Moduli Space of Harmonic Tori in S^{3}

Ross Ogilvie

School of Mathematics and Statistics
University of Sydney

June 2017

Harmonic Map

- Let $f: T^{2} \rightarrow S^{3}=S U(2)$ be a harmonic map.
- A harmonic map is a critical point of the energy functional.
- Long historical interest in minimal and constant curvature surfaces. A surface is CMC iff its Gauss map is harmonic.
- Minimal surfaces $=$ conformal harmonic $=$ CMC with zero mean curvature.
- Thought to be quite rare; Hopf Conjecture. Wente (1984) constructed immersed CMC tori.
- A classification of such maps is given by spectral data $(\Sigma, \Theta, \tilde{\Theta}, E)$ (Hitchin, Pinkall-Sterling, Bobenko).

Spectral Data $(\Sigma, \Theta, \tilde{\Theta}, E)$

- Spectral curve Σ is a real (possibly singular) hyperelliptic curve,

$$
\eta^{2}=\prod\left(\zeta-\alpha_{i}\right)\left(1-\bar{\alpha}_{i} \zeta\right)
$$

- $\Theta, \tilde{\Theta}$ are differentials with double poles and no residues over $\zeta=0, \infty$.
- Period conditions: The periods of $\Theta, \tilde{\Theta}$ must lie in $2 \pi i \mathbb{Z}$.
- Closing conditions: for γ_{+}a path in Σ between the two points over $\zeta=1$, and γ - between the points over $\zeta=-1$ then

$$
\int_{\gamma_{+}} \Theta, \int_{\gamma_{-}} \Theta, \int_{\gamma_{+}} \tilde{\Theta}, \int_{\gamma_{-}} \tilde{\Theta} \in 2 \pi i \mathbb{Z} .
$$

- E is a quaternionic line bundle of a certain degree.

CMC Moduli Space (Kilian-Schmidt-Schmitt)

- One can vary the line bundle E, so called isospectral deformations.
- CMC non-isospectral deformations. Maps come in one dimensional families.
- $\mathcal{M}_{0}^{C M C}$ is disjoint lines parametrised by $H \in \mathbb{R}$

- Components $\mathcal{M}_{1}^{C M C}$ end in either $\mathcal{M}_{0}^{C M C}$ or bouquet of spheres.

Harmonic Map Example

- $f(x+i y)=\exp (-4 x \mathbf{X}) \exp (4 y \mathbf{Y})$, for

$$
\mathbf{X}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{cc}
0 & \delta \\
-\delta & 0
\end{array}\right), \quad \Im \operatorname{Im} \delta>0
$$

- This map is periodic. Formula well-defined on any torus \mathbb{C} / Γ, where Γ is a sublattice of this periodicity lattice.

- Holding either x or y constant gives circles.
- As $\delta \rightarrow \mathbb{R}^{\times}$, image collapses to a circle.
- As $\delta \rightarrow 0, \infty$, the periodicity lattice degenerates.

Constructing Spectral Data

- Up to translations, f is determined by the Lie algebra valued map $f^{-1} d f$, the pullback of the Mauer-Cartan form.
- Decompose into its $d z$ and $d \bar{z}$ parts $f^{-1} d f=2\left(\Phi-\Phi^{*}\right)$.
- Use f to pull pack the Levi-Civita connection on $S U(2)$ to get a connection A.
- Given a pair (Φ, A), we can make a family of flat $S L(2, \mathbb{C})$ connections. Let $\zeta \in \mathbb{C}^{\times}$be the spectral parameter and define

$$
d_{\zeta}:=d_{A}+\zeta^{-1} \Phi-\zeta \Phi^{*}
$$

Family of connections is

$$
\begin{aligned}
d_{\zeta}=d- & {\left[(\mathbf{X}-i \mathbf{Y})+\zeta^{-1}(\mathbf{X}+i \mathbf{Y})\right] d z } \\
& -[(\mathbf{X}+i \mathbf{Y})+\zeta(\mathbf{X}-i \mathbf{Y})] d \bar{z} \\
=d- & \zeta^{-1}[(\mathbf{X}+i \mathbf{Y})+\zeta(\mathbf{X}-i \mathbf{Y})][d z+\zeta d \bar{z}]
\end{aligned}
$$

