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Harmonic Map

I Let f : T 2 → S3 = SU(2) be a harmonic map.

I A harmonic map is a critical point of the energy functional.

I Long historical interest in minimal and constant curvature surfaces. A
surface is CMC iff its Gauss map is harmonic.

I Minimal surfaces = conformal harmonic = CMC with zero mean
curvature.

I Thought to be quite rare; Hopf Conjecture. Wente (1984)
constructed immersed CMC tori.

I A classification of such maps is given by spectral data (Σ,Θ, Θ̃,E )
(Hitchin, Pinkall-Sterling, Bobenko).
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Spectral Data (Σ,Θ, Θ̃,E )

I Spectral curve Σ is a real (possibly singular) hyperelliptic curve,

η2 =
∏

(ζ − αi )(1− ᾱiζ)

I Θ, Θ̃ are differentials with double poles and no residues over ζ = 0,∞.

I Period conditions: The periods of Θ, Θ̃ must lie in 2πiZ.

I Closing conditions: for γ+ a path in Σ between the two points over
ζ = 1, and γ− between the points over ζ = −1 then∫

γ+

Θ,

∫
γ−

Θ,

∫
γ+

Θ̃,

∫
γ−

Θ̃ ∈ 2πiZ.

I E is a quaternionic line bundle of a certain degree.
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CMC Moduli Space (Kilian-Schmidt-Schmitt)
I One can vary the line bundle E , so called isospectral deformations.
I CMC non-isospectral deformations. Maps come in one dimensional

families.
I MCMC

0 is disjoint lines parametrised by H ∈ R

I Components MCMC
1 end in either MCMC

0 or bouquet of spheres.
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Harmonic Map Example
I f (x + iy) = exp(−4xX) exp(4yY), for

X =

(
0 1
−1 0

)
, Y =

(
0 δ
−δ 0

)
, Im δ > 0

I This map is periodic. Formula well-defined on any torus C/Γ, where Γ
is a sublattice of this periodicity lattice.

Re z

Im z

π
4

π
4|δ|
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I Holding either x or y constant gives circles.

I As δ → R×, image collapses to a circle.

I As δ → 0,∞, the periodicity lattice degenerates.
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Constructing Spectral Data
I Up to translations, f is determined by the Lie algebra valued map

f −1df , the pullback of the Mauer-Cartan form.
I Decompose into its dz and dz̄ parts f −1df = 2(Φ− Φ∗).
I Use f to pull pack the Levi-Civita connection on SU(2) to get a

connection A.
I Given a pair (Φ,A), we can make a family of flat SL(2,C)

connections. Let ζ ∈ C× be the spectral parameter and define

dζ := dA + ζ−1Φ− ζΦ∗

Family of connections is

dζ = d −
[
(X− iY) + ζ−1(X + iY)

]
dz

− [(X + iY) + ζ(X− iY)] dz̄

= d − ζ−1 [(X + iY) + ζ(X− iY)] [dz + ζdz̄ ]
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Holonomy

I Because the connections are flat, we can define holonomy for them.

I Pick a base point and generators for the fundamental group, ie take
two loops around the torus.

I Parallel translating vectors with dζ around one loop gives a linear map
on the tangent space at the base point. Call this H(ζ). Around the
other loop call the transformation H̃(ζ).

Hτ (ζ) = exp
{
ζ−1 [(X + iY) + ζ(X− iY)] [τ + ζτ̄ ]

}
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Spectral curve

I The fundamental group of T 2 is abelian, so H and H̃ commute.
Therefore they have common eigenspaces.

I Define

Σ = closure
{

(ζ, L) ∈ C× × CP1 | L is an eigenline for H(ζ)
}

I The eigenvalues of H(ζ) are µ(ζ), µ(ζ)−1. The characteristic
polynomial is

µ2 − (trH)µ+ 1 = 0

I Using the compactness of the torus, one can show that (trH)2 − 4
vanishes to odd order only finitely many times. The spectral curve is
always finite genus for harmonic maps T 2 → S3.
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I From example

Σ =

{(
ζ,

[
±
√

(1− iδ)(ζ − α) :
√
−(1 + i δ̄)(1− ᾱζ)

])}
for

α =
1 + iδ

−1 + iδ
⇔ δ = i

1 + α

1− α
I Can write equation for Σ as

η2 = (ζ − α)(1− ᾱζ)
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The Differentials

I The differentials come from the eigenvalues µ(ζ), µ̃(ζ) of H(ζ), H̃(ζ).
These functions have essential singularities.

