A Numerical Criterion for Lower bounds on K-energy maps of Algebraic manifolds

Sean Timothy Paul
University of Wisconsin , Madison

stpaul@math.wisc.edu

Outline

- Formulation of the problem: To bound the Mabuchi energy from below on the space of Kähler metrics in a given Kähler class [ω]. Tian's program '88-'97: In algebraic case should restrict K-energy to "Bergman metrics".
- Representation theory : Toric Morphisms and Equivariant embeddings .
- Discriminants and resultants of projective varieties: Hyperdiscriminants and CayleyChow forms.
- Output: A complete description of the extremal properties of the Mabuchi energy restricted to the space of Bergman metrics .

Formulating the problem

Set up and notation:

- $\left(X^{n}, \omega\right)$ closed Kähler manifold
- $\mathcal{H}_{\omega}:=\left\{\varphi \in C^{\infty}(X) \mid \omega_{\varphi}>0\right\}$
(the space of Kähler metrics in the class [ω])
$\omega_{\varphi}:=\omega+\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi$
- $\operatorname{Scal}(\omega):=$ scalar curvature of ω
- $\mu=\frac{1}{V} \int_{X} \operatorname{Scal}(\omega) \omega^{n}$
(average of the scalar curvature)
$V=$ volume

Definition. (Mabuchi 1986)
The K-energy $\operatorname{map} \nu_{\omega}: \mathcal{H}_{\omega} \longrightarrow \mathbb{R}$ is given by

$$
\nu_{\omega}(\varphi):=-\frac{1}{V} \int_{0}^{1} \int_{X} \dot{\varphi_{t}}\left(\operatorname{Scal}\left(\omega_{\varphi_{t}}\right)-\mu\right) \omega_{t}^{n} d t
$$

φ_{t} is a C^{1} path in \mathcal{H}_{ω} satisfying $\varphi_{0}=0, \varphi_{1}=\varphi$
Observe : φ is a critical point for ν_{ω} iff $\operatorname{Scal}\left(\omega_{\varphi}\right) \equiv$ μ (a constant)

Basic Theorem (Bando-Mabuchi, Donaldson,, Chen-Tian)
If there is a $\psi \in \mathcal{H}_{\omega}$ with constant scalar curvature then there exits $C \geq 0$ such that

$$
\nu_{\omega}(\varphi) \geq-C \text { for all } \varphi \in \mathcal{H}_{\omega} .
$$

Question (*) :
Given $[\omega]$ how to detect when ν_{ω} is bounded below on \mathcal{H}_{ω} ?
N.B. : In general we do not know (!) if there is a constant scalar curvature metric in the class [ω].

Special Case: Assume that $[\omega]$ is an integral class, i.e. there is an ample divisor \mathbb{L} on X such that

$$
[\omega]=c_{1}(\mathbb{L})
$$

We may assume that $X \longrightarrow \mathbb{P}^{N}$ (embedded) and $\omega=\left.\omega_{F S}\right|_{X}$

Observe that for $\sigma \in G:=S L(N+1, \mathbb{C})$ there is a $\varphi_{\sigma} \in C^{\infty}\left(\mathbb{P}^{N}\right)$ such that

$$
\sigma^{*} \omega_{F S}=\omega_{F S}+\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi_{\sigma}>0
$$

This gives a map

$$
G \ni \sigma \longrightarrow \varphi_{\sigma} \in \mathcal{H}_{\omega}
$$

The space of Bergman Metrics is the image of this map

$$
\mathcal{B}:=\left\{\varphi_{\sigma} \mid \sigma \in G\right\} \subset \mathcal{H}_{\omega} .
$$

Tian's idea: RESTRICT THE K-ENERGY TO B

Question (**) :

Given $X \longrightarrow \mathbb{P}^{N}$ how to detect
when ν_{ω} is bounded below on \mathcal{B} ?

Definition. Let $\Delta(G)$ be the space of algebraic one parameter subgroups λ of G. These are algebraic homomorphisms

$$
\lambda: \mathbb{C}^{*} \longrightarrow G \quad \lambda_{i j} \in \mathbb{C}\left[t, t^{-1}\right]
$$

Definition. (The space of degenerations in \mathcal{B})
$\Delta(\mathcal{B}):=\left\{\mathbb{C}^{*} \xrightarrow{\varphi_{\lambda}} \mathcal{B} ; \lambda \in \Delta(G)\right\}$.

