A Numerical Criterion for Lower bounds on K-energy maps of Algebraic manifolds

Sean Timothy Paul University of Wisconsin, Madison

stpaul@math.wisc.edu

Outline

- Formulation of the problem: To bound the Mabuchi energy from below on the space of Kähler metrics in a given Kähler class [ω].
 Tian's program '88 -'97: In algebraic case should restrict K-energy to "Bergman metrics".
- Representation theory : Toric Morphisms and *Equivariant embeddings*.
- Discriminants and resultants of projective varieties: *Hyperdiscriminants* and Cayley-Chow forms.
- **Output**: A *complete description* of the extremal properties of the Mabuchi energy restricted to the space of Bergman metrics .

Formulating the problem

Set up and notation:

- (X^n, ω) closed Kähler manifold
- $\mathcal{H}_{\omega} := \{ \varphi \in C^{\infty}(X) \mid \omega_{\varphi} > 0 \}$

(the space of Kähler metrics in the class $[\omega]$)

$$\omega_{\varphi} := \omega + \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \varphi$$

- $Scal(\omega)$: = scalar curvature of ω
- $\mu = \frac{1}{V} \int_X Scal(\omega) \omega^n$

(average of the scalar curvature)

V = volume

Definition. (Mabuchi 1986) The K-energy map $\nu_{\omega} : \mathcal{H}_{\omega} \longrightarrow \mathbb{R}$ is given by

$$\nu_{\omega}(\varphi) := -\frac{1}{V} \int_{0}^{1} \int_{X} \dot{\varphi_{t}}(\operatorname{Scal}(\omega_{\varphi_{t}}) - \mu) \omega_{t}^{n} dt$$

 $arphi_t$ is a C^1 path in \mathcal{H}_ω satisfying $arphi_0=0$, $arphi_1=arphi$

Observe : φ is a critical point for ν_{ω} iff Scal $(\omega_{\varphi}) \equiv \mu$ (a constant)

Basic Theorem (Bando-Mabuchi, Donaldson,, Chen-Tian) If there is a $\psi \in \mathcal{H}_{\omega}$ with constant scalar curvature then there exits $C \ge 0$ such that

$$u_{\omega}(\varphi) \geq -C \text{ for all } \varphi \in \mathcal{H}_{\omega} .$$

Question (*) :

Given $[\omega]$ how to detect when ν_{ω} is bounded below on \mathcal{H}_{ω} ?

N.B. : In general we *do not know (!)* if there is a constant scalar curvature metric in the class $[\omega]$.

Special Case: Assume that $[\omega]$ is an *integral* class, i.e. there is an ample divisor \mathbb{L} on X such that

$$[\omega] = c_1(\mathbb{L})$$

We may assume that $X\longrightarrow \mathbb{P}^N$ (embedded) and $\omega=\omega_{FS}|_X$

Observe that for $\sigma \in G := SL(N + 1, \mathbb{C})$ there is a $\varphi_{\sigma} \in C^{\infty}(\mathbb{P}^N)$ such that

$$\sigma^*\omega_{FS} = \omega_{FS} + \frac{\sqrt{-1}}{2\pi}\partial\overline{\partial}\varphi_{\sigma} > 0$$

This gives a map

$$G \ni \sigma \longrightarrow \varphi_{\sigma} \in \mathcal{H}_{\omega}$$

The space of **Bergman Metrics** is the image of this map

$$\mathcal{B} := \{\varphi_{\sigma} \mid \sigma \in G\} \subset \mathcal{H}_{\omega} .$$

Tian's idea: **RESTRICT THE K-ENERGY TO B**

Question (**) :

Given $X \longrightarrow \mathbb{P}^N$ how to detect

when ν_{ω} is bounded below on \mathcal{B} ?

