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Abstract

We devise and implement quasi-Monte Carlo methods for computing the expectations of
nonlinear functionals of random fields arising in the modeling of fluid flow in random porous
media. Specific examples include the effective permeability of a block of rock, the pressure
head at a chosen point and the breakthrough time of a pollution plume being convected
by the velocity field. The mathematical model is a system of first order partial differen-
tial equations in space with a random field describing the permeability. Our emphasis is
on situations where a very large number of dimensions are necessary to obtain a reason-
able accuracy in probability space, and where classical Monte Carlo methods with random
sampling are currently the method of choice. As an alternative we introduce quasi-Monte
Carlo methods which use deterministically chosen sample points in probability space. Our
algorithm performs finite element approximation for each realization of the field, and ap-
proximates the necessary element integrals by using values of the field computed only on a
suitable regular grid, with the help of FFT techniques. In this way we avoid the use of a
truncated Karhunen-Loève expansion, but introduce high nominal dimension in probability
space. Numerical experiments with 2-dimensional rough random fields, high variance and
small length scale are reported, showing that quasi-Monte Carlo method consistently out-
performs the Monte Carlo method, with a noticeably better than O(N−1/2) convergence
rate and a smaller implied constant, where N is the number of samples. Moreover, the rate
of convergence of quasi-Monte Carlo methods does not appear to degrade as the nominal
dimension increases. Examples with dimension as high as 106 are reported.

Keywords: Quasi-Monte Carlo, High Dimensional Quadrature, Fluid Flow, Random Porous Media, Circulant Embedding,

Fast Fourier Transform

1 Introduction

Many physical, biological or geological models involve spatially varying input data which may
be subject to uncertainty. This induces a corresponding uncertainty in the outputs of the model
and in any physical quantities of interest which may be derived from these outputs. A common
way to deal with these uncertainties is by considering the input data to be a random field,
in which case the derived quantity of interest is either a random variable (e.g., the effective
conductivity of a composite material) or another random field (e.g., the velocity of fluid in a
random medium). The computational goal is usually to find the expected value, higher order
moments or other statistics of these derived quantities.

The aim of this paper is to formulate and implement quasi-Monte Carlo (QMC) methods
for the computation of flow in random media. There is a huge interest in problems of this
sort in the geosciences, where Monte Carlo (MC) methods are regularly employed, see, e.g.,

1



[10, 25, 26, 44]. We shall assume (as often done in practice) that the permeability is a lognormal
Gaussian random field, and, as examples of quantities of physical interest, we shall study the
pressure head at a certain point, the effective permeability, and the breakthrough time of a
plume of pollution moving in the fluid.

The expected value or higher moments of these physical quantities are, by definition, inte-
grals. These are in principle infinite dimensional, but in practice they are approximated by finite
(but often very high dimensional) integrals. MC methods for the flow problem approximate such
integrals by equal-weight quadrature rules with randomly chosen points. QMC methods are also
equal-weight quadrature rules but aim to outperform the MC methods by clever choices of deter-
ministic points. As we shall show in our numerical experiments, our QMC methods consistently
outperform MC methods in all cases studied, and in the best cases enjoy an improvement in
running time by a factor of several hundred. Moreover, the QMC methods are observed to
converge noticeably faster than the rate O(N−1/2), where N is the number of samples, and this
rate is robust as the dimension d of the domain of integration increases. (Some of our compu-
tations are even for dimension d ≈ 106.) By contrast MC methods are also robust to increasing
dimension but converge only with the well-known characteristic rate of O(N−1/2). In our theo-
retical discussion in §4.1 we review sufficient conditions for the observed dimension-independent
convergence behavior of QMC methods. However it is not known if these sufficient conditions
are satisfied by the complicated flow problems solved here and so this aspect of the presentation
is experimental.

In recent years there has been a great interest in methods that treat PDE problems with
random input data by simultaneous approximation in both physical and probability space. These
go under names such as stochastic Galerkin, stochastic collocation or polynomial chaos, see, e.g.,
[3, 2, 15, 29, 30, 33, 37]. Many of these methods start by representing the random field using
the Karhunen-Loève (KL) expansion, and then truncate this expansion after a finite number
of terms before discretization in space. From another point of view, it is sometimes said that
these methods depend on a “finite-dimensional noise” assumption. While such approaches can
be very effective when the KL expansion converges rapidly, they face the serious challenges of
high cost combined with large truncation error when the convergence of the KL expansion is
slow. Such slow convergence is a common feature in practical flow problems and motivates the
development of the alternative methods proposed in this paper.

The starting point of our approach is the observation that if we first approximate the random
PDE problem ((2.1)–(2.3) below) by finite elements in space then, without paying a penalty in
the order of finite element accuracy, the resulting (still random, but now) discrete problem may
be formulated using data taken from only the finite set of values of the original continuous field
sampled on a regular grid. Thus realizations of the random discrete problem may be computed
by realizing only the discrete field, whose covariance matrix is inherited from the covariance
function of the continuous field.

While this observation is hardly deep, it turns out to be crucially important to the design of
efficient algorithms. Fast linear algebra techniques can be designed to sample random vectors
with a given covariance matrix, thus avoiding the truncations required in a KL-based approach.
In fact these linear algebra techniques can be based on existing methods for realizing random
fields at discrete points in space. In our implementation we use the circulant embedding approach
combined with FFT for homogeneous Gaussian random fields, see [5, 11]. It produces realizations
of such fields at uniformly spaced points on a tensor product grid. All our experiments here are
on (0, 1)2, but the method is applicable to more general domains, as long as the grid on which
the random field is sampled is a regular tensor product grid.

In our approach the dimension d of the domain of the integral being computed is linked
to the dimension M of the finite element space, in fact d = O(M). In practice this relatively
large dimension does not seem to have any detrimental effect on the performance of the QMC
methods. The (extended) covariance matrix is diagonalized (using FFT), enabling an ordering

2



of the variables in decreasing importance which is crucial to the success of QMC. Each point
evaluation of the integrand requires (i) the computation of an M -dimensional vector representing
the permeability field at the finite element grid points through diagonalizing a d × d circulant
matrix which (via FFT) costs O(d log d) = O(M log M) operations and (ii) the solution of
the mixed finite element (FE) approximation of the relevant system of PDEs, which results in
an indefinite highly ill-conditioned system which we solve robustly in O(M) operations. Thus
the overall computational cost is O(NM log M), where N is the number of quadrature points
(i.e., the number of times the random field is sampled). We choose mixed FEs because they
provide physically realistic flow fields which are crucial to the computation of quantities of
physical interest. We combine this discretization with the divergence-free reduction technique
from [7, 35] which provides a robust solver and fast computation of all quantities of physical
interest.

The plan of the paper is as follows. In §2 we outline the target problems arising from flow in
random porous media. In §3 we describe the linear algebra approach to generating the random
discrete field and show how this leads to formulas for expectations of quantities of interest in
terms of integrals over a (possibly high dimensional) unit cube. We also explain how the QMC
(and MC) methods can be used to evaluate these high-dimensional integrals and mention here
how our method is related to methods based on truncating the KL expansion, such as the
stochastic collocation method. In §4 we provide more details about QMC methods and give
an overview of the expected performance and strategies for implementing these methods. The
following two sections are devoted to fast implementation: §5 explains how circulant embedding
techniques can be used to efficiently compute the formulas developed in §3, while §6 discusses
fast methods for computing quantities of interest using mixed finite elements. In §6 we restrict
the physical domain to a simple rectangular “flow cell” and study the pressure head at a point,
the effective permeability and the breakthrough time as quantities of physical interest. Extensive
numerical experiments on the flow cell are given in §7 which confirm the efficiency and robustness
of our QMC method. For example, we solve a 2-dimensional problem (with parameters as in
Case 5 in Table 1 of §7) in which the contributions from the first 300 terms in the KL expansion
are all greater than one tenth of the largest term (i.e.,

√
µ300 > 0.1

√
µ1 in the KL expansion

(3.10) below). Nevertheless, we are able to compute the effective permeability for this problem
to an error of 10−3 with respect to both physical space and probability space by avoiding a
truncation of the KL expansion. To achieve this accuracy we require a spatial mesh with
M ≈ 106 degrees of freedom and about N ≈ 2.9 × 104 samples, and the computation takes
about 35 hours on a standard laptop computer. In comparison, to obtain the same accuracy
with MC, we require about N ≈ 5.3×105 samples or more than 2 months on a standard laptop.
Note that CPU times are of course greatly reduced on multi-processor machines (which we used),
due to the independence of the PDE problems for individual realizations of the random field
and the resulting optimal parallel scalability of our method.

2 Random PDE model and its spatial discretization

We consider flow in a 2D porous medium governed by Darcy’s law:

~q + k ~∇p = ~0, (2.1)

and the law of mass conservation:
~∇ · ~q = 0, (2.2)

where ~q, p are respectively the (2-dimensional) velocity (also called the specific discharge) and
(scalar) residual pressure, which are to be found on a bounded domain D ⊂ R

2. The boundary
conditions are taken to be

p = g on ΓD , ~q · ~n = 0 on ΓN (2.3)
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where ΓD and ΓN are the Dirichlet and Neumann parts of Γ, the boundary of D, and ~n denotes
the outer unit normal on Γ. Note that although we restrict ourselves here to 2 space dimensions,
only the fast mixed finite element solver in §6 is specific to 2D. By replacing this with a 3D mixed
finite element solver (many exist, but not as fast), our approach will extend in a straightforward
way to 3D.

2.1 Modeling the permeability as a random field

In (2.1) k is the permeability (more precisely the ratio of permeability to dynamic viscosity) and
is modeled as a random field. Because k is physically positive, we shall here make the popular
and natural assumption that k is a lognormal random field, i.e.,

k(~x ; ω) = exp(Z(~x ; ω)) , (2.4)

where Z = Z(~x ; ·), is a zero mean Gaussian random field on D, with a specified continuous
covariance function r(~x, ~y), and ω denotes an event in the probability space (Ω,F ,P). That is

E(Z(~x ; ·)) = 0 and E(Z(~x ; ·)Z(~y ; ·)) = r(~x, ~y) for all ~x, ~y ∈ D,

where E denotes expectation with respect to the Gaussian probability measure on Ω.
There is some evidence from field data that (2.4) gives a reasonable representation of reality

in certain cases (see [13, 20]). Note that some authors add a positive constant to the right-hand
side of (2.4), which ensures that the resulting PDE for the pressure is uniformly coercive in
probability space. This turns out not to be necessary in practice and we avoid it here.

Throughout we will assume that Z is homogeneous (see, e.g., [1, p.24]), i.e., its covariance
function satisfies

r(~x, ~y) = ρ(~x − ~y),

where ρ : R
2 → R is a suitably behaved given function. An example of particular significance is

ρ(~t) = σ2 exp
(
− ‖~t ‖p/λ

)
, (2.5)

with ‖ · ‖p denoting the ℓp norm on R
2, and where the parameters σ2 and λ denote respectively

the variance and (correlation) length scale. All our computations will be for this covariance
function with p = 1 or p = 2. Since the function ρ is not smooth at the origin, realizations of
Z can be quite irregular. In fact Kolmogorov’s theorem [1, Theorem 8.3.2] implies that with
probability 1, realizations Z(~x ; ω) are Hölder continuous with respect to ~x, with Hölder exponent
α limited to lie in the range α ∈ [0, 1/2). Decreasing the length scale increases the frequency of
oscillations in Z, while increasing the variance increases their amplitude. The roughness in Z
induces roughness in k, and in the solution (~q, p), and, as we shall see, increases the number of
degrees of freedom needed to achieve acceptable accuracy in the solution of (2.1)–(2.3).

