Meromorphic connections and the Stokes groupoids

Brent Pym (Oxford)

Based on arXiv:1305.7288 (Crelle 2015) with Marco Gualtieri and Songhao Li

Warmup

Exercise

Find the flat sections of the connection

$$
\nabla=d-\left(\begin{array}{cc}
1 & -z \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}}
$$

on the trivial bundle $\mathcal{E}=\mathcal{O}_{X}^{\oplus 2}$ over the curve $X=\mathbb{C}$.
i.e. find a fundamental matrix solution of the ODE

$$
\frac{d \psi}{d z}=\left(\begin{array}{cc}
z^{-2} & -z^{-1} \\
0 & 0
\end{array}\right) \psi
$$

NB: Pole of order two, i.e. $\nabla: \mathcal{E} \rightarrow \Omega_{X}^{1}(D) \otimes \mathcal{E}$, where $D=2 \cdot\{0\} \subset X$.

Solution method

Goal: flat sections of

$$
\nabla=d-\left(\begin{array}{cc}
1 & -z \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}}
$$

Strategy: Find a gauge transformation ϕ taking ∇ to the simpler diagonal connection

$$
\nabla_{0}=\phi^{-1} \nabla \phi=d-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}}
$$

Solutions of ∇_{0} are easily found:

$$
\psi_{0}=\left(\begin{array}{cc}
e^{-1 / z} & 0 \\
0 & 1
\end{array}\right)
$$

Then we can write

$$
\psi=\phi \psi_{0}
$$

The gauge transformation

Want:

$$
\phi^{-1}\left(d-\left(\begin{array}{cc}
1 & -z \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}}\right) \phi=d-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}}
$$

Guess form for ϕ :

$$
\phi=\left(\begin{array}{cc}
1 & f(z) \\
0 & 1
\end{array}\right) \text { a solution } \quad \Longleftrightarrow \quad z^{2} \frac{d f}{d z}=f-z
$$

Solution has series expansion

$$
f(z)=\sum_{n \geq 0} n!z^{n+1}
$$

DIVERGES!!!!!

All is not lost

Borel summation/multi-summation: recover solutions from divergent series (É. Borel, Écalle, Ramis, Sibuya, ...)

The essential idea:

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} z^{n+1} & =\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{n!} \int_{0}^{\infty} t^{n} e^{-t / z} d t\right) \\
& =\int_{0}^{\infty}\left(\sum_{n=0}^{\infty} \frac{a_{n} t^{n}}{n!}\right) e^{-t / z} d t
\end{aligned}
$$

and the new series (the Borel transform) is more likely to converge.

Our example

$$
\sum_{n=0}^{\infty} n!z^{n+1}=\int_{0}^{\infty}\left(\sum_{n=0}^{\infty} t^{n}\right) e^{-t / z} d t=\int_{0}^{\infty} \frac{e^{-t / z}}{1-t} d t
$$

Stokes phenomenon: sums for $\operatorname{Im}(z)>0$ and $\operatorname{Im}(z)<0$ differ:

NB: this comes from the other solution of ODE.

Resummation, cont.

(Nearly) equivalent: Weight the partial sums:

$$
\sum_{n=0}^{\infty} a_{n} z^{n+1}=\lim _{\mu \rightarrow \infty} e^{-\mu} \sum_{n=0}^{\infty}\left(\frac{\mu^{n}}{n!} \sum_{k=0}^{n} a_{k} z^{k+1}\right)
$$

Pros and cons

Success: solution of the ODE with the divergent series as an asymptotic expansion; truncating the series gives a good approximation for small z

The Stokes phenomenon: "correct" sum of the series varies from sector to sector (wall crossing) - patched by "generalized monodromy data"

Drawbacks: the procedure is a bit ad hoc:

- Correct weights depend on order of pole and "irregular type"
- Not directly applicable to related and important situations
- WKB approximation (aka λ-connections)
- Normal forms in dynamical systems
- Perturbative QFT

Leads to even more complicated theory of "resurgence" (Écalle)

The problem

Question
What is the geometry of these resummation procedures?

Answer (Gualtieri-Li-P.)
It is governed by a very natural Lie groupoid.