Definition. Let $\Delta(G)$ be the space of *algebraic*

one parameter subgroups λ of G. These are al-

gebraic homomorphisms

$$\lambda : \mathbb{C}^* \longrightarrow G \qquad \lambda_{ij} \in \mathbb{C}[t, t^{-1}].$$

Definition. (The space of *degenerations* in \mathcal{B})

$$\Delta(\mathcal{B}) := \{ \mathbb{C}^* \xrightarrow{\varphi_{\lambda}} \mathcal{B} ; \lambda \in \Delta(G) \}.$$

Theorem . (Paul 2012) Assume that for every degeneration λ in \mathcal{B} there is a (finite) constant $C(\lambda)$ such that

$$\lim_{\alpha \to 0} \nu_{\omega}(\varphi_{\lambda(\alpha)}) \geq C(\lambda) .$$

Then there is a *uniform* constant C such that for all $\varphi_{\sigma} \in \mathcal{B}$ we have the lower bound

$$u_{\omega}(\varphi_{\sigma}) \geq C$$
.

Equivariant Embeddings of Algebraic Homogeneous Spaces

• *G* reductive complex linear algebraic group: $G = GL(N + 1, \mathbb{C}), SL(N + 1, \mathbb{C}), (\mathbb{C}^*)^N,$

 $SO(N,\mathbb{C}), Sp_{2n}(\mathbb{C})$.

- H := Zariski closed subgroup.
- $\mathcal{O} := G/H$ associated homogeneous space.

Definition. An *embedding* of \mathcal{O} is an irreducible G variety X together with a G-equivariant embedding $i : \mathcal{O} \longrightarrow X$ such that $i(\mathcal{O})$ is an open dense orbit of X.

Let (X_1, i_1) and (X_2, i_2) be *two embeddings* of \mathcal{O} .

Definition. A *morphism* φ from (X_1, i_1) to (X_2, i_2) is a *G* equivariant regular map $\varphi : X_1 \longrightarrow X_2$ such that the diagram

commutes.

One says that (X_1, i_1) dominates (X_2, i_2) .

Assume these embeddings are both projective (hence complete) with very ample linearizations

$$\mathbb{L}_1 \in \mathsf{Pic}(X_1)^G \ , \ \mathbb{L}_2 \in \mathsf{Pic}(X_2)^G$$

satisfying

$$\varphi^*(\mathbb{L}_2)\cong\mathbb{L}_1$$

Get *injective* map of G modules

$$\varphi^* : H^0(X_2, \mathbb{L}_2) \longrightarrow H^0(X_1, \mathbb{L}_1)$$

The adjoint

$$(\varphi^*)^t : H^0(X_1, \mathbb{L}_1)^{\vee} \longrightarrow H^0(X_2, \mathbb{L}_2)^{\vee}$$

is *surjective* and gives a rational map :

We abstract this situation :

- **1.** \mathbb{V}, \mathbb{W} finite dimensional rational *G*-modules
- 2. v, w nonzero vectors in \mathbb{V}, \mathbb{W} respectively
- 3. Linear span of $G \cdot v$ coincides with \mathbb{V} (same for w)
- 4. [v] corresponding line through v = point in $\mathbb{P}(\mathbb{V})$
- 5. $\mathcal{O}_v := G \cdot [v] \subset \mathbb{P}(\mathbb{V})$ (projective orbit)
- 6. $\overline{\mathcal{O}}_v = \text{Zariski closure in } \mathbb{P}(\mathbb{V}).$

Definition. (\mathbb{V} ; v) dominates (\mathbb{W} ; w) if and only if there exists $\pi \in Hom(\mathbb{V}, \mathbb{W})^G$ such that $\pi(v) = w$ and the rational map $\pi : \mathbb{P}(\mathbb{V}) \dashrightarrow \mathbb{P}(\mathbb{W})$ induces a regular finite *morphism* $\pi : \overline{G \cdot [v]} \longrightarrow \overline{G \cdot [w]}$

Observe that the map π extends to the boundary if and only if

(*)
$$\overline{G \cdot [v]} \cap \mathbb{P}(\ker \pi) = \emptyset$$
.

