Moduli Space of Harmonic Tori in S^3

Ross Ogilvie

School of Mathematics and Statistics University of Sydney

June 2017

Harmonic Map

- Let $f : T^2 \to S^3 = SU(2)$ be a harmonic map.
- A harmonic map is a critical point of the energy functional.
- Long historical interest in minimal and constant curvature surfaces. A surface is CMC iff its Gauss map is harmonic.
- Minimal surfaces = conformal harmonic = CMC with zero mean curvature.
- Thought to be quite rare; Hopf Conjecture. Wente (1984) constructed immersed CMC tori.
- A classification of such maps is given by spectral data (Σ, Θ, Θ, E) (Hitchin, Pinkall-Sterling, Bobenko).

Spectral Data $(\Sigma, \Theta, \tilde{\Theta}, E)$

• Spectral curve Σ is a real (possibly singular) hyperelliptic curve,

$$\eta^2 = \prod (\zeta - \alpha_i)(1 - \bar{\alpha}_i \zeta)$$

> Θ, Θ̃ are differentials with double poles and no residues over ζ = 0, ∞.
 > Period conditions: The periods of Θ, Θ̃ must lie in 2πiZ.

► Closing conditions: for γ_+ a path in Σ between the two points over $\zeta = 1$, and γ_- between the points over $\zeta = -1$ then

$$\int_{\gamma_{+}} \Theta, \int_{\gamma_{-}} \Theta, \int_{\gamma_{+}} \tilde{\Theta}, \int_{\gamma_{-}} \tilde{\Theta} \in 2\pi i \mathbb{Z}.$$

• E is a quaternionic line bundle of a certain degree.

CMC Moduli Space (Kilian-Schmidt-Schmitt)

- ▶ One can vary the line bundle *E*, so called isospectral deformations.
- CMC non-isospectral deformations. Maps come in one dimensional families.
- \mathcal{M}_0^{CMC} is disjoint lines parametrised by $H \in \mathbb{R}$

• Components \mathcal{M}_1^{CMC} end in either \mathcal{M}_0^{CMC} or bouquet of spheres.

Harmonic Map Example

•
$$f(x + iy) = \exp(-4x\mathbf{X})\exp(4y\mathbf{Y})$$
, for
 $\mathbf{X} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\mathbf{Y} = \begin{pmatrix} 0 & \delta \\ -\delta & 0 \end{pmatrix}$, $\Im m \delta > 0$

► This map is periodic. Formula well-defined on any torus C/F, where F is a sublattice of this periodicity lattice.

- ▶ Holding either *x* or *y* constant gives circles.
- As $\delta \to \mathbb{R}^{\times}$, image collapses to a circle.
- As $\delta \to 0, \infty$, the periodicity lattice degenerates.

Constructing Spectral Data

- ► Up to translations, f is determined by the Lie algebra valued map f⁻¹df, the pullback of the Mauer-Cartan form.
- Decompose into its dz and $d\overline{z}$ parts $f^{-1}df = 2(\Phi \Phi^*)$.
- ► Use f to pull pack the Levi-Civita connection on SU(2) to get a connection A.
- Given a pair (Φ, A), we can make a family of flat SL(2, C) connections. Let ζ ∈ C[×] be the spectral parameter and define

$$d_{\zeta} := d_A + \zeta^{-1} \Phi - \zeta \Phi^*$$

Family of connections is

$$d_{\zeta} = d - \left[(\mathbf{X} - i\mathbf{Y}) + \zeta^{-1} (\mathbf{X} + i\mathbf{Y}) \right] dz$$

- $\left[(\mathbf{X} + i\mathbf{Y}) + \zeta (\mathbf{X} - i\mathbf{Y}) \right] d\bar{z}$
= $d - \zeta^{-1} \left[(\mathbf{X} + i\mathbf{Y}) + \zeta (\mathbf{X} - i\mathbf{Y}) \right] \left[dz + \zeta d\bar{z} \right]$

