Euler lines, nine-point circles and integrable discretisation of surfaces via the laws of physics

> by
> W.K. Schief

The University of New South Wales, Sydney

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems


## 0 . The Euler line and the nine-point circle



## circumcentre $C$ centroid $G$ nine-point centre $N$ orthocentre $O$

Euler line:
$\overline{C G}: \overline{G N}: \overline{N O}=2: 1: 3$

Are there any canonical analogues of these objects for quadrilaterals?

- Lamé and Clapeyron (1831): Symmetric loading of shells of revolution
- Lecornu (1880) and Beltrami (1882): Governing equations of membrane theory
- Love (1888; 1892, 1893): Theory of thin shells
- By now well-established branch of structural mechanics

> Idea (see Novozhilov (1964)): Replace the three-dimensional stress tensor $\sigma_{i k}$ of elasticity theory defined throughout a thin shell by statically equivalent internal forces $\mathrm{T}_{a b}, \mathrm{~N}^{a}$ and moments $\mathrm{M}_{a b}$ acting on its mid-surface $\Sigma$.


Vanishing of total force: $\quad \mathrm{T}^{a}{ }_{b ; a}=h_{a b} \mathrm{~N}^{a}, \quad \mathrm{~N}^{a} ; a+h_{a b} \mathrm{~T}^{a b}=0$
Vanishing of total moment: $\quad \mathrm{M}^{a}{ }_{b ; a}=\mathrm{N}_{b}, \quad \mathrm{~T}_{[a b]}=h_{c[a} \mathrm{M}^{c}{ }_{b]}$ No external forces for the time being
Fundamental forms of $\Sigma: \quad \mathrm{I}=g_{a b} d x^{a} d x^{b}, \quad \mathrm{II}=h_{a b} d x^{a} d x^{b} \quad$
Definition of (shell) membranes: $\quad \mathrm{M}_{a b}=0$

## 2. The differential geometry of surfaces

In terms of curvature coordinates:

$$
\begin{aligned}
\mathrm{I}:=d \boldsymbol{r}^{2} & =H^{2} d x^{2}+K^{2} d y^{2} \\
\mathrm{II}:=-d \boldsymbol{r} \cdot d \boldsymbol{N} & =\kappa_{1} H^{2} d x^{2}+\kappa_{2} K^{2} d y^{2}
\end{aligned}
$$

( $\kappa_{i}=$ principal curvatures) with the decomposition of the tangent vectors

$$
\boldsymbol{r}_{x}=H \boldsymbol{X}, \quad \boldsymbol{r}_{y}=K \boldsymbol{Y}, \quad \boldsymbol{X}^{2}=\boldsymbol{Y}^{2}=1
$$

The coefficients $H, K$ and $\kappa_{1}, \kappa_{2}$ obey the Gauß-Mainardi-Codazzi (GMC) equations.

Theorem: If the coefficients of two quadratic forms of the above type satisfy the GMC equations then they uniquely define a surface parametrised in terms of curvature coordinates.
$\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$ : resultant internal stresses acting on infinitesimal cross-sections $x=$ const, $y=$ const

Differentials: $d \boldsymbol{r}_{1}=\boldsymbol{r}(x+d x, y)-\boldsymbol{r}(x, y)$

$$
d \boldsymbol{r}_{2}=\boldsymbol{r}(x, y+d y)-\boldsymbol{r}(x, y)
$$



Vanishing total force acting on $d \Sigma: \quad d \boldsymbol{F}_{1}+d \boldsymbol{F}_{2}=\mathbf{0}$
Vanishing total moment: $\quad d \boldsymbol{r}_{1} \times \boldsymbol{F}_{1}+d \boldsymbol{r}_{2} \times \boldsymbol{F}_{2}=\mathbf{0}$
Decomposition into resultant stress components per unit length according to
$\boldsymbol{F}_{1}=\left(T_{1} \boldsymbol{X}+T_{12} \boldsymbol{Y}+N_{1} \boldsymbol{N}\right) K d y, \quad \boldsymbol{F}_{2}=\left(T_{21} \boldsymbol{X}+T_{2} \boldsymbol{Y}+N_{2} \boldsymbol{N}\right) H d x$ results in the membrane equilibrium equations

$$
\begin{array}{rll}
\left(K T_{1}\right)_{x}+(H S)_{y}+H_{y} S-K_{x} T_{2} & =0, & T_{12}=T_{21}=S \\
\left(H T_{2}\right)_{y}+(K S)_{x}+K_{x} S-H_{y} T_{1} & =0, & N_{1}=N_{2}=0 \\
\kappa_{1} T_{1}+\kappa_{2} T_{2} & =0 & \\
\hline
\end{array}
$$