Our overall goal is to compute expectations of a random variable G(Z), derived from Z
through solving the PDE problem (2.1)–(2.3) with k given by (2.4). A simple example of
physical interest is the pressure head at a particular point ~x∗ ∈ D, i.e.,

G(Z) = p(~x∗) , (2.6)

where p is the solution of (2.1)–(2.3). The computation of each realization G(Z) requires the
construction of a realization of Z, the solution of the PDE system (2.1)–(2.3), with permeability
given by (2.4), and finally the evaluation of the pressure approximation at ~x∗. We will give other
examples of G(Z) in §6.
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2.2 Solving the PDE problem using the mixed finite element method

To compute approximate solutions to (2.1)–(2.3) for a given realization of (2.4), we use the
mixed finite element method. Problem (2.1)–(2.3) is written in weak form as the problem of
seeking (~q, p) ∈ H0,N (div, D) × L2(D),

mω(~q,~v) + b(p,~v) = G(~v) , for all ~v ∈ H0,N (div, D),
b(w, ~q) = 0 , for all w ∈ L2(D),

}
(2.7)

where H0,N (div, D) := {~v ∈ L2(D)2 : ~∇ · ~v ∈ L2(D) and ~v · ~n = 0 on ΓN} ,

mω(~q,~v) =

∫

D
k(~x ; ω)−1 ~q(~x) · ~v(~x) d~x, (2.8)

b(p,~v) = −
∫

D
p(~x) ~∇ · ~v(~x) d~x, and G(~v) = −

∫

ΓD

g(~x)~v(~x) · ~n(~x) dΓ(~x) . (2.9)

The subscript ω in (2.8) indicates that the randomness appears in this bilinear form. In
a proper probabilistic setting we would seek random solutions (~q, p) in an appropriate tensor
product space (e.g., p(~x) = p(~x ; ω) would be required to be square integrable with respect to
Gaussian probability measure on Ω, with values in L2(D)) and (2.7) would be required to be
satisfied almost surely for ω ∈ Ω). A precise probabilistic setting of the problem can be found,
e.g., in [29], but we suppress this here as it is not needed for the formulation of our algorithm.

To discretize (2.7), we introduce a mesh Th (here taken to be triangular) on D, and we
approximate ~q(~x) by ~qh(~x) ∈ Vh, where Vh ⊂ H0,N (div, D) is the space of lowest order Raviart-

Thomas elements characterized by: (i) ~qh(~x) = ~ατ + γτ~x, ~x ∈ τ , for each τ ∈ Th and for some
suitable coefficients ~ατ ∈ R

2 and γτ ∈ R; (ii) ~qh has continuous normal component across the
interior edges of the mesh; and (iii) ~qh · ~n = 0 on ΓN . (For more details on Raviart-Thomas
elements see [4, 24].) The pressure p(~x) is approximated by ph(~x) ∈ Wh, the subspace of L2(D)
consisting of all piecewise constant functions with respect to Th. The approximate solution
(~qh, ph) is then computed as the solution to the discrete system

mω(~qh, ~vh) + b(ph, ~vh) = G(~vh) , for all ~vh ∈ Vh ,
b(wh, ~qh) = 0 , for all wh ∈ Wh .

}
(2.10)

Again we should more properly write ~qh(~x) = ~qh(~x ; ω) and ph(~x) = ph(~x ; ω) and require (2.10)
to hold almost surely for ω ∈ Ω.

Choosing bases {~vj : j = 1, . . . , nv} and {wℓ : ℓ = 1, . . . , nw} for Vh and Wh, respectively,
and writing ~qh :=

∑nv

j=1 Qj~vj and ph :=
∑nw

ℓ=1 Pℓwℓ, we obtain the symmetric indefinite system

(
Mω B
BT 0

) (
Q

P

)
=

(
g

0

)
∈ R

nv+nw (2.11)

with Bi,ℓ = b(wℓ, ~vi) and gi = G(~vi). The random matrix Mω is given by

(Mω)i,j = mω(~vj , ~vi) =

∫

D
k(~x ; ω)−1 ~vj(~x) · ~vi(~x) d~x , i, j = 1, . . . , nv . (2.12)

As we have remarked above, for the covariance function (2.5), with probability 1, we have
Z(· ; ω) ∈ Cα(D) for α < 1/2. It follows from the arguments in [8] that then ~qh converges
to ~q ω-almost-surely in Ω, with order O(hα) as h → 0 and, moreover, no degradation of this
rate of convergence is incurred if the integrals (2.12) are approximated by even a low order
quadrature rule using evaluations of the integrand at one or more points in (or near) τ . As a
simple example, if the FE grid is itself regular we may approximate Z(~x ; ω) in each element
τ ∈ Th by the average of its values at the three nodes of τ , without sacrificing accuracy. Thus
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if ~x1, . . . , ~xM are the nodes of the mesh Th which lie on D ∪ ΓN , and if Z ∈ R
M denotes the

random vector
Z = (Z1, . . . , ZM )T := (Z(~x1; ω), . . . , Z(~xM ; ω))T, (2.13)

then an appropriate approximation of Mω may be taken as M̃(Z), with

(M̃(Z))i,j :=
∑

τ
k

−1
τ

∫

τ
~vi(~x) · ~vj(~x) d~x , where kτ :=

1

3

∑
ℓ : ~xℓ∈τ

exp(Zℓ), (2.14)

and it suffices to take the first sum over all τ ⊂ supp(~vi) ∩ supp(~vj). The resulting approximate
saddle point system is

(
M̃(Z) B
BT 0

) (
Q

P

)
=

(
g

0

)
∈ R

nv+nw (2.15)

Thus the expected value of a quantity of interest G(Z) can be approximated by the expected
value of its finite element approximation Gh(Z), which only depends on the random vector Z.
In the particular example (2.6), a realization of G(Z) would be approximated by

Gh(Z) := ph(~x∗)

with ph computed from (2.15).

3 Sampling Z and evaluating expectations

The vector Z in (2.13) is Gaussian with mean zero and M × M positive definite covariance
matrix

R = E(ZZT) =
(
r(~xi, ~xj)

)M

i,j=1
.

A procedure for sampling Z can be based on any real factorization of R in the form

R = ΘΘT , (3.1)

where Θ is a real M × M matrix (e.g., a Cholesky factorization). From this, it can easily be
seen that

Z := ΘY (3.2)

defines a suitable realization, provided Y := (Y1(ω), . . . , YM (ω))T is a vector of independent
standard Gaussian random variables. In contrast to other approaches, such as the truncated KL
expansion (see §3.3 below), the formula (3.2) represents the field exactly at the discrete points
~x1, . . . , ~xM without any truncation.

3.1 MC and QMC approximations

With the finite element approximation Gh(Z) as described in §2.2, the MC (simulation) method
approximates the expected value by an equal-weight average

E(G(Z))
FE≈ E(Gh(Z))

MC≈ 1

N

N∑

n=1

Gh(Θy(n)), (3.3)

where y(1), . . . ,y(N) ∈ R
M are N independent samples of standard Gaussian random vectors.

The implementation of this requires the solution of N different instances of (2.15) with Z =
Θy(n), n = 1, . . . , N .
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To apply QMC methods we need to step away from the MC simulation point of view and
express the expected value explicitly as an M -dimensional integral

E(Gh(Z)) =

∫

RM

Gh(z)
exp(−1

2zTR−1z)

(2π)M/2(det R)1/2
dz . (3.4)

Moreover, since QMC methods are (equal-weight) quadrature rules defined over the unit cube,
it is necessary to transform (3.4) to an integral over the M -dimensional unit cube. This can
easily be done if we have factorized R in the form (3.1). We introduce the univariate standard
normal cumulative distribution function

Φ(y) :=

∫ y

−∞

exp
(
−t2/2

)
√

2π
dt for y ∈ R,

and set Φ−1
M (x) := (Φ−1(x1), . . . ,Φ

−1(xM ))T ∈ R
M for x ∈ [0, 1]M . The successive changes of

variables z = Θy and y = Φ−1
M (x) transform (3.4) into

E(Gh(Z)) =

∫

[0,1]M
Gh

(
ΘΦ−1

M (x)
)
dx .

Then a QMC method approximates the expected value by

E(G(Z))
FE≈ E(Gh(Z))

QMC≈ 1

N

N∑

n=1

Gh

(
ΘΦ−1

M (x(n))
)
, (3.5)

where x(1), . . . ,x(N) ∈ [0, 1]M are N deterministically chosen points from the unit cube. We will
return to discuss QMC methods in more detail in §4, and in particular, we will replace (3.5) by
a randomized QMC method for practical error estimation.

We remark that the MC method can also be viewed as an equal-weight quadrature rule over
the unit cube as in (3.5), but with {x(n)} being independent random vectors drawn from a
uniform distribution in [0, 1]M . This latter point of view for MC is less convenient than (3.3) in
practice, since it requires the evaluation of Φ−1

M which has no analytic form.

3.2 Embedding in a larger matrix

Both MC and QMC approximations discussed above rely on a factorization of R in the form
(3.1). However such factorization can be expensive — a Cholesky factorization requires O(M3)
operations in general — so we seek more efficient methods by first extending R to a larger
symmetric positive definite d × d matrix C. The disadvantage of the larger dimension is offset
by the extra freedom in choosing the structure of C in such a way as to make it easy to factorize.
Dietrich and Newsam [11] and Chan and Wood [5] proposed to construct C as a circulant
extension of R, for then a factorization of C can be constructed in O(d log d) operations using
a fast Fourier transform. Furthermore, this yields an orthogonal diagonalization of C and the
resulting eigenstructure allows us to identify the order of importance of the variables, something
that is crucial to the success of QMC, see §4. We return to circulant embedding in §5.

The justification provided in [11] for the embedding approach is expressed in terms of ob-
taining the correct correlation structure in the random MC samples. Since QMC methods are
quadrature rules rather than simulation techniques, the justification behind the embedding ap-
proach has to be quite different in nature. We provide this justification below. Lemma 1 shows
that the extension from R to C still yields an integral of an analogous form to (3.4). Lemma 2
then shows how such integrals can be transformed to the d-dimensional unit cube. Corollary 3
applies the result (slightly generalized) to (3.4).
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Lemma 1 Suppose that R is any symmetric positive definite M × M matrix and suppose C is

a d × d symmetric positive definite matrix of the form

C =

[
R U
UT V

]
. (3.6)

Then for any integrable function g : R
M → R we have

∫

RM

g(z)
exp(−1

2zTR−1z)

(2π)M/2(det R)1/2
dz =

∫

Rd

g(u[1:M ])
exp(−1

2uTC−1u)

(2π)d/2(det C)1/2
du ,

where, for any vector u ∈ R
d, u[1:M ] ∈ R

M is the vector containing the first M components of u.