Viewpoint

A holomorphic flat connection $\nabla: \mathcal{E} \rightarrow \Omega_{X}^{1} \otimes \mathcal{E}$ gives an action of vector fields by derivations

$$
\begin{aligned}
\mathcal{T}_{X} \times \mathcal{E} & \rightarrow \mathcal{E} \\
(\eta, \psi) & \mapsto \nabla_{\eta} \psi
\end{aligned}
$$

compatible with Lie brackets:

$$
\nabla_{\eta} \nabla_{\xi}-\nabla_{\xi} \nabla_{\eta}=\nabla_{[\eta, \xi]}
$$

Slogan:

$\{$ holomorphic flat connections $\}=\left\{\right.$ representations of $\left.\mathcal{T}_{X}\right\}$.

Parallel transport

- Solve the ODE $\nabla \psi=0$ along a path $\gamma:[0,1] \rightarrow X$ from s to t
- Get the parallel transport

$$
\Psi(\gamma):\left.\left.\mathcal{E}\right|_{s} \rightarrow \mathcal{E}\right|_{t}
$$

- If γ, γ^{\prime} are homotopic, then $\Psi(\gamma)=\Psi\left(\gamma^{\prime}\right)$.

The fundamental groupoid

- Domain for parallel transport is the fundamental groupoid:

$$
\Pi_{1}(X)=\{\text { paths } \gamma:[0,1] \rightarrow X\} /(\text { end-point-preserving homotopies) }
$$

- Source and target $s, t: \Pi_{1}(X) \rightarrow X$

$$
s(\gamma)=\gamma(0) \quad t(\gamma)=\gamma(1)
$$

- Product: concatenation of paths, defined when endpoints match
- Identities: constant paths, one for each $x \in X$
- Inverses: reverse directions

Lemma

$\Pi_{1}(X)$ has a unique manifold structure such that $(s, t): \Pi_{1}(X) \rightarrow X \times X$ is a local diffeomorphism. Thus $\Pi_{1}(X)$ is a (complex) Lie groupoid.

Example: the fundamental groupoid of $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$

- We have an isomorphism

$$
\begin{aligned}
\mathbb{C} \times \mathbb{C}^{*} & \cong \Pi_{1}\left(\mathbb{C}^{*}\right) \\
(\lambda, z) & \mapsto\left[\gamma_{\lambda, z}\right]
\end{aligned}
$$

- Source and target:

$$
s(\lambda, z)=z \quad t(\lambda, z)=e^{\lambda} z
$$

- Identities:

$$
i(z)=(0, z)
$$

- Product:

$$
(\lambda, z)\left(\lambda^{\prime}, z^{\prime}\right)=\left(\lambda+\lambda^{\prime}, z^{\prime}\right)
$$

$$
\gamma_{\lambda, z}(t)=\exp (t \lambda) \cdot z
$$

defined whenever $z=e^{\lambda^{\prime}} z^{\prime}$.

Parallel transport as a representation

- Parallel transport of holomorphic connection ∇ is an isomorphism of bundles on $\Pi_{1}(X)$:

$$
\Psi: s^{*} \mathcal{E} \rightarrow t^{*} \mathcal{E}
$$

- If ψ is a fundamental solution, then $\Psi=t^{*} \psi \cdot s^{*} \psi^{-1}$
- It's a representation of $\Pi_{1}(X)$:

$$
\Psi\left(\gamma_{1} \gamma_{2}\right)=\Psi\left(\gamma_{1}\right) \Psi\left(\gamma_{2}\right) \quad \Psi\left(\gamma^{-1}\right)=\Psi(\gamma)^{-1} \quad \Psi\left(1_{x}\right)=1
$$

- Version of the Riemann-Hilbert correspondence:

Integration

\{representations of \mathcal{T}_{X} \} \{representations of $\left.\Pi_{1}(X)\right\}$

Differentiation

Meromorphic connections

$D=k_{1} \cdot p_{1}+\cdots+k_{n} \cdot p_{n}$ an effective divisor $\left(k_{i} \in \mathbb{N}\right)$

- Meromorphic connection $\nabla: \mathcal{E} \rightarrow \Omega_{X}^{1}(D) \otimes \mathcal{E}$
- In a local coordinate z near p_{i}

$$
\nabla \psi=d z \otimes\left(\frac{d \psi}{d z}-\frac{A(z)}{z^{k_{i}}} \psi\right)
$$

