying the Artin-Hasse exponential of a derivation D which satisfies only $D^{2p} = 0$.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

An approximate functional equation for $E_{\rho}(X)$

- If $F(X) \in 1 + X\mathbb{C}[[X]]$ satisfies F(X + Y) = F(X)F(Y), then $F(X) = \exp(cX)$, for some $c \in \mathbb{C}$.
- Recall that (*E_p*(*X* + *Y*))⁻¹*E_p*(*X*)*E_p*(*Y*) has only terms of total degree a multiple of *p*.

Theorem (SM, 2006)

Let $F(X) \in 1 + X \mathbb{F}_p[[X]]$, such that $(F(X + Y))^{-1}F(X)F(Y)$ has only terms of total degree a multiple of p. Then

$$F(X) = E_p(cX) \cdot G(X^p),$$

for some $c \in \mathbb{F}_p$ and $G(X) \in 1 + X\mathbb{F}_p[[X]]$, where $E_p(X)$ is the Artin-Hasse exponential.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

• What follows appears in

- M. Avitabile and S. Mattarei Laguerre polynomials of derivations Israel J. Math. 205 (2015), 109–126
- It finds one application (to thin Lie algebras) in
 - M. Avitabile and S. Mattarei Nottingham Lie algebras with diamonds of finite and infinite type

J. Lie Theory 24 (2014), 268–274

 There we need a cyclic grading of *H*(2; **n**; Φ(1)), an Albert-Zassenhaus algebra, obtained from a standard grading by grading switching with a derivation which is not nilpotent.

Motivation

Laguerre polynomials

Exponentials of derivations

S. Mattarei

Ordinary exponentials

Truncated exponentials

Grading

Artin-Hasse exponentials

Laguerre polynomials

 The (generalized) Laguerre polynomial of degree n ≥ 0 and parameter α is

$$L_n^{(\alpha)}(X) = \sum_{k=0}^n \binom{\alpha+n}{n-k} \frac{(-X)^k}{k!} \in \mathbb{Q}[\alpha, X].$$

• In the classical setting, $\alpha \in \mathbb{R}$ and > -1, and then

$$\int_0^\infty e^{-X} X^\alpha \cdot L_n^{(\alpha)}(X) L_m^{(\alpha)}(X) \, dX = 0 \qquad \text{iff } n \neq m.$$

• $Y = L_n^{(\alpha)}(X) \in \mathbb{R}[X]$ satisfies the differential equation

$$XY'' + (\alpha + 1 - X)Y' + nY = 0.$$

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Laguerre polynomials modulo p

Letting p be a prime and n = p - 1, we find

$$L_{p-1}^{(\alpha)}(X) \equiv (1 - \alpha^{p-1}) \sum_{k=0}^{p-1} \frac{X^k}{(\alpha + k)(\alpha + k - 1) \cdots (\alpha + 1)}$$

modulo p, with its special case

$$L_{p-1}^{(0)}(X) \equiv E(X) = \sum_{k=0}^{p-1} X^k / k! \pmod{p}.$$

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

$$X\frac{d}{dX}L_{p-1}^{(\alpha)}(X) \equiv (X-\alpha)L_{p-1}^{(\alpha)}(X) + X^p - (\alpha^p - \alpha) \pmod{p}$$

 This is an analogue modulo *p* of the differential equation exp'(X) = exp(X). For α = 0 it reads

$$XE'(X) \equiv XE(X) + X^p \pmod{p}.$$

• Taking a further derivative we would get

$$XY'' + (\alpha + 1 - X)Y' - Y \equiv 0 \pmod{p}$$

for $Y = L_{p-1}^{(\alpha)}(X)$, which is the classical differential equation read modulo *p*.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

A modular functional equation for $L_{p-1}^{(\alpha)}(X)$

Now we turn the differential equation into an analogue of the functional equation $\exp(X) \cdot \exp(Y) = \exp(X + Y)$.

Theorem

Let α, β, X, Y be indeterminates, and consider the subring $R = \mathbb{F}_p[\alpha, \beta, ((\alpha + \beta)^{p-1} - 1)^{-1}]$ of $\mathbb{F}_p(\alpha, \beta)$. Then there exists rational expressions $c_i(\alpha, \beta) \in R$ such that

$$\begin{split} L_{p-1}^{(\alpha)}(X)L_{p-1}^{(\beta)}(Y) &\equiv L_{p-1}^{(\alpha+\beta)}(X+Y) \cdot \\ &\cdot \left(c_0(\alpha,\beta) + \sum_{i=1}^{p-1} c_i(\alpha,\beta) X^i Y^{p-i}\right) \end{split}$$

in R[X, Y], modulo the ideal generated by $X^{p} - (\alpha^{p} - \alpha)$ and $Y^{p} - (\beta^{p} - \beta)$.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Laguerre polynomials and gradings (a model special case)

Theorem (grading switching with $D^{p^2} = D^p$)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D ∈ Der(A), homogeneous of degree d, with m | pd, such that D^{p²} = D^p;
- let A = ⊕_{a∈𝔽p} A^(a) be the decomposition of A into generalized eigenspaces for D;
- assuming $\mathbb{F}_{p^{p}} \subseteq F$, fix $\gamma \in F$ with $\gamma^{p} \gamma = 1$;
- let L_D : A → A be the linear map on A whose restriction to A^(a) coincides with L^(aγ)_{p-1}(D).

Then $A = \bigoplus_k \mathcal{L}_{\mathcal{D}}(A_k)$ is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

S. Mattarei

Ordinary exponential

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Theorem (general grading switching)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D ∈ Der(A), homogeneous of degree d, with m | pd, such that D^{p^r} is diagonalizable over F;
- let A = ⊕_{ρ∈F} A^(ρ) be the decomposition of A into generalized eigenspaces for D;
- assuming F large enough, there is a p-polynomial $g(T) \in F[T]$, such that $g(D)^p g(D) = D^{p^r}$; set $h(T) = \sum_{i=1}^{r-1} T^{p^i}$;
- let L_D : A → A be the linear map on A whose restriction to A^(ρ) coincides with L^{((g(ρ)−h(D))}_{p−1}(D).

Then $A = \bigoplus_k \mathcal{L}_{\mathcal{D}}(A_k)$ is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

S. Mattarei

Ordinary exponentials

Truncated exponentials

Gradings

Artin-Hasse exponentials

Laguerre polynomials

Comparison with toral switching

- On the subalgebra $A^{(0)}$ the map $\mathcal{L}_{\mathcal{D}}$ coincides with (a variation of) the Artin-Hasse exponential.
- When specialising to the toral switching setting we recover the formulas used there to map the old root spaces to the new ones.
- Toral switching
 - applies some E(ad x) to a torus T to get a new torus (as the maximal torus in the centralizer of E(ad x)T),
 - and leaves to that the job of recovering the whole grading as a root space decomposition;
 - hence the grading group has exponent *p*.
- Grading switching
 - produces the whole grading at the same time (over a cyclic group, but this is not restrictive);
 - applies to nonassociative algebras;
 - is not restricted to gradings over groups of exponent *p*.