Quantum cluster algebras from geometry

Marta Mazzocco

Based on Chekhov-M.M. arXiv:1509.07044 and Chekhov-M.M.-Rubtsov arXiv:1511.03851

Ptolemy Relation

$a a^{\prime}+b b^{\prime}=c c^{\prime}$

Ptolemy Relation

Ptolemy Relation

Ptolemy Relation

Ptolemy Relation

Ptolemy Relation

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \rightarrow\left(x_{1}^{\prime}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)
$$

$$
x_{1} x_{1}^{\prime}=x_{9} x_{7}+x_{8} x_{2}
$$

Ptolemy Relation

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \rightarrow\left(x_{1}^{\prime}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)
$$

Ptolemy Relation

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \rightarrow\left(x_{1}^{\prime}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \\
& \left(x_{1}^{\prime}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right) \rightarrow\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)
\end{aligned}
$$

Cluster algebra

- We call a set of n numbers $\left(x_{1}, \ldots, x_{n}\right)$ a cluster of rank n.
- A seed consists of a cluster and an exchange matrix B, i.e. a skew-symmetrisable matrix with integer entries.
- A mutation is a transformation

$$
\begin{gathered}
\mu_{i}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right), \mu_{i}: B \rightarrow B^{\prime} \text { where } \\
x_{i} x_{i}^{\prime}=\prod_{j: b_{i j}>0} x_{j}^{b_{i j}}+\prod_{j: b_{i j}<0} x_{j}^{-b_{i j}}, \quad x_{j}^{\prime}=x_{j} \forall j \neq i .
\end{gathered}
$$

Definition

A cluster algebra of rank n is a set of all seeds $\left(x_{1}, \ldots, x_{n}, B\right)$ related to one another by sequences of mutations μ_{1}, \ldots, μ_{k}. The cluster variables x_{1}, \ldots, x_{k} are called exchangeable, while x_{k+1}, \ldots, x_{n} are called frozen. [Fomin-Zelevnsky 2002].

Example

Cluster algebra of rank 9 with 3 exchangeable variables x_{1}, x_{2}, x_{3} and 6 frozen ones x_{4}, \ldots, x_{9}.

Outline

Are all cluster algebras of geometric origin?

- Introduce bordered cusps
- Geodesics length functions on a Riemann surface with bordered cusps form a cluster algebra.

All Berenstein-Zelevinsky cluster algebras are geometric

Teichmüller space

For Riemann surfaces with holes:

$$
\operatorname{Hom}\left(\pi_{1}(\Sigma), \mathbb{P} S L_{2}(\mathbb{R})\right) / G L_{2}(\mathbb{R})
$$

Idea:

- Teichmüller theory for a Riemann surfaces with holes is well understood.
- Take confluences of holes to obtain cusps.

- Develop bordered cusped Teichmüller theory asymptotically.

This will provide cluster algebra of geometric type

Poincaré uniformsation

$$
\Sigma=\mathbb{H} / \Delta,
$$

where Δ is a Fuchsian group, i.e. a discrete sub-group of $\mathbb{P S L} L_{2}(\mathbb{R})$.

Examples

Poincaré uniformsation

$$
\Sigma=\mathbb{H} / \Delta,
$$

where Δ is a Fuchsian group, i.e. a discrete sub-group of $\mathbb{P S L} L_{2}(\mathbb{R})$.

Examples

Theorem

Elements in $\pi_{1}\left(\Sigma_{g, s}\right)$ are in 1-1 correspondence with conjugacy classes of closed geodesics.

Coordinates: geodesic lengths

Theorem

The geodesic length functions form an algebra with multiplication:

$$
G_{\gamma} G_{\tilde{\gamma}}=G_{\gamma \tilde{\gamma}}+G_{\gamma \tilde{\gamma}^{-1}} .
$$

Coordinates: geodesic lengths

Theorem

The geodesic length functions form an algebra with multiplication:

$$
G_{\gamma} G_{\tilde{\gamma}}=G_{\gamma \tilde{\gamma}}+G_{\gamma \tilde{\gamma}^{-1}} .
$$

Coordinates: geodesic lengths

Theorem

The geodesic length functions form an algebra with multiplication:

$$
G_{\gamma} G_{\tilde{\gamma}}=G_{\gamma \tilde{\gamma}}+G_{\gamma \tilde{\gamma}^{-1}} .
$$

