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0.1 Revision

In science and engineering, mathematical models often lead to an equation that contains an unknown function
together with some of its derivatives. Such an equation is called a differential equation (DE).

We will use following notation for derivatives of a function x of a scalar argument t:

ẋ :=
dx

dt
= x′(t), ẍ :=

d2x

dt2
= x′′(t), etc.

Examples.

1. Free fall: consider free fall for a body of mass m > 0 – the equation of motion is

m
d2h

dt2
= −mg,

where h(t) is the height at time t, and −mg is the force due to gravity. To find the solutions of this
problem, rewrite the equation as ḧ(t) = −g and integrate twice to obtain ḣ(t) = −gt+ c1 and

h(t) = − 1

2
gt2 + c1t+ c2,

for two constants c1, c2 ∈ R. An interpretation of the constants of integration c1 and c2 is as follows:
at t = 0, the height is h(0) = c2, so c2 is the initial height, and similarly ḣ(0) = c1 is the initial velocity.

2. Radioactive decay: the rate of decay is proportional to the amount x(t) of radioactive material present

at time t: ẋ(t) = −k x(t), for some constant k > 0. The solution of this equation is x(t) = Ce−kt. The
initial amount of radioactive substance at time t = 0 is x(0) = C.

Remark. Note that the solutions to differential equations are not unique; for each choice of c1 and c2 in
the first example there is a solution of the form h(t) = (−1/2)gt2 + c1t + c2. Likewise, for each choice of
constant C in x(t) = Ce−kt there exists a solution to the problem ẋ(t) = −kx(t). Those integration constants
are often found from initial conditions (IC). We hence often deal with initial value problems (IVPs), which
consist of a differential equation together with some initial conditions.

Example. Solve the initial value problem

ẏ(t) + ay(t) = 0, y(0) = 2.

Solution. Rewriting the differential equation gives

ẏ(t)

y(t)
= −a.

Since d
dt (ln y(t)) = ẏ(t)/y(t), it follows that ln y(t) =

∫
ẏ(t)/y(t)dt; hence

y(t) = exp

(∫
ẏ(t)

y(t)
dt

)
=⇒ y(t) = e−

∫
adt.

Hence, y(t) = e−at+c = Ce−at (C := exp(c)). The initial condition yields

y(0) = 2 ⇐⇒ C = 2.

Therefore, the solution of the initial value problem is the function y : R→ R given by

y(t) = 2e−at, ∀t ∈ R.
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Chapter 1

Systems of Linear Autonomous
Ordinary Differential Equations

1.1 Writing linear ODEs as First-order systems

Any linear ordinary differential equation, of any order, can be written in terms of a first order system. This
is best illustrated by an example.

Example. Consider the equation
ẍ(t) + 2ẋ(t) + 3x(t) = t. (1.1)

In this case, set X =

(
x
ẋ

)
, i.e. X(t) is a two-dimensional vector-valued function of t. Then

Ẋ =

(
ẋ
ẍ

)
=

(
ẋ

−3x− 2ẋ+ t

)
=

(
0 1
−3 −2

)(
x
ẋ

)
+

(
0
t

)
(1.2)

So
Ẋ = AX + g,

where

A =

(
0 1
−3 −2

)
, g(t) =

(
0
t

)
.

The system (1.2) and the equation (1.1) are equivalent in the sense that x(t) solves the equation if and
only if X solves the system.

(For more examples for the above reduction see Problem Sheet 1, QQ 1–3.)

This motivates studying first order ODE systems. The most general first order system is of the form

B(t)ẋ(t) + C(t)x(t) = f(t),

where B,C : R→ Cn×n, f, x : R→ Cn. Henceforth, we do not employ any special notation for vectors and
vector-value functions (like underlining or using bold cases), to simplify the notation, and on the assumption
that what is a vector will be clear from the context. If B−1(t) exists for all t ∈ R, the equation may be
rewritten to obtain:

ẋ(t) = −B−1(t)C(t)x(t) +B−1(t)f(t)

or
ẋ(t) = A(t)x(t) + g(t), (1.3)

where A(t) = −B−1(t)C(t) and g(t) = B−1(t)f(t).
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Definition. 1. Equation (1.3) (in fact, a system of equations) is called the standard form of a first order
system of ordinary differential equations.

2. If A(t) and g(t) do not depend on t, the system is called autonomous.
3. If g ≡ 0, the system (1.3) is called homogeneous, otherwise (g 6≡ 0) it is called inhomogeneous.

1.2 Autonomous Homogeneous Systems

We consider initial-value problems for autonomous homogeneous systems, i.e we assume A is a constant,
generally complex-valued, n× n matrix.

Theorem (Existence and Uniqueness of IVPs). Let A ∈ Cn×n and x0 ∈ Cn. Then the initial value problem

ẋ(t) = Ax(t), x(t0) = x0 (1.4)

has a unique solution.

Proof. (Sketch)
We first argue that a solution to (1.4) exists and is given by x(t) = exp ((t− t0)A)x0, where exp ((t− t0)A)

is an appropriately understood matrix exponential.

Definition (Matrix Exponential). For a matrix Y ∈ Cn×n, the function exp(·Y ) : R→ Cn×n is defined by

exp(tY ) =

∞∑
k=0

1

k!
(tY )k = I + tY +

1

2
t2Y 2 + . . . , ∀t ∈ R. (1.5)

(We adopt the conventions 0! = 1, and Y 0 = I where I is the unit matrix.)

Remarks. The following hold true

Fact 1: The series (1.5) converges for all t ∈ R (meaning, the series of matrices converges for each component
of the matrix);

Fact 2: The derivative satisfies
d

dt
(exp(tY )) = Y exp(tY ) = exp(tY )Y.

We define x(t) = exp((t− t0)A)x0. Then

x(t0) = exp((t0 − t0)A)x0 = exp(0A)x0 = Ix0 = x0.

Hence x(t0) = x0. Also, ẋ(t) = A exp((t− t0)A)x0 = Ax(t), so x(t) is a solution.
To establish uniqueness, let x(t) and y(t) be two solutions of (1.4) and consider h(t) := x(t)− y(t). Then

ḣ = ẋ− ẏ = Ax−Ay = A(x− y) = Ah and hence ḣ = Ah and h(t0) = x(t0)− y(t0) = 0. We will show that
h(t) ≡ 0. It suffices to show that ‖h(t)‖ ≡ 0, where ‖ · ‖ denotes the length of a vector. Then

‖h(t)‖ =

∥∥∥∥∫ t

t0

Ah(s)ds

∥∥∥∥ ≤ ∣∣∣∣∫ t

t0

‖Ah(s)‖ds
∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

|A| ‖h(s)‖ ds
∣∣∣∣ , (1.6)

where |A| := maxx 6=0

(
‖Ax‖‖x‖−1

)
, and we have used the fact that the length of an integral of a vector-

function is less or equal the integral of a length. The function

f(t) := exp(−|t− t0||A|)
∣∣∣∣∫ t

t0

|A|‖h(s)‖ ds
∣∣∣∣

satisfies f(t0) = 0, and f(t) ≥ 0 ∀t. On the other hand, evaluating f ′ and using (1.6) we conclude: f ′(t) ≤ 0
for t ≥ t0 and f ′(t) ≥ 0 for t ≤ t0. [For example for t ≥ t0,

f ′(t) = exp(−(t− t0)|A|)|A|
[
−
∫ t

t0

|A|‖h(s)‖ ds+ ‖h(t)‖
]
≤ 0

by (1.6).] Taken together this implies that f(t) ≡ 0, hence ‖h(t)‖ ≡ 0, implying h(t) ≡ 0 as required.
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To compute exp(tA) explicitly is generally not so easy. (This will be discussed in more detail later.)
We will aim at constructing appropriate number of “linearly independent” solutions of the system ẋ = Ax.

Hence first

Definition (Linear Independence of Functions). Let I ⊂ R be an interval. The vector functions yi : I → Cn,
i = 1, . . . ,m are said to be linearly independent on I if

m∑
i=1

ci yi(t) = 0, ∀t ∈ I implies c1 = c2 = · · · = cm = 0.