Assumptions: - lines of principal stress $=$ lines of curvature: $\quad S=0$

- additional (external) constant normal loading: $\bar{p}=$ const

Equilibrium equations:

$$
\begin{aligned}
T_{1 x}+(\ln K)_{x}\left(T_{1}-T_{2}\right) & =0 \\
T_{2 y}+(\ln H)_{y}\left(T_{2}-T_{1}\right) & =0 \\
\kappa_{1} T_{1}+\kappa_{2} T_{2}+\bar{p} & =0
\end{aligned}
$$

Gauß-Mainardi-Codazzi equations:

$$
\begin{gathered}
\kappa_{2 x}+(\ln K)_{x}\left(\kappa_{2}-\kappa_{1}\right)=0 \\
\kappa_{1 y}+(\ln H)_{y}\left(\kappa_{1}-\kappa_{2}\right)=0 \\
\left(\frac{K_{x}}{H}\right)_{x}+\left(\frac{H_{y}}{K}\right)_{y}+H K \kappa_{1} \kappa_{2}=0
\end{gathered}
$$

The above system is coupled and nonlinear. Only privileged membrane geometries are possible.

Claim: The above system is integrable!

- 'Homogeneous' stress distribution $T_{1}=T_{2}=c=$ const:

$$
\mathcal{H}=\frac{\kappa_{1}+\kappa_{2}}{2}=-\frac{\bar{p}}{2 c} \quad \text { (Young 1805; Laplace 1806; integrable) }
$$

Constant mean curvature/minimal surfaces (modelling thin films ('soap bubbles')).

- Identification $T_{1}=c \kappa_{2}, T_{2}=c \kappa_{1}$ :

$$
\mathcal{K}=\kappa_{1} \kappa_{2}=-\frac{\bar{p}}{2 c} \quad \text { (integrable) }
$$

Surfaces of constant Gaußian curvature governed by $\omega_{x x} \pm \omega_{y y}+\sin (\mathrm{h}) \omega=0$.

- Superposition $2 T_{1}=\lambda \kappa_{2}+\mu, 2 T_{2}=\lambda \kappa_{1}+\mu$ :

$$
\lambda \mathcal{K}+\mu \mathcal{H}+\bar{p}=0 \quad \text { (integrable) }
$$

Classical linear Weingarten surfaces.

## 6. Integrability (Rogers \& WKS 2003)

Theorem: The mid-surfaces $\Sigma$ of a shell membranes in equilibrium with vanishing 'shear' stress $S$ and constant purely normal loading $\bar{p}$ constitute particular $O$ surfaces. Accordingly, the corresponding equilibrium equations are integrable.

The large class of integrable O surfaces has been introduced only recently (WKS \& Konopelchenko 2003).

Both a Lax pair and a Bäcklund transformation for membrane $O$ surfaces are byproducts of the general theory of $O$ surfaces.

Problem: Can shell membranes be 'discretized' in such a way that integrability is preserved?
(c.f. finite element modelling of plates and shells: 'discrete Kirchhoff techniques')

Definition: A lattice of $\mathbb{Z}^{2}$ combinatorics is termed a discrete curvature net if its quadrilaterals may be inscribed in circles.

In the area of (integrable) discrete differential geometry (Bobenko \& Seiler 1999) and in computer-aided surface design (Gregory 1986), the canonical discrete analogue of a 'small' patch of a surface bounded by two pairs of lines of curvature turns out to be a planar quadrilateral which is inscribed in a circle.