•
$$\pi(\mathbb{V}) = \mathbb{W}$$

• $\mathbb{V} = \ker(\pi) \oplus \mathbb{W}$ (*G*-module splitting)

Identify π with projection onto \mathbb{W} $v = (v_{\pi}, w) v_{\pi} \neq 0$

(*) is equivalent to

(**)
$$\overline{G \cdot [(v_{\pi}, w)]} \cap \overline{G \cdot [(v_{\pi}, 0)]} = \emptyset$$

(Zariski closure inside $\mathbb{P}(\ker(\pi) \oplus \mathbb{W})$)

Given $(v, w) \in \mathbb{V} \oplus \mathbb{W}$ set $\mathcal{O}_{vw} := G \cdot [(v, w)] \subset \mathbb{P}(\mathbb{V} \oplus \mathbb{W})$ $\mathcal{O}_{v} := G \cdot [(v, 0)] \subset \mathbb{P}(\mathbb{V} \oplus \{0\})$

This motivates:

Definition. (Paul 2010) The pair (v, w) is **semistable** if and only if

 $\overline{\mathcal{O}}_{vw} \cap \overline{\mathcal{O}}_v = \emptyset$

Example. Let \mathbb{V}_e and \mathbb{V}_d be irreducible $SL(2, \mathbb{C})$ modules with highest weights $e, d \in \mathbb{N} \cong$ homogeneous polynomials in two variables. Let f and g in $\mathbb{V}_e \setminus \{0\}$ and $\mathbb{W}_d \setminus \{0\}$ respectively.

Claim. (f, g) is semistable if and only if

$$e \leq d ext{ and for all } p \in \mathbb{P}^1 ext{ ord}_p(g) - ext{ord}_p(f) \leq rac{d-e}{2}$$
 .

When e = 0 and f = 1 conclude that (1, g) is semistable if and only if

$$\operatorname{ord}_p(g) \leq \frac{d}{2}$$
 for all $p \in \mathbb{P}^1$

Toric Morphisms

If the pair (v, w) is semistable then we certainly have that

$$\overline{T \cdot [(v,w)]} \cap \overline{T \cdot [(v,0)]} = \emptyset$$

for all maximal algebraic tori $T \leq G$. Therefore there exists a morphism of **projective** toric varieties.

We expect that the existence of such a morphism is completely dictated by the *weight polyhedra* : $\mathcal{N}(v)$ and $\mathcal{N}(w)$.

Theorem . (Paul 2012)

The following statements are equivalent.

1. (v, w) is **semistable**. Recall that this means

$$\overline{\mathcal{O}}_{vw} \cap \overline{\mathcal{O}}_v = \emptyset$$

2. $\mathcal{N}(v) \subset \mathcal{N}(w)$ for all maximal tori $H \leq G$. We say that (v, w) is *numerically semistable*.

3. For every maximal algebraic torus $H \leq G$ and $\chi \in \mathscr{A}_H(v)$ there exists an integer d > 0and a *relative invariant* $f \in \mathbb{C}_d[\mathbb{V} \oplus \mathbb{W}]_{d\chi}^H$ such that

$$f(v, w) \neq 0$$
 and $f|_{\mathbb{V}} \equiv 0$.

Corollary A. If $\overline{\mathcal{O}}_{vw} \cap \overline{\mathcal{O}}_v \neq \emptyset$ then there exists an alg. 1psg $\lambda \in \Delta(G)$ such that

$$\lim_{\alpha \to 0} \lambda(\alpha) \cdot [(v, w)] \in \overline{\mathcal{O}}_v .$$

Equip \mathbb{V} and \mathbb{W} with Hermitian norms . The energy of the pair (v, w) is the function on G defined by

$$G \ni \sigma \longrightarrow \mathsf{p}_{vw}(\sigma) := \log ||\sigma \cdot w||^2 - \log ||\sigma \cdot v||^2$$

Corollary B.