Proof. Let R = LLT be a Cholesky factorization of R. Then with the substitution z = Lw we
have ∫

RM

g(z)
exp(−1

2zTR−1z)

(2π)M/2(det R)1/2
dz =

∫

RM

g(Lw)
exp(−1

2wTw)

(2π)M/2
dw .

A Cholesky factorization of C can be written in the form

C = L̃ L̃T, where L̃ =

[
L 0
K L′

]
.

Hence, introducing the new variable v = [wT, w′T]T, where w′ ∈ R
d−M is a vector of dummy

variables, and then making the substitution v = L̃−1u where u ∈ R
d, we obtain

∫

RM

g(z)
exp(−1

2zTR−1z)

(2π)M/2(det R)1/2
dz =

∫

Rd

g(L(v[1:M ]))
exp(−1

2vTv)

(2π)d/2
dv

=

∫

Rd

g(L(L̃−1u)[1:M ])
exp(−1

2uTC−1u)

(2π)d/2(det C)1/2
du .

To complete the proof note that L(L̃−1u)[1:M ] = (LL−1)u[1:M ] = u[1:M ]. 2

Lemma 2 Let C be as in Lemma 1 and suppose C has a factorization of the form

C = SST . (3.7)

Then for any integrable function f : R
d → R we have

∫

Rd

f(u)
exp(−1

2uTC−1u)

(2π)d/2(det C)1/2
du =

∫

[0,1]d
f
(
SΦ−1

d (x)
)
dx .

Proof. Straightforward, using the successive changes of variables u = Sy and y = Φ−1
d (x) . 2

It is easy to check that instead of the specific form (3.6), C in Lemmas 1 and 2 may actually
be any symmetric positive definite matrix chosen so that some M × M selection of C coincides
with R. By this we mean that selecting some subset of rows, and the same selection of columns,
of C gives us R. In this case, u[1:M ] in Lemma 1 is replaced by the vector uR made up of the
components of u corresponding to the particular selection of C.

Corollary 3 Let C be any symmetric positive definite d × d matrix such that some M × M
selection of C coincides with R. If C has the factorization (3.7), then (3.4) can be written as

E(Gh(Z)) =

∫

[0,1]d
Gh

((
SΦ−1

d (x)
)
R

)
dx , (3.8)
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where, for any u ∈ R
d, uR denotes the M entries of u corresponding to the particular selection

of C. The MC and QMC approximations for the expected value are, respectively,

1

N

N∑

n=1

Gh

((
Sy(n)

)
R

)
and

1

N

N∑

n=1

Gh

((
SΦ−1

d (x(n))
)
R

)
, (3.9)

where {y(n)} are independent standard Gaussian random vectors from R
d and {x(n)} are deter-

ministically chosen QMC points from [0, 1]d.

3.3 Comparison with methods based on truncated KL expansion

A starting point for the solution of (2.1)–(2.4) is often taken to be the Karhunen-Loève expansion

Z(~x ; ω) =
∞∑

ℓ=1

√
µℓ ψℓ(~x)Yℓ(ω), ~x ∈ D, ω ∈ Ω , (3.10)

where Yℓ(ω) are independent standard Gaussian random variables, ψℓ are orthonormal eigen-
functions (with respect to L2(D)) and µℓ are the corresponding (positive) eigenvalues of the
positive definite integral operator on D with kernel function r(~x, ~y). The sequence {µℓ} may be
chosen non-increasing, and converges to 0 as ℓ → ∞.

For continuous covariance functions r(~x, ~y) that are sufficiently well behaved near the diag-
onal ~x = ~y, the KL expansion (3.10) converges to a continuous function uniformly on D, with
probability 1. In particular, Theorems 3.3.2 and 3.4.1 of [1] tell us that this convergence property
holds for the covariance function (2.5). However, the convergence rate of (3.10) is determined
by the decay of the eigenvalues µℓ, and can be slow when r is not smooth across the diagonal
(as in (2.5)). In fact even in the 1-dimensional case the covariance function (2.5) has eigenvalues
µℓ only of order ℓ−2. Therefore methods which attack (2.1)–(2.4) by first truncating (3.10) may
suffer large truncation error unless the number of terms taken is large.

It is instructive to compare the approach described above with an approach based on the
truncated KL expansion. Truncating (3.10) to d terms and using it to evaluate the random
vector Z given in (2.13) we obtain the approximation

Z̃(ω) := ΨY (ω) , (3.11)

where Y (ω) is a d-dimensional standard Gaussian random vector and Ψ is the M × d matrix
given by

Ψi,ℓ =
√

µℓ ψℓ(~xi) , i = 1, . . . , M , ℓ = 1, . . . , d . (3.12)

From this, following the same arguments as above, we may approximate E(G(Z)) by

E(G(Z))
KL≈ E(G(Z̃))

FE≈ E(Gh(Z̃)) :=

∫

[0,1]d
Gh

(
ΨΦ−1

d (x)
)
dx. (3.13)

MC and QMC approximations can then be obtained analogously to (3.9) replacing S with Ψ.
The KL approach suffers from two drawbacks: the first is that the computation (approx-

imation) of the KL eigenvalues and eigenfunctions can be very expensive, and the second is
that there is an error in the truncated field (3.11) which is introduced before any finite element
approximation is carried out.

3.4 Comparison with stochastic collocation

Suppose we have a general quadrature rule on the d-dimensional unit cube with weights {wn}
and points {x(n)}:

∫

[0,1]d
f(x)dx ≈

N∑

n=1

wnf(x(n)). (3.14)
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If this rule is applied to (3.13), then we obtain

E(G(Z)) ≈
N∑

n=1

wnGh

(
ΨΦ−1

d (x(n))
)
, (3.15)

where Ψ is the matrix associated with the truncated KL expansion defined in (3.12). As above,
the implementation of this requires the solution of N different instances of (2.15). This is rem-
iniscent of the stochastic collocation method of [2, 29, 30]. For example if (3.14) represents a
quadrature rule based on applying sparse grid techniques to d-fold tensor products of one dimen-
sional interpolatory rules, then the resulting approximation is essentially the method proposed
in [29] (although the PDE to be solved in [29] is the primal instead of the mixed form (2.15)).
An anisotropic variant of [29] which performs more work in the directions of the important
variables and is more suitable for higher dimensions is given in [30]. However the quadrature
rules in [29, 30] are different to the QMC rules which we study in this paper. In particular,
our methods use equal weights and our quadrature points are more uniformly distributed in
the d-dimensional unit cube. While the anisotropic sparse grid method and the QMC method
both aim for robustness with respect to dimension, the dimensions of the examples which we
report in this paper (up to 106) go far beyond those tested in the examples in [30]. Moreover, as
mentioned before, our method has the additional attraction that it does not involve truncation
of the KL expansion.

The collocation methods can be seen as approximations of the older stochastic Galerkin
method [3, 15, 33, 37], in which a variational approximation in both physical and probability
space is performed, starting from a KL truncation of the random coefficient. These methods,
together with stochastic collocation, have an extensive and elegant error analysis, e.g., [3, 37, 2,
29, 30]. The error analysis of our method will be one focus of our future work, but is not the
aim of this paper.

4 Quasi-Monte Carlo methods

We begin this section with a brief but contemporary introduction to QMC theory, intended only
to be sufficient for understanding the key issues concerning their use in §7.

4.1 QMC theory

Recall that QMC methods seek to approximate an integral of a function f : [0, 1]d → R over the
d-dimensional unit cube by an equal-weight quadrature rule

Id(f) :=

∫

[0,1]d
f(x) dx ≈ 1

N

N∑

n=1

f(x(n)) =: QN,d(f).

The name “quasi-Monte Carlo” reflects the fact that the simple Monte Carlo rule for the integral
Id(f) has exactly the same appearance as QN,d(f), albeit with a crucial difference, that in the
MC rule the points {x(n)} are chosen randomly and independently from a uniform distribution
on [0, 1]d. The MC rule has the well known probabilistic error estimate

√
E(Id(f) − QN,d(f))2 =

σ(f)√
N

, where σ2(f) := Id(f
2) − (Id(f))2.

The general ambition of QMC rules is to improve upon the performance of the MC rule through
a clever deterministic choice of points {x(n)}.

There are two main classes of QMC rules: so-called lattice rules and nets. Both classes of
methods were initially introduced and studied by number theorists fifty years ago. Although we

10



Figure 1: Comparison of MC and QMC points
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discuss examples of both classes of QMC rules here, our computations in §7 are restricted to
Sobol′ points [41], which are the earliest and perhaps the most popular examples of nets.

In Figure 1 we show, for the 2-dimensional case, the first 64 Sobol′ points, compared to the
points of a (good) 64-point lattice rule, and 64 (pseudo-) random points in the plane. Lattice
points are very regular as seen in the figure: the lattice points form a group under addition
modulo the integers, which includes all integer points if extended periodically from the unit
square [0, 1]2 to all of R

2. On the other hand, Sobol′ points are also very uniform albeit in
a different sense: in every dyadic subdivision of the unit square into 64 identical pieces (for
example, into 64 strips of size 1 × 1

64 , or 64 rectangles of size 1
2 × 1

32 , etc), there is exactly 1
point. In general, Sobol′ point sets with 2m points in d dimensions are “(t, m, d) nets” in base 2,
meaning that each subdivision of the unit cube into 2m−t identical pieces contains exactly 2t

points (as described above for t = 0, m = 6 and d = 2). We see that the uniform distribution
of (t, m, d) nets deteriorates as t increases, and so we can think of t as a “(lack of) quality
parameter”. Unfortunately, it is known that for Sobol′ points t generally increases with d. This
implies that Sobol′ points have an intrinsic order of importance of coordinate directions. They
are more uniformly spread in the early dimensions and so the integration variables should always
be ordered according to their importance.

The above description considers only Sobol′ point sets of size 2m for some positive integer
m, but practical Sobol′ point generators allow all intermediate vales of N to be filled in, and
indeed are usually presented as infinite sequences. For reviews of the classical material on QMC
rules, see Niederreiter [27] and Sloan and Joe [38]. However, for both classes of QMC rules the
justification for their use (and in the case of lattice rules, even the method of construction) has
to be very different from the original arguments when d is large: we think that either rule is
better analyzed not in any of the classical function spaces, but rather in the weighted spaces
introduced by Sloan and Woźniakowski [40].

The intuition behind the weighted spaces is that most problems are too hard when d is
large and all variables are of equal importance; but that the situation may be better if (with
the variables appropriately ordered) the successive variables (that is, the successive components
of x in f(x)) are of declining importance. To quantify the declining importance of successive
variables, [40] introduced an infinite sequence of positive weights γj , satisfying

γ1 ≥ γ2 ≥ · · · > 0.

