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SUMMARY

Photonic crystal fibres are capable of special light guiding properties that ordinary

optical fibres do not possess, and efforts have been made to numerically model these

properties. The plane wave expansion method is one of the numerical methods that has

been used. Unfortunately, the function that describes the material in the fibre n(x)

is discontinuous, and convergence of the plane wave expansion method is adversely

affected by this. For this reason, the plane wave expansion method may not be every

applied mathematician’s first choice method but we will show that it is comparable in

implementation and convergence to the standard finite element method. In particular,

an optimal preconditioner for the system matrix A can easily be obtained and matrix-

vector products with A can be computed in O(N logN) operations (where N is the

size of A) using the Fast Fourier Transform. Although we are always interested in

the efficiency of the method, the main contribution of this thesis is the development

of convergence analysis for the plane wave expansion method applied to 4 different

2nd-order elliptic eigenvalue problems in R and R2 with discontinuous coefficients.

To obtain the convergence analysis three issues must be confronted: regularity of

the eigenfunctions; approximation error with respect to plane waves; and stability of the

plane wave expansion method. We successfully tackle the regularity and approximation

error issues but proving stability relies on showing that the plane wave expansion

method is equivalent to a spectral Galerkin method, and not all of our problems allow

this. However, stability is observed in all of our numerical computations.

It has been proposed in [40], [53], [63] and [64] that replacing the discontinuous

coefficients in the problem with smooth coefficients will improve the plane wave expan-

sion method, despite the additional error. Our convergence analysis for the method in

[63] and [64] shows that the overall rate of convergence is no faster than before.

To define A we need the Fourier coefficients of n(x), and sometimes these must be

approximated, thus adding an additional error. We analyse the errors for a method

where n(x) is sampled on a uniform grid and the Fourier coefficients are computed with

the Fast Fourier Transform. We then devise a strategy for setting the grid-spacing that

will recover the convergence rate of the plane wave expansion method with exact Fourier

coefficients.
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CHAPTER 1

INTRODUCTION

1.1 The Subject of the Thesis

Photonic Crystal Fibres (PCFs) are the next generation of optical fibre and physicists

are actively trying to discover and exploit their unique optical properties. Because mak-

ing PCFs is difficult and expensive, the task of mathematically modeling the behaviour

of light in PCFs is important. In this thesis we consider the problem of computing

band gaps and guided modes in PCFs using the plane wave expansion method. This is

the same method that is used by physicists in the Centre for Photonics and Photonic

Materials at the Physics Department of the University of Bath, [62], [63], [64] and [66].

The propagation of light is governed by Maxwell’s equations, therefore, to model

PCFs we need to solve Maxwell’s equations. A commonly used approach when model-

ing PCFs is to make assumptions on the form of solutions based on the symmetries in

the structure of the PCF and derive a formulation that is simpler than the full system

of Maxwell’s equations. It is important to realise that within PCF literature there are

many different formulations of Maxwell’s equations that authors use to model PCFs

depending on the properties of the PCF they would like to model and the type of

numerical method they would like to use. In this thesis we focus on four particular for-

mulations of Maxwell’s equations that are suited to the plane wave expansion method,

although we also review other formulations that are used in the literature. The four

formulations of Maxwell’s equations that we consider are all linear second-order ellip-

tic eigenvalue equations posed on Rd, d = 1, 2, with coefficient functions that may be

periodic and either piecewise constant or derivatives of piecewise constant functions.

The four formulations that we consider are:

1. the Full 2D Problem, which is a 2D vector-valued eigenproblem;

2. the Scalar 2D Problem, which can be thought of as a simplified version of the
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Chapter 1. INTRODUCTION

Full 2D Problem, although it is physically relevant in its own right under certain

conditions; and

3. the 1D TE and TM Mode Problems.

Both the Scalar 2D Problem and the 1D TE Mode Problem resemble Schrödinger’s

equation with a periodic, piecewise constant potential, whereas the Full 2D Problem

and the 1D TM Mode Problem have an additional 1st-order term where the coefficient

is a derivative of a periodic, piecewise constant function.

The correct mathematical framework to consider each of the eigenvalue equations is

to define an equivalent operator on an appropriate Hilbert space. Our goal is to compute

the spectra of these operators. Before we apply the plane wave expansion method,

we exploit the periodicity of the coefficients in our operator by applying the Floquet

Transform. This leads to a family of new differential operators over a bounded domain

(the period cell) with periodic boundary conditions, which is crucial in order to apply

the plane wave expansion method. A result from Floquet theory links the spectrum

of our original operator to the spectra of our family of new operators. Moreover, the

spectrum of each of our new operators is discrete.

Thus, our problem reduces to calculating the spectrum of a differential operator on

a bounded domain using the plane wave expansion method. For example, consider the

operator

L = ∇2 + V (x)

operating on L2
p(Ω) where Ω = (−1

2 ,
1
2)d, V (x) ∈ L2(Ω) and L2

p(Ω) is a function space

that consists of functions in L2(Ω) with periodic boundary conditions. Under additional

regularity assumptions, finding λ in the spectrum of L is equivalent to finding an

eigenpair (λ, u) such that

Lu = λu on Ω (1.1)

where u : Ω → C satisfies periodic boundary conditions. To apply the plane wave

expansion method to this eigenvalue equation we expand the eigenfunction u(x) as a

linear combination of plane waves,

u(x) =
∑

k∈Zd

ck ei2πk·x (1.2)

for constants ck. For d = 1 we recognise (1.2) as the Fourier Series of u(x). We also

expand the coefficient function V (x) in terms of plane waves (denoting the Fourier

coefficients of V (x) by [V ]k). We then substitute (1.2) and our expansion of V (x) into

(1.1) to obtain,

−
∑

k∈Zd

|2πk|2ck ei2πk·x +
∑

k,k′∈Zd

[V ]k′ck ei2π(k+k′)·x = λ
∑

k∈Zd

ck ei2πk·x . (1.3)

7



1.1. The Subject of the Thesis

To get an approximation for the unknown eigenfunction u(x) and its associated eigen-

value λ, we truncate the sum over k ∈ Zd to |k| ≤ G (where G is a chosen integer),

and then try to find the unknown eigenvalue λ and the unknown coefficients ck with

|k| ≤ G. We do this by matching the coefficients of the ei2πk·x terms for each k with

|k| ≤ G. In this way we obtain a system of N (where N is the number of vectors k ∈ Zd

with |k| ≤ G) linear equations for N + 1 unknowns, which is equivalent to a matrix

eigenproblem,

Au = λu (1.4)

where u = (ck)|k|≤G is an N -vector of unknown coefficients and λ is the unknown

eigenvalue in (1.3).

This matrix eigenproblem is then solved using whichever numerical technique is

most appropriate for our needs. For all of our problems we will use a Krylov subspace

iteration method as our eigensolver (since we do not need to compute all of the eigen-

values of A) and at each iteration of the eigensolver we will solve linear systems of

the form Ax = b using an iterative method (PCG or GMRES depending on whether

or not A is symmetric positive definite). Inside our iterative linear solver we need to

compute matrix-vector multiplications with A. The great advantage of the plane wave

expansion method for all of our problems is that the operation of matrix-vector mul-

tiplication with A can be computed in O(N logN) operations using the Fast Fourier

Transform.

In the physics literature the plane wave expansion method for solving (1.1) is usually

presented as we have just presented it; see for example [39] and [64]. In this thesis, to

help with the error analysis, we will attempt to write the plane wave expansion method

as a Galerkin method. Instead of solving a problem like (1.1) we will initially phrase

the problem as a variational eigenvalue problem: Find an eigenpair (λ, u) such that

λ ∈ C, 0 6= u ∈ H and

a(u, v) = λb(u, v) ∀v ∈ H (1.5)

where H is a suitable space of periodic functions and a(·, ·) and b(·, ·) are bilinear forms.

We apply the Galerkin method to (1.5) by introducing the finite dimensional subspace

SG ⊂ H, that is the span of a finite number of plane waves,

SG = span{ei2πk·x : k ∈ Zd, |k| ≤ G}

and approximate (1.5) with the following discrete variational eigenproblem: Find an

eigenpair (λG, uG) such that λG ∈ C, uG ∈ SG and

a(uG, vG) = λGb(uG, vG) ∀vG ∈ SG. (1.6)

For some of the problems we consider it is easy to show that the matrix eigenproblem
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Chapter 1. INTRODUCTION

that we obtain from the plane wave expansion method is equivalent to a problem with

the form of (1.6).

To estimate the error in the eigenvalues and eigenfunctions of (1.6) we use the theory

in [6]. In this theory the errors in the approximate eigenfunctions and eigenvalues are

analysed by studying the convergence of the corresponding solution operators. For

example, we define the solution operator T : H → H that corresponds to (1.5) by

a(Tu, v) = b(u, v) ∀v ∈ H, u ∈ H

and we define the solution operator TG : H → SG that corresponds to (1.6) by

a(TG u, vG) = b(u, vG) ∀vG ∈ SG, u ∈ H.

Using the theory in [6] we bound the errors in the approximate eigenfunctions and

eigenvalues in terms of

‖Tu− TG u‖ (1.7)

where u(x) is a normalised eigenfunction of (1.5) and ‖ · ‖ is the energy norm induced

by a(·, ·). We then use standard error analysis results for the Galerkin method to bound

(1.7) in terms of the approximation error of u(x) in SG, i.e. we bound (1.7) in terms of

inf
χ∈SG

‖u− χ‖.

Finally, to obtain the dependence of the approximation error on G (and thus on the

number of degrees of freedom in our discrete problem) we need some further information

about the regularity of the eigenfunctions of (1.5). Since our problems have coefficients

that are not infinitely differentiable, the eigenfunctions of (1.5) have limited regularity.

Therefore, the approximation error of the exact eigenfunctions in SG does not decrease

exponentially with G, and thus the plane wave expansion method does not converge

exponentially with respect to G either.

In [40], [53], [63] and [64], the authors suggest that replacing the discontinuous (or

derivatives of discontinuous) coefficient functions of our problem with smooth approxi-

mations of the coefficient functions will improve the plane wave expansion method. In

this thesis we replicate the method in [63] and [64] (we call it the smoothing method)

and we examine the two error contributions, from smoothing and from the plane wave

expansion method. Our aim will be to extract the explicit dependence of the errors

on the smoothing parameter as well as on the number of plane waves. To do this we

will need to use Strang’s 1st Lemma in a non-standard way as well as developing new

regularity results.