The functions yi are said to be linearly dependent if they are not linearly independent, i.e. if ∃ c1, c2, . . . , cm
not all zero such that

m∑
i=1

ciyi(t) = 0, ∀t ∈ I.

Example. Let I = [0, 1] and y1(t) =

(
et

tet

)
, y2(t) =

(
1
t

)
.

Claim y1 and y2 are linearly independent.

Proof Assume they are not; then ∃c1, c2 not both zero such that

c1y1(t) + c2y2(t) = 0, ∀t ∈ I ⇐⇒
{
c1e

t + c2 = 0
c1te

t + c2t = 0,
∀t ∈ I.

If c2 is non-zero then clearly c1 is non-zero too (and the other way round), and hence in particular et = −c2/c1
is constant which yields a contradiction. Thus y1 and y2 are linearly independent.

For more examples see Sheet 1 QQ 4–5.

1.3 Linearly Independent Solutions

Consider the homogeneous autonomous system

ẋ = Ax, (1.7)

where A ∈ Cn×n and x = x(t) : R → Cn. We prove that there exists n and only n linearly independent
solutions of (1.7).

Theorem (Existence of n and no more than n Linearly Independent Solutions). There exist n linearly
independent solutions of system (1.7). Any other solution can be written as

x(t) =

n∑
i=1

cixi(t), ci ∈ C. (1.8)

Proof. Let v1, . . . , vn ∈ Cn be n linearly independent vectors. Let xi(t) be the unique solutions of the initial
value problems

ẋi = Axi, x(t0) = vi, i = 1, . . . , n.

Now the functions xi(t) are linearly independent (see Problem 4 (a) Sheet 1), so the existence of n linearly
independent solutions is assured. Now let x(t) be an arbitrary solution of (1.7), with x(t0) = x0 ∈ Cn. Since
the vi, i = 1, ..., n, are linearly independent, they form a basis for Cn, so in particular ∃c1, . . . , cn ∈ C such
that

x0 =

n∑
i=1

civi.
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Now define

y(t) =

n∑
i=1

cixi(t), y : R→ Cn.

Then,

ẏ(t) =

n∑
i=1

ciẋi(t) =

n∑
i=1

ciAxi(t) = A

n∑
i=1

cixi(t) = Ay(t).

Further,

y(t0) =

n∑
i=1

cixi(t0) =

n∑
i=1

civi = x0.

Hence, by uniqueness of solution to the initial value problem ẏ = Ay with y(t0) = x0, it follows that
y(t) = x(t).

A Method for Determining the Solutions

Some linearly independent solutions are found by seeking solutions of the form

x(t) = eλtv, (1.9)

where v ∈ Cn is a non-zero constant vector. In this case,

ẋ(t) = λeλtv,

so to satisfy ẋ = Ax, it is required that λeλtv = Aeλtv ⇐⇒ Av = λv, v 6= 0. Hence x(t) = eλtv 6≡ 0 is a
solution of ẋ = Ax if and only if λ is an eigenvalue of A with v ∈ Cn being corresponding eigenvector.

Example. Consider

ẋ(t) =

(
1 1
4 1

)
x(t), hence A =

(
1 1
4 1

)
. (1.10)

The eigenvalues of A are found by solving:

det(A− λI) = 0 ⇐⇒ det

(
1− λ 1

4 1− λ

)
= 0

⇐⇒ (1− λ)2 − 4 = 0 ⇐⇒ λ2 − 2λ− 3 = 0

⇐⇒ (λ− 3)(λ+ 1) = 0

⇐⇒ λ1 = 3, λ2 = −1.

The corresponding eigenvectors (denoting v1 and v2 the components of the vector v)
λ = 3:

Av = 3v ⇐⇒ (A− 3I)v = 0 ⇐⇒
(
−2 1

4 −2

)(
v1

v2

)
= 0

⇐⇒
{
−2v1 +v2 = 0

4v1 −2v2 = 0

⇒ can take v = v1 :=

(
1
2

)
,

as an eigenvector corresponding to λ = 3.
λ = −1:

(A+ I)v = 0 ⇐⇒
(

2 1
4 2

)(
v1

v2

)
= 0

⇐⇒
{

2v1 + v2 = 0
4v1 + 2v2 = 0

⇒ take v2 =

(
1
−2

)
.
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So, in summary,

x1(t) = e3t
(

1
2

)
, x2(t) = e−t

(
1
−2

)
are solutions to ẋ = Ax. Further, since v1 and v2 are linearly independent vectors, the solutions x1(t) and
x2(t) are linearly independent. Thus the general solution to (1.10) is

x(t) = c1x1(t) + c2x2(t) ⇐⇒ x(t) = c1e
3t

(
1
2

)
+ c2e

−t
(

1
−2

)
,

where c1, c2 ∈ C are arbitrary constants.

Corollary. Let A ∈ Cn×n. If A has n linearly independent eigenvectors, then the general solution of ẋ = Ax
is given by

x(t) =

n∑
i=1

cie
λitvi,

where vi are the linearly independent eigenvectors with corresponding eigenvalues λi, and ci ∈ C are arbitrary
constants.

Definition (Notation). For A ∈ Cn×n, the characteristic polynomial will be denoted by

πA(λ) := det(A− λI).

The set of eigenvalues of A (the “spectrum” of A) is denoted by

Spec(A) = {λ ∈ C | πA(λ) = 0}.

As is known from linear algebra, for a matrix A to have n linearly independent eigenvectors (equivalently,
for A to be diagonalisable), it would suffice e.g. if A had n distinct eigenvalues or were symmetric. However,
a matrix may have less than n linearly independent eigenvectors as the following example illustrates.

Example. An example of a 2× 2 matrix which does not have two linearly independent eigenvectors. Let

A =

(
2 1
0 2

)
, hence πA(λ) = (2− λ)2 = 0 ⇐⇒ λ = 2,

an eigenvalue with “algebraic multiplicity” 2. A corresponding eigenvector is found by solving(
0 1
0 0

)(
v1

v2

)
= 0.

In the latter one can choose only one linearly independent eigenvector e.g. v =

(
1
0

)
. Hence

x1(t) = e2t
(

1
0

)
solves ẋ = Ax. But the second linearly independent solution still remains to be found.

Finding the Second Linearly Independent Solution

Try x2(t) = u(t)eλt, for some function u : R→ C2. Substituting gives

ẋ2(t) = u̇(t)eλt + λu(t)eλt = Ax2(t) ⇐⇒ u̇(t)eλt + λu(t)eλt = Au(t)eλt

⇐⇒ u̇(t) + λu(t) = Au(t)

⇐⇒ u̇(t) = (A− λI)u(t). (*)
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Now try u(t) = a+ t b, with a, b ∈ C2 constant vectors. Then u̇(t) = b, so substituting into (*) gives

b = (A− λI)(a+ t b) = (A− λI)a+ t(A− λI)b

Comparing coefficients of 1 and t yields

(A− λI)a = b, (A− λI)b = 0.

Thus one can choose b as the eigenvector already found: b =

(
1
0

)
. This enables the equation to be solved

for a:

(A− λI)a =

(
1
0

)
⇐⇒

(
0 1
0 0

)(
a1

a2

)
=

(
1
0

)
with e.g. a =

(
0
1

)
.

This gives

x2(t) =

((
0
1

)
+ t

(
1
0

))
e2t.

Further, x1(0) =

(
1
0

)
, x2(0) =

(
0
1

)
, so x1(t) and x2(t) are linearly independent solutions of

ẋ(t) =

(
2 1
0 2

)
x(t).

The general solution is therefore given by

x(t) = c1x1(t) + c2x2(t) = c1e
2t

(
1
0

)
+ c2e

2t

(
t
1

)
,

where c1, c2 ∈ C are arbitrary constants.

We shall now consider the case when an n× n matrix has less than n linearly independent eigenvectors
in greater generality. Notice that in the above example (A − λI)b = 0, and (A − λI)a = b 6= 0 while
(A− λI)2a = (A− λI)b = 0. Hence while b is an ordinary eigenvector, a may be viewed as a “generalised”
eigenvector. This motivates the following generic

Definition (Generalised Eigenvectors). Let A ∈ Cn×n, λ ∈ Spec(A). Then a vector v ∈ Cn is called a
generalised eigenvector of order m ∈ N, with respect to λ, if the following two conditions hold:

� (A− λI)kv 6= 0, ∀0 ≤ k ≤ m− 1;

� (A− λI)mv = 0.