I However logµ, log µ̃ are holomorphic on C× and have simple poles
above ζ = 0,∞.

I d logµ removes the additive ambiguity of log. Thus we set
Θ = d logµ and Θ̃ = d log µ̃

I In order to recover the eigenvalues, one requires residue free double
poles over ζ = 0,∞ and that the periods of the differentials lie in
2πiZ.
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I The eigenvalues of Hτ (ζ) are

µτ (ζ, η) = exp
[
i |1− iδ| (τ + τ̄ ζ)ηζ−1

]
.

I The corresponding differential is therefore

Θτ = i |1− iδ| d
[
(τ + τ̄ ζ)ηζ−1

]
.

I On any given spectral curve, there is a lattice of differentials that may
be used in spectral data. Different choices corresponds to coverings of
the same image.
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Moduli Space M0

I Every spectral curve in genus zero arises from this class of examples.

I Choice amounts to branch point α ∈ D2 and choice of pair of
differentials from a lattice

M0 =
∐

D2

I Image degenerates: δ → R× ⇔ α→ S1 \ {±1}.
I Lattice degenerates: δ → 0,∞ ⇔ α→ ±1.

I Two dimensional (in contrast to CMC case).
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Moduli Space Mg

Theorem

At a point (Σ,Θ1,Θ2) ∈Mg corresponding to a nonconformal harmonic
map, if Σ is nonsingular, and Θ1 and Θ2 vanish simultaneously at most
four times on Σ and never at a ramification point of Σ, then Mg is a
two-dimensional manifold in a neighbourhood of this point.

Theorem

At a point (Σ,Θ1,Θ2) ∈Mg corresponding to a conformal harmonic
map, if Σ is nonsingular, and Θ1 and Θ2 never vanish simultaneously on Σ
then Mg is a two-dimensional manifold in a neighbourhood of this point.

I Proof uses Whitham deformations.
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Genus One

I Spectral curves have two pairs of branch points α, β, α−1, β
−1

. Let
A1 =

{
(α, β) ∈ D2 × D2 | α 6= β

}
.

I Not every spectral curve has differentials that meet all the conditions.

I There is always an exact differential ΘE that meets all conditions
except closing condition.

I A multiple of ΘE meets the closing condition if and only if

S(α, β) :=
|1− α| |1− β|
|1 + α| |1 + β|

∈ Q+
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I Fix a value of p ∈ Q+. Let A1(p) = S−1(p). It is an open three-ball
with a line removed.

I Rugby football shaped. Ends are (α, β) = (1,−1), (−1, 1). Seams are
points with both α, β in S1.
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I There is a second differential ΘP with periods 0 and 2πi . Every
differential that meets period conditions is a combination
RΘE + ZΘP .

I Define T , up to periods of ΘP , by

2πiT := p

∫
γ−

ΘP −
∫
γ+

ΘP

I A curve admits spectral data if and only if both S ∈ Q+ and T ∈ Q
(and the latter is well-defined).

I The connected components of the space of spectral curves are annuli
if S = 1 and strips (0, 1)× R if S 6= 1.

I The connected components of the space of spectral data M1 are all
strips (0, 1)× R.
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Method of Proof

I Move to the universal cover of the parameter space

πp : Ã1(p)→ A1(p).

I Define a function T̃ on Ã1(p) such that T̃ = T ◦ πp.

I In the right coordinates, the level sets of T̃ are graphs over (0, 1)×R.

I Quotient by deck transformations to recover space of spectral curves.

I Consider how the lattice of differentials change as you change the
spectral curve.
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Interior Boundary M1

I M1 ∩ A1(p) spirals around the diagonal line {α = β} ∩ A1(p).

I Just a single point on this diagonal line is reachable along a finite
path.

I This limit seems not to be well-defined.
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Exterior Boundary M1

I This boundary is where α or β tends to S1.

I A singular curve with a double point over the unit circle corresponds
to genus zero spectral data via normalisation (blow-up).

I We can consider M0 ⊂ ∂M1.

I Each face of the football A1(p) is a disc, identified with the space of
genus zero spectral curves.

I Edges of A1(p) correspond to all branch points on unit circle, ie a
map to a circle.
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Further questions

I Can we identify geometric properties that parameterise M?

I Is M0 ∪M1 connected? No. What other maps need to be included
to make it connected?

I Can one deform a harmonic map to a circle to a harmonic map of any
spectral degree?

I How does Mg sit inside the moduli space of harmonic cylinders?
Harmonic planes?

I What deformations lead to topological changes of the image of the
harmonic map?
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