Theorem . (Paul 2012)

Assume that for every degeneration λ in \mathcal{B} there is a (finite) constant $C(\lambda)$ such that

$$
\lim _{\alpha \longrightarrow 0} \nu_{\omega}\left(\varphi_{\lambda(\alpha)}\right) \geq C(\lambda) .
$$

Then there is a uniform constant C such that for all $\varphi_{\sigma} \in \mathcal{B}$ we have the lower bound

$$
\nu_{\omega}\left(\varphi_{\sigma}\right) \geq C
$$

Equivariant Embeddings of Algebraic Homogeneous Spaces

- G reductive complex linear algebraic group: $G=G L(N+1, \mathbb{C}), S L(N+1, \mathbb{C}),\left(\mathbb{C}^{*}\right)^{N}$, $S O(N, \mathbb{C}), S p_{2 n}(\mathbb{C})$.
- $H:=$ Zariski closed subgroup.
- $\mathcal{O}:=G / H$ associated homogeneous space.

Definition. An embedding of \mathcal{O} is an irreducible G variety X together with a G-equivariant embedding $i: \mathcal{O} \longrightarrow X$ such that $i(\mathcal{O})$ is an open dense orbit of X.

Let $\left(X_{1}, i_{1}\right)$ and (X_{2}, i_{2}) be two embeddings of \mathcal{O}.

Definition. A morphism φ from (X_{1}, i_{1}) to (X_{2}, i_{2})
is a G equivariant regular map $\varphi: X_{1} \longrightarrow X_{2}$
such that the diagram

commutes.

One says that $\left(X_{1}, i_{1}\right)$ dominates $\left(X_{2}, i_{2}\right)$.

Assume these embeddings are both projective (hence complete) with very ample linearizations

$$
\mathbb{L}_{1} \in \operatorname{Pic}\left(X_{1}\right)^{G}, \mathbb{L}_{2} \in \operatorname{Pic}\left(X_{2}\right)^{G}
$$

satisfying

$$
\varphi^{*}\left(\mathbb{L}_{2}\right) \cong \mathbb{L}_{1} .
$$

Get injective map of G modules

$$
\varphi^{*}: H^{0}\left(X_{2}, \mathbb{L}_{2}\right) \longrightarrow H^{0}\left(X_{1}, \mathbb{L}_{1}\right)
$$

The adjoint

$$
\left(\varphi^{*}\right)^{t}: H^{0}\left(X_{1}, \mathbb{L}_{1}\right)^{\vee} \longrightarrow H^{0}\left(X_{2}, \mathbb{L}_{2}\right)^{\vee}
$$

is surjective and gives a rational map :

We abstract this situation :

1. \mathbb{V}, \mathbb{W} finite dimensional rational G-modules
2. v, w nonzero vectors in \mathbb{V}, \mathbb{W} respectively
3. Linear span of $G \cdot v$ coincides with \mathbb{V} (same for w)
4. [v] corresponding line through $v=$ point in $\mathbb{P}(\mathbb{V})$
5. $\mathcal{O}_{v}:=G \cdot[v] \subset \mathbb{P}(\mathbb{V})$ (projective orbit)
6. $\overline{\mathcal{O}}_{v}=$ Zariski closure in $\mathbb{P}(\mathbb{V})$.

Definition. $(\mathbb{V} ; v)$ dominates $(\mathbb{W} ; w)$ if and only if there exists $\pi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})^{G}$ such that $\pi(v)=$ w and the rational map $\pi: \mathbb{P}(\mathbb{V}) \rightarrow \mathbb{P}(\mathbb{W})$ induces a regular finite morphism $\pi: \overline{G \cdot[v]} \longrightarrow$ $\overline{G \cdot[w]}$

Observe that the map π extends to the boundary if and only if

$$
\text { (*) } \overline{G \cdot[v]} \cap \mathbb{P}(\operatorname{ker} \pi)=\emptyset .
$$

- $\pi(\mathbb{V})=\mathbb{W}$
- $\mathbb{V}=\operatorname{ker}(\pi) \oplus \mathbb{W}(G$-module splitting)

Identify π with projection onto \mathbb{W}
$v=\left(v_{\pi}, w\right) v_{\pi} \neq 0$
(*) is equivalent to

$$
(* *) \quad \overline{G \cdot\left[\left(v_{\pi}, w\right)\right]} \cap \overline{G \cdot\left[\left(v_{\pi}, 0\right)\right]}=\emptyset
$$

(Zariski closure inside $\mathbb{P}(\operatorname{ker}(\pi) \oplus \mathbb{W})$)