When the structure of the PCF is relatively simple we can write down explicit for-

mulae for the entries of the matrix A in (1.4), but for more complicated PCF structures
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1.2. The Aims of the Thesis

it is necessary to approximate the entries of A. Instead of using quadrature to do this,

we will use an extremely efficient method called the sampling method. The method

samples the values of a coefficient function on a uniform grid and then computes an

approximation to the Fourier coefficients of the coefficient function by applying the

Fast Fourier Transform. Again, we will use Strang’s 1st Lemma to examine the error

that the sampling method introduces.

As we have already discussed, to solve (1.4) we will use an iterative eigensolver as

well as an iterative linear solver, and the Fast Fourier Transform to efficiently compute

matrix-vector products with A. Another factor that influences the efficiency of the

method is the number of iterations required by our linear solver. To reduce this we

precondition the linear system so that instead of solving Ax = b, we solve

(P−1 A)x = P−1 b (1.8)

where P is our preconditioner. It is another particular advantage of the plane wave

expansion method that choosing P as the diagonal of A is a very effective preconditioner.

If P is the diagonal of A+K I where K is a constant then (provided K is sufficiently

large) we can bound the condition number of P−1(A +K I) independently of G and

N and numerical computations show that the number of iterations required to solve

(1.8) remains constant as G and N increase. To ensure that the number of iterations

required by our eigensolver is also independent of G and N we will actually choose P

to be a block-diagonal part of A. This will ensure that we do not need to choose a

large shift K.

1.2 The Aims of the Thesis

Associated with the plane wave expansion method, as with any numerical method, are

errors. This thesis, being a thesis in numerical analysis, is dedicated to understanding

and estimating the errors that arise from using the plane wave expansion method for

band gap and guided mode computations in PCFs. We would like to show, using both

theory and example, how the errors depend on the parameters of both the problem

and the numerical method. A secondary issue that we also consider is an efficient

implementation of the method.

The motivation for studying the problem of computing band gaps and guided modes

in PCFs comes from a PhD thesis from the Physics Department at the University of

Bath, [62], [63], [64], [66], where the plane wave expansion method and variations of

the plane wave method have been used to compute band gaps in PCFs. To the best of

our knowledge, only [8] and [79] have examined the errors of the plane wave expansion

method for PCF problems. Purely based on numerical examples, they demonstrate

that the plane wave expansion method is plagued by slow error convergence for these
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Chapter 1. INTRODUCTION

types of problems. There does not appear to be any work in the literature that presents

any mathematical error analysis of the plane wave expansion method applied to PCF

problems. This thesis attempts to fill this gap.

In [63] and [64] the authors advocate the use of the smoothing method to improve

the plane wave expansion method and to restore the exponential (or at least superal-

gebraic) convergence that one might expect for problems with infinitely differentiable

coefficients. This claim seems to be dubious because smoothing introduces an addi-

tional error. We would like to carefully analyse the error contributions from both the

smoothing and the plane wave expansion method so that we can answer the question:

Is smoothing worth it?

The sampling method is also used in [64] in conjunction with the smoothing method

for problems when the structure of the PCFs is complicated. This introduces an ad-

ditional error. We would like to devise an optimal strategy for choosing the sampling

grid-spacing so that the convergence rate of the plane wave expansion method without

sampling can be recovered.

1.3 The Achievements of the Thesis

The main achievements of this thesis can be summarised as follows.

1. A complete error analysis of the standard plane wave expansion method applied

to the Scalar 2D Problem and the 1D TE Mode Problem. This includes:

(a) proving regularity results for the eigenfunctions of these problems;

(b) showing that the eigenfunction error is optimal in the sense that we can

bound it in terms of the approximation error;

(c) bounding the approximation error in terms of the number of degrees of

freedom in our finite dimensional subspace;

(d) showing the eigenvalue error converges at twice the rate of the eigenfunction

error; and

(e) verifying with numerical examples that our error bounds are sharp (up to

algebraic order).

Ultimately, we show that the convergence of the plane wave expansion method

depends on the regularity of the eigenfunctions. Since the problems that we con-

sider have discontinuous coefficients, the regularity is limited, and therefore the

convergence is also limited. This is why we do not see superalgebraic convergence

of the plane wave expansion method.

2. A complete error analysis of the smoothing method applied to the Scalar 2D

Problem and the 1D TE Mode Problem. This includes:

11
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(a) bounding the error introduced by smoothing the coefficients of the original

problem in terms of a smoothing parameter, by applying Strang’s 1st Lemma

in a non-standard way;

(b) proving regularity results for the problem with smoothed coefficients, deter-

mining explicitly the dependence on the smoothing parameter;

(c) using the regularity results to show that the plane wave expansion method

converges superalgebraically for the smooth problem;

(d) showing that our eigenfunction error bounds are sharp (up to algebraic or-

der) with numerical examples; and

(e) balancing the error contributions from smoothing and from the plane wave

expansion method to obtain a strategy for choosing the amount of smoothing

that minimises the error.

We show that the proposition in [64] that smoothing will improve the plane wave

expansion method is false for the Scalar 2D Problem and the 1D TE Mode Prob-

lem when we have explicit formulae for the Fourier coefficients of the coefficient

functions. Although we obtain superalgebraic convergence to the smooth solu-

tion, this is balanced by the additional error that is introduced by smoothing.

The total error converges at the same rate as when no smoothing is applied.

3. A complete error analysis of the sampling method applied to the Scalar 2D Prob-

lem and the 1D TE Mode Problem. This includes:

(a) bounding the error between a discontinuous function and its approximation

via the sampling method;

(b) applying Strang’s 1st Lemma to obtain the additional error contribution

from sampling;

(c) demonstrating with numerical examples that our theoretical error bounds

are correct (but not necessarily sharp) with numerical examples; and

(d) balancing the error contributions from sampling with the plane wave ex-

pansion method errors to obtain a strategy for choosing the grid-spacing of

sampling grid.

We show that sampling, although it is a very efficient method because it allows

us to calculate all of the Fourier coefficients with only one application of the Fast

Fourier Transform, has a significant error contribution. This additional error

can be mitigated by choosing a very fine sampling grid according to our strategy.

Sometimes, however, the additional cost of our strategy is unfeasible and the error

of the plane wave expansion method (without smoothing) can not be recovered.

12
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4. An error analysis of the smoothing and sampling methods applied simultane-

ously. This includes choosing a strategy for setting the smoothing and sampling

parameters that will minimise the errors. We put this strategy into practice with

numerical examples.

5. An original result that proves that for the Scalar 2D Problem and the 1D TE

Mode Problem, preconditioning with the diagonal of A (from (1.4)) is optimal

in the sense that the condition number of A multiplied by the preconditioner is

bounded independently of the size of A. This result is verified numerically by

observing that the number of iterations required by our linear solver does not

depend on the size of the linear system.

6. An error analysis of the standard plane wave expansion method and the spectral

Galerkin method applied to the 1D TM Mode Problem. This includes:

(a) proving regularity results for the exact eigenfunctions of the 1D TM Mode

Problem;

(b) using the regularity to bound the approximation error of exact eigenfunctions

in terms of the degrees of freedom in our finite dimensional subspace;

(c) complete error analysis for the spectral Galerkin method;

(d) rewriting the plane wave expansion method as a non-conforming Petrov-

Galerkin method (unfortunately, this does not lead to a stability result);

and

(e) observing through numerical examples that the plane wave expansion method

is stable.

Although we do not manage to prove a complete error analysis of the plane

wave expansion method applied to the 1D TM Mode Problem, we successfully

prove many of the necessary results. In particular, we prove a regularity result

from which we derive an approximation error estimate. Numerical observations

are consistent with the approximation error and we observe that the plane wave

expansion method is stable for our numerical examples (even though we can not

prove it). We also present the spectral Galerkin method for the 1D TM Mode

Problem. Unlike for the 1D TE Mode Problem, the spectral Galerkin method

is not the plane wave expansion method in this case. In contrast to the plane

wave expansion method we can prove a complete error analysis for the spectral

Galerkin method but we do not have an efficient implementation.

7. Numerically observed convergence rates for smoothing and sampling within the

plane wave expansion method applied to the 1D TM Mode Problem.

13
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8. Analysis of the existence of eigenpairs and of the regularity of eigenfunctions for

the Full 2D Problem. This includes:

(a) proving the existence of eigenpairs for the problem posed in 3D;

(b) proving a regularity result for the eigenfunctions of the 3D problem;

(c) proving the equivalence between the 2D and 3D problems;

(d) using the regularity result in 3D to prove a regularity result for the 2D

problem; and

(e) showing that our regularity results are consistent with error calculations

from numerical examples.

The Full 2D Problem can be thought of (in a certain sense) as an extension of the

1D TM Mode Problem to 2D. Although we manage to prove many of the results

for the Full 2D Problem that we proved for the 1D TM Mode Problem, the proof

techniques are not the same and we are required to consider the full 3D system

of Maxwell’s equations in order to make any progress.

9. Numerically observed convergence rates for smoothing and sampling within the

plane wave expansion method applied to the Full 2D Problem.

1.4 The Structure of the Thesis

The remainder of this thesis is divided into five chapters.

In Chapter 2 we give the physical background for PCFs and we discuss, in detail,

the different mathematical models that can be derived from Maxwell’s equations to

model PCFs. We review the extent to which each of the models has been studied in

the literature, with particular emphasis on the mathematical analysis for each model

and on the various numerical methods that have been applied to the different models.

In Chapter 3 we review the many and varied mathematical tools that we will re-

quire for the error analysis and for the implementation of the plane wave expansion

method. Some of these results are original and interesting in their own right. We

begin with some preliminary definitions of function spaces and mollifiers. Throughout

this thesis we will be working with periodic functions and this is the topic of the next

section in Chapter 3. In particular, we define periodic Sobolev spaces and we present

several results about their properties. The next section is on piecewise continuous

functions. Of particular importance in this section is the regularity result for a special

class of piecewise continuous functions. We then present some definitions and results

from spectral theory, including the definition of the Floquet Transform. Following the

spectral theory we present some results from functional analysis. Within this section

we include a key result from [6] for the error analysis of the Galerkin method applied to
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a variational eigenvalue problem. We also present Strang’s 1st Lemma as well as a few

regularity results for elliptic boundary value problems. Finally, we present a section on

numerical linear algebra including the tools for solving (1.4).