In the above example, a is a generalised eigenvector of A with respect to λ = 2 of order m = 2. Notice
that, in the light of the above definition, the ordinary eigenvectors are “generalised eigenvectors of order 1”.

Following lemma gives a way of constructing a sequence of generalised eigenvectors as long as we have
one, of order m ≥ 2:

Lemma (Constructing Generalised Eigenvectors). Let λ ∈ Spec(A) and v be a generalised eigenvector of
order m ≥ 2. Then, for k = 1, . . . ,m− 1, the vector

vm−k := (A− λI)kv

is a generalised eigenvector of order m− k.

Proof. It is required to show that
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� (A− λI)lvm−k 6= 0, ∀0 ≤ l ≤ m− k − 1;

� (A− λI)m−kvm−k = 0.

Firstly,
(A− λI)lvm−k = (A− λI)l(A− λI)kv = (A− λI)l+kv 6= 0, 0 ≤ l + k ≤ m− 1

whence
(A− λI)lvm−k 6= 0, 0 ≤ l ≤ m− k − 1.

Moreover,
(A− λI)m−kvm−k = (A− λI)m−k(A− λI)kv = (A− λI)mv = 0.

The need for incorporating the generalised eigenvectors arises as long as “there are not enough” ordinary
eigenvectors, more precisely when the geometric multiplicity is different (i.e. strictly less) than the algebraic
multiplicity, defined as follows.

Definition (Algebraic and Geometric Multiplicity). Let A ∈ Cn×n and λ ∈ Spec(A). Then λ has geometric multiplicity
m ∈ N if m is the largest number for which m linearly independent eigenvectors exist. If m = 1, λ is said to
be a simple eigenvalue. The algebraic multiplicity of λ is the multiplicity of λ as a root of πA(λ).

Examples.

(i) Consider

A =

(
2 1
0 2

)
. Hence Spec(A) = {2}.

Then, by an earlier example, λ = 2 has geometric multiplicity 1, but algebraic multiplicity is 2.

(ii) Consider the matrix

A =

 1 0 1
0 1 0
0 0 2

 .

Then

πA(λ) = det

 1− λ 0 1
0 1− λ 0
0 0 2− λ

 = (1− λ)2(2− λ).

Hence Spec(A) = {1, 2} and λ = 1 has algebraic multiplicity 2, λ = 2 has algebraic multiplicity 1. For
the eigenvectors,

λ = 1 : (A− I)v = 0 ⇐⇒

 0 0 1
0 0 0
0 0 1

 v1

v2

v3

 = 0

⇒ v1 =

 1
0
0

 , v2 =

 0
1
0


are two linearly independent eigenvectors, so λ = 1 has geometric multiplicity 2. Further,

λ = 2:

(A− 2I)v = 0 ⇐⇒

 −1 0 1
0 −1 0
0 0 0

 v1

v2

v3

 = 0, v3 =

 1
0
0


is an eigenvector. Hence λ = 2 is a simple eigenvalue.

The following theorem provides a recipe for constructing m linearly independent solutions as long as we
have a generalised eigenvector of order m ≥ 2.
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Theorem. Let A ∈ Cn×n and v ∈ Cn be a generalised eigenvector of order m, with respect to λ ∈ Spec(A).
Define the following m vectors:

v1 = (A− λI)m−1v
v2 = (A− λI)m−2v

...
vm−1 = (A− λI)v
vm = v.

Then:

� The vectors v1, v2, . . . , vm−1, vm are linearly independent;

� The functions

xk(t) = eλt
k−1∑
i=0

ti

i!
vk−i, k ∈ {1, . . . ,m}

form a set of linearly independent solutions of ẋ = Ax.

Proof.

� Seeking a contradiction, assume that the vectors are linearly dependent, so ∃ c1, . . . , cm not all zero
such that

m∑
i=1

civi = 0.

Then there exists the “last” non-zero cj : cj 6= 0 and either j = m or ci = 0 for any j < i ≤ m. Hence

j∑
k=1

ckvk = 0 ⇐⇒
j∑

k=1

ck(A− λI)m−kv = 0.

Hence, pre-multiplying by (A− λI)j−1 gives

(A− λI)j−1
j∑

k=1

ck(A− λI)m−kv = 0 ⇐⇒
j∑

k=1

ck(A− λI)m+j−k−1v = 0.

Now for k = 1, . . . , j − 1 it follows that m+ j − k − 1 ≥ m, so (A− λI)m+j−k−1v = 0 by definition of
the generalised eigenvector. For k = j, it follows that m + j − k − 1 = m − 1, so (A − λI)m−1v 6= 0;
this implies that cj = 0 which is a contradiction. Hence the vectors are in fact linearly independent,
as required.

� Since v1, . . . , vm are linearly independent and xk(0) = vk, it follows that x1(t), . . . , xm(t) are linearly
independent functions (cf. Sheet 1 Q 4(a)). It remains to show that ẋk(t) = Axk(t), ∀1 ≤ k ≤ m.
Indeed,

ẋk(t) = λeλt
k−1∑
i=0

ti

i!
vk−i + eλt

k−2∑
i=0

ti

i!
vk−1−i

= eλt

[
λ

k−1∑
i=0

ti

i!
vk−i +

k−2∑
i=0

ti

i!
vk−1−i

]

= eλt

[
tk−1

(k − 1)!
λv1 +

k−2∑
i=0

ti

i!
(λvk−i + vk−1−i)

]
.

Now for 2 ≤ j ≤ m,

vj−1 = (A− λI)m−j+1v = (A− λI)(A− λI)m−jv = (A− λI)vj = Avj − λvj .
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Thus λvj + vj−1 = Avj , and hence (having also used λv1 = Av1)

ẋk(t) = eλt
k−1∑
i=0

ti

i!
Avk−i = Aeλt

k−1∑
i=0

ti

i!
vk−i = Axk(t),

so ẋk(t) = Axk(t) as required.

Examples.

1. Consider the matrix

A =

 1 0 0
1 3 0
0 1 1

 , πA(λ) = (1− λ)2(3− λ).

For the eigenvalue λ = 1,

(A− I)v = 0 ⇐⇒

 0 0 0
1 2 0
0 1 0

 v1

v2

v3

 = 0⇒ v =

 0
0
1


is an eigenvector with respect to λ = 1. (There is only one linearly independent eigenvector, i.e the
geometric multiplicity is 1 while the algebraic multiplicity is 2.) Hence seek v2 such that (A− I)v2 6= 0
and (A− I)2v2 = 0. Notice that

(A− I)2 =

 0 0 0
2 4 0
1 2 0

 ,

so take v2 =

 −2
1
0

 as a generalised eigenvector of order 2. Then set

v1 := (A− I)v2 =

 0 0 0
1 2 0
0 1 0

 −2
1
0

 =

 0
0
1


(notice v1 is an ordinary eigenvector, as expected).

For the eigenvalue λ = 3,

(A− 3I)v3 =

 −2 0 0
1 0 0
0 1 −2

 v3 = 0,

so take v3 =

 0
2
1

.

Hence finally set

x1(t) = etv1 =

 0
0
et

 , x2(t) = et(v2 + tv1) =

 −2et

et

tet

 ,

and

x3(t) = e3tv3 =

 0
2e3t

e3t

 .

The general solution to ẋ = Ax is hence:

x(t) = c1x1(t) + c2x2(t) + c3x3(t),

where c1, c2, c3 ∈ C are arbitrary constants.
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2. Find three linearly independent solutions of

ẋ(t) = Ax(t) =

 1 1 0
0 1 1
0 0 1

x(t).