Given $(v, w) \in \mathbb{V} \oplus \mathbb{W}$ set

$$
\begin{aligned}
& \mathcal{O}_{v w}:=G \cdot[(v, w)] \subset \mathbb{P}(\mathbb{V} \oplus \mathbb{W}) \\
& \mathcal{O}_{v}:=G \cdot[(v, 0)] \subset \mathbb{P}(\mathbb{V} \oplus\{0\})
\end{aligned}
$$

This motivates:

Definition. (Paul 2010) The pair
(v, w) is semistable if and only if

$$
\overline{\mathcal{O}}_{v w} \cap \overline{\mathcal{O}}_{v}=\emptyset
$$

Example. Let \mathbb{V}_{e} and \mathbb{V}_{d} be irreducible $S L(2, \mathbb{C})$ modules with highest weights $e, d \in \mathbb{N} \cong$ homogeneous polynomials in two variables. Let f and g in $\mathbb{V}_{e} \backslash\{0\}$ and $\mathbb{W}_{d} \backslash\{0\}$ respectively.

Claim. (f, g) is semistable if and only if
$e \leq d$ and for all $p \in \mathbb{P}^{1} \operatorname{ord}_{p}(g)-\operatorname{ord}_{p}(f) \leq \frac{d-e}{2}$.

When $e=0$ and $f=1$ conclude that $(1, g)$ is
semistable if and only if

$$
\operatorname{ord}_{p}(g) \leq \frac{d}{2} \text { for all } p \in \mathbb{P}^{1}
$$

Toric Morphisms

If the pair (v, w) is semistable then we certainly have that

$$
\overline{T \cdot[(v, w)]} \cap \overline{T \cdot[(v, 0)]}=\emptyset
$$

for all maximal algebraic tori $T \leq G$. Therefore there exists a morphism of projective toric varieties.

We expect that the existence of such a morphism is completely dictated by the weight polyhedra : $\mathcal{N}(v)$ and $\mathcal{N}(w)$.

Theorem . (Paul 2012)
The following statements are equivalent.

1. (v, w) is semistable. Recall that this means

$$
\overline{\mathcal{O}}_{v w} \cap \overline{\mathcal{O}}_{v}=\emptyset
$$

2. $\mathcal{N}(v) \subset \mathcal{N}(w)$ for all maximal tori $H \leq G$. We say that (v, w) is numerically semistable.
3. For every maximal algebraic torus $H \leq G$ and $\chi \in \mathscr{A}_{H}(v)$ there exists an integer $d>0$ and a relative invariant $f \in \mathbb{C}_{d}\left[\mathbb{V} \oplus \mathbb{W}^{\prime}\right]_{d \chi}^{H}$ such that

$$
f(v, w) \neq 0 \text { and }\left.f\right|_{\mathbb{V}} \equiv 0 .
$$

Corollary A. If $\overline{\mathcal{O}}_{v w} \cap \overline{\mathcal{O}}_{v} \neq \emptyset$ then
there exists an alg. $1 \mathrm{psg} \lambda \in \Delta(G)$
such that

$$
\lim _{\alpha \longrightarrow 0} \lambda(\alpha) \cdot[(v, w)] \in \overline{\mathcal{O}}_{v}
$$

Equip \mathbb{V} and \mathbb{W} with Hermitian norms . The energy of the pair (v, w) is the function on G defined by
$G \ni \sigma \longrightarrow \mathrm{p}_{v w}(\sigma):=\log \|\sigma \cdot w\|^{2}-\log \|\sigma \cdot v\|^{2}$.

Corollary B.

$$
\inf _{\sigma \in G} \mathrm{p}_{v w}(\sigma)=-\infty
$$

if and only if there is a degeneration $\lambda \in \Delta(G)$ such that

$$
\lim _{\alpha \longrightarrow 0} \mathrm{p}_{v w}(\lambda(\alpha))=-\infty .
$$