Poisson structure

$$
\left\{G_{\gamma}, G_{\tilde{\gamma}}\right\}=\frac{1}{2} G_{\gamma \tilde{\gamma}}-\frac{1}{2} G_{\gamma \tilde{\gamma}-1} .
$$

Two types of chewing-gum moves

- Connected result:

- Disconnected result:

Chewing gum

- $\left(\sinh \frac{d_{H}\left(z_{1}, z_{2}\right)}{2}\right)^{2}=\frac{\left|z_{1}-z_{2}\right|^{2}}{4 \Im z_{1} \Im z_{2}}$
- $e^{d_{\mathbb{H}}\left(z_{1}, z_{2}\right)} \sim \frac{1}{I_{1} I_{2} \epsilon^{2}}+\frac{\left(I_{1}+l_{2}\right)^{2}}{I_{1} I_{2}}+\mathcal{O}(\epsilon)$,
- $e^{d_{\mathbb{H}}\left(z_{1}, z_{3}\right)} \sim e^{d_{\mathbb{H}}\left(z_{1}, z_{2}\right)}+\frac{1}{l_{1} l_{2}}+\mathcal{O}(\epsilon)$.
\Rightarrow Rescale all geodesic lengths by e^{ϵ} and take the limit $\epsilon \rightarrow 0$.
[Chekhov-M.M. arXiv:1509.07044]

$$
G_{\tilde{\gamma}_{e}} G_{\tilde{\gamma}_{f}}=G_{\tilde{\gamma}_{g}} G_{\tilde{\gamma}_{c}}+G_{\tilde{\gamma}_{b}} G_{\tilde{\gamma}_{d}}
$$

Poisson bracket

- Introduce cusped laminations

- Compute Poisson brackets between arcs in the cusped lamination.

Theorem

Given a Riemann surface of any genus, any number of holes and at least one cusp on a boundary, there always exists a complete cusped lamination [Chekhov-M.M. ArXiv:1509.07044].

Poisson structure

Theorem

The Poisson algebra of the λ-lengths of a complete cusped lamination is a cluster algebra [Chekhov-M.M. Arxiv:1509.07044].

outside

Rest of Riemann surlace

outside

Rest of $_{\text {Riemann }}$ Ruiemann
surlace
$\left\{g_{s_{i}, t_{j}}, g_{p_{r}, q_{l}}\right\}=g_{s_{i}, t_{j}} g_{p_{r}, q_{l}} \mathcal{I}_{s_{i}, t_{j}, p_{r}, q_{l}}$
$\mathcal{I}_{s_{i}, t_{j}, p_{r}, q_{l}}=\frac{\epsilon_{i-r} \delta_{s, p}+\epsilon_{j-r} \delta_{t, p}+\epsilon_{i-l} \delta_{s, q}+\epsilon_{j-l} \delta_{t, q}}{4}$

Quantisation

For standard geodesic lengths $G_{\gamma} \rightarrow G_{\gamma}^{\hbar}$ [Chekhov-Fock' '99]:

For arcs $g_{s_{i}, t_{j}} \rightarrow g_{s_{i}, t_{j}}^{\hbar}$:

$$
q^{\mathcal{I}_{s_{i}, t_{j}, p_{r}, q_{l}}} g_{s_{i}, t_{j}}^{\hbar} g_{p_{r}, q_{l}}^{\hbar}=g_{p_{r}, q_{l}}^{\hbar} g_{s_{i}, t_{j}}^{\hbar} q^{\mathcal{P}_{r_{r}, q_{l}, s_{i}, t_{j}}}
$$

This identifies the geometric basis of the quantum cluster algebras introduced by Berenstein and Zelevinsky.

Decorated character variety

What is the character variety of a Riemann surface with cusps on its boundary?
For Riemann surfaces with holes:

$$
\operatorname{Hom}\left(\pi_{1}(\Sigma), \mathbb{P} S L_{2}(\mathbb{C})\right) / G L_{2}(\mathbb{C})
$$

For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-M.M.-Rubtsov arXiv:1511.03851]

- Replace $\pi_{1}(\Sigma)$ with the groupoid of all paths $\gamma_{i j}$ from cusp i to cusp j modulo homotopy.
- Replace tr by two characters: tr and tr_{K}.