Holonomy

- Because the connections are flat, we can define holonomy for them.
- Pick a base point and generators for the fundamental group, ie take two loops around the torus.
- Parallel translating vectors with d_{ζ} around one loop gives a linear map on the tangent space at the base point. Call this $H(\zeta)$. Around the other loop call the transformation $\tilde{H}(\zeta)$.

$$
H_{\tau}(\zeta)=\exp \left\{\zeta^{-1}[(\mathbf{X}+i \mathbf{Y})+\zeta(\mathbf{X}-i \mathbf{Y})][\tau+\zeta \bar{\tau}]\right\}
$$

Spectral curve

- The fundamental group of T^{2} is abelian, so H and \tilde{H} commute. Therefore they have common eigenspaces.
- Define

$$
\Sigma=\text { closure }\left\{(\zeta, L) \in \mathbb{C}^{\times} \times \mathbb{C} P^{1} \mid L \text { is an eigenline for } H(\zeta)\right\}
$$

- The eigenvalues of $H(\zeta)$ are $\mu(\zeta), \mu(\zeta)^{-1}$. The characteristic polynomial is

$$
\mu^{2}-(\operatorname{tr} H) \mu+1=0
$$

- Using the compactness of the torus, one can show that $(\operatorname{tr} H)^{2}-4$ vanishes to odd order only finitely many times. The spectral curve is always finite genus for harmonic maps $T^{2} \rightarrow \mathbb{S}^{3}$.
- From example

$$
\Sigma=\{(\zeta,[\pm \sqrt{(1-i \delta)(\zeta-\alpha)}: \sqrt{-(1+i \bar{\delta})(1-\bar{\alpha} \zeta)}])\}
$$

for

$$
\alpha=\frac{1+i \delta}{-1+i \delta} \quad \Leftrightarrow \quad \delta=i \frac{1+\alpha}{1-\alpha}
$$

- Can write equation for Σ as

$$
\eta^{2}=(\zeta-\alpha)(1-\bar{\alpha} \zeta)
$$

The Differentials

- The differentials come from the eigenvalues $\mu(\zeta), \tilde{\mu}(\zeta)$ of $H(\zeta), \tilde{H}(\zeta)$. These functions have essential singularities.
- However $\log \mu, \log \tilde{\mu}$ are holomorphic on \mathbb{C}^{\times}and have simple poles above $\zeta=0, \infty$.
- $d \log \mu$ removes the additive ambiguity of log. Thus we set $\Theta=d \log \mu$ and $\tilde{\Theta}=d \log \tilde{\mu}$
- In order to recover the eigenvalues, one requires residue free double poles over $\zeta=0, \infty$ and that the periods of the differentials lie in $2 \pi i \mathbb{Z}$.
- The eigenvalues of $H_{\tau}(\zeta)$ are

$$
\mu_{\tau}(\zeta, \eta)=\exp \left[i|1-i \delta|(\tau+\bar{\tau} \zeta) \eta \zeta^{-1}\right] .
$$

- The corresponding differential is therefore

$$
\Theta_{\tau}=i|1-i \delta| d\left[(\tau+\bar{\tau} \zeta) \eta \zeta^{-1}\right]
$$

- On any given spectral curve, there is a lattice of differentials that may be used in spectral data. Different choices corresponds to coverings of the same image.

Moduli Space \mathcal{M}_{0}

- Every spectral curve in genus zero arises from this class of examples.
- Choice amounts to branch point $\alpha \in D^{2}$ and choice of pair of differentials from a lattice

$$
\mathcal{M}_{0}=\coprod D^{2}
$$

- Image degenerates: $\delta \rightarrow \mathbb{R}^{\times} \quad \Leftrightarrow \quad \alpha \rightarrow \mathbb{S}^{1} \backslash\{ \pm 1\}$.
- Lattice degenerates: $\delta \rightarrow 0, \infty \quad \Leftrightarrow \quad \alpha \rightarrow \pm 1$.
- Two dimensional (in contrast to CMC case).

Moduli Space $\mathcal{M g}_{g}$

Theorem

At a point $\left(\Sigma, \Theta^{1}, \Theta^{2}\right) \in \mathcal{M}_{g}$ corresponding to a nonconformal harmonic map, if Σ is nonsingular, and Θ^{1} and Θ^{2} vanish simultaneously at most four times on Σ and never at a ramification point of Σ, then \mathcal{M}_{g} is a two-dimensional manifold in a neighbourhood of this point.