These weights are then built into the function spaces in which the error analysis is done. Specif-
ically, in its original version in [40] the d-dimensional weighted space Hd,γ (a real-valued Hilbert
space) is a tensor product of 1-dimensional Hilbert spaces H1,γj

with inner product

(f, g)1,γj
= f(1) g(1) +

1

γj

∫ 1

0
f ′(x) g′(x) dx (4.1)
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and norm ‖f‖1,γj
= (f, f)

1/2
1,γj

. Other more general weighted spaces have been defined in the
literature, but for our present purposes the details of weighted spaces are not important; only
the weights themselves are important.

It is known from [18] that QMC rules exist for which

|Id(f) − QN,d(f)| ≤ Cδ N−1+δ ‖f‖Hd,γ
, (4.2)

for every δ > 0, and with Cδ independent of d if

∞∑

j=1

γ
1/2
j < ∞. (4.3)

A similar result under the weaker condition that the weights are summable was already given
in [40], resulting in a convergence rate of N−1/2. The importance of these results can be il-
lustrated by noting that for the classical case, where all weights are equal, the constant grows
exponentially with d.

In addition, we know how to construct “rank-1” lattice rules that achieve the error bound
(4.2) under the condition (4.3) on the weights by means of the component-by-component (CBC)
construction; see [22, 31, 39], or see [23] for a non-technical review of recent developments on
weighted spaces and lattice rules. The points of a rank-1 lattice rule can be completely specified
by one integer vector g whose components are all relatively prime to N . The essence of the
CBC construction is that the components of g are determined one after the other, with the
value of the kth component chosen such that it minimizes a certain quantity depending on the
weights γ1, . . . , γk. Because the weights are decreasing and the earlier choices are in some sense
more free than the later ones, the quality of the rule constructed by the CBC algorithm can be
expected to deteriorate as the dimension increases — the same conclusion that we reached, for
a different reason, for the Sobol′ sequence.

However, weighted spaces also provide a framework for understanding the success of the
Sobol′ points in high dimensions. This comes from the work of Wang, [43], who showed that the
Sobol′ points in any number of dimensions d can achieve an error bound of the form (4.2) with
Cδ independent of d, albeit with a condition on the weights that is slightly stronger than (4.3).

In summary, in the case of lattice rules the framework of weighted spaces provides an algo-
rithm by which a suitable lattice rule can be constructed, once the weights are chosen. In the
case of the Sobol′ points the weighted spaces (unlike the classical spaces) allow us to understand
how and why the Sobol′ points (and indeed other nets) can be successful even in high dimen-
sions. However, the key lesson we want the reader to take away from this section is that when
using QMC rules it is crucial to order the components of the d-dimensional integration variable
x in order of decreasing importance.

Parameters for obtaining good lattice or Sobol′ points can be found in http://www.maths.

unsw.edu.au/~fkuo.

4.2 Randomization

It is well known that an estimate of the standard error for the MC method QN,d(f) can be
obtained from

sN :=

(
1

N(N − 1)

N∑

n=1

(
f(x(n)) − QN,d(f)

)2
)1/2

. (4.4)

An empirical 95% confidence interval for the integral approximation (based on the assumption
of Gaussian distribution of QN,d(f) =

∑N
n=1 f(x(n))/N) is then QN,d(f) ± 1.96 sN . Note that

there is an equivalent formula for (4.4) which requires only one pass through the evaluations
of f . But for both the one-pass and two-pass implementations, care must be taken to avoid
numerical instability, see e.g., [19].
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We recommend that QMC be implemented not in the pure, deterministic form described in
§4.1, but rather in a randomized form that borrows from the MC method an estimate of the
error from the spread of the results. There are two popular forms of randomization: shifting and
scrambling, the former preserves the lattice structure while the latter preserves the net structure,
see, e.g., [17]. Here we describe shifting and a simple form of scrambling called digital shifting.

We can add a shift ∆ ∈ [0, 1]d to any QMC point x ∈ [0, 1]d, and “wrap” it back into the
unit cube if necessary, to obtain a shifted point in the unit cube denoted by x⊕∆ = frac(x+∆)
where frac denotes the fractional part. This describes shifting. With digital shifting, we rewrite
both x and ∆ in some base (2 is the natural choice for Sobol′ points) and perform digitwise
addition modulo the base. For example, with base 2, ⊕ is the bitwise exclusive-or operator:
if x = (0.25, 0.75) = (0.01, 0.11)2 and ∆ = (0.375, 0.625) = (0.011, 0.101)2 then the digitally
shifted point is x ⊕ ∆ = (0.001, 0.011)2 = (0.125, 0.375).

To estimate the QMC error we make use of some number, say ν, of random shifts (or digital
shifts) of a selected QMC rule. Suppose the chosen QMC rule is a κ-point rule Qκ,d with points
{x(n)}. Then the same rule shifted (or digitally shifted) by ∆ ∈ [0, 1]d is

Qκ,d,∆(f) :=
1

κ

κ∑

n=1

f(x(n) ⊕ ∆),

and the randomly shifted (or digitally shifted) version of this rule with N = νκ points is

Qran
N,d(f) :=

1

ν

ν∑

i=1

Qκ,d,∆(i)(f) =
1

νκ

ν∑

i=1

κ∑

n=1

f(x(n) ⊕ ∆(i)), (4.5)

where ∆(1), . . . ,∆(ν) are ν independent random samples from a uniform distribution on [0, 1]d,
such that the Qκ,d,∆(i) are independent estimates for Id(f). It is easy to verify that Qran

N,d(f)
provides an unbiased estimate for Id(f). An approximation of the standard error for Qran

N,d(f) is
given by

sN,ν :=

(
1

ν(ν − 1)

ν∑

i=1

(
Qκ,d,∆(i)(f) − Qran

N,d(f)
)2

)1/2

. (4.6)

To avoid spoiling the good QMC convergence rate, the number of random shifts (or digital
shifts) should be small and fixed, say ν = 10 or 20. Then instead of taking the number of points
κ to be fixed, we increase κ successively until the desired error threshold is satisfied. This is
straightforward with the Sobol′ sequence. A method to construct “extensible” (or embedded)
lattice rules is described in [9].

5 Circulant embedding and FFT

To motivate this section, let us recall Corollary 3, which gives a formula for the expected value
of Gh(Z), on the assumption that the covariance matrix R of Z (recall (2.13)) can be embedded
in a symmetric positive definite matrix C. In this section we show that C can be taken to be a
circulant matrix when the field is sampled at a regular rectangular array of points in R

2. There
are several new aspects to our discussion here compared to [5, 11]. In particular, the fact that
the resulting C can be diagonalized in real arithmetic is of importance to our algorithm.

To explain the circulant embedding technique we need to introduce some extra notation.
Suppose that A0, . . . , An are symmetric square matrices of the same size. Then the symmetric

block Toeplitz matrix whose first block row and column contains these matrices is denoted by
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SBT(A0, . . . , An), i.e.,

SBT(A0, . . . , An) :=




A0 A1 A2 · · · An

A1 A0 A1 · · · An−1

A2 A1 A0 · · · An−2
...

...
...

. . .
...

An An−1 An−2 · · · A0




.

With this notation, the matrix SBT(A0, . . . , An, An−1, . . . , A1) is block circulant, that is, the jth
block row of this matrix is just the same as the (j−1)th block row shifted one place to the right
and wrapped around. Obviously these definitions also make sense in the special case when the
blocks Ai are scalars.

5.1 The 1D case

To facilitate understanding, it is useful to consider first the model case of a 1D random field Z,
with covariance function r(x, y) := ρ(|x − y|) for some ρ : R

+ → R, and suppose this is to be
sampled at m+1 equally spaced points (including the end points) in [0, 1]. (We remark that the
absolute value in ρ can be left out by some minor modifications.) Then the relevant covariance
matrix is

R = SBT(ρ0, . . . , ρm), where ρj = ρ(j/m) for j = 0, . . . , m .

An embedding of R in a d × d symmetric circulant matrix C with d := 2(m + J) can be
obtained by taking

C = SBT(ρ0, . . . , ρm, ρm+1, . . . , ρm+J︸ ︷︷ ︸
padding

, ρm+J−1, . . . , ρ1︸ ︷︷ ︸
mirroring

) (5.1)

for some integer J ≥ 0. Clearly C contains R in its top left-hand corner and the “mirroring”
ensures the circulant structure for any choice of J . “Padding”, i.e., taking J ≥ 1 in (5.1), with
large enough J and suitable padding values, can ensure positive definiteness for all covariance
functions of interest in this paper (see [6] and [11] for theory and numerical experiments). The
choice J = 0, i.e., no padding, is sufficient for most of the examples in §7. When padding is
needed, we specify our padding values by ρj = ρ(j/m) for j = m + 1, . . . , m + J . The matrix C
can then be written as

C = SBT(ρ̃0, . . . , ρ̃2(m+J)−1), where ρ̃j = ρ̃(j/m) for j = 0, . . . , 2(m + J) − 1,

and ρ̃ : R
+ → R is the 2ℓ-periodic function (where ℓ := 1 + J/m), defined by

ρ̃(t) :=





ρ(t) for t ∈ [0, ℓ],

ρ(2ℓ − t) for t ∈ [ℓ, 2ℓ],

ρ̃(t − 2ℓ) otherwise.

The diagonalization of a d× d circulant matrix may be achieved in O(d log d) operations by
fast Fourier transform. Indeed, for a circulant matrix C we have C = FH Λ F , where F is the
unitary Fourier matrix with entries

Fp,q =
1√
d

exp(2πi pq/d), p, q = 0, . . . , d − 1, (5.2)

FH is the Hermitian conjugate of F , and Λ := diag(
√

d F c) is the diagonal matrix of eigenvalues
of C, with c denoting the first column of C. Note that since C is symmetric and real and has real
eigenvalues, we also have C = F Λ FH. The following lemma states that a real diagonalization
of C can be obtained by combining real and imaginary parts of F . This is sometimes called the
(orthogonal) Hartley transform.
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Lemma 4 Let C be any symmetric circulant matrix and let C = F Λ FH. Then the matrix

G := Re(F ) + Im(F ) is real, symmetric and orthogonal, and C = G Λ GT.

Proof. The matrices Fc := Re(F ) and Fs := Im(F ) are symmetric, and so is G. Since F is
unitary, we have I = FFH = (Fc + iFs)(Fc − i Fs) = (F 2

c + F 2
s ) + i (FsFc − FcFs) . Hence

F 2
c + F 2

s = I and FcFs − FsFc = 0 . (5.3)

This and elementary trigonometry give

(FsFc)p,q = (FcFs)p,q =
1

d

d−1∑

r=0

cos

(
2π pr

d

)
sin

(
2π rq

d

)
= 0 .

Using (5.3) again we have GGT = GG = F 2
c + F 2

s = I, so G is orthogonal.
Now, starting with C = F Λ FH, we multiply from the right by F to obtain CF = FΛ.