In Chapter 4 we present the bulk of our error analysis contribution for the plane

wave expansion method. In this chapter we consider both the Scalar 2D Problem and

the 1D TE Mode Problem. We begin by correctly (in the spectral theory sense) pre-

senting the problem as that of calculating the spectrum of an operator on a Hilbert

space. We apply the Floquet Transform, and then the plane wave expansion method.

We include the implementation details and we prove a result about a possible precon-

ditioner before presenting our error analysis. Finally, we consider the smoothing and

sampling methods for these problems.

In Chapter 5 we consider two methods applied to the 1D TM Mode Problem:

the plane wave expansion method and the spectral Galerkin method (which are not

equivalent for the 1D TM Mode Problem). We begin by writing the problem as an

operator on a Hilbert space and applying the Floquet transform, from which we obtain

a variational eigenproblem to solve. We then present a section on the implementation of

the plane wave expansion method. Following the implementation details we consider

the error analysis for the plane wave expansion method and we begin by proving a

result about the regularity of the eigenfunctions for the exact problem. Our first

attempt at the error analysis is to use the same techniques that we used in Chapter

4, by applying the spectral Galerkin method to our variational eigenproblem. This

approach is successful in obtaining a complete error analysis, but the spectral Galerkin

method is not the plane wave expansion method for the 1D TM Mode Problem and

it does not have the same implementation efficiencies that the plane wave expansion

method has. Instead, we show that the plane wave expansion method is equivalent

to a non-conforming Petrov-Galerkin method. Unfortunately, we are unsuccessful in

completely analysing the error for this problem. Using our regularity result for the

eigenfunctions of the exact problem we derive an approximation error result and this

gives us an upper limit for the rate at which the plane wave expansion method can

converge for the eigenfunctions. We then observe that the plane wave expansion method

actually achieves this optimum rate of convergence for some numerical examples. We

also provide numerical examples of smoothing and sampling within the plane wave

expansion method.

In Chapter 6 we consider the Full 2D Problem. Without being able to appropriately

phrase the problem as an operator on a Hilbert space we are limited to following the

technique in [64] to present the plane wave expansion method. We do, however, manage

to prove a regularity result by considering an equivalent problem in 3D from which we

can determine the regularity of eigenfunctions of the 2D problem. Using this regularity

result we can derive an approximation error estimate for plane waves approximating
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an eigenfunction of the 2D problem. Since our approximation error result measures the

best possible approximation of an eigenfunction using plane waves, it provides us with

an upper limit for the rate at which the plane wave expansion method can converge

for eigenfunctions. Numerical examples show that this upper limit is actually achieved

by the plane wave expansion method for these examples, and thus, it is the regularity

of the exact problem that is limiting the convergence rate of the plane wave expansion

method.
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CHAPTER 2

PHYSICS

In this chapter we discuss Photonic Crystal Fibres (PCFs) from a physical perspective

and we introduce the mathematical model that is used to study PCFs. We begin

by giving a physical description of what PCFs are and what physical properties we

would like them to have. We support this discussion with references for applications

of PCFs. We then introduce the mathematical model for the interaction of light with

PCFs, based on Maxwell’s equations. We make assumptions (based on the symmetries

in PCFs) on the form of the solution and manipulate Maxwell’s equations to arrive

at the formal equations that we wish to solve. Following the formulation of equations

that model PCFs we present a review of results on the mathematical analysis of these

equations. This is followed by a review of the many numerical methods that have been

applied to solving the various formulations of Maxwell’s equations for PCFs. A key

reference for this chapter is [64].

2.1 Description of PCFs

Traditional optical fibres that are in use in the communications industry guide light by

a phenomenon known as total internal reflection, [76]. This occurs when light travels

in a material of high refractive index and is confined to the material by a series of

reflections at the interface with a low refractive index material. If the direction of the

incident light makes a sufficiently acute angle with the interface then all of the light is

reflected back into the high refractive index material. PCFs guide light by a different

physical phenomenon and it is this different physical phenomenon that we want to

model mathematically.

Before we describe PCFs we must first discuss photonic crystals. Photonic crys-

tals were first proposed by Yablonovitch [90] and John [41]. Just as electrons can

be manipulated by periodicity of an atomic lattice in a semiconductor crystal (to get

energy ranges over which no allowed electronic states exist), Yablonovitch and John
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proposed the existence of crystals for which propagation of certain frequency ranges of

light through the crystal would be forbidden. Semiconductors have electronic band gaps

where certain electronic states do not exist, whereas photonic crystals have photonic

band gaps where there is a range of light frequencies for which propagation through the

crystal is forbidden. We make the distinction between 1D, 2D and 3D photonic crystals

depending on how many directions the crystal varies in. Figure 2-1 has a diagram of a

1D photonic crystal where the crystal only varies in the vertical direction.

1D Photonic Crystal

Figure 2-1: Diagram of a 1D photonic crystal.

Now we describe PCFs. A PCF is a long thin cylinder of 2D photonic crystal (that

varies in the transverse/cross-sectional directions only) with a defect running down the

centre of the cylinder, see Figure 2-2. We refer to the central defect as the core of

the fibre and the surrounding 2D photonic crystal as the cladding. We align axes so

that the z-axis runs along the core of the PCF and the transverse coordinates are x

and y. Theoretically, the structure of PCF is invariant along the length of the fibre,

however, true invariance is impossible to manufacture. For our modelling purposes we

will assume that the PCF is constant with respect to the z-direction. Typically, PCFs

are made from silica with air holes running along the length of the fibre. A regular

periodic array of air holes in the cross-section of the fibre forms the 2D photonic crystal

in the cladding of the fibre whereas the core of the fibre is a defect in the crystal

structure, usually formed by either the absence of one or more air holes in the centre of

the fibre or an especially large air hole in the centre. PCFs with a large air hole in the

core of the fibre are called hollow core PCFs and we only consider PCFs of this type

in this thesis. The shape, size and pattern of air holes in the cladding, as well as the

shape and size of the core, of PCFs varies between fibres and contribute towards their

photonic properties. The material used to make PCFs also influences the photonic

properties.

The aim is to manufacture a PCF so that there exists a mode of light (i.e. light of

a specific frequency) that is guided along the centre of the fibre. We call this a guided
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Cross section of a PCF

Micro-structre

with air holes

Larger air inclusion

where light is mostly confined

Figure 2-2: Diagram of a PCF.

mode. For this to be achieved the cladding of the fibre must act as a barrier and forbid

the propagation of this particular mode through it.

For this reason let us first model the pure 2D photonic crystal that is found in

the cladding. We must find a band gap for the 2D photonic crystal - a range of light

frequencies where propagation through the photonic crystal is forbidden.

Once we have found a band gap in the 2D photonic crystal we have a clue as to

where we might try to find a guided mode in the corresponding PCF. Since the 2D

photonic crystal has a band gap, we expect the cladding of our PCF to act as a barrier

to light with frequencies from this band gap. Therefore, a guided mode should have a

frequency from this band gap. However, we can not be sure that a guided mode will

be permitted in the core of the PCF from studying the 2D photonic crystal. We must

also model the entire PCF to find possible guided modes. This idea is supported by

analysis which we discuss later in this chapter.

We call the PCFs we have considered so far 2D PCFs since the photonic crystal

in the cladding of the fibre is a 2D photonic crystal. We can also consider 1D PCFs.

There are two ways we can construct these. The first is to consider a 1D photonic

crystal made from slabs with a planar defect, i.e. a defect that is only confined in

the direction in which the photonic crystal varies. The second way is to construct a

fibre with a central defect running along the core of a fibre where the cladding is a 1D

photonic crystal that varies only in the radial direction. The second construction is

referred to as a Bragg fibre [91].
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For an introduction to PCFs and their applications please refer to two popular

review articles, [48] and [70], or the book [39].

2.2 Formulation of Equations

In this section we formulate the equations that model the interaction of light and PCFs.

Light is a form of electro-magnetic radiation and is governed by Maxwell’s equations.

To formulate equations for modeling PCFs we make assumptions on how the electric

and magnetic fields depend on t (time) and z (the spatial coordinate running along

the length of the fibre). These assumptions are based on the symmetries in PCFs

and are the same assumptions that are made in [76] page 590 and 591, for example.

Taking advantage of these assumptions, to reformulate Maxwell’s equations, yields a

2D vectorial eigenproblem. This will form the core problem to be solved and analysed

in this thesis.

However, we also derive other systems of equations that have been used in the

literature to model PCFs. We do this to draw attention to the difference between our

model and the models used by others. In particular, we highlight that an additional

assumption is needed to decouple the full 2D vectorial problem that we solve into two

scalar problems, as it is often done in the mathematical literature. In this case, the

two scalar problems are polarised such that either the electric or magnetic field are

entirely in the directions transverse to the z-axis. Our full model is not restricted by

this additional assumption.

Although we do not solve the decoupled scalar problems mentioned above, we will

use other simplified models where appropriate to develop a deeper theoretical under-

standing of PCFs and the numerical methods we use to solve PCF problems.

We also consider 1D PCFs. In this case we make an additional assumption and the

equations naturally decouple into scalar equations.

We begin with source-free Maxwell’s equations for a non-magnetic material. The

system of equations is

∇ · (n2E) = 0 (2.1)

∇ ·H = 0 (2.2)

∇×H = ǫ0n
2∂E

∂t
(2.3)

∇×E = −µ0
∂H

∂t
(2.4)

where E is the electric field vector, H is the magnetic field vector, ǫ0 is the permittivity

of free space (8.854×10−12Fm−1), µ0 is the permeability of a vacuum (4π×10−7NA−1)

and n is the refractive index of the material. n completely describes the physical
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properties of the PCFs; for 2D PCFs n = n(x, y) and for 1D PCFs n = n(x) (where

we assume that 2D PCFs are aligned with the z-axis so that the crystal structure in

the cladding varies in the x and y directions and 1D PCFs are aligned so that the

crystal structure varies in the x direction). Alternatively, Maxwell’s equations can be

formulated in terms of the dielectric function or electric permittivity ǫ instead of the

refractive index n. There is no fundamental difference in these formulations because

ǫ = ǫ0n
2 and ǫ0 is a constant.