Holonomy

- Because the connections are flat, we can define holonomy for them.
- Pick a base point and generators for the fundamental group, ie take two loops around the torus.
- Parallel translating vectors with d_ζ around one loop gives a linear map on the tangent space at the base point. Call this H(ζ). Around the other loop call the transformation H̃(ζ).

$$H_{\tau}(\zeta) = \exp\left\{\zeta^{-1}\left[(\mathbf{X} + i\mathbf{Y}) + \zeta(\mathbf{X} - i\mathbf{Y})\right]\left[\tau + \zeta\bar{\tau}\right]\right\}$$

Spectral curve

- The fundamental group of T^2 is abelian, so H and \tilde{H} commute. Therefore they have common eigenspaces.
- Define

$$\Sigma =$$
closure $\{(\zeta, L) \in \mathbb{C}^{\times} \times \mathbb{C}P^1 \mid L \text{ is an eigenline for } H(\zeta)\}$

► The eigenvalues of H(ζ) are μ(ζ), μ(ζ)⁻¹. The characteristic polynomial is

$$\mu^2 - (\operatorname{tr} H)\mu + 1 = 0$$

Using the compactness of the torus, one can show that (tr H)² − 4 vanishes to odd order only finitely many times. The spectral curve is always finite genus for harmonic maps T² → S³.

► From example

$$\Sigma = \left\{ \left(\zeta, \left[\pm \sqrt{(1 - i\delta)(\zeta - \alpha)} : \sqrt{-(1 + i\overline{\delta})(1 - \overline{\alpha}\zeta)} \right] \right) \right\}$$

for

$$\alpha = \frac{1 + i\delta}{-1 + i\delta} \qquad \Leftrightarrow \qquad \delta = i\frac{1 + \alpha}{1 - \alpha}$$

• Can write equation for Σ as

$$\eta^2 = (\zeta - \alpha)(1 - \bar{\alpha}\zeta)$$

The Differentials

- ► The differentials come from the eigenvalues μ(ζ), μ̃(ζ) of H(ζ), H̃(ζ). These functions have essential singularities.
- However log μ, log μ̃ are holomorphic on C[×] and have simple poles above ζ = 0,∞.
- ► $d \log \mu$ removes the additive ambiguity of log. Thus we set $\Theta = d \log \mu$ and $\tilde{\Theta} = d \log \tilde{\mu}$
- In order to recover the eigenvalues, one requires residue free double poles over ζ = 0, ∞ and that the periods of the differentials lie in 2πiZ.

• The eigenvalues of $H_{\tau}(\zeta)$ are

$$\mu_{ au}(\zeta,\eta) = \exp\left[i\left|1-i\delta
ight|(au+ar{ au}\zeta)\eta\zeta^{-1}
ight]$$
 .

The corresponding differential is therefore

$$\Theta_{ au} = i \left| 1 - i \delta \right| \, d \left[(au + ar{ au} \zeta) \eta \zeta^{-1}
ight].$$

 On any given spectral curve, there is a lattice of differentials that may be used in spectral data. Different choices corresponds to coverings of the same image.

Moduli Space \mathcal{M}_0

- Every spectral curve in genus zero arises from this class of examples.
- ► Choice amounts to branch point α ∈ D² and choice of pair of differentials from a lattice

$$\mathcal{M}_0 = \coprod D^2$$

- Image degenerates: $\delta \to \mathbb{R}^{\times} \quad \Leftrightarrow \quad \alpha \to \mathbb{S}^1 \setminus \{\pm 1\}.$
- Lattice degenerates: $\delta \to 0, \infty \quad \Leftrightarrow \quad \alpha \to \pm 1.$
- Two dimensional (in contrast to CMC case).