Separating this into real and imaginary parts yields CFc = Fc Λ and CFs = Fs Λ. Summing the
two equations and multiplying from the right by GT, we obtain the result. 2

5.2 The 2D case

Suppose Z is a random field on a 2D domain with covariance function r(~x, ~y) = ρ(‖~x−~y‖p), with
p = 1 or 2, and suppose we want to sample it on a uniform (m1 + 1)× (m2 + 1) rectilinear grid,
with grid spacing 1/m1 in the x1 direction and 1/m2 in the x2 direction. Using a lexicographic
ordering of points (first in the x1 direction and then in the x2 direction), the covariance matrix
R is block Toeplitz with Toeplitz blocks R0, . . . , Rm2 , i.e.,

R = SBT(R0, R1, . . . , Rm2),

where each Rj is itself an (m1 + 1) × (m1 + 1) Toeplitz matrix

Rj = SBT(ρ0,j , ρ1,j , . . . , ρm1,j),

with entries ρi,j := ρ(i/m1, j/m2), for i = 0, . . . , m1 and j = 0, . . . , m2 .
We embed R in a matrix C which is block circulant with circulant blocks, by first embedding

each Toeplitz block Rj in a circulant matrix Cj as in the 1D case, and then embedding the
blocks in an analogous way. Again, padding may play a role in ensuring positive-definiteness.
Thus, for padding parameters J1, J2 ≥ 0, we set

C = SBT(C0, . . . , Cm2 , Cm2+1 . . . , Cm2+J2︸ ︷︷ ︸
padding

, Cm2+J2−1, . . . , C1︸ ︷︷ ︸
mirroring

),

where the blocks are themselves circulants

Cj = SBT(ρ0,j , . . . , ρm1,j , ρm1+1,j . . . , ρm1+J1,j︸ ︷︷ ︸
padding

, ρm1+J1−1,j , . . . , ρ1,j︸ ︷︷ ︸
mirroring

).

Analogous to the 1D case, we specify the padding by introducing the biperiodic function
with period 2ℓ1 in the x1 direction and period 2ℓ2 in the x2 direction defined as

ρ̃(t1, t2) :=





ρ(t1, t2) for (t1, t2) ∈ [0, ℓ1] × [0, ℓ2],

ρ(2ℓ1 − t1, t2) for (t1, t2) ∈ [ℓ1, 2ℓ1] × [0, ℓ2],

ρ̃(t1, 2ℓ2 − t2) for (t1, t2) ∈ [0, 2ℓ1] × [ℓ2, 2ℓ2],

ρ̃(t1 − 2ℓ1, t2 − 2ℓ2) otherwise,
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where ℓi = 1 + Ji/mi. The blocks of C are chosen to be Cj = SBT(ρ̃0,j , . . . , ρ̃2(m1+J1)−1,j) .
The matrix C may be diagonalized by applying FFT techniques in each of the two coordinate

directions in turn. This technique is well known and is described (in the context of a simpler
matrix) in [42, p. 453–458] for example. To provide some more detail, let di := 2(mi + Ji),
i = 1, 2. Then, C is a d× d matrix with d := d1d2, and we can identify the rows and columns of
C with the pairs (p1, p2) ∈ {0, . . . , d1 − 1} × {0, . . . , d2 − 1}, arranged in lexicographical order.
We then have C = F Λ FH, where F is the d × d complex 2D Fourier matrix with entries

F(p1,p2),(q1,q2) =
1√
d

exp

(
2πi p1q1

d1

)
exp

(
2πi p2q2

d2

)
, pi, qi = 0, . . . , di − 1, i = 1, 2.

Here, as in 1D, c denotes the first column of C, and Λ =
√

d diag(Fc) contains the eigenvalues
of C. The following result is the 2D analogue of Lemma 4.

Lemma 5 Let d = d1 × d2 and let C be any d × d symmetric block circulant matrix of the

form C = SBT(C0, . . . , Cd2−1) with d1 × d1 symmetric circulant blocks Cj, j = 0, . . . , d2 − 1.
If C = F Λ FH then G := Re(F ) + Im(F ) is a real, symmetric and orthogonal matrix, and

C = G Λ GT.

Proof. It is easy to verify for the 2D case that FFH = I and that Re(F )Im(F ) = 0. The proof
then follows the same lines as the proof of Lemma 4. 2

5.3 Randomized QMC approximation combined with circulant embedding

We now outline the steps required for implementing a randomized version (see §4.2) of the QMC
approximation in (3.9) combined with circulant embedding when the vector Z ∈ R

M represents
the random field Z sampled at a regular rectangular array of points. From Lemma 5 we see that
in the factorisation (3.7) of C the matrix S can be chosen to be S = GΛ1/2.

As we explained in §4.1, the opening dimensions of QMC points are of higher quality, and
for this reason we need to identify the importance of the integration variables and relabel them
accordingly. It turns out that the magnitude of the eigenvalues of the circulant C provides a good
guide, which is why we permute the QMC components in accordance with the non-increasing
sorted eigenvalues (see Step (iii) of the preprocessing below).

Preprocessing: (i) Embed R into a d×d matrix C that is block circulant with circulant blocks,
and thus obtain c, the first column of C. (ii) Compute λ :=

√
d fft(c) using a 2D FFT routine,

e.g., FFTW [14]. (iii) Check that all eigenvalues in λ are real and positive. If not, increase the
padding in C (thus increasing d by 1) and go back to (i). (iv) Choose a permutation π such
that (λπ(j))

d
j=1 are in non-increasing order.

For each QMC point x(n) and each shift ∆(i): (i) Compute y := Φ−1
d (x(n) ⊕ ∆(i)) where

⊕ denotes either shifting or digital shifting. (ii) Evaluate w := (
√

λj yπ−1(j))
d
j=1 . (iii) Compute

v := fft(w). (iv) Take u := Re(v) + Im(v). (v) Set Z := (u)R as described in Corollary 3.
(vi) Solve (2.15) with this instance of Z.

Thus, with κ denoting the number of QMC points and ν denoting the number of shifts, we
obtain N = νκ realizations of Z and N solutions of (2.15). The expected value and its error
estimate are computed as in (4.5) and (4.6).

5.4 Comparison to the MC approach

We finish this section by highlighting some of the differences between our QMC adaptation and
the MC strategy described, for example, in [11]. Recall that QMC methods take the point of
view of integration, not that of simulation, and therefore the justification for the embedding
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Figure 2: Left: Model problem and typical grid. Right: Boundary conditions and grid for
auxiliary problem (6.9)–(6.10).

approach is quite different, see §3.2. While the MC error can be estimated from the spread of all
function evaluations (since each sample is independent from the others), to estimate the QMC
error we need randomization, see §4.2, which has the added advantage of removing bias from
the QMC estimate. Whereas QMC points need to be mapped from the unit cube back to R

d

using the inverse of the cumulative normal distribution function Φ−1
d , the MC method can avoid

this transformation by generating normal variates directly, and thus saving some computational
work. However, as shown in §7, this is only a minor part of the total cost.

The permutation of variables as described in §5.3 is important for QMC methods, but it
has no effect on the performance of the MC method because the MC samples only need to
have the correct mean and covariance. For the same reason, the MC method has extra freedom
in extracting M components from Sy(n) (see (3.9)) in the sense that a different selection of
components could be used for each simulation.

Finally we note that the MC strategy in [11] makes use of the complex factorization of C to
transform one complex vector of length d, i.e., two real input vectors, to obtain two real output
vectors by separating the real and imaginary parts of the transformed vector. However, for
QMC methods it is crucial that the assignment of QMC components to the integration variables
remains the same for every function evaluation, which is why we use the real factorization in
terms of G in Lemmas 4 and 5. Application of the real factorization has the same computational
cost as that of the complex factorization using standard FFT tricks.

6 Fast implementation of mixed finite elements

In this section we restrict to the case when (2.1)–(2.2) are to be solved on the simple domain
D = (0, 1)2 subject to the specific mixed conditions

p(0, x2) = 1 and p(1, x2) = 0 for all x2 ∈ [0, 1], and (6.1)

q2(x1, 0) = 0 and q2(x1, 1) = 0 for all x1 ∈ [0, 1]. (6.2)

This is sometimes referred to as a flow cell in the literature (cf. [25]). We show how to efficiently
compute three quantities of physical interest using Raviart-Thomas mixed finite elements (FEs)
on the uniform triangular meshes with m subdivisions in each coordinate direction depicted in
Figure 2 (left). For convenience we denote h = 1/m. We use the divergence-free reduction
technique introduced in [7, 35] (see also [12]) to solve the resulting saddle point systems (2.11)
or (2.15). The good computation times in §7 depend crucially on this fast procedure.
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6.1 Three important physical quantities

The simplest quantity of interest that we will study is the pressure head p(~x∗ ; ·) at a given
point ~x∗ ∈ D.

The second quantity of interest is the effective permeability of a block of random porous
media (cf. [25]), which in the case of the simple flow cell D = (0, 1)2 with the boundary conditions
(6.1)–(6.2) is given by

keff(ω) :=

∫
D q1(~x ; ω) d~x

∫
D − ∂p

∂x1
(~x ; ω) d~x

.

It measures the mean behavior of the random porous medium in D and is of interest, e.g., in
stochastic homogenization. Note that on the simple flow cell D = (0, 1)2 we have

∫
D − ∂p

∂x1
d~x =∫ 1

0 (p(0, x2) − p(1, x2)) dx2 = 1.
Finally, in the context of modeling underground waste repositories, it is important to study

the motion of pollutant particles in the velocity field ~q, because transport by flowing groundwater
is the main mechanism for pollutants (such as radionuclides) to return to man’s environment
(see e.g. [28]). For each realization of the permeability field k, we place a particle at, say ~x†, and
follow its path through the field ~q until it exits the domain D. The final position and the time
it takes to reach the boundary, the so-called breakthrough time, are important quantities of
physical interest and in §7, we shall compute expected values of the breakthrough time T = T (ω)
for the flow cell D = (0, 1)2 and ~x† = (0, 0.5)T.

6.2 Divergence-free reduction of mixed finite element systems

It can be shown that (2.15) has a unique solution, but it is highly ill conditioned when h is
small and when k varies strongly. The fact that it is indefinite further complicates the direct
application of fast multilevel solvers, such as algebraic multigrid (AMG). This is the reason
why we first use an algebraic reduction of (2.15) to a symmetric positive definite system and a
triangular system. To explain this reduction we define

V̊h := {~v ∈ Vh : b(w,~v) = 0 for all w ∈ Wh} ,

the subspace of (discretely) divergence-free Raviart-Thomas elements. Since (2.15) has a unique
solution, we have dimV̊h = nv − nw =: n̊ and we can consider choosing the first n̊ elements
~v1, . . . , ~vn̊ in the basis of Vh, such that they also form a basis of V̊h. Then Bi,ℓ = b(wℓ, ~vi) = 0

for i = 1, . . . , n̊, and since the solution ~qh belongs to V̊h, we have Qn̊+1 = · · · = Qnv = 0.
Thus, we can decouple the first block-row of (2.15) into two independent (square) problems for
Q̊ := (Q1, . . . , Qn̊)T and P, namely

∑n̊
j=1 M̃i,jQj = gi for all i = 1, . . . , n̊, (6.3)

∑nw

ℓ=1 Bn̊+s,ℓPℓ = gn̊+s − ∑n̊
j=1 M̃n̊+s,jQj for all s = 1, . . . , nw. (6.4)

We will see below that ~vn̊+1, . . . , ~vnv can be chosen such that the matrix (Bn̊+s,ℓ)1≤ℓ,s≤nw
is

bi-diagonal and (6.4) can therefore be solved in O(nw) operations by simple back substitution.
The core task is to solve (6.3). This system is 5 times smaller than the original system (2.15)
(cf. [7]) and simpler to solve as we will explain now.