For 2D PCFs we will refer to the directions that are perpendicular to the z-axis as

the transverse directions.

2.2.1 Time Harmonic Maxwell’s Equations

The first assumption that we make is that we assume (as in almost all photonics lit-

erature, eg. [76] and [39]) that the electric and magnetic fields can be written as

E(x, t) = e−iωt Ẽ(x) and H(x, t) = e−iωt H̃(x) where ω is a specified frequency. More

general solutions to Maxwell’s equations can then be recovered by taking linear com-

binations of solutions of this type. With this representation of E and H we get

∂E

∂t
= −iωE,

∂H

∂t
= −iωH

and (2.1)-(2.4) become source-free, non-magnetic, time harmonic Maxwell’s equations

∇ · (n2Ẽ) = 0 (2.5)

∇ · H̃ = 0 (2.6)

∇× H̃ = −iǫ0n2ωẼ (2.7)

∇× Ẽ = iµ0ωH̃. (2.8)

We proceed by substituting (2.7) into (2.8) to get

∇×
(

1

n2
∇× H̃

)
= k2

0H̃

where k0 :=
√
ǫ0µ0ω is called the wave number. Alternatively, we could substitute (2.8)

into (2.7) and obtain

∇×∇× Ẽ = k2
0n

2Ẽ

To solve Maxwell’s equations for a 3D photonic crystal problem we would need to solve

either

∇×
(

1

n2
∇× H̃

)
= k2

0H̃ (2.9)

∇ · H̃ = 0 (2.10)
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or

∇×∇× Ẽ = k2
0n

2Ẽ (2.11)

∇ · (n2Ẽ) = 0. (2.12)

In both cases k2
0 is an eigenvalue for the system of equations. Sometimes (2.9) and

(2.11) are written with ω as the eigenvalue.

2.2.2 Invariance in z-direction

The second assumption that we make (as in [76]) is that we can represent the electric

and magnetic field by

Ẽ(x) = e(x, y) eiβz = (et(x, y) + ez(x, y)ẑ) eiβz (2.13)

H̃(x) = h(x, y) eiβz = (ht(x, y) + hz(x, y)ẑ) eiβz (2.14)

where ht and et are vector fields that point in the tranverse directions and β is the z-

component of the wave vector (the term wave vector comes from the representation for

a wave A exp(ik · x) where k is called the wave vector). Again, more general solutions

to the Maxwell’s equations can be obtained by taking linear combinations of solutions

of this type.

Substituting this representation into (2.9) and using (2.10) together with the iden-

tity ∇( 1
n2 ) = − 1

n2∇(logn2) we get (after some vector calculus) the following two equa-

tions

(∇2
t + k2

0n
2)ht − (∇t × ht)× (∇t logn2) = β2ht (2.15)

(∇2
t + k2

0n
2)hzẑ− (iβẑ× ht +∇t × hzẑ)× (∇t logn2) = β2hz ẑ (2.16)

where ∇t := ( ∂
∂x ,

∂
∂y , 0). If we fix ω (so that k2

0 is fixed) then (2.15) is a 2D complex-

valued eigenproblem for an eigenfunction ht = (hx, hy, 0) and an eigenvalue β2. More-

over, given a solution to (2.15) the other components of the magnetic and electric field

are given by

hz =
i

β
∇t · ht from (2.6) (2.17)

ez = i

√
µ0

ǫ0

1

k2
0n

2
ẑ · ∇ × ht from (2.7) (2.18)

et = −
√
µ0

ǫ0

1

k2
0n

2
ẑ× (βht + i∇thz) from (2.7).

In this thesis we are interested in solving (2.15) and we call this the Full 2D Problem.

Since n2 is a discontinuous function ∇t log n2 is not defined in the classical sense,
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so we must consider (2.15) formally and rephrase the problem in terms of an operator

on an appropriate Hilbert space that corresponds to (2.15). To find band gaps and

guided modes of PCFs we will investigate the spectrum of this operator.

Note that in the formulation above we have implicitly fixed the frequency ω (equiv-

alent to fixing k0) and the intention is to solve for β. The band gaps we seek will be

band gaps of β and not ω. Alternative formulations fix β and search for k0 (ω) in a 2D

problem, or solve a 3D problem for eigenvalues k0.

As well as solving (2.15) we will also consider solving a scalar 2D problem in this

thesis. We obtain the scalar 2D problem by omitting the (∇t × ht)× (∇t logn2) term

from (2.15). The resulting equation can then be decoupled into an equation for hx and

an equation for hy, both of which take the same form, namely

∇2
th+ k2

0n
2h = β2h. (2.19)

We call (2.19) the Scalar 2D Problem. In [7] the authors call this equation the scalar

wave equation and they argue that it can be applied to PCFs that have low contrast

n2.

2.2.3 Splitting into TE and TM modes (2D) - special case β = 0

In this section we review a special case of the Full 2D problem. Although we will not use

this approach in this thesis, it is important to mention it because it has received a lot

of attention in the literature, especially in the mathematical literature. For example,

see [5], [15], [45] and [26].

It is an example of a formulation where β is fixed and the intention is to solve for an

eigenvalue k2
0, but it only applies in the case β = 0. By assuming that β = 0 Maxwell’s

equations conveniently decouple into two scalar equations.

If we assume again (2.13) and (2.14) (with β = 0) and substitute H̃ = ht(x, y) +

hz(x, y)ẑ into (2.9) and (2.10) and Ẽ = et(x, y) + ez(x, y)ẑ into (2.11) and (2.12), then

some vector calculus reveals that the problem decouples into two scalar problems with

solutions of the form (H̃, Ẽ) = (0, 0, hz, ex, ey, 0) and (H̃, Ẽ) = (hx, hy, 0, 0, 0, ez) where

et = (ex, ey, 0) and ht = (hx, hy, 0). We call these two polarisations the transverse

electric (TE) mode and the transverse magnetic (TM) mode, respectively. The equation

that governs the TE mode is the equation for the z-component in (2.9), i.e.

−∇t ·
(

1

n2
∇thz

)
= k2

0hz. (2DTE)

Given a solution for hz and the fact that ht = 0 and ez = 0, et is determined by (2.7).

The equation that governs the TM mode is the equation for the z-component in
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(2.11), i.e.

−∇2
t ez = k2

0n
2ez. (2DTM)

ht is determined using (2.8).

Note that choosing β = 0 is equivalent to considering waves that only propagate

in the transverse directions (and not in the z-direction). Since we are interested in

waves that will propagate along the core of the fibre the assumption that β = 0 is not

appropriate for our model. For β 6= 0 Maxwell’s equations do not decouple.

However, the assumption that β = 0 is appropriate when studying truly 2D photonic

crystals. Our 2D PCFs are actually 3D structures and we have reduced Maxwell’s

equations to a 2D problem by exploiting symmetries. An example of a 2D photonic

crystal is a plate that has had a 2D structure etched onto it. Propagation is only possible

in the plane of the plate, and not through the plate. Therefore, the assumption that

β = 0 is appropriate in this case.

2.2.4 1D problem

In this subsection we formulate equations for 1D PCFs. We make the assumption that

n = n(x) (i.e. the photonic crystal in the cladding of the 1D PCF only varies with

respect to x) and that the magnetic (and electric) fields have eiβyy dependence (βy is

a constant). With these assumptions we reduce (2.15) to a decoupled system of scalar

equations.

We first write

H̃(x) = h(x) ei(βyy+βz) .

In fact, without loss of generality we can choose βy = 0. This is possible by rotating

the y and z coordinate axes and keeping the x axis unchanged to force βy = 0. In this

case equation (2.15) becomes the decoupled system

d2hx
dx2

+ k2
0n

2hx = β2hx (2.20)

d2hy
dx2

+ k2
0n

2hy −
d(logn2)

dx

dhy
dx

= β2hy (2.21)

where ht = (hx, hy, 0). If we solve (2.20) for non-zero hx and set hy = 0 (which satisfies

(2.21)) then ez = 0 by (2.18). The solution has the form (H̃, Ẽ) = (hx, 0, hz, ex, ey, 0)

with the electric field normal to the z-axis. Therefore, we call (2.20) the transverse

electric (TE) mode equation.

Conversely, if we solve (2.21) for non-zero hy and set hx = 0 (which satisfies (2.20))

then hz = 0 by (2.17). The solution has the form (H̃, Ẽ) = (0, hy, 0, ex, ey, ez) with the

magnetic field normal to the z-axis. Therefore, we call (2.21) the tranverse magnetic

(TM) mode equation.
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Just as for the Full 2D Problem in (2.15), the term d(logn2)
dx in (2.21) is not defined

in the classical sense. We must consider (2.21) formally and consider the problem as

an operator on an appropriate Hilbert space. In this case we have been successful at

rewriting the equation and we can write (2.21) in divergence form. Using the identity

−d(logn2)
dx = n2 d

dx( 1
n2 ) we can rewrite (2.21) as

d

dx

(
1

n2

dhy
dx

)
+ k2

0hy =
β2

n2
hy. (2.22)

This form of (2.21) will be useful for the numerics and the analysis later in this thesis.

2.2.5 Boundary Conditions/Defining n on all of R2

So far we have not yet discussed the domains and boundary conditions for our eigen-

problems. If we are trying to model a pure (infinite) phontonic crystal then n is periodic

and it is defined on all of R or R2, and the problem is well defined without specifying

boundary conditions. In reality however, a PCF is of course bounded and n is defined

on a bounded domain in R2. In order to make the problem well defined we need to

specify a domain (which may be a subset of the set in which n is defined) and boundary

conditions. Alternatively, we can extend n outside of our chosen domain to all of R2

or R and consider our eigenproblems on unbounded domains. First, we discuss the

supercell method before considering other methods.

The most popular method and the method that we use in this thesis is the supercell

method. In the supercell method, n is extended periodically to all of R2 or R. The

original PCF in a bounded domain is called the super cell (see right pane of Figure 2-

3). After applying the supercell method we have an eigenvalue problem with periodic

coefficients posed on an unbounded domain. By using the Floquet-Bloch transform

we exploit this periodicity and we transform the problem into a family of problems

on bounded domains with periodic boundary conditions. The periodic boundary con-

ditions are crucial for applying the plane wave expansion method. Examples of the

supercell method for PCF problems can be found in [62], [64], [66] and [78]. For an

example of the supercell method applied to a non-photonics problem, see [61].