Theorem

At a point $\left(\Sigma, \Theta^{1}, \Theta^{2}\right) \in \mathcal{M}_{g}$ corresponding to a conformal harmonic map, if Σ is nonsingular, and Θ^{1} and Θ^{2} never vanish simultaneously on Σ then \mathcal{M}_{g} is a two-dimensional manifold in a neighbourhood of this point.

- Proof uses Whitham deformations.

Genus One

- Spectral curves have two pairs of branch points $\alpha, \beta, \bar{\alpha}^{-1}, \bar{\beta}^{-1}$. Let $\mathcal{A}_{1}=\left\{(\alpha, \beta) \in D^{2} \times D^{2} \mid \alpha \neq \beta\right\}$.
- Not every spectral curve has differentials that meet all the conditions.
- There is always an exact differential Θ^{E} that meets all conditions except closing condition.
- A multiple of Θ^{E} meets the closing condition if and only if

$$
S(\alpha, \beta):=\frac{|1-\alpha||1-\beta|}{|1+\alpha||1+\beta|} \in \mathbb{Q}^{+}
$$

- Fix a value of $p \in \mathbb{Q}^{+}$. Let $\mathcal{A}_{1}(p)=S^{-1}(p)$. It is an open three-ball with a line removed.

- Rugby football shaped. Ends are $(\alpha, \beta)=(1,-1),(-1,1)$. Seams are points with both α, β in \mathbb{S}^{1}.
- There is a second differential Θ^{P} with periods 0 and $2 \pi i$. Every differential that meets period conditions is a combination $\mathbb{R} \Theta^{E}+\mathbb{Z} \Theta^{P}$.
- Define T, up to periods of Θ^{P}, by

$$
2 \pi i T:=p \int_{\gamma_{-}} \Theta^{P}-\int_{\gamma_{+}} \Theta^{P}
$$

- A curve admits spectral data if and only if both $S \in \mathbb{Q}^{+}$and $T \in \mathbb{Q}$ (and the latter is well-defined).
- The connected components of the space of spectral curves are annuli if $S=1$ and strips $(0,1) \times \mathbb{R}$ if $S \neq 1$.
- The connected components of the space of spectral data \mathcal{M}_{1} are all strips $(0,1) \times \mathbb{R}$.

Method of Proof

- Move to the universal cover of the parameter space

$$
\pi_{p}: \tilde{\mathcal{A}}_{1}(p) \rightarrow \mathcal{A}_{1}(p) .
$$

- Define a function \tilde{T} on $\tilde{\mathcal{A}}_{1}(p)$ such that $\tilde{T}=T \circ \pi_{p}$.
- In the right coordinates, the level sets of \tilde{T} are graphs over $(0,1) \times \mathbb{R}$.
- Quotient by deck transformations to recover space of spectral curves.
- Consider how the lattice of differentials change as you change the spectral curve.

Interior Boundary \mathcal{M}_{1}

- $\mathcal{M}_{1} \cap \mathcal{A}_{1}(p)$ spirals around the diagonal line $\{\alpha=\beta\} \cap \mathcal{A}_{1}(p)$.
- Just a single point on this diagonal line is reachable along a finite path.
- This limit seems not to be well-defined.

Exterior Boundary \mathcal{M}_{1}

- This boundary is where α or β tends to \mathbb{S}^{1}.
- A singular curve with a double point over the unit circle corresponds to genus zero spectral data via normalisation (blow-up).
- We can consider $\mathcal{M}_{0} \subset \partial \mathcal{M}_{1}$.
- Each face of the football $\overline{\mathcal{A}_{1}(p)}$ is a disc, identified with the space of genus zero spectral curves.
- Edges of $\overline{\mathcal{A}_{1}(p)}$ correspond to all branch points on unit circle, ie a map to a circle.

Further questions

- Can we identify geometric properties that parameterise \mathcal{M} ?
- Is $\mathcal{M}_{0} \cup \mathcal{M}_{1}$ connected? No. What other maps need to be included to make it connected?
- Can one deform a harmonic map to a circle to a harmonic map of any spectral degree?
- How does \mathcal{M}_{g} sit inside the moduli space of harmonic cylinders? Harmonic planes?
- What deformations lead to topological changes of the image of the harmonic map?