- Can't define parallel transport for paths that intersect D

Lie-theoretic perspective

- $\mathcal{T}_{X}(-D)$ the sheaf of vector fields vanishing on D.
- Locally free (a vector bundle). Near a point $p \in D$, we have

$$
\mathcal{T}_{X}(-D) \cong\left\langle z^{k} \partial_{z}\right\rangle
$$

- Anchor map

$$
a: \mathcal{T}_{X}(-D) \rightarrow \mathcal{T}_{X}
$$

- Closed under Lie brackets
- Thus, $\mathcal{T}_{X}(-D)$ is a very simple example of a Lie algebroid
- Pairing with $\nabla: \mathcal{E} \rightarrow \Omega_{X}^{1}(D) \otimes \mathcal{E}$ gives a holomorphic action

$$
\mathcal{T}_{X}(-D) \times \mathcal{E} \rightarrow \mathcal{E}
$$

Lie-theoretic perspective

Slogan:

$\{$ flat connections on X with poles $\leq D\}=\left\{\right.$ representations of $\left.\mathcal{T}_{X}(-D)\right\}$

Consequence: The correct domain for the solutions is the Lie groupoid that "integrates" $\mathcal{T}_{X}(-D)$.

Lie groupoids (Ehresmann, Pradines 50-60s)

A Lie groupoid $G \rightrightarrows X$ is
(1) A manifold X of objects
(2) A manifold G of arrows
(0) Maps $s, t: G \rightarrow X$ indicating the source and target

- Composition of arrows whose endpoints match
- An identity arrow for each object $i: X \hookrightarrow G$
(0) Inversion $.^{-1}: G \rightarrow G$. satisfying associativity, etc.

Infinitesimal counterpart: Lie algebroids

Vector bundle $\mathcal{A}=\mathcal{N}_{i(X), G}$ with Lie bracket

$$
[\cdot, \cdot]: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}
$$

on sections and anchor map $a: \mathcal{A} \rightarrow \mathcal{T}_{X}$ satisfying the Leibniz rule

$$
[\xi, f \eta]=\left(\mathcal{L}_{a(\xi)} f\right) \eta+f[\xi, \eta] .
$$

Examples

G	\mathcal{A}
$G \rightrightarrows\{p t\}$ a Lie group	\mathfrak{g} its Lie algebra
$H \times X \rightrightarrows X$ group action	$\mathfrak{h} \rightarrow \mathcal{T}_{X}$ infinitesimal action
$\Pi_{1}(X)$	\mathcal{T}_{X}
$\operatorname{Pair}(X)=X \times X \rightrightarrows X$	\mathcal{T}_{X}

Algebroid representations

A representation of \mathcal{A} is a flat \mathcal{A}-connection, i.e. an operator

$$
\nabla: \mathcal{E} \rightarrow \mathcal{A}^{\vee} \otimes \mathcal{E}
$$

satisfying

$$
\nabla(f \psi)=\left(a^{\vee} d f\right) \otimes \psi+f \nabla \psi
$$

and having zero curvature in $\bigwedge^{2} \mathcal{A}^{\vee} \otimes E n d \mathcal{E}$.
Examples:
(1) For $X=\{*\}$ and $\mathcal{A}=\mathfrak{g}$: finite-dimensional \mathfrak{g}-reps
(2) For $\mathcal{A}=\mathcal{T}_{X}$: have $\mathcal{A}^{\vee}=\Omega_{X}^{1}$ and ∇ a usual flat connection
(3) For $\mathcal{T}_{X}(-D)$: have $\mathcal{A}^{\vee}=\Omega_{X}^{1}(D)$, and ∇ a meromorphic flat connection with poles bounded by D
(9) Logarithmic connections, λ-connections, connections with central curvature, Poisson modules (= "semi-classical" bimodules), ...

Parallel transport for algebroid connections

An \mathcal{A}-path is a Lie algebroid homomorphism

$$
\Gamma: \mathcal{T}_{[0,1]} \rightarrow \mathcal{A}
$$

\mathcal{A}-connections pull back to usual connections on $[0,1]$.
Thus, parallel transport is defined on the fundamental groupoid of \mathcal{A} :

$$
\Pi_{1}(\mathcal{A})=\frac{\{\mathcal{A} \text {-paths }\}}{\{\mathcal{A} \text {-homotopies }\}}
$$

Examples:

- For $\mathcal{A}=\mathfrak{g}$ a Lie algebra, get $\Pi_{1}(\mathfrak{g})=G$, the simply-connected group
- For $\mathcal{A}=\mathcal{T}_{X}$, get $\Pi_{1}\left(\mathcal{T}_{X}\right)=\Pi_{1}(X)$.