It is a property of the de Rham complex, which describes the connection between various FE
spaces including the Raviart-Thomas elements (cf. [4, 35]), that a basis for V̊h can be constructed
from curls of the standard, scalar-valued, continuous, piecewise linear FE basis associated with
Th. To be more precise, for any node ~xj of Th let ϕj be the piecewise linear hat function associated
with ~xj such that ϕj(~xj′) = δj,j′ , for all nodes ~xj′ of Th. Further, let us partition the set N of
all nodes ~xj of Th, into a set NB of nodes on the bottom boundary where x2 = 0, a set NT of
nodes on the top boundary where x2 = 1, and the remainder which we call NI . Since degrees of
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freedom in Vh can be associated with edges of Th and those in Wh with elements, it follows from
Euler’s polyhedron theorem that n̊ = #NI + 1 (cf. [7, Theorem 4.3]). Let ~x1, . . . , ~xn̊−1 ∈ NI .
Then we can choose the basis for V̊h in the following way (cf. [7, §4.2]):

~vi := ~curlϕi , i = 1, . . . , n̊ − 1, and

~vn̊ := ~curlϕT , where ϕT :=
∑

~xj∈NT

ϕj ,
(6.5)

and where ~curlf := (∂f/∂x2,−∂f/∂x1)
T in 2D. (Note that the choice of the top, rather than

the bottom boundary in (6.5) is not essential.) Substituting (6.5) into (2.14) we have

M̃i,j =

∫

D
k

−1 ~curlϕj · ~curlϕi d~x =

∫

D
k

−1 ~∇ϕj · ~∇ϕi d~x

︸ ︷︷ ︸
=: a(ϕi, ϕj)

, i, j = 1, . . . , n̊ − 1, (6.6)

where k is a piecewise constant function defined elementwise in (2.14). Also from (2.9) we have

gi = G(~vi) = −
∫

Γin

~curlϕi · ~n dΓ(~x) = 0 , i = 1, . . . , n̊ − 1,

with Γin denoting the left-hand boundary {0} × [0, 1]. Similarly, M̃i,̊n = a(ϕi, ϕT ) , M̃n̊,̊n =
a(ϕT , ϕT ) and gn̊ = 1 . Now denote

Ai,j := a(ϕi, ϕj) and fi := −a(ϕi, ϕT ) , for 1 ≤ i, j ≤ n̊ − 1.

Then the solution of (6.3) can be found via block–factorization (see [7] for details) to be

Q̊ = ηh

(
A−1f

1

)
, where ηh :=

1

M̃n̊,̊n − fTA−1f
. (6.7)

Hence, solving (6.3) reduces to solving

Au = f and then using Q̊ = ηh

(
u

1

)
. (6.8)

Now Au = f is a standard (continuous, piecewise linear) FE discretization of the auxiliary PDE

~∇ · (k−1 ~∇u) = 0 (6.9)

subject to the mixed boundary conditions

u(x1, 0) = 0 and u(x1, 1) = 1 for all x1 ∈ [0, 1], and

∂u
∂x1

(0, x2) = 0 and ∂u
∂x1

(1, x2) = 0 for all x2 ∈ [0, 1] ,
(6.10)

i.e., a second-order elliptic problem of the same form as that obtained for the pressure p by
substituting (2.1) into (2.2), but with diffusion coefficient k−1 instead of k and the roles of
Dirichlet and Neumann boundary interchanged (see Figure 2, right, for an illustration). The
auxiliary function u plays the role of a stream function for the divergence-free vector field ~q in
the original system of PDEs (2.1), (2.2). We emphasise again however, that k in the definition
of the stiffness matrix A in (6.6) depends only on the values of the random field contained in
the vector Z ∈ R

M .
There are a number of robust solvers for (6.8) and some recent theory analyzing the resilience

of many of the methods to large variations in the diffusion coefficient (see, e.g., [16, 32]). In
this paper we will use algebraic multigrid (AMG) to solve (6.8), and we will see that its cost
grows linearly with the problem size and is not affected by variations in k. AMG has been shown
experimentally to be a very efficient method for solving high contrast diffusion problems but
unfortunately there is no theoretical justification of its coefficient robustness yet.
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Figure 3: Left: Element numbering and distinguished edge eℓ associated with element τℓ. Right:
Piecewise linear particle path (particle released at (0, 0.5)T)

6.3 Simple derivation of quantities of interest

We will show now that all the quantities of interest defined above can be computed in a straight-
forward way from the solution u of the auxiliary problem (6.8). Note first that using (6.5), (6.7)
and (6.8), and setting ui = 1 for all ~xi ∈ NT and ui = 0 for all ~xi ∈ NB (cf. (6.10)) we have

~qh =
n̊∑

i=1

Qi~vi = ηh


 ∑

~xi∈NI

ui
~curlϕi +

∑

~xi∈NT

~curlϕi


 = ηh

∑

~xi∈N

ui
~curlϕi . (6.11)

Now, since the functions ϕi are piecewise linear w.r.t. Th, ~qh is piecewise constant. We denote
the values of u locally, at the nodes of each triangle τ ∈ Th, by uNW(τ), uNE(τ), uSW(τ), if τ is
above the diagonal, and uNE(τ), uSW(τ) uSE(τ), if τ is below the diagonal, where NW, NE, SW
and SE stand for north-west, north-east, south-west and south-east, respectively. Recall that
h = 1/m. Then it is easily seen that

~qh|τ =





ηh

h

(
uNW(τ) − uSW(τ) , uNW(τ) − uNE(τ)

)T
if τ is above the diagonal,

ηh

h

(
uNE(τ) − uSE(τ) , uSW(τ) − uSE(τ)

)T
if τ is below the diagonal.

(6.12)

It turns out that implicitly, in the divergence-free reduction, we have already computed the
FE approximation keff,h(ω) :=

∫
D qh,1(~x ; ω) d~x of the effective permeability keff .

Proposition 6 Let ηh be as defined in (6.7). Then keff,h = ηh .

Proof. For any i ∈ {0, . . . , m} define qh,1(i) :=
∫ 1
0 qh,1(ih, x2) dx2. Then, since ~qh is (discrete)

divergence-free in the Raviart–Thomas case, i.e.,
∫
τ

~∇·~qh d~x = 0 for all τ ∈ Th, and since qh,2 = 0
at the top and bottom boundary (cf. (6.2)), it follows from the Divergence Theorem, applied
elementwise on the rectangle (ih, jh) × (0, 1), that

qh,1(j) − qh,1(i) =

∫

(ih,jh)×(0,1)
∇ · ~qh d~x = 0 , for all 0 ≤ i ≤ j ≤ m. (6.13)

Thus qh,1(i) is constant (as a function of i) and so
∫
D qh,1 d~x =

∫ 1
0 qh,1(0, x2) dx2. Hence, using

the first part of (6.12)

keff,h = h
∑

τ : τ∩Γin 6=∅

ηh

h
(uNW(τ) − uSW(τ)) = ηh(1 − 0) .

2
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To recover the coefficients of the piecewise constant approximation of the pressure ph via
(6.4), we need a complementary basis {~vn̊+1, . . . , ~vnv} ⊂ Vh to {~v1, . . . , ~vn̊} in (6.5). Since
nv − n̊ = nw, we need exactly one basis function per element τ ∈ Th. It turns out that these
can be chosen from amongst the standard set of basis functions for Raviart–Thomas elements
associated with edges of Th. Let us order the elements τ1, . . . , τnw ∈ Th as depicted in Figure
3 (left), i.e., starting with the bottom row, numbering the elements from left to right and then
proceeding with the second row, etc. For each triangle τℓ we also choose a distinguished edge
eℓ as shown, i.e., the vertical edge for ℓ odd and the diagonal edge for ℓ even. The standard
Raviart-Thomas basis function ~vn̊+ℓ ∈ Vh associated with edge eℓ is uniquely defined by

∫
e′ ~vn̊+ℓ · ~ne′ ds = δeℓ,e′ , for all edges e′ of Th , (6.14)

where ~ne′ is the unit normal on edge e′ chosen to lie in {~x : x1 > 0} ∪ {(0, 1)T}. It can be
shown that with this set of complementary basis functions, the functions ~v1, . . . , ~vnv are linearly
independent and thus form a basis for Vh (cf. [35, 36] for details). Thus, with the usual basis
{wℓ} of Wh given by the characteristic functions of the elements τℓ of Th, it follows from the
divergence theorem and (6.14) that

Bn̊+s,ℓ = b(wℓ, ~vn̊+s) = −
∫

τℓ

~∇ · ~vn̊+s d~x =





1, if ℓ = s ,
−1, if ℓ = s + 1 and τℓ ∩ supp(~vn̊+s) 6= ∅ ,

0 otherwise.

Similarly

gn̊+s = G(~vn̊+s) = −
∫

Γin

~vn̊+s · ~n dΓ(~x) =

{
1, if τs ∩ Γin 6= ∅ ,
0 otherwise.

Substituting these last two equations into (6.4) we get the simple recursion formula

Pℓ =

{
1 − ∆Pℓ , if τℓ ∩ Γin 6= ∅ ,
Pℓ−1 − ∆Pℓ , otherwise ,

(6.15)

where ∆Pℓ := (M̃Q)n̊+ℓ . It turns out that each ∆Pℓ can be computed in a simple way from
(6.12) on the two elements adjacent to edge eℓ. We omit the details. Since ph is piecewise
constant with respect to the triangulation Th, its value is not defined on any of the vertices or
edges of the triangulation. In §7 we will study the expected value of the pressure at the center
of the flow cell, and so we simply extend the definition of ph to all of D by averaging:

ph(~x) :=





ph(~x) if ~x ∈ int(τ), τ ∈ Th (interior of elements),

1
6

∑
τ :~x∈τ ph|τ if ~x ∈ NI\∂D (interior vertices),

1
2

∑
τ :~x∈τ ph|τ for all other ~x ∈ D (interior edges).

(6.16)

The following proposition shows an exactness result for the mean pressure which turns out
to be useful in §7 for checking the performance of our code.

Proposition 7 Let D = (0, 1)2 and consider the problem (2.1)–(2.2) subject to (6.1)–(6.2), with

finite element approximation as described in §2.2. Then

E(ph(~x∗ ; ·)) = E(p(~x∗ ; ·)) = 1/2 , when ~x∗ = (1/2, 1/2)T .

