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Harmonic Map

v

Let f: T2 — S3 = SU(2) be a harmonic map.

A harmonic map is a critical point of the energy functional.

Long historical interest in minimal and constant curvature surfaces. A
surface is CMC iff its Gauss map is harmonic.

Minimal surfaces = conformal harmonic = CMC with zero mean
curvature.

Thought to be quite rare; Hopf Conjecture. Wente (1984)
constructed immersed CMC tori.

A classification of such maps is given by spectral data (X, ©, 8, E)
(Hitchin, Pinkall-Sterling, Bobenko).



S
Spectral Data (¥, ©, e, E)

» Spectral curve ¥ is a real (possibly singular) hyperelliptic curve,
=[] e -ai)

» ©, 0 are differentials with double poles and no residues over ¢ =0,00.
» Period conditions: The periods of ©, 8 must lie in 27iZ.

» Closing conditions: for v a path in ¥ between the two points over
¢ =1, and y_ between the points over ( = —1 then

/ e,/ @,/ é,/ 6 € 27iZ.
T+ v- T+ v-

» E is a quaternionic line bundle of a certain degree.



CMC Moduli Space (Kilian-Schmidt-Schmitt)

» One can vary the line bundle E, so called isospectral deformations.

» CMC non-isospectral deformations. Maps come in one dimensional
families.

> MSEMC is disjoint lines parametrised by H € R

» Components MICMC end in either MOCMC or bouquet of spheres.



Harmonic Map Example
> f(x+iy) = exp(—4xX) exp(4yY), for

0 1 0 ¢
x=(% 0. v=(% 9. o

» This map is periodic. Formula well-defined on any torus C/I', where '
is a sublattice of this periodicity lattice.
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» Holding either x or y constant gives circles.

» As 0 — R*, image collapses to a circle.

» As § — 0, 00, the periodicity lattice degenerates.




Constructing Spectral Data

» Up to translations, f is determined by the Lie algebra valued map
f~1df, the pullback of the Mauer-Cartan form.

» Decompose into its dz and dz parts f ~1df = 2($ — &*).

» Use f to pull pack the Levi-Civita connection on SU(2) to get a

connection A.
» Given a pair (¥, A), we can make a family of flat SL(2,C)
connections. Let ( € C* be the spectral parameter and define

de = da+ (1o — (o

Family of connections is
de=d— [(X—iY)+ (X +iY)] dz
—[(X+iY)+ (X —iY)]dz
=d— ¢ (X +iY)+ (X —iY)] [dz + ¢dZ]



Holonomy

» Because the connections are flat, we can define holonomy for them.

» Pick a base point and generators for the fundamental group, ie take
two loops around the torus.

» Parallel translating vectors with d: around one loop gives a linear map
on the tangent space at the base point. Call this H({). Around the
other loop call the transformation H(().

H-(¢) = exp {¢TH (X +iY) + {(X = iY)] [7 + (7]}



Spectral curve

» The fundamental group of T2 is abelian, so H and H commute.
Therefore they have common eigenspaces.

> Define
¥ = closure {(¢,L) € C* x CP! | L is an eigenline for H(¢)}

> The eigenvalues of H(¢) are u(¢), #(¢)~t. The characteristic
polynomial is
p? = (trH)p+1=0

» Using the compactness of the torus, one can show that (tr H)? — 4
vanishes to odd order only finitely many times. The spectral curve is
always finite genus for harmonic maps 72 — S3.



» From example

= {<< [i (1-i0)(¢—a): V—(”"le‘&o])}

for .
o 140 - 5_I,l+a
=146 Cl-a

» Can write equation for ¥ as

n° = (¢ —a)(1 - a)
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S
The Differentials

> The differentials come from the eigenvalues 1(¢), fi(¢) of H(¢), ().
These functions have essential singularities.

» However log u, log fi are holomorphic on C* and have simple poles
above ( = 0, co.