Integrability of algebroids (analogue of Lie III)

The Crainic-Fernandes theorem (Annals 2003) gives necessary and sufficient conditions for $\Pi_{1}(\mathcal{A})$ to have a smooth structure, making it a Lie groupoid.

Parallel transport of \mathcal{A}-connections along \mathcal{A}-paths gives:
Integration
$\{$ representations of $\mathcal{A}\} \sim\left\{\right.$ representations of $\left.\Pi_{1}(\mathcal{A})\right\}$
Differentiation

Theorem (Debord 2001)

If $\mathcal{A} \rightarrow \mathcal{T}_{X}$ is an embedding of sheaves, then \mathcal{A} is integrable.

Applied to $\mathcal{T}_{X}(-D)$

- Get a Lie groupoid $\Pi_{1}(X, D)$, functorial in X and D
- Two types of algebroid paths:
- Usual paths in $X \backslash D$, so we have open dense

$$
\Pi_{1}(X \backslash D) \hookrightarrow \Pi_{1}(X, D)
$$

- Boundary: a one-dimensional Lie group of loops at each $p \in D$

Parallel transport

- Meromorphic connection $\nabla: \mathcal{E} \rightarrow \Omega_{X}^{1}(D) \otimes \mathcal{E}$
- Usual parallel transport defined on $\Pi_{1}(X \backslash D)$ extends to

$$
\Psi: s^{*} \mathcal{E} \rightarrow t^{*} \mathcal{E}
$$

globally defined and holomorphic on $\Pi_{1}(X, D)$.

- Caveat: $\Pi_{1}(X, D)$ was constructed as an infinite-dimensional quotient-not very explicit.

Our paper

With M. Gualtieri and S. Li we give

- Explicit local normal forms, the Stokes groupoids
- Finite-dimensional global construction using the uniformization theorem
- analytic open embedding in a \mathbb{P}^{1}-bundle

$$
\Pi_{1}(X, D) \hookrightarrow \mathbb{P}\left(J_{X, D}^{1} \Omega_{X}^{1 / 2}\right)
$$

- groupoid structure maps given by solving the uniformizing ODE
- e.g. groupoid for $X=\mathbb{P}^{1}$ and $D=0+1+\infty$ involves hypergeometric functions and the elliptic modular function $\lambda(\tau)$
- Constructions of $\operatorname{Pair}(X, D)$ by iterated blowups
- Application to divergent series

Local normal form: the Stokes groupoids
The case $X=\mathbb{C}$ and $D=k \cdot 0$ is the Stokes groupoid Sto $_{k}=\Pi_{1}(\mathbb{C}, k \cdot 0)$

$$
\begin{aligned}
\text { Sto }_{k} & =\mathbb{C} \times \mathbb{C} \rightrightarrows \mathbb{C} \\
s(x, y) & =\exp \left(-x^{k-1} y\right) \cdot x \\
t(x, y) & =\exp \left(x^{k-1} y\right) \cdot x \\
i(z) & =(z, 0)
\end{aligned}
$$

$$
k=1
$$

Or $s(z, \lambda)=z$ and $t(z, \lambda)=\exp \left(\lambda^{k-1} z\right) \cdot z$, in which case

$$
\left(z_{1}, \lambda_{1}\right)\left(z_{2}, \lambda_{2}\right)=\left(z_{1}, u_{2} \exp \left((k-1) u_{1} z_{1}^{k-1}\right)+u_{1}\right)
$$

Demonstration on my web site

Local normal form: the Stokes groupoids
The case $X=\mathbb{C}$ and $D=k \cdot 0$ is the Stokes groupoid Sto $_{k}=\Pi_{1}(\mathbb{C}, k \cdot 0)$

$$
\begin{aligned}
\text { Sto }_{k} & =\mathbb{C} \times \mathbb{C} \rightrightarrows \mathbb{C} \\
s(x, y) & =\exp \left(-x^{k-1} y\right) \cdot x \\
t(x, y) & =\exp \left(x^{k-1} y\right) \cdot x \\
i(z) & =(z, 0)
\end{aligned}
$$

$$
k=2
$$

Or $s(z, \lambda)=z$ and $t(z, \lambda)=\exp \left(\lambda^{k-1} z\right) \cdot z$, in which case

$$
\left(z_{1}, \lambda_{1}\right)\left(z_{2}, \lambda_{2}\right)=\left(z_{1}, u_{2} \exp \left((k-1) u_{1} z_{1}^{k-1}\right)+u_{1}\right)
$$