Moduli Space \mathcal{M}_g

Theorem

At a point $(\Sigma, \Theta^1, \Theta^2) \in \mathcal{M}_g$ corresponding to a nonconformal harmonic map, if Σ is nonsingular, and Θ^1 and Θ^2 vanish simultaneously at most four times on Σ and never at a ramification point of Σ , then \mathcal{M}_g is a two-dimensional manifold in a neighbourhood of this point.

Theorem

At a point $(\Sigma, \Theta^1, \Theta^2) \in \mathcal{M}_g$ corresponding to a conformal harmonic map, if Σ is nonsingular, and Θ^1 and Θ^2 never vanish simultaneously on Σ then \mathcal{M}_g is a two-dimensional manifold in a neighbourhood of this point.

Proof uses Whitham deformations.

Genus One

- Spectral curves have two pairs of branch points α, β, ᾱ⁻¹, β̄⁻¹. Let A₁ = {(α, β) ∈ D² × D² | α ≠ β}.
- ▶ Not every spectral curve has differentials that meet all the conditions.
- There is always an exact differential Θ^E that meets all conditions except closing condition.
- A multiple of Θ^E meets the closing condition if and only if

$$S(\alpha, \beta) := rac{|1 - \alpha| |1 - \beta|}{|1 + \alpha| |1 + \beta|} \in \mathbb{Q}^+$$

Fix a value of p ∈ Q⁺. Let A₁(p) = S⁻¹(p). It is an open three-ball with a line removed.

Rugby football shaped. Ends are (α, β) = (1, −1), (−1, 1). Seams are points with both α, β in S¹.

- There is a second differential Θ^P with periods 0 and 2πi. Every differential that meets period conditions is a combination ℝΘ^E + ℤΘ^P.
- Define T, up to periods of Θ^P , by

$$2\pi iT := \rho \int_{\gamma_-} \Theta^P - \int_{\gamma_+} \Theta^P$$

- A curve admits spectral data if and only if both S ∈ Q⁺ and T ∈ Q (and the latter is well-defined).
- The connected components of the space of spectral curves are annuli if S = 1 and strips (0, 1) × ℝ if S ≠ 1.
- ► The connected components of the space of spectral data M₁ are all strips (0, 1) × ℝ.

Method of Proof

Move to the universal cover of the parameter space

$$\pi_{p}: \widetilde{\mathcal{A}}_{1}(p) \rightarrow \mathcal{A}_{1}(p).$$

- Define a function \tilde{T} on $\tilde{A}_1(p)$ such that $\tilde{T} = T \circ \pi_p$.
- In the right coordinates, the level sets of $\tilde{\mathcal{T}}$ are graphs over $(0,1) \times \mathbb{R}$.
- Quotient by deck transformations to recover space of spectral curves.
- Consider how the lattice of differentials change as you change the spectral curve.

Interior Boundary \mathcal{M}_1

- $\mathcal{M}_1 \cap \mathcal{A}_1(p)$ spirals around the diagonal line $\{\alpha = \beta\} \cap \mathcal{A}_1(p)$.
- Just a single point on this diagonal line is reachable along a finite path.
- This limit seems not to be well-defined.

Exterior Boundary \mathcal{M}_1

- This boundary is where α or β tends to \mathbb{S}^1 .
- A singular curve with a double point over the unit circle corresponds to genus zero spectral data via normalisation (blow-up).
- We can consider $\mathcal{M}_0 \subset \partial \mathcal{M}_1$.
- ► Each face of the football A₁(p) is a disc, identified with the space of genus zero spectral curves.
- ► Edges of A₁(p) correspond to all branch points on unit circle, ie a map to a circle.

Further questions

- \blacktriangleright Can we identify geometric properties that parameterise $\mathcal{M}?$
- ▶ Is $\mathcal{M}_0 \cup \mathcal{M}_1$ connected? No. What other maps need to be included to make it connected?
- Can one deform a harmonic map to a circle to a harmonic map of any spectral degree?
- ► How does M_g sit inside the moduli space of harmonic cylinders? Harmonic planes?
- What deformations lead to topological changes of the image of the harmonic map?