In this case,
πA(λ) = (1− λ)3,

and since

(A− I) =

 0 1 0
0 0 1
0 0 0

 ,

there is only one (linearly independent) eigenvector, v =

 1
0
0

 . Hence λ = 1 has algebraic multi-

plicity 3 and geometric multiplicity one. Hence a generalised eigenvector v3 of order three is required,
i.e. such that:

(A− I)v3 =

 0 1 0
0 0 1
0 0 0

 v3 6= 0

(A− I)2v3 =

 0 0 1
0 0 0
0 0 0

 v3 6= 0,

and (A− I)3v3 = [0]3×3v3 = 0. We can choose as such v3 =

 0
0
1

. Then set:

v2 := (A− I)v3 =

 0
1
0



v1 := (A− I)2v3 = (A− I)v2 =

 1
0
0

 .

Hence, using the main theorem on the existence of solutions,

x1(t) = etv1

x2(t) = et(v2 + t v1)

x3(t) = et
(
v3 + t v2 +

t2

2
v1

)
are three linearly independent solutions.

1.4 Fundamental Matrices

Assume that for A ∈ Cn×n n linearly independent solutions x1(t), . . . , xn(t) of the system ẋ(t) = Ax(t) have
been found. Such n vector-functions constitute a fundamental system. Given such a fundamental system,
there exist constants ci ∈ C such that any other solution x(t) can be written as x(t) =

∑n
i=1 cixi(t). Given

a fundamental system we can define fundamental matrix as follows.
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Definition (Fundamental Matrix). A fundamental matrix for the system ẋ(t) = Ax(t) is defined by

Φ(t) =

(
x1(t) | x2(t) | · · · | xn(t)

)
,

that is, Φ : R→ Cn×n, where the ith column is xi : R→ Cn, and xi, i = 1, ..., n, are n linearly independent
solutions (i.e. a fundamental system).

Then

Φ̇(t) = (ẋ1(t) | · · · | ẋn(t)) = (Ax1(t) | · · · | Axn(t)) = A (x1(t) | · · · | xn(t)) = AΦ(t).

Also note that Φ−1(t) exists for all t ∈ R, since the xi(t) are linearly independent.

Example. For

A =

(
1 1
4 1

)
,

two linearly independent solutions of the system ẋ(t) = Ax(t) are (see Example in §1.3 above)

x1(t) = e3t
(

1
2

)
, x2(t) = e−t

(
1
−2

)
.

The functions x1(t), x2(t) constitute a fundamental system, and the matrix

Φ(t) =

(
e3t e−t

2e3t −2e−t

)
is a fundamental matrix for ẋ(t) = Ax(t).

Lemma. If Φ(t) and Ψ(t) are two fundamental matrices for ẋ(t) = Ax(t), then ∃C ∈ Cn×n (a constant
matrix) such that Φ(t) = Ψ(t)C, ∀t ∈ R.

Proof. Write Φ(t) = (x1(t) | · · · | xn(t)) and Ψ(t) = (y1(t) | · · · | yn(t)). Since y1(t), . . . , yn(t) constitute a
fundamental system, each xj(t) can be written in terms of y1(t), . . . , yn(t), so there exist constants cij ∈ C
such that

xj(t) =

n∑
i=1

cijyi(t), ∀1 ≤ j ≤ n.

The above vector identity, for the k-th components, k = 1, ..., n, reads Φkj(t) =
∑n
i=1 cijΨki(t). This is

equivalent to Φ(t) = Ψ(t)C, with C = [cij ]n×n, the matrix with (i, j)th entry cij .

We show next that the matrix exponential is a fundamental matrix.

Theorem. The matrix function Φ(t) = exp(tA) is a fundamental matrix for the system ẋ(t) = Ax(t).

Proof.

d

dt
(exp(tA)) =

d

dt

∞∑
k=0

1

k!
(tA)k =

∞∑
k=0

1

k!
tkAk+1 = A

∞∑
k=0

1

k!
(tA)k = A exp(tA).

Hence Φ̇(t) = AΦ(t). Write Φ(t) = (x1(t) | · · · | xn(t)), where xi(t) is the ith column of Φ. For

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1


it follows that xi(t) = Φ(t)ei and thus

ẋi(t) = Φ̇(t)ei = AΦ(t)ei = Axi(t).

Hence ẋi(t) = Axi(t) and x1(t), . . . , xn(t) are linearly independent functions because x1(0) = e1, . . . , xn(0) =
en are linearly independent vectors. Therefore, Φ(t) = exp(tA) is a fundamental matrix, by definition.
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1.4.1 Initial Value Problems Revisited

Let A ∈ Cn×n, and seek Φ : R → Cn×n such that Φ̇(t) = AΦ(t) and Φ(t0) = Φ0, for some initial condition
Φ0 ∈ Cn×n. If Ψ(t) is a fundamental matrix and Ψ(t0) = Ψ0, set Φ(t) = Ψ(t)Ψ−10 Φ0.

Claim Φ(t) solves the above initial value problem.

Proof

� Firstly,
Φ̇(t) = Ψ̇(t)Ψ−10 Φ0 = AΨ(t)Ψ−10 Φ0 = AΦ(t).

� Moreover,
Φ(t0) = Ψ(t0)Ψ−10 Φ0 = Ψ0Ψ−10 Φ0 = Φ0,

so the initial condition is satisfied.

Corollary. The unique solution to the above initial value problem is given by

Φ(t) = exp((t− t0)A)Φ0.

Proof: Exercise.

Example. Solve the initial value problem

Φ̇(t) =

(
1 1
4 1

)
Φ(t), Φ(0) = I.

Solution. Firstly, (see the example above)

Ψ(t) =

(
e3t e−t

2e3t −2e−t

)
is a fundamental matrix. Then, using the result from above,

Φ(t) = Ψ(t)Ψ−10 =

(
e3t e−t

2e3t −2e−t

)(
1/2 1/4
1/2 −1/4

)
=


1

2
e3t +

1

2
e−t

1

4
e3t − 1

4
e−t

e3t − e−t 1

2
e3t +

1

2
e−t

 .

Corollary. Let Φ(t) be a fundamental matrix of ẋ = Ax. Then exp(tA) = Φ(t)Φ−1(0).

Proof. Since exp(tA) is a fundamental matrix, exp(tA) = Φ(t)C for some constant matrix C ∈ Cn×n. At
t = 0, I = Φ(0)C, so C = Φ−1(0) (recall that Φ(t) is invertible for all t ∈ R).

Hence determining a fundamental matrix essentially determines exp(tA).

Example. From above, the system

Φ̇(t) =

(
1 1
4 1

)
Φ(t)

has a fundamental matrix given by

Ψ(t) =

(
e3t e−t

2e3t −2e−t

)
.

Moreover Ψ(t)Ψ−1(0) is given by
1

2
e3t +

1

2
e−t

1

4
e3t − 1

4
e−t

e3t − e−t 1

2
e3t +

1

2
e−t

 = exp

(
t

(
1 1
4 1

))
.
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An alternative view (computing the matrix exponential via diagonalisation):

With A =

(
1 1
4 1

)
, it follows that λ1 = 3 and λ2 = −1 are eigenvalues with corresponding eigenvectors

v1 =

(
1
2

)
, v2 =

(
1
−2

)
.

Write Av1 = λ1v1 and Av2 = λ2v2 into one matrix equation:

A (v1 | v2) = (v1 | v2)

(
λ1 0
0 λ2

)
⇐⇒ AT = TD,

for matrices T and D as defined above. Notice that D is diagonal and T is invertible since its columns are
linearly independent, so A = TDT−1 and T−1AT = D.
Generally, given A ∈ Cn×n and T ∈ Cn×n invertible such that

T−1AT =

 λ1 . . . 0
...

. . .
...

0 . . . λn

 ,

then

exp(tA) = exp(tTDT−1) =

∞∑
k=0

1

k!
tk
(
TDT−1

)k
=

∞∑
k=0

1

k!
tkTDkT−1

= T

( ∞∑
k=0

1

k!
tkDk

)
T−1

= T exp(tD)T−1

= T

 eλ1t . . . 0
...

. . .
...

0 . . . eλnt

T−1.

Returning to the example and taking the above into account,

exp

(
t

(
1 1
4 1

))
= −1

4

(
1 1
2 −2

)(
e3t 0
0 e−t

)(
−2 −1
−2 1

)
=


1

2
e3t +

1

2
e−t

1

4
e3t − 1

4
e−t

e3t − e−t 1

2
e3t +

1

2
e−t

 .

