Euler lines, nine-point circles and integrable discretisation of surfaces via the laws of physics

by

W.K. Schief

The University of New South Wales, Sydney

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems

0. The Euler line and the nine-point circle

circumcentre Ccentroid Gnine-point centre Northocentre O

Euler line:

 \overline{CG} : \overline{GN} : \overline{NO} = 2 : 1 : 3

Are there any canonical analogues of these objects for quadrilaterals?

1. The equilibrium equations of classical shell membrane theory

- Lamé and Clapeyron (1831): Symmetric loading of shells of revolution
- Lecornu (1880) and Beltrami (1882): Governing equations of membrane theory
- Love (1888; 1892, 1893): Theory of thin shells
- By now well-established branch of structural mechanics

Idea (see Novozhilov (1964)): Replace the three-dimensional stress tensor σ_{ik} of elasticity theory defined throughout a thin shell by statically equivalent internal forces T_{ab} , N^a and moments M_{ab} acting on its mid-surface Σ .

Vanishing of total force:
$$T^{a}_{b;a} = h_{ab}N^{a}$$
, $N^{a}_{;a} + h_{ab}T^{ab} = 0$
Vanishing of total moment: $M^{a}_{b;a} = N_{b}$, $T_{[ab]} = h_{c[a}M^{c}_{b]}$
Fundamental forms of Σ : $I = a_{ab}dx^{a}dx^{b}$ $II = b_{ab}dx^{a}dx^{b}$

No external forces for the time being

Definition of (shell) membranes: $M_{ab} = 0$

In terms of curvature coordinates:

$$I := dr^2 = H^2 dx^2 + K^2 dy^2$$
$$II := -dr \cdot dN = \kappa_1 H^2 dx^2 + \kappa_2 K^2 dy^2$$

 $(\kappa_i = \text{principal curvatures})$ with the decomposition of the tangent vectors

$$r_x = HX$$
, $r_y = KY$, $X^2 = Y^2 = 1$.

The coefficients H, K and κ_1, κ_2 obey the Gauß-Mainardi-Codazzi (GMC) equations.

Theorem: If the coefficients of two quadratic forms of the above type satisfy the GMC equations then they uniquely define a surface parametrised in terms of curvature coordinates.

3. The equilibrium conditions for membranes

 F_1, F_2 : resultant internal stresses acting on infinitesimal cross-sections x = const, y = constDifferentials: $dr_1 = r(x + dx, y) - r(x, y)$ $dr_2 = r(x, y + dy) - r(x, y)$ $F_1 + dF_1$

Vanishing total force acting on $d\Sigma$: $dF_1 + dF_2 = 0$

Vanishing total moment:
$$dr_1 \times F_1 + dr_2 \times F_2 = 0$$

Decomposition into resultant stress components per unit length according to $F_1 = (T_1X + T_{12}Y + N_1N)Kdy, \quad F_2 = (T_{21}X + T_2Y + N_2N)Hdx$ results in the membrane equilibrium equations

$$(KT_{1})_{x} + (HS)_{y} + H_{y}S - K_{x}T_{2} = 0, T_{12} = T_{21} = S$$
$$(HT_{2})_{y} + (KS)_{x} + K_{x}S - H_{y}T_{1} = 0, N_{1} = N_{2} = 0$$
$$\kappa_{1}T_{1} + \kappa_{2}T_{2} = 0$$

Assumptions: • lines of principal stress = lines of curvature: S = 0

• additional (external) constant normal loading: $\bar{p} = \text{const}$

Equilibrium equations:

$$T_{1x} + (\ln K)_x (T_1 - T_2) = 0$$

$$T_{2y} + (\ln H)_y (T_2 - T_1) = 0$$

$$\kappa_1 T_1 + \kappa_2 T_2 + \bar{p} = 0$$

Gauß-Mainardi-Codazzi equations:

$$\kappa_{2x} + (\ln K)_x (\kappa_2 - \kappa_1) = 0$$

$$\kappa_{1y} + (\ln H)_y (\kappa_1 - \kappa_2) = 0$$

$$\left(\frac{K_x}{H}\right)_x + \left(\frac{H_y}{K}\right)_y + HK\kappa_1\kappa_2 = 0$$

The above system is coupled and nonlinear. Only privileged membrane geometries are possible.

Claim: The above system is integrable!