> dlog 1 removes the additive ambiguity of log. Thus we set
© =dlogp and © =dlogfi

» In order to recover the eigenvalues, one requires residue free double
poles over ( = 0,00 and that the periods of the differentials lie in
2mi.
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» The eigenvalues of H,(() are

pr(Com) = exp [i |1 = id| (7 +7C)n¢ Y] -
» The corresponding differential is therefore

©,=ill—id| d[(r+7)n¢ ]

» On any given spectral curve, there is a lattice of differentials that may
be used in spectral data. Different choices corresponds to coverings of
the same image.
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S
Moduli Space M

v

Every spectral curve in genus zero arises from this class of examples.

Choice amounts to branch point a € D? and choice of pair of
differentials from a lattice

v

MOZHD2

» Image degenerates: 6 — R* & o — S\ {+1}.

v

Lattice degenerates: § -+ 0,00 < o — +£1.

v

Two dimensional (in contrast to CMC case).
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IENE—————
Moduli Space M,

Theorem

At a point (£,01,02) € M, corresponding to a nonconformal harmonic
map, if ¥ is nonsingular, and ©' and ©2 vanish simultaneously at most
four times on X and never at a ramification point of ¥, then Mg is a
two-dimensional manifold in a neighbourhood of this point.

Theorem

At a point (¥,0!,0?) ¢ My corresponding to a conformal harmonic
map, if ¥ is nonsingular, and @' and ©? never vanish simultaneously on ¥
then Mg is a two-dimensional manifold in a neighbourhood of this point.

» Proof uses Whitham deformations.
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Genus One

. . _ 1 5-1
Spectral curves have two pairs of branch points o, 5, &1, . Let

Ay = {(a,8) € D2 x D? | a # B}

Not every spectral curve has differentials that meet all the conditions.

v

v

There is always an exact differential ©F that meets all conditions
except closing condition.

v

\4

A multiple of ©F meets the closing condition if and only if

_ 1ol -5
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» Fix a value of p € Q. Let A;(p) = S~Y(p). It is an open three-ball
with a line removed.

» Rugby football shaped. Ends are («, 5) = (1,—-1),(—1,1). Seams are
points with both «, 8 in S*.
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» There is a second differential ©F with periods 0 and 27i. Every
differential that meets period conditions is a combination
ROE + Z6F.

» Define T, up to periods of ©F, by

27TiT::p/ @P—/ oFf
Y+

» A curve admits spectral data if and only if both S€ Q" and T € Q
(and the latter is well-defined).

» The connected components of the space of spectral curves are annuli
if S=1 and strips (0,1) x R if S # 1.

» The connected components of the space of spectral data M are all
strips (0,1) x R.
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S
Method of Proof

v

Move to the universal cover of the parameter space
Tp: Al(p) — Al(p).

> Define a function T on Aj;(p) such that T = T o mp.
In the right coordinates, the level sets of T are graphs over (0,1) x R.

v

» Quotient by deck transformations to recover space of spectral curves.

Consider how the lattice of differentials change as you change the
spectral curve.

v
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S
Interior Boundary M,

» M;j N Aj(p) spirals around the diagonal line {a = 8} N A1 (p).

» Just a single point on this diagonal line is reachable along a finite
path.

» This limit seems not to be well-defined.
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S
Exterior Boundary M,

» This boundary is where a or /3 tends to S*.

» A singular curve with a double point over the unit circle corresponds
to genus zero spectral data via normalisation (blow-up).

» We can consider Mg C OM;.

» Each face of the football A;(p) is a disc, identified with the space of
genus zero spectral curves.

» Edges of A;(p) correspond to all branch points on unit circle, ie a
map to a circle.
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Further questions

» Can we identify geometric properties that parameterise M?

> Is Mg U M connected? No. What other maps need to be included
to make it connected?

» Can one deform a harmonic map to a circle to a harmonic map of any
spectral degree?

» How does M, sit inside the moduli space of harmonic cylinders?
Harmonic planes?

» What deformations lead to topological changes of the image of the
harmonic map?
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