Hilbert-Mumford Semistability Semistable Pairs

For all $H \leq G \exists d \in \mathbb{Z}_{>0}$ and \quad For all $H \leq G$ and $\chi \in \mathscr{A}_{H}(v)$ $f \in \mathbb{C}_{\leq d}[\mathbb{W}]^{H}$ such that $f(w) \neq 0$ and $f(0)=0$
$\exists d \in \mathbb{Z}_{>0}$ and $f \in \mathbb{C}_{d}[\mathbb{V} \oplus \mathbb{W}]_{d x}^{H}$
such that $f(v, w) \neq 0$ and $\left.f\right|_{\mathbb{V}} \equiv 0$
$\overline{\mathcal{O}}_{v w} \cap \overline{\mathcal{O}}_{v}=\emptyset$
$0 \notin \overline{G \cdot w}$
$w_{\lambda}(w)-w_{\lambda}(v) \leq 0$
$w_{\lambda}(w) \leq 0$
for all 1psg's λ of G
for all 1psg's λ of G
$0 \in \mathcal{N}(w)$ all $H \leq G$
$\exists C \geq 0$ such that
$\log \|\sigma \cdot w\|^{2} \geq-C$
all $\sigma \in G$
$\mathcal{N}(v) \subset \mathcal{N}(w)$ all $H \leq G$
$\exists C \geq 0$ such that
$\log \|\sigma \cdot w\|^{2}-\log \|\sigma \cdot v\|^{2} \geq-C$
all $\sigma \in G$

To summarize, the context for the study of SEMISTABLE PAIRS is

1. A reductive linear algebraic group G.
2. A pair \mathbb{V}, \mathbb{W} of finite dimensional rational G modules.
3. A pair of (non-zero) vectors $(v, w) \in \mathbb{V} \oplus \mathbb{W}$.

Resultants and Discriminants

Let X be a smooth linearly normal variety

$$
X \longrightarrow \mathbb{P}^{N}
$$

Consider two polynomials:
$R_{X}:=X$-resultant
$\Delta_{X \times \mathbb{P}^{n-1}}:=X$-hyperdiscriminant
Let's normalize the degrees of these polynomials

$$
\begin{aligned}
& X \rightarrow R=R(X):=R_{X}^{\operatorname{deg}\left(\Delta_{X \times \mathbb{P}^{n-1}}\right)} \\
& X \rightarrow \Delta=\Delta(X):=\Delta_{X \times \mathbb{P}^{n-1}}^{\operatorname{deg}\left(R_{X}\right)}
\end{aligned}
$$

It is known that

$$
\begin{aligned}
& R(X) \in \mathbb{E}_{\lambda_{\bullet}} \backslash\{0\},(n+1) \lambda_{\bullet}=(\overbrace{r, r, \ldots, r}^{n+1}, \overbrace{0, \ldots, 0}^{N-n}) . \\
& \Delta(X) \in \mathbb{E}_{\mu_{\bullet}} \backslash\{0\}, n \mu_{\bullet}=(\overbrace{r, r, \ldots, r}^{n}, \overbrace{0, \ldots, 0}^{N+1-n}) . \\
& r=\operatorname{deg}(R(X))=\operatorname{deg}(\Delta(X)) .
\end{aligned}
$$

$\mathbb{E}_{\lambda_{\bullet}}$ and $\mathbb{E}_{\mu_{\bullet}}$ are irreducible G modules.

The associations $X \longrightarrow R(X), X \longrightarrow \Delta(X)$ are G equivariant:

$$
\begin{aligned}
& R(\sigma \cdot X)=\sigma \cdot R(X) \\
& \Delta(\sigma \cdot X)=\sigma \cdot \Delta(X)
\end{aligned}
$$

K-Energy maps and Semistable

Pairs

Let P be a numerical polynomial
$P(T)=c_{n}\binom{T}{n}+c_{n-1}\binom{T}{n-1}+O\left(T^{n-2}\right) \quad c_{n} \in \mathbb{Z}_{>0}$.
Consider the Hilbert scheme
$\mathscr{H}_{\mathbb{P}^{N}}^{P}:=\left\{\right.$ all (smooth) $X \subset \mathbb{P}^{N}$ with Hilbert polynomial $\left.P\right\}$.
Recall the G-equivariant morphisms

$$
R, \Delta: \mathscr{H}_{\mathbb{P}^{N}}^{P} \longrightarrow \mathbb{P}\left(\mathbb{E}_{\lambda_{0}}\right), \mathbb{P}\left(\mathbb{E}_{\mu_{\bullet}}\right)
$$

Theorem (Paul 2012)
There is a constant M depending only on c_{n}, c_{n-1} and the Fubini Study metric such that for all $[X] \in \mathscr{H}_{\mathbb{P}^{N}}^{P}$ and all $\sigma \in G$ we have

$$
\left|\nu_{\left.\omega_{F S}\right|_{X}}\left(\varphi_{\sigma}\right)-\mathrm{p}_{R(X) \Delta(X)}(\sigma)\right| \leq M
$$