The above shows how exp(tA) can be computed when A is diagonalisable (equivalently, has n linearly
independent eigenvectors, taking which as a basis in fact diagonalises the matrix). More generally, when
A is not necessarily diagonalisable, we can still present it in some “standard form” (called Jordan’s normal
form) by incorporating the generalised eigenvectors. By Corollary, the columns of a fundamental matrix are
of the form eAtv, for some v ∈ Cn. Now

eAtv = eλtIe(A−λI)tv = eλt

[ ∞∑
k=0

1

k!
(A− λI)ktk

]
v.

Thus, to simplify any calculation, seek λ ∈ C and v ∈ Cn such that (A− λI)kv = 0 for all k ≥ m, for some
k ∈ N; in other words, seek generalised eigenvectors.

The following fundamental Theorem from linear algebra ensures that there always exist n linearly inde-
pendent generalised eigenvectors. (Hence, we are always able to construct n linearly independent solutions
in terms of those, via the earlier developed recipes.)

15



Theorem (Primary Decomposition Theorem). Let A ∈ Cn×n, and let

πA(λ) =

l∏
j=1

(λj − λ)
mj

with the λj distinct eigenvalues of A and
∑l
j=1mj = n. Then, for each j = 1, . . . , l, ∃mj linearly independent

(generalised) eigenvectors with respect to λj, and the combined set of n generalised eigenvectors is linearly
independent.

A proof will be given in Algebra-II (Spring semester), and is not required at present.

Example. Consider the system

ẋ(t) =

 1 2 3
0 0 4
0 0 0

x(t) = Ax(t).

Now Spec(A) = {0, 0, 1} = {0, 1}, and the corresponding eigenvectors are found by solving

λ = 1 : (A− I)v1 = 0 ⇐⇒

 0 2 3
0 −1 4
0 0 −1

 v1

v2

v3

 = 0⇒ v1 =

 1
0
0

 ,

and

λ = 0 : Av =

 1 2 3
0 0 4
0 0 0

 v1

v2

v3

 = 0⇒ v =

 2
−1

0


(i.e. geometric multiplicity is 1 vs algebraic multiplicity 2). Now examine

A2 =

 1 2 11
0 0 0
0 0 0


and find v3 ∈ C3 such that A2v3 = 0 and Av3 6= 0, that is, find a generalised eigenvector of order 2. Take

e.g. v3 =

 11
0
−1

. Hence set

v2 := (A− λI)v3 =

 1 2 3
0 0 4
0 0 0

 11
0
−1

 =

 8
−4
0


(notice that v2 = 4v is an ordinary eigenvector).

Then v1, v2, v3 are linearly independent. Hence the general solution is

x(t) = c1e
t

 1
0
0

+ c2

 8
−4

0

+ c3

 11
0
−1

+ t

 8
−4

0

 ,

for constants c1, c2, c3 ∈ C.

1.5 Non-Homogeneous Systems

Let A ∈ Cn×n and consider the system
ẋ(t) = Ax(t) + g(t) (1.11)
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for x : R→ Cn and g : R→ Cn. Let Φ(t) be a fundamental matrix of the corresponding homogeneous system
ẋ(t) = Ax(t).

Seek a solution of (1.11) in the “variation of parameters” form, i.e. x(t) = Φ(t)u(t) for some function
u : R→ Cn. For x(t) = Φ(t)u(t),

ẋ(t) = Φ̇(t)u(t) + Φ(t)u̇(t) = AΦ(t)u(t) + Φ(t)u̇(t) = Ax(t) + Φ(t)u̇(t) = Ax(t) + g(t).

So the condition on u is that
Φ(t)u̇(t) = g(t).

Hence

u̇(t) = Φ−1(t)g(t) =⇒ u(t) =

∫ t

t0

Φ−1(s)g(s)ds+ C,

where C ∈ Cn. Hence

x(t) = Φ(t)u(t) = Φ(t)

[∫ t

t0

Φ−1(s)g(s)ds+ C

]
.

Thus the general solution of (1.11) is given by:

x(t) = Φ(t)C + Φ(t)

∫ t

t0

Φ−1(s)g(s)ds, (1.12)

which is known as the variation of parameters formula.
Given the initial value problem

ẋ(t) = Ax(t) + g(t), x(t0) = x0 ∈ Cn, (1.13)

C can be determined:

x(t) = Φ(t)C + Φ(t)

∫ t

t0

Φ−1(s)g(s)ds⇒ x(t0) = Φ(t0)C ⇒ C = Φ−1(t0)x0.

Thus the solution of the initial value problem (1.13) is given by

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)g(s)ds. (1.14)

The solutions in these two cases are said to have been obtained by variation of parameters.

Example. Solve the initial value problem

ẋ1 = −x1 − x2 + et, x1(0) = 0

ẋ2 = −3x1 + x2, x2(0) = 2.

Solution.

⇐⇒ ẋ(t) = Ax(t) + g(t) =

(
−1 −1
−3 1

)
x(t) +

(
et

0

)
, x(0) =

(
0
2

)
.

Firstly, Spec(A) = {−2, 2} and

λ = 2 v1 =

(
1
−3

)
, λ = −2 v2 =

(
1
1

)
.

Hence

Φ(t) =

(
e2t e−2t

−3e2t e−2t

)
is a fundamental matrix for the corresponding homogeneous system ẋ(t) = Ax(t). Finding the inverse gives

Φ−1(t) =
1

4

(
e−2t −e−2t
3e2t e2t

)
,
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and

Φ−1(0)x(0) =
1

4

(
1 −1
3 1

)(
0
2

)
=

(
−1/2

1/2

)
.

Thus, by variation of parameters,

x(t) =

(
e2t e−2t

−3e2t e−2t

)(
−1/2
1/2

)
+

(
e2t e−2t

−3e2t e−2t

)∫ t

0

1

4

(
e−2s −e−2s
3e2s e2s

)(
es

0

)
ds.

Integrating then gives via routine calculation

x(t) =
1

2

(
−e2t + e−2t

3e2t + e−2t

)
+

1

4

 e2t − e−2t

−3e2t + 4et − e−2t



=


− 1

4
e2t +

1

4
e−2t

3

4
e2t + et +

1

4
e−2t

 .
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Chapter 2

Laplace Transform

2.1 Definition and Basic Properties

Definition (Laplace Transform). The Laplace transform of a function f : [0,∞)→ R is the complex-valued
function of the complex variable s defined by

L{f(t)}(s) = f̂(s) :=

∫ ∞
0

f(t)e−stdt, (2.1)

for such s ∈ C that the integral on the right-hand side exists (in the improper sense).

Remarks.

1. If g : R→ C is a function, then∫
g(t)dt :=

∫
Re(g(t))dt+ i

∫
Im(g(t))dt.

2. For z ∈ C,
|ez| = |eRe z+i Im z| = |eRe z||ei Im z|,

so |ez| = eRe z for all z ∈ C.

3. Not all functions possess Laplace transforms. Further, the Laplace transform of a function may gener-
ally only be defined for certain values of the variable s ∈ C, for the improper integral in (2.1) to make
sense. The following theorem determines when the improper integral makes sense.

For the improper integral in (2.1) to make sense, we need

Definition (Exponential Order). A function f : [0,∞)→ R is said to be of exponential order if there exist
constants α,M ∈ R with M > 0 such that

|f(t)| ≤Meαt, ∀t ∈ [0,∞).

We prove

Theorem (Existence of the Laplace Transform). Suppose that a function f : [0,∞) → R is piecewise

continuous and of exponential order with constants α ∈ R and M > 0. Then the Laplace transform f̂(s)
exists for all s ∈ C with Re(s) > α.
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Proof. Fix s ∈ C with Re s > α. For all T > 0,∫ T

0

|f(t)e−st|dt =

∫ T

0

|f(t)||e−st|dt ≤
∫ T

0

Meαt|e−st|dt

= M

∫ T

0

eαte(−Re s)tdt = M

∫ T

0

e(α−Re s)tdt

=

[
M

α− Re s
e(α−Re s)t

]t=T
t=0

=
M

Re s− α

[
1 − e(α−Re s)T

]
≤ M

Re s− α
.