Application: Discrete pseudospherical surfaces (WKS 2003)


Edge vector decomposition:

$$
\boldsymbol{r}_{(1)}-\boldsymbol{r}=H \boldsymbol{X}, \quad \boldsymbol{r}_{(2)}-\boldsymbol{r}=K \boldsymbol{Y}
$$

Discrete Gauß equations (Konopelchenko \& WKS 1998):


$$
\boldsymbol{X}_{(2)}=\frac{\boldsymbol{X}+q \boldsymbol{Y}}{\Gamma}, \quad \boldsymbol{Y}_{(1)}=\frac{\boldsymbol{Y}+p \boldsymbol{X}}{\Gamma}, \quad \Gamma=\sqrt{1-p q}
$$

These imply the cyclicity condition

$$
\boldsymbol{X}_{(2)} \cdot \boldsymbol{Y}+\boldsymbol{Y}_{(1)} \cdot \boldsymbol{X}=0
$$

Closing condition:

$$
\begin{equation*}
H_{(2)}=\frac{H+p K}{\Gamma}, \quad K_{(1)}=\frac{K+q H}{\Gamma} \tag{1}
\end{equation*}
$$

9. Discrete Combescure transforms and Gauß maps (Konopelchenko \& WKS 1998)

A discrete surface $\tilde{\Sigma}$ constitutes a discrete Combescure transform of a discrete curvature net $\Sigma$ if its edges are parallel to those of $\Sigma$.


Any discrete Combescure transform $\tilde{\Sigma}$ corresponds to another solution ( $\tilde{H}, \widetilde{K}$ ) of the closing condition (1).

In particular, choose a point $P$ on the unit sphere $S^{2}$. Then, there exists a unique discrete surface $\Sigma_{0}$ with vertices on $S^{2}$ whose edges are parallel to those of $\Sigma$.

We call the discrete surface $N: \mathbb{Z}^{2} \rightarrow S^{2}$ a spherical representation or discrete Gauß map of $\Sigma$.


Any discrete curvature net admits a two-parameter family of spherical representations parametrized by $P$ !

## 10. 'Plated' membranes (WKS 2005, 2010)

'Discrete' (plated) membrane: composed of 'plates' which may be inscribed in circles


Assumptions: • $\boldsymbol{F}_{i} \perp$ edges (' $S=0$ ')

- 'Constant normal loading' $\boldsymbol{F} \mathrm{e}=\bar{p} \delta \Sigma \boldsymbol{N}, \quad \bar{p}=$ const
- $\boldsymbol{F}_{i}$ homogeneously distributed along edges
- $\boldsymbol{F}_{\mathrm{e}}$ acts at some 'canonical' point $\boldsymbol{r}_{\mathrm{e}}$ (tbd)

Equilibrium equations:

$$
\begin{align*}
& \boldsymbol{F}_{1(1)}-\boldsymbol{F}_{1}+\boldsymbol{F}_{2(2)}-\boldsymbol{F}_{2}+\boldsymbol{F}_{\mathrm{e}}=\mathbf{0}  \tag{force}\\
& \left(\boldsymbol{r}_{(12)}+\boldsymbol{r}_{(1)}\right) \times \boldsymbol{F}_{1(1)}-\left(\boldsymbol{r}_{(2)}+\boldsymbol{r}\right) \times \boldsymbol{F}_{1}  \tag{moment}\\
+ & \left(\boldsymbol{r}_{(12)}+\boldsymbol{r}_{(2)}\right) \times \boldsymbol{F}_{2(2)}-\left(\boldsymbol{r}_{(1)}+\boldsymbol{r}\right) \times \boldsymbol{F}_{2}+2 \boldsymbol{r}_{\mathrm{e}} \times \boldsymbol{F}_{\mathrm{e}}=\mathbf{0}
\end{align*}
$$

Claim: Plated membranes are governed by integrable difference equations!

Parametrization of the forces:

$$
\begin{array}{ll}
\boldsymbol{F}_{1}=\boldsymbol{Y} \times \boldsymbol{V}, & \boldsymbol{V} \cdot \boldsymbol{Y}=-\frac{1}{4} \bar{p} H^{2}  \tag{2}\\
\boldsymbol{F}_{2}=\boldsymbol{U} \times \boldsymbol{X}, & \boldsymbol{U} \cdot \boldsymbol{X}=-\frac{1}{4} \bar{p} K^{2}
\end{array}
$$

