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0. The Euler line and the nine-point circle
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nine-point centre N

orthocentre O

Euler line:

CG : GN : NO = 2 : 1 : 3

Are there any canonical analogues

of these objects for quadrilaterals?



1. The equilibrium equations of classical shell membrane theory

• Lamé and Clapeyron (1831): Symmetric loading of shells of revolution

• Lecornu (1880) and Beltrami (1882): Governing equations of membrane theory

• Love (1888; 1892, 1893): Theory of thin shells

• By now well-established branch of structural mechanics

Idea (see Novozhilov (1964)): Replace the three-dimensional

stress tensor σik of elasticity theory defined throughout a

thin shell by statically equivalent internal forces Tab, N
a and

moments Mab acting on its mid-surface Σ.

Σ

Vanishing of total force: Ta
b;a = habN

a, Na
;a + habT

ab = 0

Vanishing of total moment: Ma
b;a = Nb, T[ab] = hc[aM

c
b]

Fundamental forms of Σ: I = gabdx
adxb, II = habdx

adxb


No external

forces for the

time being

Definition of (shell) membranes: Mab = 0



2. The differential geometry of surfaces

In terms of curvature coordinates:

I := dr2 = H2dx2 +K2dy2

II := −dr · dN = κ1H
2dx2 + κ2K

2dy2

(κi = principal curvatures) with the decomposition of the tangent vectors

rx = HX, ry = KY , X2 = Y 2 = 1.

The coefficients H,K and κ1, κ2 obey the Gauß-Mainardi-Codazzi (GMC) equations.

Theorem: If the coefficients of two quadratic forms of the above type satisfy the

GMC equations then they uniquely define a surface parametrised in terms of curvature

coordinates.



3. The equilibrium conditions for membranes

F 1, F 2: resultant internal stresses acting on

infinitesimal cross-sections x = const, y = const

Differentials: dr1 = r(x+ dx, y)− r(x, y)

dr2 = r(x, y + dy)− r(x, y)

X Y

N
−F 2

F 2 + dF 2F 1 + dF 1

−F 1

(x, y)

dΣ

Vanishing total force acting on dΣ: dF 1 + dF 2 = 0

Vanishing total moment: dr1 × F 1 + dr2 × F 2 = 0

Decomposition into resultant stress components per unit length according to

F 1 = (T1X + T12Y +N1N)Kdy, F 2 = (T21X + T2Y +N2N)Hdx

results in the membrane equilibrium equations

(KT1)x + (HS)y +HyS −KxT2 = 0, T12 = T21 = S

(HT2)y + (KS)x +KxS −HyT1 = 0, N1 = N2 = 0

κ1T1 + κ2T2 = 0



4. Vanishing ‘shear stress’ and constant ‘normal loading’

Assumptions: • lines of principal stress = lines of curvature: S = 0
• additional (external) constant normal loading: p̄ = const

Equilibrium equations:

T1x + (lnK)x(T1 − T2) = 0

T2y + (lnH)y(T2 − T1) = 0

κ1T1 + κ2T2 + p̄ = 0

Gauß-Mainardi-Codazzi equations:

κ2x + (lnK)x(κ2 − κ1) = 0

κ1y + (lnH)y(κ1 − κ2) = 0(
Kx

H

)
x
+
(
Hy

K

)
y
+HKκ1κ2 = 0

The above system is coupled and nonlinear. Only privileged membrane geometries are

possible.

Claim: The above system is integrable!



5. Classical and novel integrable reductions

• ‘Homogeneous’ stress distribution T1 = T2 = c = const:

H =
κ1 + κ2

2
= −

p̄

2c
(Young 1805; Laplace 1806; integrable)

Constant mean curvature/minimal surfaces (modelling thin films (‘soap bubbles’)).

• Identification T1 = cκ2, T2 = cκ1:

K = κ1κ2 = −
p̄

2c
(integrable)

Surfaces of constant Gaußian curvature governed by ωxx ± ωyy + sin(h)ω = 0.

• Superposition 2T1 = λκ2 + µ, 2T2 = λκ1 + µ:

λK+ µH+ p̄ = 0 (integrable)

Classical linear Weingarten surfaces.



6. Integrability (Rogers & WKS 2003)

Theorem: The mid-surfaces Σ of a shell membranes in equilibrium with vanishing

‘shear’ stress S and constant purely normal loading p̄ constitute particular O surfaces.

Accordingly, the corresponding equilibrium equations are integrable.

The large class of integrable O surfaces has been introduced only recently (WKS &

Konopelchenko 2003).

Both a Lax pair and a Bäcklund transformation for membrane O surfaces are by-

products of the general theory of O surfaces.

Problem: Can shell membranes be ‘discretized’ in such a

way that integrability is preserved?

(c.f. finite element modelling of plates and shells: ‘discrete Kirchhoff techniques’)



7. Discrete curvature nets (‘curvature lattices’)

Definition: A lattice of Z2 combinatorics is termed a

discrete curvature net if its quadrilaterals may be inscribed

in circles.