(Since α− Re s < 0, sending T →∞ gives e(α−Re(s))T → 0.)
Hence ∫ T

0

|f(t)e−st|dt ≤ M

Re s− α
.

Now define, for t ∈ [0,∞),
α(t) = Re(f(t)e−st);

β(t) = Im(f(t)e−st);

α+(t) = max{α(t), 0} ≥ 0;

α−(t) = max{−α(t), 0} ≥ 0;

β+(t) = max{β(t), 0} ≥ 0;

β−(t) = max{−β(t), 0} ≥ 0.

Note that α(t) = α+(t)− α−(t) and β(t) = β+(t)− β−(t). Further,

0 ≤
∫ T

0

α+(t)dt ≤
∫ T

0

|α(t)|dt ≤
∫ T

0

|f(t)e−st|dt ≤ M

Re s− α
<∞.

Hence

lim
T→∞

∫ T

0

α+(t)dt =: α+
∗ exists.

Similarly,

lim
T→∞

∫ T

0

α−(t)dt =: α−∗ exists,

and

lim
T→∞

∫ T

0

β±(t)dt =: β±∗ exist.

As a result,

(α+
∗ − α−∗ )(t) + i(β+

∗ − β−∗ )(t) = lim
T→∞

∫ T

0

(α(t) + iβ(t))dt =

∫ ∞
0

f(t)e−stdt = f̂(s)

exists.

Example. Consider f(t) = ect, where c ∈ C. Then f(t) is of exponential order with M = 1, α = Re(c):

|f(t)| = |ect| = eRe(c)t.
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Then

f̂(s) =

∫ ∞
0

ecte−stdt = lim
T→∞

∫ T

0

e(c−s)tdt

= lim
T→∞

[
1

c− s
e(c−s)t

]T
0

= lim
T→∞

(
1

c− s
e(c−s)T − 1

c− s

)
.

If Re s > Re c, then
lim
T→∞

e(c−s)T = 0.

So for s ∈ C with Re(s) > Re(c), ∫ ∞
0

ecte−stdt =
1

s− c
.

Hence

L
{
ect
}

(s) =
1

s− c
, Re s > Re c. (2.2)

In particular for c = 0, f(t) = 1 with Laplace transform

L{1} =
1

s
.

The following theorem establishes some basic properties of the Laplace transform.

Theorem. Suppose that f(t) and g(t) are of exponential order. Then for Re(s) sufficiently large, the
following properties hold:

1. Linearity: For a, b ∈ C,

L{af(t) + bg(t)} (s) = aL{f(t)} (s) + bL{g(t)} (s) = af̂(s) + bĝ(t).

2. Transform of a Derivative:
L{f ′(t)} (s) = sf̂(s)− f(0). (2.3)

3. Transform of Integral:

L
{∫ t

0

f(τ)dτ

}
(s) =

1

s
f̂(s).

4. Damping Formula:
L
{
e−atf(t)

}
(s) = f̂(s+ a).

5. Delay Formula: For T > 0,

L{f(t− T )H(t− T )} (s) = e−sT f̂(s),

where

H(t) =

{
0 t ≤ 0
1 t > 0

is the Heaviside step function.

Remarks.
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� Replacing in (2.3) f by f ′ gives

L{f ′′(t)} (s) = sL{f ′} (s)− f ′(0) = s2f̂(s)− sf(0)− f ′(0),

and more generally, for the n-th derivative, inductively

L
{
f (n)(t)

}
(s) = snf̂(s)−

[
sn−1f(0) + sn−2f ′(0) + · · ·+ f (n−1)(0)

]
,

where

f (i)(t) :=
dif

dti

is the ith derivative of f (exercise).

� In property 5, if f(t) is undefined for t < 0, we set f(t) = 0 for t < 0. In any case, the “delayed”
function f(t− T )H(t− T ) coincides with f(t− T ) for t ≥ T and vanishes for 0 ≤ t < T .

Proof.

1. Follows from the linearity of the integration.

2. Integration by parts gives

L{f ′(t)} (s) =

∫ ∞
0

f ′(t)e−stdt =
[
f(t)e−st

]∞
0

+ s

∫ ∞
0

f(t)e−stdt.

Since f(t) is of exponential order,
lim
t→∞

f(t)e−st = 0,

for all s with Re s sufficiently large. So

L{f ′(t)} (s) = −f(0) + sL{f(t)} (s) = sL{f(t)} (s)− f(0).

3. Define

F (t) =

∫ t

0

f(τ)dτ,

so that
F (0) = 0, F ′(t) = f(t).

Therefore, by property 2,
L{F ′(t)} (s) = sL{F (t)} (s)− F (0).

Hence

L{F (t)} (s) =
1

s
L{F ′(t)} (s),

so

L
{∫ t

0

f(t)dt

}
(s) =

1

s
L{f(t)} (s).

4. For any a ∈ C,

L
{
e−atf(t)

}
(s) =

∫ ∞
0

e−ate−stf(t)dt =

∫ ∞
0

e−(a+s)tf(t)dt = f̂(a+ s).

5. In this case,

L{f(t− T )H(t− T )} (s) =

∫ ∞
0

f(t− T )H(t− T )e−stdt =

∫ ∞
T

f(t− T )e−stdt.

Let τ = t− T , so that
dτ

dt
= 1. Hence,

L{f(t− τ)H(t− τ)} (s) =

∫ ∞
0

f(τ)e−s(τ+T )dτ = e−sT
∫ ∞
0

f(τ)e−sτdτ = e−sT f̂(s).
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Examples.

1. From the exponential definition of cos : R→ R,

L{cos at} (s) = L
{

1

2
eiat +

1

2
e−iat

}
(s) =

1

2
L
{
eiat
}

(s) +
1

2
L
{
eiat
}

(s),

by linearity of L. Therefore, using (2.2), for Re s > 0,

L{cos at} (s) =
1

2

1

s− ia
+

1

2

1

s+ ia
=

s

s2 + a2
.

2. Using the transform of a derivative,

L{sin at} (s) = sL
{
−1

a
cos(at)

}
(s) +

1

a
= − s

a

s

s2 + a2
+

1

a
=

a

s2 + a2
.

3. Let f(t) = tn, n ∈ N. Then,

tn = n

∫ t

0

τn−1dτ,

so

L{tn} (s) = L
{
n

∫ τ

0

τn−1dτ

}
(s) =

n

s
L
{
tn−1

}
(s) =

n!

sn+1
,

by induction (Exercise: Sheet 5 Q 4).

4. From example 1,

L{cos at} (s) =
s

s2 + a2
,

so by the damping formula,

L
{
e−λt cos(at)

}
(s) = L{cos(at)}(s+ λ) =

s+ λ

(s+ λ)2 + a2
.

5. Consider the piecewise continuous function

f(t) =

 t, 0 ≤ t ≤ T
T, T < t ≤ 2T
0, t > 2T.

To find f̂(s), first write f in terms of the Heaviside step function:

f(t) = t(1−H(t− T )) + T (H(t− T )−H(t− 2T ))

= t− (t− T )H(t− T )− TH(t− 2T ),

so
L{f(t)} (s) = L{t} (s)− L{(t− T )H(t− T )} (s)− TL{H(t− 2T )} (s),

by linearity. Therefore, using the delay formula,

L{f(t)} (s) =
1

s2
− e−sT 1

s2
− T

s
e−2sT .
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2.2 Solving Differential Equations with the Laplace Transform

The Laplace transform turns a differential equation into an algebraic equation, the solutions of which can
be transformed back into solutions of the differential equation. Again, this is best illustrated by example.

Examples.

1. Consider the second order initial value problem

x′′(t)− 3x′(t) + 2x(t) = 1, x(0) = x′(0) = 0.