A second technique for defining n on all of R2 (or R) is to define it by extending

the cladding of n to all of R2 (or R). The overall structure is then an infinite 2D

(or 1D) photonic crystal with a localised defect (see left pane of Figure 2-3). This

technique for defining n on all of R2 (or R) is commonly used in mathematical analysis

literature because the classical Weyl theorem (at least for the 1D TE Mode Problem and

the Scalar 2D Problem) states that the addition of a compact perturbation (localised

defect) does not change the essential spectrum of the operator. Therefore, there is a

clear connection between the spectrum of a “PCF” with this structure and the spectrum

of a pure (infinite) photonic crystal. Unfortunately, this technique does not lead to
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Photonic crystal with defect Supercell

Figure 2-3: Diagram showing structure of n for two different choices of method for
extending n to all of R2. The period cell of the supercell is highlighted.

a problem on a bounded domain (unlike the supercell method where we could use

the Floquet-Bloch transform) and so it is not well suited for any numerical method.

However, efforts have been made to design an exact absorbing boundary condition for

this situation [29].

Another method for providing boundary conditions is given in [14]. In this paper

the authors give boundary conditions for solving the Scalar 2D Problem on a bounded

domain that are equivalent to extending n with n(x) = 1 for all x ∈ R2 with |x| > R

where R is the radius of the PCF.

All three of the techniques we have just described contain some form of modeling

error because we do not know what boundary conditions represent reality. However,

since we are searching for guided modes, and these should decay exponentially in the

cladding, it is argued that the particular choice of boundary conditions (or how we

extend n) is irrelevant provided there is a sufficient amount of cladding around the

central defect. Moreover, the location of band gaps (in which we search for guided

modes) can be calculated by considering a pure (infinite) photonic crystal.

In this thesis we need to impose periodicity on the coefficients of our problems (so

that we can apply the plane wave expansion method) and we do this by applying the

supercell method. We would like to have a theoretical justification that the supercell

method does not introduce an excessive amount of error. Soussi’s paper [78] links

the supercell method to the infinite photonic crystal with a localised defect (second

technique given above) for the special case of the decoupled 2D problems. He shows

that the error in the essential spectrum between the photonic crystal with a localised

defect and the supercell method decays quadratically with the inverse of the distance

between neighbouring defects and that the error of isolated eigenvalues (guided modes)

26



Chapter 2. PHYSICS

decays exponentially with the distance between neighbouring defects, i.e. the more

cladding between the defects in a supercell lattice, the less effect artificially introduced

defects in the supercell lattice have.

The link between the supercell method and a (pure infinite) photonic crystal with

a localised defect for the problems that we will study (1D TE and TM Mode Problems,

Scalar 2D Problem and Full 2D Problem) has not yet been considered in the mathe-

matical literature. However, we expect that similar results to those in [78] apply for all

of our problems, and we observe this for a 1D TE Mode Problem example. In Figure

2-4 we have plotted the errors in the spectrum of a 1D TE Mode Problem between the

supercell method and a photonic crystal with a localised defect and we observe that

the error in the essential spectrum decays quadratically with the inverse of the number

of cells in the cladding, while the errors in the discrete spectrum (isolated eigenvalues)

decays exponentially. Our error calculations were made by solving Model Problem 2

in Chapter 4 with the plane wave expansion method for different numbers of cells in

supercell cladding. To calculate the errors in the essential spectrum we have compared

the spectrum of Model Problem 2 with the spectrum of a pure photonic crystal (i.e. the

spectrum of Model Problem 1 in Chapter 4) because this remains unchanged when a

localised defect is introduced. To calculate the errors in the discrete spectrum we notice

that since all of the spectrum of a supercell operator is essential spectrum (because it

has periodic coefficients), we find that there are narrow bands of essential spectrum of

Model Problem 2 that approximate isolated eigenvalues. The discrete spectrum errors

are the “widths” of these narrow bands.

For the rest of this thesis we will ignore the error introduced by the supercell method

and concentrate on estimating the errors from the numerical methods that we apply

to problems with periodic coefficients.

2.3 Overview of Analysis

In this section we give an overview of the results from the literature that apply to the

problems that we have formulated in the previous section. The results that can be

found in the literature are limited to the TE and TM mode problems in 1D and 2D,

the Scalar 2D problem, and the 3D Maxwell problem in (2.9). There is no analysis in

the literature of the Full 2D problem in (2.15) (although some progress has been made

towards studying a scattering by diffraction problem that makes similar assumptions

to ours).

For the formulations that have received attention in the literature, the analysis of

each problem attempts to follow a common approach. First, the formal eigenvalue

equation is considered as an operator on a Hilbert space. Then, for periodic n (mod-

elling a perfect photonic crystal), the spectrum of the operator is found to be purely
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Figure 2-4: Plot of the relative error of the isolated eigenvalue and the bands for the
1D TE Mode Problem vs. the number of cells in the supercell cladding.

essential spectrum, and the existence of band gaps is proven. Next, a compact per-

turbation is added to n. With the addition of this compact perturbation it is proven

that the essential spectrum is unchanged and for an eigenvalue with finite multiplicity

in a band gap the corresponding eigenfunction must decay exponentially, i.e. we have

a guided mode. However, some of these statements have not been proven for all of the

above problems.

We note that the main tool for studying periodic operators is Floquet Theory (called

Bloch theory in the physics literature). References for Floquet Theory include [17], [44],

[45] and [69]. We discuss Floquet Theory in more detail in Chapter 3.

We also remark that it is often the case in the literature that authors have proved

that the spectrum of an operator is absolutely continuous instead of working with the

definition of essential spectrum. In Section 3.4.2 we give the definition of absolutely

continuous spectrum that can be found in [42] where it is also stated that absolutely

continuous spectrum is a subset of essential spectrum.

1D TE mode and Scalar 2D Problem

The Scalar 2D Problem in (2.19) is (mathematically speaking) the 2D extension of

the 1D TE mode equation (2.20), and both equations are examples of Schrödinger’s

equation

−∇2ψ + V (x)ψ = Eψ
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identifying h with the wave function ψ, k2
0n

2 with the potential V (x), and β2 with the

energy E.

According to Floquet Theory [45], the spectrum of periodic, ellipitic differential

operators exhibit band structure and so the spectrum of the Schrödinger operator with

periodic V will also exhibit band structure.

The following result for the 1D TE Mode Problem can be found in [69]: If V

is periodic then the spectrum of the operator corresponding to (2.20) is absolutely

continuous and if V is not constant then there must be gaps in the spectrum. This

result is also known as Borg’s Uniqueness Theorem. In 2D, a result in [69] states that

if V has a Fourier Series where the coefficients are in l2 (i.e V ∈ L2) then the spectrum

is absolutely continuous. The appearance of gaps for the 2D problem is not guaranteed

for non-constant V but it is still a common occurance according to [45] and can be

demonstrated numerically.

If we add a compact perturbation to V then it follows from the classical Weyl

theorem (page 117 of [69]) that the essential spectrum remains unchanged. This means

that any additional eigenvalues that appear must be of finite multiplicity. If such an

eigenvalue appears in a band gap then it must decay exponentially in the cladding [45].

1D TM mode

The analysis of the 1D TM mode is covered in [25]. The operator corresponding to

(2.22) is defined in terms of a quadratic form, for which the standard Floquet theory

does not apply. In [25] the authors develop the corresponding Floquet theory that

proves that the 1D TM mode has spectrum with band structure as well as proving

sufficient conditions for the existence of band gaps. Perturbations of pure photonic

crystal are not considered in [25].

Full 2D Problem

The Full 2D Problem (2.15) is not the 2D version of the 1D TM mode equation (2.21)

and there are no papers in the literature that are dedicated to the spectral theory of

this problem. We have had no success with rewriting the Full 2D problem in divergence

form (as we did for the 1D TM mode problem in (2.22)) so that the coefficients are

defined in the classical sense. Writing the Full 2D problem in an appropriate operator

form remains an open problem. However, we use analytical results for the full 3D

Maxwell operator to help describe the spectral properties of (2.15). We do this in

Chapter 6.

Other analysis results that may be applicable to this problem, or may point the

way forward in terms of how to approach the analysis of this problem, can be found

in [19] and [20]. In these papers a conical diffraction problem is considered and the

authors make similar assumptions to ours on the magnetic and electric fields before
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reformulating Maxwell’s equations in terms of the z-component of the magnetic and

electric field in regions where n is constant together with interface conditions. They

then prove existence, uniqueness and regularity results for their problem. However,

they only assume that n is periodic in one of the coordinate directions and the results

can not be directly applied to our problem.

2D TE and TM modes

Although we do not solve either the 2D TE or TM mode problem here, both of these

problems have received a lot of attention in the literature. The band gap structure of

the spectrum of these operators was established in [26]. A theorem for the absolute con-

tinuity of the TM mode for piecewise continuous, periodic n is given in [45]. However,

absolute continuity of the spectrum of the TE mode has only been proven for smooth,

periodic n, not piecewise continuous n [45]. [26] establishes the existence of band gaps

for the TE and TM modes for square geometries where the appearance of gaps can be

generated by increasing the size of the jump in n. Gaps in the TM mode spectrum for

more general shaped geometries in n are studied in [27]. The corresponding article for

the TE mode spectrum is referred to as being in preparation in [45] but it appears to

have not been published. For a survey of these results, refer to [45].

We would like to emphasise again, however, that these problems assume that β = 0

and are therefore confined to waves that only propagate in the transverse directions.

Full 3D Maxwell System

Finally, let us consider the existing literature on the full 3D time-harmonic Maxwell

operator corresponding to (2.9). The Hilbert space for this operator must be a subset

of the vector fields that satisfy (2.10). The application of Floquet Theory to the

Maxwell operator is not as straight forward as for elliptic operators with periodic

coefficients, however, it is achieved by considering the Maxwell operator in an elliptic

complex. See [46] and references therein for more details about this (in particular, see

[24]). A consequence of the application of Floquet theory is that the spectrum has

band structure. [59] proves that the spectrum of the Maxwell operator is absolutely

continuous for smooth and periodic n2, but not for discontinuous n2. The existence

of band-gaps has been verified with numerical experiments in, for example, [39]. [28]

appears to be the only paper where the existence of a band gap has been proven, but

this was for a hypothetical problem where µ 6= 1 and there are high contrasts for n2

and µ.