Shear coordinates in the Teichmüller space

Fatgraph:

Decompose each hyperbolic element in Right, Left and Edge matrices Fock, Thurston
$R:=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right), \quad L:=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$,
$X_{y}:=\left(\begin{array}{cc}0 & -\exp \left(\frac{y}{2}\right) \\ \exp \left(-\frac{y}{2}\right) & 0\end{array}\right)$.

The three geodesic lengths: $x_{i}=\operatorname{Tr}\left(\gamma_{j k}\right)$
$x_{1}=e^{s_{2}+s_{3}}+e^{-s_{2}-s_{3}}+e^{-s_{2}+s_{3}}+\left(e^{\frac{p_{2}}{2}}+e^{-\frac{p_{2}}{2}}\right) e^{s_{3}}+\left(e^{\frac{p_{3}}{2}}+e^{-\frac{p_{3}}{2}}\right) e^{-s_{2}}$
$x_{2}=e^{s_{3}+s_{1}}+e^{-s_{3}-s_{1}}+e^{-s_{3}+s_{1}}+\left(e^{\frac{p_{3}}{2}}+e^{-\frac{p_{3}}{2}}\right) e^{s_{1}}+\left(e^{\frac{p_{1}}{2}}+e^{-\frac{p_{1}}{2}}\right) e^{-s_{3}}$
$x_{3}=e^{s_{1}+s_{2}}+e^{-s_{1}-s_{2}}+e^{-s_{1}+s_{2}}+\left(e^{\frac{p_{1}}{2}}+e^{-\frac{p_{1}}{2}}\right) e^{s_{2}}+\left(e^{\frac{p_{2}}{2}}+e^{-\frac{p_{2}}{2}}\right) e^{-s_{1}}$
$\left\{x_{1}, x_{2}\right\}=2 x_{3}+\omega_{3}, \quad\left\{x_{2}, x_{3}\right\}=2 x_{1}+\omega_{1}, \quad\left\{x_{3}, x_{1}\right\}=2 x_{2}+\omega_{2}$.

$\gamma_{b}=X\left(k_{1}\right) R X\left(s_{3}\right) R X\left(s_{2}\right) R X\left(p_{2}\right) R X\left(s_{2}\right) L X\left(s_{3}\right) L X\left(k_{1}\right)$
BUT its length is $b=\operatorname{tr}_{K}\left(\gamma_{b}\right)=\operatorname{tr}(b K), K=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)$

$\left\{g_{s_{i}, t_{j}}, g_{p_{r}, q_{l}}\right\}=g_{s_{i}, t_{j}} g_{p_{r}, q_{l}} \frac{\epsilon_{i-r} \delta_{s, p}+\epsilon_{j-r} \delta_{t, p}+\epsilon_{i-l} \delta_{s, q}+\epsilon_{j-l} \delta_{t, q}}{4}$

$$
\begin{aligned}
\{b, d\} & =\left\{g_{1_{3}, 1_{4}}, g_{2_{1}, 1_{8}}\right\} \\
& =g_{1_{3}, 1_{4}} g_{2_{1}, 1_{8}} \frac{\epsilon_{3-1} \delta_{1,2}+\epsilon_{4-1} \delta_{1,2}+\epsilon_{3-8} \delta_{1,1}+\epsilon_{4-8} \delta_{1,1}}{4} \\
& =-b d \frac{1}{2}
\end{aligned}
$$

Mutations

Example

Riemann sphere with three holes, and two cusps on one of the holes. Frozen variables: c, d, e. Exchangeable variables: a, b.

$a=g_{1_{5}, 1_{6}}, b=g_{1_{3}, 1_{4}}, d=g_{1_{8}, 2_{2}},\{a, b\}=a b,\{a, d\}=-\frac{a d}{2}$.
Sub-algebra of functions that commute with the frozen variables
Chekhov-M.M.-Rubtsov arXiv:1511.03851:
$\left\{x_{1}, x_{2}\right\}=2 x_{3}+\omega_{3}, \quad\left\{x_{2}, x_{3}\right\}=2 x_{1}+\omega_{1}, \quad\left\{x_{3}, x_{1}\right\}=2 x_{2}+\omega_{2}$.

Conclusion

- A Riemann surface of genus g, n holes and k cusps on the boundary admits a complete cusped lamination of $6 g-6+2 n+2 k$ arcs which triangulate it.
- Any other cusped lamination is obtained by the cluster algebra mutations.
- By quantisation: quantum cluster algebra of geometric type.
- New notion of decorated character variety

Many thanks for your attention!!!