• 'Homogeneous' stress distribution $T_1 = T_2 = c = \text{const}$:

$$\mathcal{H} = \frac{\kappa_1 + \kappa_2}{2} = -\frac{\bar{p}}{2c}$$

(Young 1805; Laplace 1806; integrable)

Constant mean curvature/minimal surfaces (modelling thin films ('soap bubbles')).

• Identification $T_1 = c\kappa_2, T_2 = c\kappa_1$:

$$\mathcal{K} = \kappa_1 \kappa_2 = -\frac{\bar{p}}{2c} \qquad \text{(integrable)}$$

Surfaces of constant Gaußian curvature governed by $\omega_{xx} \pm \omega_{yy} + \sin(h) \omega = 0$.

• Superposition $2T_1 = \lambda \kappa_2 + \mu$, $2T_2 = \lambda \kappa_1 + \mu$:

$$\lambda \mathcal{K} + \mu \mathcal{H} + \bar{p} = 0 \qquad \text{(integrable)}$$

Classical linear Weingarten surfaces.

Theorem: The mid-surfaces Σ of a shell membranes in equilibrium with vanishing 'shear' stress S and constant purely normal loading \overline{p} constitute particular O surfaces. Accordingly, the corresponding equilibrium equations are integrable.

The large class of integrable O surfaces has been introduced only recently (WKS & Konopelchenko 2003).

Both a Lax pair and a Bäcklund transformation for membrane O surfaces are byproducts of the general theory of O surfaces.

Problem: Can shell membranes be 'discretized' in such a way that integrability is preserved?

(c.f. finite element modelling of plates and shells: 'discrete Kirchhoff techniques')

7. Discrete curvature nets ('curvature lattices')

Definition: A lattice of \mathbb{Z}^2 combinatorics is termed a discrete curvature net if its quadrilaterals may be inscribed in circles.

In the area of (integrable) discrete differential geometry (Bobenko & Seiler 1999) and in computer-aided surface design (Gregory 1986), the canonical discrete analogue of a 'small' patch of a surface bounded by two pairs of lines of curvature turns out to be a planar quadrilateral which is inscribed in a circle.

Application:Discretepseudospherical surfaces(WKS 2003)

Edge vector decomposition:

$$r_{(1)} - r = HX, \quad r_{(2)} - r = KY$$

Discrete Gauß equations (Konopelchenko & WKS 1998):

$$X_{(2)} = \frac{X + qY}{\Gamma}, \quad Y_{(1)} = \frac{Y + pX}{\Gamma}, \quad \Gamma = \sqrt{1 - pq}$$

These imply the cyclicity condition

$$X_{(2)} \cdot Y + Y_{(1)} \cdot X = 0.$$

Closing condition:

$$H_{(2)} = \frac{H + pK}{\Gamma}, \quad K_{(1)} = \frac{K + qH}{\Gamma}$$
 (1)

9. Discrete Combescure transforms and Gauß maps (Konopelchenko & WKS 1998)

A discrete surface $\tilde{\Sigma}$ constitutes a discrete Combescure transform of a discrete curvature net Σ if its edges are parallel to those of Σ .

Any discrete Combescure transform $\tilde{\Sigma}$ corresponds to another solution (\tilde{H}, \tilde{K}) of the closing condition (1).

In particular, choose a point P on the unit sphere S^2 . Then, there exists a unique discrete surface Σ_{\circ} with vertices on S^2 whose edges are parallel to those of Σ .

We call the discrete surface $N : \mathbb{Z}^2 \to S^2$ a spherical representation or discrete Gauß map of Σ .

Any discrete curvature net admits a two-parameter family of spherical representations parametrized by P!

10. 'Plated' membranes (WKS 2005, 2010)

'Discrete' (plated) membrane: composed of 'plates' which may be inscribed in circles

Assumptions: • $F_i \perp$ edges ('S = 0')

- 'Constant normal loading' $F_{e} = \bar{p}\delta\Sigma N$, $\bar{p} = const$
- F_i homogeneously distributed along edges
- $m{F}_{
 m e}$ acts at some 'canonical' point $m{r}_{
 m e}$ (tbd)

Equilibrium equations:

$$\begin{split} F_{1(1)} - F_1 + F_{2(2)} - F_2 + F_e &= 0 & (force) \\ (r_{(12)} + r_{(1)}) \times F_{1(1)} - (r_{(2)} + r) \times F_1 & (moment) \\ + & (r_{(12)} + r_{(2)}) \times F_{2(2)} - (r_{(1)} + r) \times F_2 + 2r_e \times F_e = 0 \end{split}$$

Claim: Plated membranes are governed by integrable difference equations!