Theorem: If we make the choice

$$
\begin{equation*}
r_{\mathrm{e}}=\frac{3}{2} \boldsymbol{r}_{G}-\frac{1}{2} \boldsymbol{r}_{C} \quad ? ? ? \tag{3}
\end{equation*}
$$

then the equilibrium equations for plated membranes simplify to

$$
\begin{align*}
& \boldsymbol{U}_{(2)}=\frac{\boldsymbol{U}+p \boldsymbol{V}-2[(\boldsymbol{U}+p \boldsymbol{V}) \cdot \boldsymbol{Y}] \boldsymbol{Y}}{\Gamma} \\
& \boldsymbol{V}_{(1)}=\frac{\boldsymbol{V}+q \boldsymbol{U}-2[(\boldsymbol{V}+q \boldsymbol{U}) \cdot \boldsymbol{X}] \boldsymbol{X}}{\Gamma} \tag{4}
\end{align*}
$$

together with

$$
\begin{equation*}
\boldsymbol{U} \cdot \boldsymbol{Y}+\boldsymbol{V} \cdot \boldsymbol{X}=-\frac{1}{2} \bar{p} H K \tag{5}
\end{equation*}
$$

Claim: Relations (2)-(5) encapsulate pure geometry!

Firstly, expansion of the quantities $U$ and $V$ in terms of a basis of 'normals' $\boldsymbol{N}_{i}$, that is

$$
\boldsymbol{U}=\sum_{i=1}^{3} H_{i} \boldsymbol{N}_{i}, \quad \boldsymbol{V}=\sum_{i=1}^{3} K_{i} \boldsymbol{N}_{i}
$$

reduces the equilibrium equations (4) to

$$
H_{i(2)}=\frac{H_{i}+p K_{i}}{\Gamma}, \quad K_{i(1)}=\frac{K_{i}+q H_{i}}{\Gamma}
$$

Thus, the internal forces are encoded in discrete Combescure transforms $\Sigma_{i}$ of the discrete membrane $\Sigma$ !

Note that each normal $\boldsymbol{N}_{i}$ corresponds to another Combescure transform $\Sigma_{\mathrm{oi}}$ with 'metric' coefficients $H_{\circ i}$ and $K_{\circ i}$.

Secondly, if we combine the coefficients of the seven Combescure-related discrete surfaces $\Sigma, \Sigma_{i}$ and $\Sigma_{o i}$ according to

$$
\mathrm{H}=\left(\begin{array}{c}
H_{1} \\
H_{2} \\
H_{3} \\
H \\
H_{\circ 1} \\
H_{\circ 2} \\
H_{\circ 3}
\end{array}\right), \quad \mathrm{K}=\left(\begin{array}{c}
K_{1} \\
K_{2} \\
K_{3} \\
K \\
K_{\circ 1} \\
K_{\circ 2} \\
K_{\circ 3}
\end{array}\right)
$$

then the normalisation conditions (2) and the constraint (5) become

$$
\langle H, H\rangle=0, \quad\langle K, K\rangle=0, \quad\langle H, K\rangle=0,
$$

where the scalar product $\langle$,$\rangle is taken with respect to the matrix$

$$
\Lambda=\left(\begin{array}{ccc}
0 & 0 & \mathbb{1} \\
0 & -\bar{p} & 0 \\
\mathbb{1} & 0 & 0
\end{array}\right) .
$$

Thus, H and K are orthogonal null vectors in a 'dual' 7 -dimensional pseudo-Euclidean space with metric $\Lambda$. This observation provides the link to discrete $O$ surface theory (WKS 2003) and implies the integrability of the equilibrium equations.

Thirdly, the 'canonical' point $r_{e}$ coincides with the quasi-nine-point centre of the corresponding cyclic quadrilateral!*
*This observation is due to N . Wildberger.
13. The quasi-Euler line (Ganin $\leq 2006$, Rideaux 2006, Myakishev 2006)


If $\bar{p}=0$ then the discrete membrane $\Sigma$ 'decouples' and constitutes an arbitrary Combescure transform of $\Sigma$.

Continuum limit for $\bar{p}=0$ :

- Only one normal and the associated Combescure transforms $\Sigma_{\circ 1}$ and $\Sigma_{1}$ survive.
- Equilibrium equations:

$$
\langle\mathrm{H}, \mathrm{H}\rangle=\alpha(x), \quad\langle\mathrm{K}, \mathrm{~K}\rangle=\beta(y), \quad\langle\mathrm{H}, \mathrm{~K}\rangle=0, \quad \Lambda=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

This is the O surface representation of minimal surfaces.

- The standard discretisation of minimal surfaces (Bobenko \& Pinkall 1996) admits an O surface representation with the same $\Lambda$ (WKS 2003).

The 'physical' discretisation of minimal surfaces is non-standard!