Localised defects are known not to change the essential spectrum of a photonic

crystal (see Theorem 21 in [45] and references therein), but in 3D the defect in a PCF

is a line defect. According to [45] there is no rigorous mathematical analysis of this

problem although a relatively simple result that can be proven is that a mode with an
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eigenvalue in a band gap must decay exponentially in the cladding. This can be proven

by estimating the decay of the Green’s function.

Analytic Solution to 1D Problems in a Photonic Crystal

The existence of an eigenvalue and eigenfunction for the 1D TE or 1D TM mode

equations for a simple photonic crystal can be shown to be equivalent to finding a zero

of a transcendental equation. We can use this to get an exact solution in 1D to compare

our numerical results against.

The technique is to consider even and odd modes separately. The TE or TM mode

equation is solved on each section of the period cell where n is constant and then the

solutions are matched with appropriate interface conditions. An eigenfunction exists

when the determinant of the coefficients is equal to zero. Expanding the determinant

we obtain a transcendental equation that depends on the eigenvalue. By varying the

eigenvalue we can find zeros of the transcendental equation that correspond to the

existence of eigenpairs. This technique is explained in detail in the appendix of [64].

The 1D TE mode, as previously discussed, is just Schrödinger’s equation and is

called the Kronnig-Penney model when the potential is periodic. Solution techniques

for this problem that are different from [64] are given in [55] and [23].

When the supercell method is applied then the period cell is more complicated than

for a photonic crystal and the number of interface conditions to satisfy is much greater.

In this case we resort to numerical methods to find a reference solution rather than

deriving an expression for the determinant of the matrix of coefficients.

2.4 Overview of Numerical Methods

In this section we review the different numerical methods that have been applied to

solving the PCF problem. Although we will focus on using the plane wave expansion

method in this thesis there are many different methods that could be used to solve

the PCF problem and they are often suited to particular formulations of Maxwell’s

equations.

Methods fit into one of two categories: frequency domain methods and time domain

methods. Frequency domain methods are based on formulations of Maxwell’s equations

that are derived from the time-harmonic Maxwell equations while time domain methods

are based on formulations of Maxwell’s equations that include time dependence.

We begin with a review of the use of the plane wave expansion method for solving

the PCF problem before briefly reviewing a number of other methods.

The review in [64] is more extensive and contains a review of various other methods

used for solving the PCF problem.
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Plane Wave Expansion Method

The plane wave expansion method is an example of a frequency domain method. For

some problems it is equivalent to a Galerkin method. Sometimes it is referred to (as

we do in this thesis) as a spectral Galerkin method. This is because the basis functions

have global support. For PCF problems it is not a truly spectral method because the

basis functions are not eigenfunctions of the operator. Another name for the method

is the Fourier Galerkin method. It has been applied to all of the different formulations

of Maxwell’s equations with the only condition being that the coefficients are periodic.

This condition is naturally satisfied for pure photonic crystals but is artificially imposed

for PCFs using the supercell method.

Imposing periodicity in the coefficients introduces an error and prevents the plane

wave expansion method from being able to model the effects of energy leaking through

the cladding, i.e. leaky modes. However, since guided modes decay exponentially in

the cladding, this error is small for guided modes. The non-localised modes that do

not decay in the cladding and are not changed by the introduction of a localised defect

can be dealt with by considering the simpler problem of solving the problem for the

pure photonic crystal that corresponds to the cladding material. This issue was also

discussed in Subsection 2.2.5.

The research group in the Physics Department at the University of Bath apply the

plane wave expansion method where the frequency has been fixed and (2.15) is solved

for the magnetic field and β, [62], [64] and [66]. In [53] the plane wave expansion

method is applied to a 3D photonic crystal. Other examples of using the plane wave

expansion method in PCFs include [38], [34], [15] and [40].

According to [79] the plane wave expansion method converges slowly for increasing

numbers of plane waves and it is claimed that this is due to the discontinuous nature of

the dielectric function. However, it is claimed in [75] and [8] that the slow convergence

(for the 1D TM mode problem) is also influenced by how the plane wave expansion

method is formulated for discontinuous data. The apparent slow convergence of the

plane wave expansion method is essentially the phenomenon that we will attempt to

understand in more detail in this thesis.

The advantages of the plane wave expansion method are that it is easy to formulate,

and fast to compute, using the Fast Fourier Transform (FFT) and a preconditioner. The

disadvantages are that it is apparently slow to converge when the data is discontinuous.

Two methods for improving the performance of the plane wave expansion method

have been suggested in [64] and [63]. The first method they use is to replace the

discontinuous coefficients with smooth coefficients that approximate the discontinuous

coefficients. The smooth coefficients are obtained by convoluting the discontinuous co-

efficients with a normalized Gaussian function. Although this method may improve the

convergence rate of the plane wave expansion method we must also consider the addi-
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tional error that has been introduced. The analysis of smoothing is another important

topic of this thesis.

The second method for improving the performance of the plane wave expansion

method is to use curvilinear coordinates. When the structure of the discontinuous

coefficients is complicated then for the plane wave expansion method we must approx-

imate the Fourier coefficients of the discontinuous coefficients. A method that samples

the discontinous coefficients on a uniform grid and then applies the Fast Fourier Trans-

form is usually applied. However, to improve this approximation, the author of [64] has

suggested sampling the discontinuous coefficients on a non-uniform mesh with nodes

clustered near the discontinuities. Although we do not manage to analyse the error

for this method in this thesis, we make the observation that this method lessens the

effectiveness of the preconditioner that is used in [64].

Time Domain Methods

Time domain methods do not extract a eiωt dependence from the electric or magnetic

fields as in the time harmonic Maxwell’s equations. In these methods the solution to

Maxwell’s equations is propagated foward in time from some initial magnetic or electric

field condition. The finite-difference time-domain (FDTD) method has been used in

[68] for PCFs and is described in the books [82] and [49].

Once a solution has been computed with a time domain method the Fourier Trans-

form of the solution then reveals peaks that correspond to the frequencies of the modes

that propagate through the fibre. The disadvantage of FDTD methods is that the time

dependent ODE system that is derived from spatial discretisation is stiff. This means

that to preserve the stability of the ODE solver either the time step must decrease with

the spatial grid spacing or an implicit time integrator must be used.

Beam Propagation Method

Beam propagation methods are another example of a frequency domain method, how-

ever, instead of computing guided modes they are used to compute propagation along

a fibre. They begin by separating the z-dependence of the electric or magnetic field as

Φ(x, y, z) = eiωz φ(x, y, z) where ω is a chosen frequency and φ(x, y, z) still depends on

z, albeit in a slowly varying way. This is followed by discretisation in the transverse

direction. The result is an ODE system that depends on z. The field (beam) is then

propagated forward along the fibre in the z-direction using an ODE solver. There are

a number of versions that use either finite difference, finite element or discrete Fourier

transform discretisation schemes for the transverse direction discretisation. Examples

of the beam propagation method applied to optical fibre problems are [71] and [22]. In

[?], leaky modes are computed while in [22] a Fourier transform technique is described
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for recovering information about guided and leaky modes that have been exited by the

source beam.

Spectral Methods

The multipole method [88], [89] and the method in [23] are both examples of spectral

methods. They construct basis functions that are orthogonal and are matched to the

geometry of the PCF so that the discontinuities in n2 will not affect the exponential

convergence of the method. Both methods can only be applied to PCFs with particular

geometries: eg. circular or square air holes.

In the multipole method time-harmonic Maxwell’s equations are expressed in terms

of the z-component of the magnetic and electric fields, ω is fixed and the equations are

solved for β on a domain in the transverse directions. The method expands hz and

ez in terms of basis functions that are the solution to the underlying equations in the

different regions of the PCF where n is constant, which for a PCF with circular holes

are cylindrical harmonics. If the PCF was constructed using some other geometrical

shapes then different basis functions need to be used. The expansions of the solution

in the different regions of the PCF are then matched at the interface between regions

of different n as well as at the boundary of the domain.

The advantage of this method is that it is very efficient (because the discontinuities

of n do not effect the convergence rate) and it is possible to model leaky modes (where

some modes are only partially guided).

However, a disadvantage of this method is that it is limited by the range of PCF

structures that it applies to. In practice it has only been applied to PCFs with circular

holes. Another disadvantage of this method is that it is relatively difficult to implement.

Finite difference / finite element / boundary element / localised Gaussian-

Hermite

All of these methods are standard methods that have been applied in the frequency

domain by solving equations based on the time-harmonic Maxwell equations. They

require setting a boundary condition on a bounded domain and they can be applied to

PCFs of arbitrary geometry.

The finite difference method is applied to the Full 2D problem in [11]. The finite

difference discretisation scheme leads to an eigenvalue problem where the matrix is

sparse and banded. A method of of reordering the matrix elements is used to reduce

the matrix bandwidth and then a subspace iteration method is used to find only a

few of the eigenvalues of the matrix. The authors demonstrate that their method is

significantly faster than the method used in [40].

The finite element (FE) method is applied to the 2D TE and TM mode problems in

[15] and [5]. A uniform grid is used in [15] while an unstructured grid is used in [5]. The
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uniform grid approach of [15] is easy to implement, and a preconditioner that utilises

the Fast Fourier Transform (FFT) is used. The disadvantage of the method in [15] is

that the rectangular uniform grid is necessary for their preconditioner, since it uses the

FFT, and so elements cannot be concentrated in the regions where n is discontinuous

(i.e. where the solution has less regularity). The method in [5] uses an unstructured

mesh and a method called simultaneous coordinate over-relaxation is used to solve the

matrix eigenproblem that arises from the FE discretisation. Both of these FE methods

only solve the 2D TE and TM mode equations for photonic crystals. They do not solve

the problems for PCFs.

Another PhD thesis at the University of Bath by Stefano Giani [31] also solves the

2D TE and TM mode problems using the FE method. Giani’s work extends the FE

method to the PCF problem and he uses a posteriori error estimation to refine the

mesh in areas where the residual error is large.

For the boundary element method see [33] and [86].