Demonstration on my web site

Local normal form: the Stokes groupoids
The case $X=\mathbb{C}$ and $D=k \cdot 0$ is the Stokes groupoid Sto $_{k}=\Pi_{1}(\mathbb{C}, k \cdot 0)$

$$
\begin{aligned}
\text { Sto }_{k} & =\mathbb{C} \times \mathbb{C} \rightrightarrows \mathbb{C} \\
s(x, y) & =\exp \left(-x^{k-1} y\right) \cdot x \\
t(x, y) & =\exp \left(x^{k-1} y\right) \cdot x \\
i(z) & =(z, 0)
\end{aligned}
$$

Or $s(z, \lambda)=z$ and $t(z, \lambda)=\exp \left(\lambda^{k-1} z\right) \cdot z$, in which case

$$
\left(z_{1}, \lambda_{1}\right)\left(z_{2}, \lambda_{2}\right)=\left(z_{1}, u_{2} \exp \left((k-1) u_{1} z_{1}^{k-1}\right)+u_{1}\right)
$$

Demonstration on my web site

Local normal form: the Stokes groupoids

The case $X=\mathbb{C}$ and $D=k \cdot 0$ is the Stokes groupoid Sto $_{k}=\Pi_{1}(\mathbb{C}, k \cdot 0)$

$$
\begin{aligned}
\text { Sto }_{k} & =\mathbb{C} \times \mathbb{C} \rightrightarrows \mathbb{C} \\
s(x, y) & =\exp \left(-x^{k-1} y\right) \cdot x \\
t(x, y) & =\exp \left(x^{k-1} y\right) \cdot x \\
i(z) & =(z, 0)
\end{aligned}
$$

Or $s(z, \lambda)=z$ and $t(z, \lambda)=\exp \left(\lambda^{k-1} z\right) \cdot z$, in which case

$$
\left(z_{1}, \lambda_{1}\right)\left(z_{2}, \lambda_{2}\right)=\left(z_{1}, u_{2} \exp \left((k-1) u_{1} z_{1}^{k-1}\right)+u_{1}\right)
$$

Demonstration on my web site

Local normal form: the Stokes groupoids

The case $X=\mathbb{C}$ and $D=k \cdot 0$ is the Stokes groupoid Sto $_{k}=\Pi_{1}(\mathbb{C}, k \cdot 0)$

$$
\begin{aligned}
\text { Sto }_{k} & =\mathbb{C} \times \mathbb{C} \rightrightarrows \mathbb{C} \\
s(x, y) & =\exp \left(-x^{k-1} y\right) \cdot x \\
t(x, y) & =\exp \left(x^{k-1} y\right) \cdot x \\
i(z) & =(z, 0)
\end{aligned}
$$

$\operatorname{Or} s(z, \lambda)=z$ and $t(z, \lambda)=\exp \left(\lambda^{k-1} z\right) \cdot z$, in which case

$$
\left(z_{1}, \lambda_{1}\right)\left(z_{2}, \lambda_{2}\right)=\left(z_{1}, u_{2} \exp \left((k-1) u_{1} z_{1}^{k-1}\right)+u_{1}\right)
$$

Demonstration on my web site

Resummation, redux

Suppose given the following data:

- Two connections $\nabla, \nabla_{0}: \mathcal{E} \rightarrow \Omega_{X}^{1}(D) \otimes \mathcal{E}$
- A point $p \in D$
- An isomorphism on the formal completion $\hat{X} \subset X$ at p :

$$
\hat{\phi}:\left.\left.\nabla_{0}\right|_{\hat{x}} \rightarrow \nabla\right|_{\hat{\chi}} .
$$

Integrating ∇, ∇_{0} and $\hat{\phi}$, we get the parallel transports on $\Pi_{1}(X, D)$:

$$
\Psi, \Psi_{0}: s^{*} \mathcal{E} \rightarrow t^{*} \mathcal{E}
$$

and their Taylor expansions $\hat{\Psi}, \hat{\Psi}_{0}$ on $\widehat{\Pi_{1}(X, D)} \subset \Pi_{1}(X, D)$.

Resummation, redux

$$
\hat{\phi}:\left.\left.\left(\mathcal{E}, \nabla_{0}\right)\right|_{\hat{\chi}} \rightarrow(\mathcal{E}, \nabla)\right|_{\hat{x}} \quad \Psi, \Psi_{0}: s^{*} \mathcal{E} \rightarrow t^{*} \mathcal{E}
$$

Theorem (Gualtieri-Li-P.)