In the area of (integrable) discrete differential geometry

(Bobenko & Seiler 1999) and in computer-aided surface

design (Gregory 1986), the canonical discrete analogue of

a ‘small’ patch of a surface bounded by two pairs of lines

of curvature turns out to be a planar quadrilateral which

is inscribed in a circle.
(Doliwa)

Application: Discrete

pseudospherical surfaces

(WKS 2003)



8. Discrete ‘Gauß(-Weingarten) equations’

Edge vector decomposition:

r(1) − r = HX, r(2) − r = KY

Discrete Gauß equations (Konopelchenko & WKS 1998): r r(1)

r(2)

r(12)

HX

KY
H(2)X(2)

K(1)Y (1)

X(2) =
X + qY

Γ
, Y (1) =

Y + pX

Γ
, Γ =

√
1− pq

These imply the cyclicity condition

X(2) · Y + Y (1) ·X = 0.

Closing condition:

H(2) =
H + pK

Γ
, K(1) =

K + qH

Γ
(1)



9. Discrete Combescure transforms and Gauß maps (Konopelchenko & WKS 1998)

A discrete surface Σ̃ constitutes a discrete Combescure

transform of a discrete curvature net Σ if its edges are

parallel to those of Σ.

Any discrete Combescure transform Σ̃ corresponds to

another solution (H̃, K̃) of the closing condition (1).

In particular, choose a point P on the unit sphere S2.

Then, there exists a unique discrete surface Σ◦ with vertices
on S2 whose edges are parallel to those of Σ.

We call the discrete surface N : Z2 → S2 a spherical

representation or discrete Gauß map of Σ.

Σ̃

S2

N

Σ

Σ◦

P

Any discrete curvature net admits a two-parameter family of spherical representations

parametrized by P !



10. ‘Plated’ membranes (WKS 2005, 2010)

‘Discrete’ (plated) membrane:

composed of ‘plates’ which may

be inscribed in circles
r(12)

r

r(1)
r(2)

re

F e
−F 2 −F 1

F 1(1) F 2(2)

X Y

δΣ

Assumptions: • F i ⊥ edges (‘S = 0’)
• ‘Constant normal loading’ F e = p̄δΣN , p̄ = const

• F i homogeneously distributed along edges

• F e acts at some ‘canonical’ point re (tbd)

Equilibrium equations:

F 1(1) − F 1 + F 2(2) − F 2 + F e = 0 (force)

(r(12) + r(1))× F 1(1) − (r(2) + r)× F 1 (moment)

+ (r(12) + r(2))× F 2(2) − (r(1) + r)× F 2 +2re × F e = 0

Claim: Plated membranes are governed by integrable difference equations!



11. The equilibrium equations

Parametrization of the forces:

F 1 = Y × V , V · Y = −
1

4
p̄H2

F 2 = U ×X, U ·X = −
1

4
p̄K2

(2)

Theorem: If we make the choice

re =
3

2
rG −

1

2
rC ??? (3)

then the equilibrium equations for plated membranes simplify to

U(2) =
U + pV − 2[(U + pV ) · Y ]Y

Γ

V (1) =
V + qU − 2[(V + qU) ·X]X

Γ

(4)

together with

U · Y + V ·X = −
1

2
p̄HK. (5)



12. Geometric interpretation

Claim: Relations (2)-(5) encapsulate pure geometry!

Firstly, expansion of the quantities U and V in terms of a basis of ‘normals’N i, that is

U =
3∑

i=1

HiN i, V =
3∑

i=1

KiN i,

reduces the equilibrium equations (4) to

Hi(2) =
Hi + pKi

Γ
, Ki(1) =

Ki + qHi

Γ
.

Thus, the internal forces are encoded in discrete Combescure transforms Σi of the

discrete membrane Σ!

Note that each normal N i corresponds to another Combescure transform Σ◦i with
‘metric’ coefficients H◦i and K◦i.



............

Secondly, if we combine the coefficients of the seven Combescure-related discrete

surfaces Σ, Σi and Σ◦i according to

H =



H1
H2
H3
H
H◦1
H◦2
H◦3


, K =



K1
K2
K3
K
K◦1
K◦2
K◦3


then the normalisation conditions (2) and the constraint (5) become

⟨H,H⟩ = 0, ⟨K,K⟩ = 0, ⟨H,K⟩ = 0,

where the scalar product ⟨ , ⟩ is taken with respect to the matrix

Λ =

 0 0 1

0 −p̄ 0
1 0 0

 .



............

Thus, H and K are orthogonal null vectors in a ‘dual’ 7-dimensional pseudo-Euclidean

space with metric Λ. This observation provides the link to discrete O surface theory

(WKS 2003) and implies the integrability of the equilibrium equations.

Thirdly, the ‘canonical’ point re coincides with the quasi-nine-point centre of the

corresponding cyclic quadrilateral!∗

∗This observation is due to N. Wildberger.



13. The quasi-Euler line (Ganin ≤ 2006, Rideaux 2006, Myakishev 2006)
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quasi-circumcentre C

centroid G

quasi-nine-point centre N

quasi-orthocentre O

quasi-Euler line:

CG : GN : NO = 2 : 1 : 3



14. A minimal surface connection

If p̄ = 0 then the discrete membrane Σ ‘decouples’ and constitutes an arbitrary
Combescure transform of Σ.

Continuum limit for p̄ = 0:

• Only one normal and the associated Combescure transforms Σ◦1 and Σ1 survive.

• Equilibrium equations:

⟨H,H⟩ = α(x), ⟨K,K⟩ = β(y), ⟨H,K⟩ = 0, Λ =

(
0 1
1 0

)
.

This is the O surface representation of minimal surfaces.

• The standard discretisation of minimal surfaces (Bobenko & Pinkall 1996) admits
an O surface representation with the same Λ (WKS 2003).

The ‘physical’ discretisation of minimal surfaces is non-standard!