Proof. Introduce the bijection γ(~x) := (1−x1, 1−x2)
T on D, and define kγ(~x ; ω) := k(γ(~x) ; ω),

~qγ(~x ; ω) := ~q(γ(~x) ; ω) and pγ(~x ; ω) := 1 − p(γ(~x) ; ω). Then (~qγ , pγ) satisfy (2.1)–(2.2) with
random field kγ instead of k but with the same boundary conditions (6.1)–(6.2). Since k = log Z

21



and Z is a mean-zero Gaussian random field with a covariance function r(~x, ~y) that is invariant
under the transformation ~x → γ(~x), we can deduce that kγ is equal in law to k and thus

E(p(~x ; ·)) = E(pγ(~x ; ·)) = E(1 − p(γ(~x) ; ·)) = 1 − E(p(γ(~x) ; ·)) ,

and putting ~x = ~x∗ yields E(p(~x∗ ; ·)) = 1/2.
To complete the proof note that the grid Th is invariant under the transformation ~x → γ(~x).

Hence, we can as in the continuous case define FE functions ~qh,γ(~x ; ω) := ~qh(γ(~x) ; ω) and
ph,γ(~x ; ω) := 1 − ph(γ(~x) ; ω) that solve the mixed FE system (2.10) with kγ instead of k, and
deduce in a similar way that E(ph(~x∗ ; ·)) = 1/2. 2

We make use of Proposition 7 in §7, when we study the error in expected value of pressure at
(1/2, 1/2)T, since in this special case there is no discretization error and so we can study the
convergence of the QMC methods in isolation.

Since ~qh is piecewise constant w.r.t. Th, particle paths and travel times can trivially be
computed in an element by element fashion (cf. Figure 3, right). In particular, if a particle
enters a triangle τ ∈ Th through edge ein at point ~xin, the travel time to any of the other two
edges e′ ⊂ τ is

dist(~xin, e′)

~qh · ~nτ |e′
.

Since ~qh has continuous normal components across all edges e of Th, the travel time to one of
the two edges e′ 6= ein has to be positive. If the travel time to both edges is positive, then the
actual travel time in τ is the minimum of the two. If they are equal, the particle exits τ through
a vertex and we arbitrarily choose one of the edges.

Again the travel time of a particle in τ and the position of the point where it leaves τ depend
only on the terms on the right hand side of (6.12), as well as on some geometric considerations.
By following the particle path from element to element through the domain D and summing up
the travel times in each element, it follows that the finite element approximation Th(ω) of the
breakthrough time T (ω) is just some nonlinear function of the differences of the values of u at
neighboring grid points.

7 Numerical results

In this section we examine in detail the performance of the MC and randomized QMC methods
for computing the expected value of each of the three physical quantities defined in §6, namely,
pressure head at the point ~x∗ = (1/2, 1/2)T, effective permeability, and breakthrough time. The
algorithms for computing these quantities using the mixed finite element (FE) method were
described in §6, but for convenience we sample the random field Z at the midpoints of the
diagonal edges of the grid and use a different quadrature rule in the assembly of M̃ in (2.14),
namely the hypothenuse rule such that here kτ := exp(Z(~mτ ; ω)) in (2.14) with ~mτ being the
midpoint of the diagonal edge of τ . We use the FFTW package [14] for the circulant embedding
technique and the AMG1R5 code [34] to solve the large, ill-conditioned linear equation systems
(6.8) for each individual realization. We take digitally shifted Sobol′ points as our representative
for randomized QMC methods. To generate Sobol′ points we use the parameters from [21].

Our numerical results are all in 2D, for the covariance function (2.5) with “1-norm” (p = 1)
and “2-norm” (p = 2). We study a range of parameters σ and λ in (2.5). These are given in
Table 1, where generally the cases on the right are more difficult than those on the left.

In each case we are computing expected values of our quantities of interest of the general form
(3.8), approximated using mixed FEs on a uniform grid with m subdivisions in each coordinate
direction. Again we set h = 1/m. The resulting high-dimensional integral is transformed to the
domain [0, 1]d. The transformed integrand and its dimensionality d both depend on m, typically
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Case 1 Case 2 Case 3 Case 4 Case 5

σ2 = 1, λ = 1 σ2 = 1, λ = 0.3 σ2 = 1, λ = 0.1 σ2 = 3, λ = 1 σ2 = 3, λ = 0.1

Table 1: Five choices of λ and σ which we consider (difficulty goes from left to right)

d = O(m2). The largest dimension considered is d ≈ 2 × 106 . To be more precise, referring
to the notation in §5.2, we have taken m1 = m2 = m, subdivided the domain D into m2 equal
squares and then divided these into triangles by drawing the diagonals from bottom left to top
right. The field Z is sampled at the m2 centres of these squares. The dimension of the matrix
R is M = m2, and the dimension of the matrix C is d = 4(m − 1)2 when no padding is used.

There are in general two main contributions to the error: the discretization error, caused by
the FE discretization in space, and the quadrature error of the MC or the randomized QMC
method. To estimate the MC quadrature error we use the standard error estimate sN , see (4.4),
with increasing number of samples N . To estimate the randomized QMC quadrature error we
use the standard error estimate sN,ν , see (4.6), with ν = 16 random digital shifts for Sobol′

points. Here N is the total number of sample points, i.e., the number of QMC points multiplied
by 16. To estimate the discretization error we apply our method on a sequence of grids of
decreasing mesh width h, using a sufficiently large value of N , and deduce empirically an error
estimate from these results via linear regression.

7.1 Timing tests

We start by looking at the computational cost. There is some initial cost to factorize the
circulant matrix C but this only requires one FFT application and is negligible (less than 1%
of the total time for more than 30 samples, even on our finest mesh, see Table 2). For each
individual sample the computational time is made up of one FFT application, one application of
the (vectorized) inverse Φ−1

d of the cumulative standard normal distribution function, and one
linear solve with AMG1R5. In Table 2 we give timings for the individual parts for 1000 samples
for Case 1. All the CPU-times quoted in this section were obtained on a standard laptop with
a 2GHz Intel T7300 processor.

m d Setup Applying Φ−1
d FFT AMG Total

33 4096 0.00 1.0 (17%) 0.22 (4%) 4.5 (76%) 5.9
65 16384 0.01 3.9 (17%) 1.2 (5%) 16.5 (75%) 22
129 65536 0.06 15 (16%) 5.1 (6%) 67 (73%) 92
257 262144 0.15 62 (16%) 31 (8%) 290 (73%) 400
513 1048576 0.6 258 (15%) 145 (8%) 1280 (73%) 1750

O(m2) O(m2) O(m2) O(m2 log m2) ∼ O(m2) ∼ O(m2)

Table 2: Timings (in seconds) for 1000 samples in our randomized QMC implementation on a
standard laptop (2GHz Intel T7300) for Case 1 with 1-norm covariance function. (Percents of
the total time in brackets.)

We see that the majority of the cost comes from the linear solves (∼ 75%). The cost of the
linear solve and the application of Φ−1

d grow like O(m2) as the mesh is refined, which is optimal.
The FFT part grows like O(m2 log m2), but even on the finest mesh which we consider its cost
is the smallest of the three (∼ 8%). The cost for our MC implementation is identical to that of
randomized QMC. It could be slightly reduced if the normal variates are generated directly to
avoid the application of Φ−1

d , but the cost of the linear solve, which is the dominant part, would
always remain the same.
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Let us study the effect of changing λ and σ2. The cost of applying Φ−1
d as well as the FFT

are not affected. The cost for AMG grows slightly with σ2 → ∞ and with λ → 0, but even in
the hardest case that we study here (i.e., Case 5) it only grows by 40–50%. For example, the
corresponding times in Table 2 for Case 5 with m = 257 are tsetup = 0.13, t

Φ−1
d

= 64, tFFT = 31,

tAMG = 440 and ttotal = 550.
Changing from the 1-norm to the 2-norm covariance function does have a substantial effect

for correlation lengths λ > 0.2, since it is necessary in that case to introduce padding to ensure
the circulant embedding is positive definite (see §5; padding is not necessary for the 1-norm
covariance). As a consequence the dimension d may be substantially larger in the 2-norm case.
For example, with λ = 1 and m = 65 we need d ≈ 5.6 × 105, and the corresponding times in
Table 2 are t

Φ−1
d

= 132 and tFFT = 75, while tAMG = 16 as in the 1-norm case. For λ ≤ 0.2 no

padding is necessary even in the 2-norm case and the timings are similar to those in Table 2.

7.2 Pressure head at centre

We now analyze the convergence for the expected value of the pressure head at ~x∗ = (1/2, 1/2)T.
This is an ideal test case to study the convergence of the quadrature error as N increases, since
E(ph(~x∗)) = E(p(~x∗)) = 0.5 for any h and the discretization error is 0 (see Proposition 7).

In Figure 4 we plot the standard error estimates sN and sN,16 (for MC and randomized QMC,
respectively) when approximating E(ph(~x∗)) in each of the Cases 1–5. In all graphs the QMC
results are marked by (blue) stars while the (green) crosses are the MC results. The two triangles
illustrate O(N−1) and O(N−1/2) convergence. We see clearly the superior performance of the
QMC method over the MC method. The convergence rates above each graph are computed
by linear regression. As expected, MC converges with a rate of O(N−1/2) throughout. The
convergence rate of QMC is clearly better than that of MC, even though it does degenerate
somewhat in the harder cases (i.e., when λ is smaller or σ2 larger). As we see from the bottom
four plots in Figure 4, the mesh size m and hence the dimension d of the quadrature domain
does not seem to have any influence on the convergence rates.

In absolute terms the increased convergence rate of QMC means that in Case 4, for example,
for m = 129 to achieve an error of 10−3 we only require N = 2500 samples in QMC while
N = 45000 samples are necessary in MC. In CPU-time this difference equates to 4 minutes
versus 1.25 hours. The difference is even more dramatic if we seek an error of 10−4: for m = 129,
while N = 35000 samples suffice in QMC, more than 4.5 million samples are necessary in MC,
which equates to 1 hour for QMC versus more than 5 days for MC.

7.3 Effective permeability

Analogous plots for the standard errors in the expected value of the effective permeability
E(keff,h) are given in Figure 5. Again the QMC convergence rate decreases slightly as the
problem becomes harder, but, as in the case of the pressure head, QMC requires many fewer
samples than MC to achieve a desired accuracy. For example taking again Case 4 with m = 129,
it suffices to choose N = 250000 to achieve an accuracy of 10−3 in QMC, while MC would require
almost 30 million samples, which is 7 hours versus about 1 month. Again the convergence rates
do not seem to be influenced by the dimension d.

However, in contrast to the pressure head computations, the expected value of keff,h varies as
h changes due to discretization error. To quantify the discretization error and to decide, given
a required tolerance ε, which mesh size to use, we estimate E(keff,h) as accurately as possible
using QMC with N = 2.1 million samples on a sequence of grids with h → 0. Estimates for
E(keff,h), together with 95% confidence intervals (obtained by ±1.96 sN,16), in Cases 1, 2, 3 and
5 are presented in Table 3.