Taking the Laplace transform of both sides gives

L{x′′ − 3x′ + 2x} (s) = L{1} (s) =
1

s

whence

L{x′′} (s)− 3L{x′} (s) + 2L{x} (s) =
1

s
,

by linearity. Therefore,

s2x̂− sx(0)− x′(0)− 3sx̂+ 3x(0) + 2x̂ =
1

s
,

which gives

s2x̂− 3sx̂+ 2x̂ =
1

s
⇐⇒ x̂(s2 − 3s+ 2) =

1

s
,

so

x̂(s) =
1

s(s− 1)(s− 2)
.

Using partial fractions and then inverting Laplace transform gives

x̂(s) =
1/2

s
− 1

s− 1
+

1/2

s− 2
=⇒ x(t) =

1

2
− et +

1

2
e2t.

2. To solve the initial value problem

x′′(t) + 4x(t) = cos 3t, x(0) = 1, x′(0) = −3,

taking Laplace transforms gives

s2x̂− sx(0)− x′(0) + 4x̂ =
s

s2 + 9
⇐⇒ s2x̂− s+ 3 + 4x̂ =

s

s2 + 9

⇒ (s2 + 4)x̂ =
s

s2 + 9
+ s− 3,

so

x̂(s) =
1

s2 + 4

(
s

s2 + 9
+ s− 3

)
=

s− 3

s2 + 4
+

s

(s2 + 4)(s2 + 9)

=
s− 3

s2 + 4
+

1

5

(
s

s2 + 4
− s

s2 + 9

)
=

1

5

(
6s− 15

s2 + 4
− s

s2 + 9

)
.

Inverting the Laplace transform gives

x(t) =
1

5

(
6 cos 2t− 15

2
sin 2t− cos 3t

)
.
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3. The Laplace Transform is also useful for solving systems of linear ordinary differential equations. For
example, consider  ẋ1(t)− 2x2(t) = 4t, x1(0) = 2;

ẋ2(t) + 2x2(t)− 4x1(t) = −4t− 2, x2(0) = −5.

Taking Laplace transforms gives

sx̂1 − x1(0)− 2x̂2 =
4

s2
, sx̂2 − x2(0) + 2x̂2 − 4x̂1 = − 4

s2
− 2

s

and using the initial conditions gives

sx̂1 − 2− 2x̂2 =
4

s2
, sx̂2 + 5 + 2x̂2 − 4x̂1 = − 4

s2
− 2

s
.

Thus 
sx̂1 − 2x̂2 =

4 + 2s2

s2
(1)

−4x̂1 + (2 + s)x̂2 = − 4 + 2s+ 5s2

s2
(2)

Now (2 + s)× (1) + 2× (2) gives

(s(s+ 2)− 8)x̂1 =
(2s2 + 4)(s+ 2)

s2
− 10s2 + 4s+ 8

s2
=

2s3 − 6s2

s2
= 2s− 6,

so that

x̂1 =
2s− 6

s2 + 2s− 8
=

2s− 6

(s+ 4)(s− 2)
=

7/3

s+ 4
− 1/3

s− 2
⇒ x1(t) = − 1

3
e2t +

7

3
e−4t,

and hence

x2(t) =
1

2
ẋ1(t)− 2t = − 1

3
e2t − 14

3
e−4t − 2t.

2.3 The convolution integral.

Suppose f̂(s) and ĝ(s) are known and consider the product f̂(s)ĝ(s). Of what function is this the Laplace

transform? Equivalently, what is the inverse Laplace transform of f̂(s)ĝ(s), L−1
{
f̂(s)ĝ(s)

}
?

Firstly,

f̂(s)ĝ(s) = f̂(s)

∫ ∞
0

g(τ)e−sτdτ

=

∫ ∞
0

f̂(s)g(τ)e−sτdτ

=

∫ ∞
0

∫ ∞
0

H(t− τ)f(t− τ)e−stdt g(τ)dτ,

by the Delay formula. Therefore,

f̂(s)ĝ(s) =

∫ ∞
0

∫ ∞
0

H(t− τ)f(t− τ)g(τ)dτ e−stdt,

by switching the order of integration. This gives

f̂(s)ĝ(s) =

∫ ∞
0

[∫ t

0

f(t− τ)g(τ)dτ

]
e−stdt.
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Hence f̂(s)ĝ(s) is the Laplace Transform of

t 7→
∫ t

0

f(t− τ)g(τ)dτ.

This motivates the following definition.

Definition (Convolution). The function

(f ∗ g)(t) :=

∫ t

0

f(t− τ)g(τ)dτ

is called the convolution of f and g.

Examples.

1. In order to compute

L−1
{

s

(s2 + 1)2

}
,

recall that

L−1
{

s

s2 + 1

}
= cos t, L−1

{
1

s2 + 1

}
= sin t.

Hence

L−1
{

s

(s2 + 1)2

}
= L−1

{
1

s2 + 1

s

s2 + 1

}
= sin t ∗ cos t

=

∫ t

0

sin(t− τ) cos τdτ =

∫ t

0

(sin t cos τ − cos t sin τ) cos τdτ

= sin t

∫ t

0

cos2 τdτ − cos t

∫ t

0

sin τ cos τdτ

=
1

2
sin t

∫ t

0

(1 + cos 2τ)dτ − 1

2
cos t

∫ t

0

sin 2τdτ

=
1

2
sin t

[
τ +

1

2
sin 2τ

]t
0

+
1

2
cos t

[
1

2
cos 2τ

]t
0

=
1

2
sin t

(
t+

1

2
sin 2t

)
+

1

2
cos t

(
1

2
cos 2t− 1

2

)
=

1

2
t sin t+

1

4
(sin 2t sin t+ cos t cos 2t)− 1

4
cos t

=
1

2
t sin t+

1

4
(cos(2t− t)− cos t) =

1

2
t sin t.

Hence

L−1
{

s

(s2 + 1)2

}
=

1

2
t sin t ⇐⇒ L

{
1

2
t sin t

}
(s) =

s

(s2 + 1)2
.

2. Consider the initial value problem

ÿ(t) + y(t) = f(t), y(0) = 0, ẏ(0) = 1

where

f(t) =

{
1, t ∈ [0, 1]
0, t > 1.

Write f(t) = H(t)−H(t− 1). Taking Laplace Transforms of both sides gives

s2ŷ − sy(0)− y′(0) + ŷ = L{H(t)} (s)− L{H(t− 1)} (s),
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whence

(s2 + 1)ŷ =
1

s
− e−s

s
+ 1,

and so

ŷ =
1

s(s2 + 1)
+

1

s2 + 1
− e−s

s(s2 + 1)
=

1

s

1

s2 + 1
+

1

s2 + 1
− e−s

s

1

s2 + 1
.

Inverting Laplace transforms,

y(t) = 1 ∗ sin t+ sin t−H(t− 1) ∗ sin t.

Now

H(t− 1) ∗ sin t =

∫ t

0

sin(t− τ)H(τ − 1)dτ

= H(t− 1)

∫ t

1

sin(t− τ)dτ

= H(t− 1) [cos(t− τ)]
t
1

= H(t− 1)[1− cos(t− 1)].

Thus
y(t) = 1− cos t+ sin t+H(t− 1)[cos(t− 1)− 1].

3. In order to solve
ẍ(t) + ω2x(t) = g(t), ẋ(0) = x(0) = 0,

taking Laplace transforms gives

(s2 + ω2)x̂ = ĝ =⇒ x̂ =
ĝ

s2 + ω2
,

and

L−1
{

1

s2 + ω2

}
=

1

ω
sin(ωt).

Hence

x(t) = L−1
{

ĝ

s2 + ω2

}
=

1

ω
sin(ωt) ∗ g(t) =

1

ω

∫ t

0

sin(ω(t− τ))g(τ)dτ,

the solution for arbitrary g(t).

4. Consider

L−1
{

s+ 9

s2 + 6s+ 13

}
= L−1

{
s+ 9

(s+ 3)2 + 4

}
= L−1

{
s+ 3

(s+ 3)2 + 4
+

6

(s+ 3)2 + 4

}
(completing the square in the denominator). Now

L−1
{

s+ a

(s+ a)2 + b2

}
= e−at cos bt, L−1

{
b

(s+ a)2 + b2

}
= e−at sin bt.