Parametrization of the forces:

$$F_{1} = Y \times V, \qquad V \cdot Y = -\frac{1}{4}\bar{p}H^{2}$$

$$F_{2} = U \times X, \qquad U \cdot X = -\frac{1}{4}\bar{p}K^{2}$$
(2)

Theorem: If we make the choice

$$r_{\rm e} = \frac{3}{2} r_G - \frac{1}{2} r_C \quad ??? \tag{3}$$

then the equilibrium equations for plated membranes simplify to

$$U_{(2)} = \frac{U + pV - 2[(U + pV) \cdot Y]Y}{\Gamma}$$

$$V_{(1)} = \frac{V + qU - 2[(V + qU) \cdot X]X}{\Gamma}$$
(4)

together with

$$\boldsymbol{U}\cdot\boldsymbol{Y}+\boldsymbol{V}\cdot\boldsymbol{X}=-\frac{1}{2}\bar{p}HK.$$
(5)

Claim: Relations (2)-(5) encapsulate pure geometry!

Firstly, expansion of the quantities U and V in terms of a basis of 'normals' N_i , that is

$$U = \sum_{i=1}^{3} H_i N_i, \quad V = \sum_{i=1}^{3} K_i N_i,$$

reduces the equilibrium equations (4) to

$$H_{i(2)} = \frac{H_i + pK_i}{\Gamma}, \quad K_{i(1)} = \frac{K_i + qH_i}{\Gamma}.$$

Thus, the internal forces are encoded in discrete Combescure transforms Σ_i of the discrete membrane Σ !

Note that each normal N_i corresponds to another Combescure transform $\Sigma_{\circ i}$ with 'metric' coefficients $H_{\circ i}$ and $K_{\circ i}$.

Secondly, if we combine the coefficients of the seven Combescure-related discrete surfaces Σ , Σ_i and $\Sigma_{\circ i}$ according to

.....

$$H = \begin{pmatrix} H_{1} \\ H_{2} \\ H_{3} \\ H \\ H_{01} \\ H_{02} \\ H_{03} \end{pmatrix}, \quad K = \begin{pmatrix} K_{1} \\ K_{2} \\ K_{3} \\ K \\ K_{3} \\ K \\ K_{01} \\ K_{02} \\ K_{03} \end{pmatrix}$$

then the normalisation conditions (2) and the constraint (5) become

$$\langle H,H\rangle=0,\quad \langle K,K\rangle=0,\quad \langle H,K\rangle=0,$$

where the scalar product $\langle \quad,\quad\rangle$ is taken with respect to the matrix

$$\Lambda = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -\bar{p} & 0 \\ 1 & 0 & 0 \end{array} \right).$$

Thus, H and K are orthogonal null vectors in a 'dual' 7-dimensional pseudo-Euclidean space with metric Λ . This observation provides the link to discrete O surface theory (WKS 2003) and implies the integrability of the equilibrium equations.

.....

Thirdly, the 'canonical' point r_e coincides with the quasi-nine-point centre of the corresponding cyclic quadrilateral!*

*This observation is due to N. Wildberger.

13. The quasi-Euler line (Ganin \leq 2006, Rideaux 2006, Myakishev 2006)

If $\bar{p} = 0$ then the discrete membrane Σ 'decouples' and constitutes an arbitrary Combescure transform of Σ .

Continuum limit for $\bar{p} = 0$:

- Only one normal and the associated Combescure transforms $\Sigma_{\circ 1}$ and Σ_1 survive.
- Equilibrium equations:

$$\langle \mathsf{H},\mathsf{H}\rangle = \alpha(x), \quad \langle \mathsf{K},\mathsf{K}\rangle = \beta(y), \quad \langle \mathsf{H},\mathsf{K}\rangle = 0, \quad \mathsf{\Lambda} = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array} \right).$$

This is the O surface representation of minimal surfaces.

 The standard discretisation of minimal surfaces (Bobenko & Pinkall 1996) admits an O surface representation with the same Λ (WKS 2003).

The 'physical' discretisation of minimal surfaces is non-standard!