$$\inf_{\sigma \in G} \mathsf{p}_{vw}(\sigma) = -\infty$$

if and only if there is a degeneration $\lambda \in \Delta(G)$ such that

$$\lim_{\alpha \to 0} \mathsf{p}_{vw}(\lambda(\alpha)) = -\infty .$$

Hilbert-Mumford Semistability	Semistable Pairs
For all $H \leq G \exists d \in \mathbb{Z}_{>0}$ and $f \in \mathbb{C}_{\leq d} [\mathbb{W}]^H$ such that $f(w) \neq 0$ and $f(0) = 0$	For all $H \leq G$ and $\chi \in \mathscr{A}_H(v)$ $\exists d \in \mathbb{Z}_{>0}$ and $f \in \mathbb{C}_d [\mathbb{V} \oplus \mathbb{W}]_{d\chi}^H$ such that $f(v, w) \neq 0$ and $f _{\mathbb{V}} \equiv 0$
$0\notin \overline{G\cdot w}$	$\overline{\mathcal{O}}_{vw} \cap \overline{\mathcal{O}}_{v} = \emptyset$
$w_{\lambda}(w) \leq 0$ for all 1psg's λ of G	$w_{\lambda}(w) - w_{\lambda}(v) \leq 0$ for all 1psg's λ of G
$0 \in \mathcal{N}(w)$ all $H \leq G$	$\mathcal{N}(v) \subset \mathcal{N}(w)$ all $H \leq G$
$\exists C \ge 0$ such that $\log \sigma \cdot w ^2 \ge -C$ all $\sigma \in G$	$\exists C \ge 0 \text{ such that} \\ \log \sigma \cdot w ^2 - \log \sigma \cdot v ^2 \ge -C \\ \text{all } \sigma \in G$

To summarize, the context for the study of *SEMISTABLE PAIRS* is

1. A reductive linear algebraic group G.

2. A pair $\mathbb V$, $\mathbb W$ of finite dimensional rational G- modules.

3. A pair of (non-zero) vectors $(v, w) \in \mathbb{V} \oplus \mathbb{W}$.

Resultants and Discriminants

Let X be a smooth linearly normal variety

$$X \longrightarrow \mathbb{P}^N$$

Consider two polynomials:

 $R_X := X$ -resultant

 $\Delta_{X \times \mathbb{P}^{n-1}} := X$ -hyperdiscriminant

Let's *normalize the degrees* of these polynomials

$$X \to R = R(X) := R_X^{\deg(\Delta_{X \times \mathbb{P}^{n-1}})}$$

$$X \to \Delta = \Delta(X) := \Delta_{X \times \mathbb{P}^{n-1}}^{\deg(R_X)}$$

It is known that

$$R(X) \in \mathbb{E}_{\lambda_{\bullet}} \setminus \{0\}, \ (n+1)\lambda_{\bullet} = \left(\overbrace{r,r,\ldots,r}^{n+1}, \overbrace{0,\ldots,0}^{N-n}\right).$$

$$\Delta(X) \in \mathbb{E}_{\mu_{\bullet}} \setminus \{0\}, \ n\mu_{\bullet} = \left(\overline{r, r, \dots, r}, \underbrace{0, \dots, 0}^{N+1-n}\right).$$

 $r = \deg(R(X)) = \deg(\Delta(X))$.

 $\mathbb{E}_{\lambda_{\bullet}}$ and $\mathbb{E}_{\mu_{\bullet}}$ are irreducible *G* modules.

The associations $X \longrightarrow R(X)$, $X \longrightarrow \Delta(X)$ are *G* equivariant:

$$R(\sigma \cdot X) = \sigma \cdot R(X)$$

$$\Delta(\sigma \cdot X) = \sigma \cdot \Delta(X) \; .$$

K-Energy maps and Semistable Pairs

Let P be a numerical polynomial

$$P(T) = c_n {T \choose n} + c_{n-1} {T \choose n-1} + O(T^{n-2}) \qquad c_n \in \mathbb{Z}_{>0} .$$

Consider the Hilbert scheme

 $\mathscr{H}^P_{\mathbb{P}^N} := \{ \text{ all (smooth) } X \subset \mathbb{P}^N \text{ with Hilbert polynomial } P \} .$

Recall the *G*-equivariant morphisms

$$R , \Delta : \mathscr{H}^{P}_{\mathbb{P}^{N}} \longrightarrow \mathbb{P}(\mathbb{E}_{\lambda_{\bullet}}) , \mathbb{P}(\mathbb{E}_{\mu_{\bullet}}) .$$

Theorem (Paul 2012)

There is a constant M depending only on c_n , c_{n-1} and the Fubini Study metric such that for all $[X] \in \mathscr{H}_{\mathbb{P}^N}^P$ and all $\sigma \in G$ we have

 $| \nu_{\omega_{FS}|_X}(\varphi_{\sigma}) - \mathsf{p}_{R(X)\Delta(X)}(\sigma) | \leq M$.