Examples of localised Gaussian-Hermite methods are found in [56] and [58]. The

method is similar to the plane wave expansion method and the finite element method

except that the solution is expanded in terms of localised Gaussian-Hermite functions.

2.5 Summary of Problems

Let us summarise the eigenproblems that we will consider in this thesis. We write the

problems in dimensionless form. Define Λ as the lattice pitch, i.e. Λ is the width of a

period cell in the photonic crystal. Then we scale to get the following problems with

λ = λ0Λ, β̃ = βΛ,

γ(x) =
4π2

λ2
0

n2(xΛ)

η(x) = logn2(xΛ).

In this way we can rescale our eigenproblems so that the periodic coefficients have

periodicity 1. In later chapters we will make further restrictive assumptions on the

coefficients.

The four problems we consider in this thesis are then described by the following.

Problem 2.1 (Full 2D Problem). The primary problem we are interested in is the

Full 2D Problem (2.15),

(∇2
t + γ(x))ht − (∇t × ht)× (∇tη(x)) = β̃2ht

for 2D vector eigenfunctions ht and eigenvalues β̃2.

35



2.5. Summary of Problems

Problem 2.2 (Scalar 2D Problem). A secondary problem we are interested in is

the Scalar 2D Problem (2.19),

∇2
th+ γ(x)h = β̃2h

for scalar eigenfunctions h and eigenvalues β̃2.

In 1D, with the same scaling and definitions of γ and η we solve the following

problems.

Problem 2.3 (1D TE Mode Problem). The 1D TE Mode Problem is (2.20),

d2h

dx2
+ γ(x)h = β̃2h

which is an eigenproblem for scalar eigenfunction h and eigenvalue β̃2.

Problem 2.4 (1D TM Mode Problem). The 1D TM Mode Problem is (2.21)

d2h

dx2
+ γ(x)h− dη

dx

dh

dx
= β̃2h

which is an eigenproblem for scalar eigenfunction h and eigenvalue β̃2.
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CHAPTER 3

MATHEMATICAL TOOLS

In this chapter we develop the mathematical tools needed for the analysis of the plane

wave expansion method applied to band gap computations in photonic crystal fibres.

We split the chapter into six sections. In Section 3.1 we define a variety of function

spaces, including test functions and distributions. We also introduce mollifiers and

we present a lemma for estimating series in terms of integrals. In Section 3.2 we

present some definitions and results for periodic functions and periodic distributions.

In particular, we define finite dimensional periodic function spaces as well as various

projections onto these function spaces. These will be important for presenting the plane

wave expansion method as a Galerkin method. In Section 3.3 we develop results for

describing the regularity of piecewise continuous functions. In Section 3.4 we present

some results from spectral theory and Floquet theory. Section 3.5 has some results

from functional analysis. It describes the abstract tools that are necessary for studying

variational eigenvalue problems and it includes the main theorem that we use for the

error analysis of the Galerkin method applied to a variational eigenvalue problem. We

also present Strang’s First Lemma in this section as well as some regularity results for

elliptic boundary value problems. Finally, in Section 3.6, we present the tools from

numerical linear algebra that we need for solving matrix eigenvalue problems.

3.1 Preliminaries

In this section we make some preliminary definitions. We begin by defining the function

space Lploc(R
d) for 1 ≤ p ≤ ∞. We then develop distributions in the standard way before

defining the spaces Hs(Rd) and Hs(Ω) for s ∈ R in terms of the Fourier transform.

Next, we define the standard mollifier and finally, we present a lemma for estimating

series in terms of integrals.

Throughout this thesis d ∈ N, although sometimes we restrict d so that d ∈ {1, 2}.
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Bold letters, such as x, will denote vectors in Rd. A vector x ∈ Rd will have entries

x1, x2, . . . , xd and we define x′ := (x1, x2, . . . , xd−1) ∈ Rd−1. If d = 3 then we will

sometimes use the notation xt = (x1, x2, 0) (t for transverse) and xz = (0, 0, x3).

A vector α = (α1, . . . , αd) with non-negative integer entries αi is called a multi-

index. The order of a multi-index is |α| := α1 + · · ·+αd and the factorial of α is defined

as α! = α1!α2! . . . αd!.

We will use the following notation for partial derivative operators

Dα := Dα1
x1
. . . Dαd

xd
:=

∂|α|

∂xα1
1 . . . ∂xαd

d

and for x ∈ Rd we denote

xα := xα1
1 . . . xαd

d .

The support of a function f : Rd → C is defined as

supp f := {x ∈ Rd : f(x) 6= 0}.

The open ball with centre x ∈ Rd and radius r > 0 is denoted by

B(x, r) = {y ∈ Rd : |x− y| < r}.

Throughout this thesis we will be working with inequalities to estimate certain quan-

tities. To avoid defining a large number of constants we will use the following notation:

If C
D is bounded above independent from our discretization parameters n,G,N,M,∆

then we write C . D. We will also write C ≃ D when C . D and C & D.

We will use the Kronecker-delta symbol to denote the following function, for i, j ∈ Z,

δij =





1 if i = j

0 if i 6= j.

For two functions f, g : R → R we write f(x) = O(g(x)) (as x →∞) if there exist

constants C > 0 and x0 > 0 such that |f(x)| ≤ C|g(x)| for all x > x0. Alternatively,

we may write f(x) = O(g(x)) as x→ 0 if there exist constants C > 0 and x0 > 0 such

that |f(x)| ≤ C|g(x)| for all 0 ≤ x < x0. In these situations we say that f has order g.

Throughout this thesis we will use the term superalgebraic convergence (as n→∞)

to mean that the error is O(n−s) for all s ∈ R.
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3.1.1 The Space L
p
loc(R

d)

The function space Lploc(R
d) for 1 ≤ p ≤ ∞ is defined as

Lploc(R
d) := {f |K ∈ Lp(K) : for any compact K ⊂ Rd}

where Lp(K) is defined in the usual way.

3.1.2 Test Functions and Distributions

In this subsection we define distributions in the usual way. Let Ω ⊆ Rd be an open set.

Definition 3.1. Define the space of test functions on Ω as

D(Ω) = C∞
0 (Ω) = {φ ∈ C∞(Ω) : suppφ is a compact subset of Ω}.

Convergence in D(Ω) is defined as follows: Let {φn}∞n=1 ⊂ D(Ω) be a sequence of test

functions and let φ ∈ D(Ω). We say φn converges to φ in D(Ω) and write φn
D−→ φ as

n→∞ if the following properties hold

1. there exists a compact set K ⊂ Ω such that suppφn ⊂ K for all n ∈ N.

2. maxx∈Ω |Dα(φn(x)− φ(x))| → 0 as n→∞, for any multi-index α.

We now use this definition of D(Ω) and convergence in D(Ω) to define distributions.

Definition 3.2. A linear functional u : D(Ω)→ R is a distribution on Ω if

φn
D−→ φ =⇒ 〈u, φn〉 → 〈u, φ〉

for any convergent sequence of test functions. The space of all distributions on Ω is

denoted by D′(Ω). A sequence {un}∞n=1 ⊂ D′(Ω) converges to u ∈ D′(Ω) if

〈un, φ〉 → 〈u, φ〉 n→∞, ∀φ ∈ D(Ω).

Every f ∈ L1
loc(R

d) defines a unique distribution uf ∈ D′(Rd) by

〈uf , φ〉 =

∫

Rd

f(x)φ(x)dx ∀φ ∈ D(Rd).

In our notation we identify f with uf .

Finally, in this subsection we state a result that is essentially the same as Lemma

5.1.1 on page 135 of [72], except we extend it from d = 1 to d ∈ N. The proof is almost

exactly the same for d > 1 and we present it in Appendix A.1. We will use this result

later for proving Theorem 3.22.
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Lemma 3.3. Let u ∈ D′(Rd) and let K ⊂ Rd be bounded. Then there exists a n ∈ N

and a constant Cn such that

|〈u, φ〉| ≤ Cn
∑

|α|≤n
max
x∈K
|Dαφ(x)|

for all φ ∈ D(R) with suppφ ⊂ K.

3.1.3 The Space Hs(Rd) for s ∈ R

In this subsection we define the Sobolev space Hs(Rd) for s ∈ R via the Fourier Trans-

form of temperate distributions. We begin by defining the Schwartz space of rapidly

decreasing C∞(R) functions. The definition is similar to the definition of D(Rd).

Definition 3.4. Define the Schwartz space of rapidly decreasing C∞ functions on Rd

by

S(Rd) :=

{
φ ∈ C∞(Rd) : max

x∈Rd
|xαDβφ(x)| <∞ for all multi-indices α, β

}

Convergence in S(Rd) is defined as follows: Let {φn}∞n=1 ⊂ S(Rd) be a sequence of

functions in S(Rd) and let φ ∈ S(Rd). We say that {φn}∞n=1 converges to φ in S(Rd)

and write φn
S−→ φ as n→∞ if

max
x∈Rd

|xαDβ(φn(x)− φ(x))| → 0 as n→∞,

for all multi-indices α, β.

We now define the space of temperate distributions in terms of functionals on S(Rd).

Definition 3.5. A linear functional u : S(Rd)→ R is a temperate distribution on Rd

if

φn
S−→ φ =⇒ 〈u, φn〉 → 〈u, φ〉

for any φn, φ ∈ S(Rd). The space of all temperate distributions on Rd is denoted by

S ′(Rd).

Now we define the Fourier Transform for u ∈ S ′(Rd). If u ∈ L1(Rd) then the Fourier

transform of u is given by

û(ξ) =

∫

Rd

u(x) e−i2πξ·x dx

for ξ ∈ Rd. For u ∈ S ′(Rd) the Fourier Transform of u is defined by

〈û, φ〉 = 〈u, φ̂〉 ∀φ ∈ S(Rd).
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We can now define the space Hs(Rd) for s ∈ R as

Hs(Rd) = {u ∈ S ′(Rd) : ‖u‖Hs(Rd) <∞}

where

‖u‖Hs(Rd) =

(∫

Rd

(1 + |k|2)s|û(k)|2dk
) 1

2

.

It follows from Plancheral’s Theorem that L2(Rd) = H0(Rd).