The formal power series

$$
t^{*} \hat{\phi} \cdot \widehat{\Psi_{0}} \cdot s^{*} \hat{\phi}^{-1}
$$

converges to Ψ in a neighbourhood of $\operatorname{id}(p) \in \Pi_{1}(X, D)$.

Proof.

Because $\hat{\phi}$ is an isomorphism, we have the identity of formal power series:

$$
\widehat{\psi}=t^{*} \hat{\phi} \cdot \widehat{\psi_{0}} \cdot s^{*} \hat{\phi}^{-1}
$$

But Ψ is holomorphic a priori, so its Taylor expansion converges.

Resummation example

In our example:

$$
\begin{gathered}
\nabla=d-\left(\begin{array}{cc}
1 & -z \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}} \quad \nabla_{0}=d-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \frac{d z}{z^{2}} \\
\hat{\phi}=\left(\begin{array}{cc}
1 & f(z) \\
0 & 1
\end{array}\right): \hat{\nabla}_{0} \rightarrow \hat{\nabla}_{1}
\end{gathered}
$$

with $f(z)=\sum_{n \geq 0} n!z^{n+1}$.
Fundamental solutions:

$$
\psi_{0}=\left(\begin{array}{cc}
e^{-1 / z} & 0 \\
0 & 1
\end{array}\right) \quad \psi=\left(\begin{array}{cc}
e^{-1 / z} & f \\
0 & 1
\end{array}\right)
$$

Resummation example

Choose local coordinates (μ, z) on Sto $_{2}$ in which $s=z$ and $t=\frac{z}{1-\mu z}$.
We compute

$$
\begin{aligned}
& \psi_{0}=t^{*} \psi_{0} \cdot s^{*} \psi_{0}^{-1} \\
& =\left(\begin{array}{cc}
e^{-1 / t} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-1 / s} & 0 \\
0 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
e^{-\frac{1-\mu z}{z}} & \hat{0} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{1 / z} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\mu} & 0 \\
0 & 1
\end{array}\right) \\
& \Psi=t^{*} \phi \cdot \Psi_{0} \cdot s^{*} \phi^{-1} \\
& =\left(\begin{array}{cc}
1 & f(t) \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{\mu} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -f(s) \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\mu} & f\left(\frac{z}{1-\mu z}\right)-e^{\mu} f(z) \\
0 & 1
\end{array}\right) \\
& \text { which must be holomorphic. }
\end{aligned}
$$

Resummation example

Using $f=\sum_{n=0}^{\infty} n!z^{n+1}$, we find

$$
\begin{aligned}
f\left(\frac{z}{1-\mu z}\right)-e^{\mu} f(z) & =-\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{z^{i+1} \mu^{i+j+1}}{(i+1)(i+2) \cdots(i+j+1)} \\
& =-\sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} \sum_{k=0}^{n} k!z^{k+1}
\end{aligned}
$$

which is holomorphic on the groupoid Sto_{2}.

Result: We have taken the divergent series, and the solutions of the "simple" connection ∇_{0}, and obtained a convergent series for the parallel transport of ∇ by elementary algebraic manipulations

Recovering the Borel sum

So far we have the parallel transport Ψ between points in $X \backslash D=\mathbb{C}^{*}$.
To see the Borel sum: look for gauge transformations $\tilde{\phi}(z)$ such that

$$
\lim _{z \rightarrow 0} \tilde{\phi}(z)=1
$$

Recall that we have

$$
\tilde{\phi}(t)=\Psi \tilde{\phi}(s) \Psi_{0}^{-1} \in \operatorname{Aut}\left(\left.\mathcal{E}\right|_{t}\right)
$$

for any gauge transformation.
Using the previous formula, we easily find

$$
\tilde{\phi}(z)=\left(\begin{array}{cc}
1 & \lim _{\mu \rightarrow \infty} e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} \sum_{k=0}^{n} k!z^{k} \\
0 & 1
\end{array}\right)=\operatorname{BorelSum}(\phi)
$$

in the appropriate sector.

Conclusion

Moral: The formula for Borel resummation is a consequence of the geometry of the groupoid $\Pi_{1}(X, D)$.

Future directions:

- Recover the Riemann-Hilbert correspondence/Stokes data
- Extend this method to other situations, e.g. WKB approximation in quantum mechanics, other types of singular DEs
- Isomonodromic deformations via Morita equivalences (in prep. with Gualtieri)