If we make an assumption that the discretization error for E(keff,h) decays like O(hβ), then
the value of β and the exact value E(keff) can be estimated numerically via linear regression.
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Case1 (m=129) Rates: −0.86 (QMC) −0.5 (MC)
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Case3 (m=129) Rates: −0.69 (QMC) −0.5 (MC)
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Case2 (m=33) Rates: −0.75 (QMC) −0.5 (MC)
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Case2 (m=257) Rates: −0.7 (QMC) −0.5 (MC)

Figure 4: Standard errors sN and sN,16 of expected pressure at centre for the 1-norm covariance
function (i.e., p = 1 in (2.5)): Cases 1, 3, 4, 5 (above, with m = 129) and Case 2 (below, for
various values of m).
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Case2 (m=257) Rates: −0.73 (QMC) −0.5 (MC)

Figure 5: Standard errors sN and sN,16 of expected effective permeability keff,h for the 1-norm
covariance function (i.e., p = 1 in (2.5)): Cases 1, 3, 4, 5 (above, for m = 129) and Case 2
(below, for various values of m).
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1/h Case 1 Case 2 Case 3 Case 5

33 1.314970± 3.5[-5] 1.097452± 2.3[-5] 1.000958± 2.7[-5] 1.022453± 8.6[-5]
65 1.315102± 4.1[-5] 1.099467± 2.7[-5] 1.011073± 2.0[-5] 1.045101± 1.1[-4]
129 1.315174± 4.2[-5] 1.100222± 4.6[-5] 1.015403± 2.5[-5] 1.055474± 6.8[-5]
257 1.315234± 3.6[-5] 1.100459± 2.5[-5] 1.017014± 2.4[-5] 1.059588± 1.4[-4]

∞ 1.315215± 1.2[-5] 1.100811± 1.1[-4] 1.018492± 1.9[-4] 1.062633± 3.1[-4]

Table 3: Estimates for E(keff,h) computed with QMC (with N ≈ 2.1 × 106). The confidence
intervals are estimated using 16 random shifts. In the last row we give estimates for the exact
value of E(keff) obtained via linear regression (discarding h = 1/257 in Case 1 since the standard
error is bigger than the FE error for N ≈ 2.1 × 106 in this case).

Numerical experimentation shows that the optimal β is about 1.25 in each of the cases. The
estimate for E(keff) using β = 1.25 (with its 95% confidence interval) is given in the last row of
Table 3 for each case. In Table 4 we list our estimates for the discretization error for Cases 1,
2, 3 and 5. Note that the behavior of the error is indeed very close to O(h1.25).

1/h Case 1 Case 2 Case 3 Case 5

33 0.000245± 3.7[-5] 0.003358± 1.1[-4] 0.017533± 2.0[-4] 0.040179± 3.2[-4]
65 0.000113± 4.3[-5] 0.001344± 1.1[-4] 0.007419± 1.9[-4] 0.017531± 3.3[-4]
129 0.000041± 4.4[-5] 0.000589± 1.2[-4] 0.003089± 2.0[-4] 0.007158± 3.2[-4]
257 0.000019± 3.8[-5] 0.000352± 1.1[-4] 0.001477± 1.9[-4] 0.003044± 3.4[-4]

Table 4: Estimates for E(keff − keff,h) computed by linear regression on the results in Table 3
using β = 1.25 (discarding h = 1/257 in Case 1).

We can also see from Table 4 that in each of the cases we can expect an accuracy of at most
O(10−4) for E(keff,h) on any computationally feasible mesh. Recall that 1000 samples on a grid
with mesh size h = 1/513 require about 30–40 minutes on a single processor (see Table 2). The
mesh size grows very rapidly with λ → 0, and so for Cases 3 and 5 where λ = 0.1, only an
accuracy of about O(10−3) is possible.

In Table 5 we list the mesh sizes necessary to attain a discretization error smaller than 10−3

in Cases 1, 2, 3 and 5, together with the number of samples necessary for QMC or MC to ensure
that the 95% confidence level of E(keff,h) (i.e., 1.96 sN,16 for QMC and 1.96 sN for MC) is also
smaller than 10−3. Interestingly the number of samples necessary to achieve a fixed tolerance
decreases with λ → 0 (Cases 1–3), but this is offset by the larger discretization error for smaller
λ, so that Cases 2 and 3 are indeed harder than Case 1 when measured in CPU time (see Table
5). Case 5 is as expected the hardest. We see that σ2 not only influences the discretization
error (see Table 4), it also influences the QMC and the MC error and so a substantially larger
number of samples is required in Case 5 than in Case 4. Again we see clearly the advantage of
QMC over MC, with a computational time of 28 minutes versus 28 hours in Case 2, and similar
speedups for the other cases.

7.4 Breakthrough time

For the breakthrough time T (ω), the advantage of QMC over MC is less pronounced as we can
see in Figure 6, but it still outperforms MC consistently with convergence rates of about N−0.57,
and a significantly smaller constant. The discretization error is similar to that of E(keff,h) for
the cases where σ2 = 1, but for σ2 = 3 it is substantially larger. Concentrating only on Cases 2
and 5 and proceeding as above we obtain the results in Table 6 (with β = 1.35).
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Case1 (m=257) Rates: −0.7 (QMC) −0.49 (MC)
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Case3 (m=257) Rates: −0.58 (QMC) −0.5 (MC)

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

N

S
td

 E
rr

or
 (

br
ea

kt
hr

ou
gh

 ti
m

e)
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Figure 6: Standard errors sN and sN,16 of expected breakthrough time Th for the 1-norm
covariance function (i.e., p = 1 in (2.5)): Cases 1, 3, 4, 5 (above, m = 257) and Case 2 (below,
for various values of m).
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# Samples N CPU Time
Case 1/h QMC MC QMC MC E(keff,h)

1 17 64000 4250000 1.5 min 1.75 h 1.3147
2 129 16700 982000 28 min 28 h 1.1003
3 513 4900 142000 160 min 80 h ≈ 3 d 1.0182
5 1025 28700 525000 2100 min ≈ 35 h 1600 h ≈ 67 d 1.0614

Table 5: Mesh sizes at which a discretization error of 10−3 is attained for E(keff,h), as well as
numbers of QMC or MC samples and CPU-time (2GHz Intel T7300) necessary to obtain a 95%
confidence level that is also < 10−3. The last column shows the corresponding estimates for
E(keff,h) in each case.

Estimates for E(Th) Estimates for E(T − Th)
1/h Case 2 Case 5 Case 2 Case 5

33 1.307184± 3.7[-4] 1.572801± 9.8[-4] 0.004392± 5.1[-4] 0.065798± 1.6[-3]
65 1.304328± 5.1[-4] 1.533775± 1.3[-3] 0.001536± 6.2[-4] 0.026772± 1.8[-3]
129 1.303665± 3.7[-4] 1.516761± 1.6[-3] 0.000873± 5.1[-4] 0.009758± 2.0[-3]
257 1.303130± 3.2[-4] 1.511971± 1.2[-3] 0.000338± 4.8[-4] 0.004968± 1.7[-3]

∞ 1.302792± 3.6[-4] 1.507003± 1.2[-3]

Table 6: Estimates for E(Th) computed with QMC (with N ≈ 2.1 million). The confidence
intervals are estimated using 16 random shifts. The values in the last row are estimates for
the exact value of E(T ). The values in the last two columns are estimates of E(T − Th), each
obtained via linear regression (with β = 1.35).

Thus, to get a discretization error of less than 2× 10−3 in each case, mesh sizes of h = 1/65
and of h = 1/513 are necessary, respectively. The numbers of samples necessary for the 95%
confidence level of E(Th) to be also less than 2 × 10−3 in Case 2 are NQMC = 167500 for QMC
and NMC = 547500 for MC. In Case 5, NQMC = 1.3 million and NMC = 2.2 million are necessary.
As noted above, the advantage of QMC is less pronounced for this quantity of interest, but we
still obtain a speedup of about 5 and 1.7 in Cases 2 and 5, respectively. The speedup is more
pronounced if we require a higher accuracy. The FE error is less than 10−3 for m = 129 in
Case 2. To obtain a similar accuracy with QMC and MC, NQMC = 246000 and NMC = 3260000
samples are necessary, and so QMC is about 12 times faster than MC in that case (7h versus
90h). To obtain a similar accuracy in Case 5 would require about 2 million samples on a grid
with h ≈ 10−3 and about 6000 hours (that is 250 days) of processor time.

7.5 2-norm results

We finish by giving some results with the 2-norm covariance function, i.e., choosing p = 2 in
(2.5) instead of p = 1. The convergence behavior of QMC is similar to the 1-norm case and we
only present the pressure head in Case 2 and the effective permeability in Case 5 in Figure 7.
However, interestingly the FE error behaves differently with a typical convergence rate of β < 1.
This may be down to the fact that the coefficient function is not grid aligned anymore in the case
of the 2-norm covariance. Table 7 shows the behavior of the FE error in the expected value of
the effective permeability for Cases 2 and 5. The behavior for the FE error in the breakthrough
time is similar. Note that padding is required for Case 2, but not required for Case 5.

We see from Table 7 that the accuracy obtained for a fixed grid size is significantly poorer
in the case of the 2-norm covariance compared to the 1-norm covariance. To obtain an FE
error of less than 10−2, mesh sizes of h = 1/65 and 1/513 are necessary respectively in Cases 2
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Case5 (m=33) Rates: −0.62 (QMC) −0.5 (MC)
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Case5 (m=257) Rates: −0.6 (QMC) −0.51 (MC)

Figure 7: Standard errors sN and sN,16 of expected pressure at centre in Case 2 (above) and of
the effective permeability keff,h in Case 5 (below), for various values of m and for the 2-norm
covariance function (i.e., p = 2 in (2.5)).
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Estimates for E(keff,h) Estimates for E(keff − keff,h)
1/h Case 2 Case 5 Case 2 Case 5

33 1.118664± 3.5[-5] 1.001956± 1.1[-4] 0.015769± 3.2[-4] 0.090676± 2.9[-3]
65 1.125159± 2.7[-5] 1.035609± 8.0[-5] 0.009273± 3.2[-4] 0.057023± 2.9[-3]
129 1.128976± 5.2[-5] 1.059344± 1.1[-4] 0.005456± 3.2[-4] 0.033288± 2.9[-3]
257 1.130983± 6.9[-5] 1.073948± 1.1[-4] 0.003449± 3.2[-4] 0.018684± 2.9[-3]

∞ 1.134433± 3.2[-4] 1.092632± 2.9[-3]

Table 7: Estimates for E(keff,h) computed with QMC (with N ≈ 2.1 × 106) for the 2-norm
covariance function (i.e., p = 2 in (2.5)). The confidence intervals are estimated using 16 random
shifts. The values in the last row are estimates for the exact value of E(keff). The values in the
last two columns are estimates of E(keff − keff,h) obtained via linear regression (with β = 0.75).

and 5. The numbers of samples necessary to achieve a similar accuracy for the 95% confidence
level of the QMC and of the MC results are NQMC = 1040 and NMC = 13900 in Case 2, i.e.,
a factor of about 14. In Case 5 the corresponding numbers of samples are NQMC = 1560 and
NMC = 8420. If we use h = 1/513 for Case 2 instead, we get a FE error of about 2 × 10−3,
and NQMC = 12500 and NMC = 365000 samples are necessary to achieve a similar accuracy in
the quadrature, respectively (i.e., about 30 times less for QMC). So as before the advantage of
QMC is more pronounced, if we require a higher accuracy.
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