This gives

L−1
{

s+ 9

s2 + 6s+ 13

}
= L−1

{
s+ 3

(s+ 3)2 + 4

}
+ 3L−1

{
2

(s+ 3)2 + 4

}
= e−3t cos 2t+ 3e−3t sin 2t

= e−3t (cos 2t+ 3 sin 2t) .
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Note that the convolution is commutative:

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ = −
∫ 0

t

f(σ)g(t− σ)dσ for σ = t− τ.

Hence

(f ∗ g)(t) =

∫ t

0

f(σ)g(t− σ)dσ = (g ∗ f)(t).

Laplace transform can be used for computing matrix exponentials exp(tA). Consider the initial value
problem

Φ̇(t) = AΦ(t), Φ(0) = I.

The solution is Φ(t) = exp(tA). Taking Laplace Transforms gives

L
{

Φ̇(t)
}

(s) = sΦ̂(s)− Φ(0) = L{AΦ(t)} (s) = AL{Φ(t)} (s) = AΦ̂,

by linearity. Thus
sΦ̂− I = AΦ̂ ⇐⇒ (sI −A)Φ̂ = I.

Finally, (provided that Re s is greater than the real part of each eigenvalue of A)

Φ̂ = (sI −A)−1.

Now
L{exp(tA)} (s) = (sI −A)−1,

so
exp(tA) = L−1

{
(sI −A)−1

}
(t).

Thus, in principle, exp(tA) can be computed using the Laplace Transform as follows:

� Compute (sI −A)−1;

� Invert the entries of (s I − A)−1, that is, find functions which have Laplace Transforms equal to the
entries of (sI −A)−1.

Example. Consider

A =

(
0 2
4 −2

)
.

Then

(sI −A)−1 =

((
s 0
0 s

)
−
(

0 2
4 −2

))−1
=

(
s −2
−4 s+ 2

)−1
=

1

s2 + 2s− 8

(
s+ 2 2

4 s

)
=

1

(s+ 4)(s− 2)

(
s+ 2 2

4 s

)
.

Continuing using partial fractions,

(s I −A)−1 =


2/3

s− 2
+

1/3

s+ 4

1/3

s− 2
− 1/3

s+ 4

2/3

s− 2
− 2/3

s+ 4

1/3

s− 2
+

2/3

s+ 4



=⇒ L−1
{

(s I −A)−1
}

=

 2
3e

2t + 1
3e
−4t 1

3e
2t − 1

3e
−4t

2
3e

2t − 2
3e
−4t 1

3e
2t + 2

3e
−4t

 = exp(tA).
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Let us derive the variation of parameters formula via the Laplace transform.
Consider the initial value problem

ẋ(t) = Ax(t) + g(t), x(0) = x0.

Taking Laplace transforms gives

L{ẋ} (s) = AL{x} (s) + L{g} (s)⇒ sx̂− x0 = Ax̂+ ĝ.

Hence
(sI −A)x̂ = ĝ + x0,

so that
x̂ = (sI −A)−1x0 + (sI −A)−1ĝ = L{exp(tA)} (s)x0 + L{exp(tA)} (s)ĝ,

which gives
x̂ = L

{
etA
}

(s)x0 + L
{
etA
}

(s)ĝ.

Taking Laplace inverses on both sides yields

x(t) = exp(tA)x0 + exp(tA) ∗ g = exp(tA)x0 +

∫ t

0

exp((t− τ)A)g(τ)dτ,

so that

x(t) = exp(tA)x0 + exp(tA)

∫ t

0

exp(−τA)g(τ)dτ,

as required.

2.4 The Dirac Delta function.

What is the inverse Laplace transform of f(t) ≡ 1, i.e. L−1{1}?
Let ε > 0 and consider the piecewise constant function

δε(t) =


1

ε
, t ∈ (0, ε)

0, otherwise.

If f : R→ R is a continuous function, then∫ ∞
−∞

f(t)δε(t)dt =
1

ε

∫ ε

0

f(t)dt.

The Mean Value Theorem for integrals states that for continuous functions f : [a, b] → R, there exists
ξ ∈ (a, b) such that

f (ξ) =
1

b− a

∫ b

a

f(t)dt.

Hence ∃ξ ∈ (0, ε) such that ∫ ∞
−∞

f(t)δε(t)dt =
1

ε
f (ξ) (ε− 0) = f (ξ) .

Therefore,

lim
ε→0

∫ ∞
−∞

f(t)δε(t)dt = f(0),

by continuity of f .
This motivates introducing the Dirac Delta–function δ(t) as an appropriate “limit” of δε(t) as ε→ 0:
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Definition (Dirac Delta Function). The Dirac Delta “function” δ(t) is characterised by the following two
properties:

� δ(t) = 0, ∀t ∈ R \ {0};

� For any function f : R→ R that is continuous on an open interval containing 0∫ ∞
−∞

f(t)δ(t)dt = f(0).

(In fact, δ(t) is not a usual “function”, and its rigorous definition would require using more advances
mathematical tools known as “Distribution theory” or theory of “generalised functions”, which is beyond
the scope of this course.)

Immediate Consequences

1. Setting f(t) = 1, ∫ ∞
−∞

δ(t)dt = 1.

2. Let f : R→ R be continuous in an interval containing a ∈ R. Then∫ ∞
−∞

f(t)δ(t− a)dt = f(a).

3. For f(t) = e−st, where s ∈ R is fixed,∫ ∞
−∞

e−stδ(t)dt = e−s0 = 1.

Hence, formally,

L{δ(t)} (s) =

∫ ∞
0

δ(t)e−stdt =

∫ ∞
−∞

δ(t)e−stdt = 1,

so that
L{δ(t)} (s) = 1, L−1 {1} = δ(t).

4. Further,

(f ∗ δ) (t) =

∫ t

0

f(t− τ)δ(τ)dτ =

∫ ∞
−∞

f(t− τ)δ(τ)dτ = f(t).

Also, by commutativity, f(t) ∗ δ(t) = δ(t) ∗ f(t) = f(t).

5. Moreover, for T ≥ 0,

L{δ(t− T )} (s) =

∫ ∞
0

δ(t− T )e−stdt =

∫ ∞
−∞

δ(t− T )e−stdt = e−sT .

Hence
L{δ(t− T )} (s) = e−sT , L−1

{
e−sT

}
= δ(t− T ).

6. Finally,

δ(t− T ) ∗ f(t) =

∫ t

0

δ(t− T − τ)f(τ)dτ =

{
0 if t < T ;
f(t− T ) if t ≥ T .

Thus
δ(t− T ) ∗ f(t) = f(t− T )H(t− T ).
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Example. Solve
ÿ + 2ẏ + y = δ(t− 1), y(0) = 2, ẏ(0) = 3.

Solution. Taking the Laplace transform of both sides gives

s2ŷ − sy(0)− ẏ(0) + 2sŷ − 2y(0) + ŷ = e−s,

so using the initial conditions,

s2ŷ − 2s− 3 + 2sŷ − 4 + ŷ = e−s ⇒ (s2 + 2s+ 1)ŷ = e−s + 2s+ 7,

so that

ŷ =
e−s + 2s+ 7

s2 + 2s+ 1
.

Hence

ŷ =
e−s

(s+ 1)2
+

5

(s+ 1)2
+

2

s+ 1
,

so
y(t) = δ(t− 1) ∗ te−t + 5te−t + 2e−t = (t− 1)e−(t−1)H(t− 1) + 5te−t + 2e−t.

2.5 Final value theorem.

Theorem (Final Value Theorem). Let g : [0,∞)→ R satisfy

|g(t)| ≤Me−αt,

for some α,M > 0 (the function g is said to be exponentially decaying). Then∫ ∞
0

g(t)dt = lim
t→∞

(g ∗H)(t) = L{g} (0).

Proof.

L{g} (0) :=

∫ ∞
0

g(τ)dτ = lim
t→∞

∫ t

0

g(τ)dτ ⇒ L{g}(0) = lim
t→∞

∫ t

0

g(t− σ)dσ,

by setting σ = t− τ . Hence

L{g}(0) = lim
t→∞

∫ t

0

g(t− σ)H(σ)dσ = lim
t→∞

(g ∗H)(t).
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