3.1.4 The Space Hs(Ω) for s ∈ R

Now we define the Sobolev Space Hs(Ω) for s ∈ R and open, bounded Ω ⊂ Rd. It is

defined as

Hs(Ω) = {u ∈ D′(Ω) : u = U |Ω for some U ∈ Hs(Rd)}

with norm

‖u‖Hs(Ω) = inf
U∈Hs(Rd)
U |Ω=u

‖U‖Hs(Rd).

We also define Hs
0(Ω) by

Hs
0(Ω) = closure of D(Ω) in Hs(Ω).

3.1.5 The Standard Mollifier

In this subsection we define the standard mollifier for smoothing functions. We also

present some of the basic properties of mollified functions. References for mollifiers

include page 629 of [21] and page 36 of [2].

Definition 3.6. The standard mollifier J ∈ C∞(Rd) is defined by

J(x) :=




C exp

(
1

|x|2−1

)
|x| < 1

0 |x| ≥ 1,

where C is a constant chosen so that
∫

Rd J(x)dx = 1.

For ǫ > 0 we also define Jǫ(x) := ǫ−dJ(ǫ−1x). Jǫ also has the property that∫
Rd Jǫ(x)dx = 1.

Using Jǫ(x) we can define a mollified function in the following way.

Definition 3.7. For f ∈ L1
loc(R

d) and ǫ > 0 we can define a mollified f by

f (ǫ)(x) := Jǫ ∗ f(x) =

∫

B(0,ǫ)
Jǫ(y)f(x− y)dy =

∫

Rd

Jǫ(x− y)f(y)dy
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where B(0, ǫ) = {x ∈ Rd : |x| < ǫ}.

A mollified function has the following properties that are given in Theorem 6 on

page 630 of [21].

Theorem 3.8. If f ∈ L1
loc(R

d) then

1. f (ǫ) ∈ C∞(Rd) for all ǫ > 0.

2. f (ǫ) → f almost everywhere as ǫ→ 0.

3. If 1 ≤ p <∞ and f ∈ Lploc(Rd), then f (ǫ) → f in Lploc(R
d) as ǫ→ 0.

3.1.6 Estimating Series with Integrals

In this subsection we present a lemma that will allow us to estimate a series or partial

series with an integral.

Lemma 3.9. Let p, q ∈ Z with p < q, denote I = [p, q] ⊂ R, and let f ∈ C(I). Suppose

that f is monotonically decreasing on I and f(x) ≥ 0 for all x ∈ I. Then

q∑

n=p+1

f(n) ≤
∫

I
f(x)dx.

Conversely, if f is monotonically increasing on I then

q−1∑

n=p

f(n) ≤
∫

I
f(x)dx.

Proof. We first consider the case when f is monotonically decreasing. Divide I into

(q − p) intervals of length 1, Ij = [p + j − 1, p + j] for j = 1, . . . , q − p. Since f is

monotonically decreasing f(p + j) ≤ f(x) for all x ∈ Ij and f(p + j) ≤
∫
Ij
f(x)dx.

Therefore,
q∑

n=p+1

f(n) =

q−p∑

j=1

f(p+ j) ≤
q−p∑

j=1

∫

Ij

f(x)dx =

∫

I
f(x)dx

The proof for f monotonically increasing is similar.

Lemma 3.9 can be extended to infinite series by taking the limit as q →∞ (in the

case when f is monotonically decreasing).

3.2 Periodic Functions

In this section we develop the theory of periodic functions and their representation

using plane waves (or Fourier basis functions). We begin by defining periodic functions
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and the Fourier Series of functions in L1
loc(R

d). We then define Periodic Sobolev Spaces

and we present a few embedding theorems for Periodic Sobolev Spaces. Next, we relate

Periodic Sobolev Spaces back to usual Sobolev spaces by presenting a result about

equivalent norms. Following that, we define two finite dimensional periodic function

spaces in terms of the span of a finite number of plane waves. We also define the

Fourier representation and nodal representation of functions in these finite dimensional

spaces. We then describe the Discrete Fourier Transform and its implementation, the

Fast Fourier Transform, as a way of swapping between these two representations of

functions in our finite dimensional spaces. Finally, we define projections onto our finite

dimensional function spaces and we quote some estimates for the difference between a

function and its projection.

While most of the results in this section are needed for developing theoretical error

bounds for our problem, the Fast Fourier Transform is the crucial ingredient for an

efficient implementation of our method.

Throughout this section we will endeavour to present results that are general for

functions defined on Rd for d ∈ N, although we only need the results for d ∈ {1, 2} in

this thesis.

Before we continue, we must define what a periodic function is. We do this by first

defining a Bravais lattice. We will also need the definition of the reciprocal lattice. A

good reference for lattice definitions is [3].

Definition 3.10. Let a1,a2, . . . ,ad be d linearly independent vectors in Rd. A d-

dimensional Bravais lattice R is the set of points

R :=



r ∈ Rd : r =

d∑

j=1

njaj, nj ∈ Z





The vectors a1,a2, . . . ,ad are called primitive lattice vectors. The Wigner-Seitz prim-

itive cell W is defined as the set of points closer to the origin than any other lattice

point,

W :=

{
x ∈ Rd : |x| < min

r∈R\{0}
|x + r|

}

We note that the primitive lattice vectors are not unique for a given Bravais lattice.

There are also other ways of chosing the primitive cell but we will use the Wigner-Seitz

primitive cell in this thesis. Another name for the Wigner-Seitz primitive cell is the

Voronoi cell.

In addition to defining the Bravais lattice we also need to define the corresponding

reciprocal lattice and the 1st Brillouin zone.

Definition 3.11. Let R be a Bravais lattice in Rd. The reciprocal lattice Rc is also a
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Bravais lattice and it is defined by

Rc := {k ∈ Rd : eik·r = 1, ∀r ∈ R}

The Wigner-Seitz primitive cell of the reciprocal lattice is called the 1st Brillouin zone.

Definition 3.12. A function f : Rd → C is periodic if, for some Bravais lattice R in

Rd,

f(x) = f(x + r) ∀r ∈ R,x ∈ Rd.

We denote the period cell of f with Ω, and it is defined as the Wigner-Seitz primitive

cell of R.

Conversely, given a periodic function with period cell Ω, we have implicitly defined

a Bravais lattice, with a primitive cell that is equal to Ω, as well as a reciprocal lattice

that has a 1st Brillouin Zone.

With this definition of periodicity in mind, it is clear that any function defined on

Ω, where Ω is the primitive cell of a lattice, can be extended to a periodic function on

all of Rd in the sense of Definition 3.12.

Given a Bravais lattice we can also define periodic function spaces. For example,

L1
p = {f ∈ L1

loc(R
d) : f is periodic with period cell Ω}

L2
p = {f ∈ L2

loc(R
d) : f is periodic with period cell Ω}

Cp(Ω) = {f ∈ C(Rd) : f is periodic with period cell Ω}
C∞
p = {f ∈ C∞(Rd) : f is periodic with period cell Ω}.

We will often write Cp instead of Cp(Ω) when it is obvious that Cp is a function space

and not a constant. We equip Cp(Ω) with the uniform norm

‖u‖∞ = max
x∈Rd

|u(x)|.

For the rest of this thesis we will restrict ourselves to the most basic Bravais lattice

in Rd, namely Zd. The Weigner-Seitz primitive cell is Ω := (−1
2 ,

1
2)d and the 1st

Brillouin zone is B := (−π, π)d. Although we make this restriction, all of the results

could be extended to more general lattices by using an appropriate change of variables

that maps the general lattice back onto Zd.

If a function is not periodic in every coordinate direction then we will specify this.

For example, a function defined on R2 that is only periodic in the x-direction will be

called x-periodic.
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3.2.1 Fourier Series

In this subsection we define the Fourier Series for periodic functions defined on Rd. We

will also define Fourier coefficients. The definition of Fourier coefficients will be used

extensively throughout the rest of this thesis. Here is a definition of the Fourier Series.

Definition 3.13. The Fourier Series of f ∈ L1
p is defined as

∑

g∈Zd

[f ]g ei2πg·x

where [f ]g is the Fourier coefficient of f with index g and is defined by

[f ]g :=

∫

Ω
f(x) e−i2πg·x dx.

Throughout the rest of this thesis we will use square brackets, [·]g, to denote the Fourier

coefficient of a function with index g.

The following result is a special case of a theorem in Chapter 1 of [16].

Theorem 3.14. For the case d = 1: If a periodic function f is piecewise continuous

with a finite number of maxima and minima on Ω, then

lim
N→∞

N∑

k=−N
[f ]k ei2πkx = lim

ǫց0

f(x+ ǫ) + f(x− ǫ)
2

, x ∈ R.

There are other results that we could quote with respect to the convergence of the

Fourier Series in R. In particular, in 1D a piecewise continuous function with a finite

number of maxima and minima on Ω (that is absolutely continuous on intervals of

continuity) is a special case of a function with bounded variation for which Theorem

3.14 also holds. This result is known as Jordan’s Criterion according to [16].

We use Theorem 3.14 to identify all piecewise continuous functions with finitely

many maxima and minima on Ω with their Fourier Series everywhere in R. The result

is that we can write

f(x) =
∑

k∈Z

[f ]k ei2πkx ∀x ∈ R.

For Fourier Series in Rd for d > 1 there are greater restrictions on f to obtain pointwise

convergence. According to [80, Theorem 1.7 on page 248] the trigonometric polynomials

are dense in Cp(Ω) for arbitrary d (with norm ‖ ·‖∞), and it follows from [80, Corollary

1.8] that if f ∈ Cp(Ω) and
∑

g |[f ]g| <∞ then its Fourier Series converges everywhere to

f . We are interested in the pointwise convergence of the Fourier Series for discontinuous

functions. For d = 2, [60, Theorem 1] implies that if f ∈ L1
p and f has bounded variation

then the Fourier Series of f converges everywhere. The piecewise continuous functions
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in R2 that we will define in Section 3.3 satisfy the definition of bounded variation in

[60] and we can at least be sure that the Fourier Series converges pointwise everywhere

to something. However, for the definition of the projection Qn in Subsection 3.2.5 to

be well-defined for discontinuous functions we would like to know what that something

is. The most useful result in the literature that we could find to help us resolve this

problem is in [67]. In [67] the authors describe a function space that includes some

discontinuous functions for which we get pointwise convergence of the Fourier Series

for d ≥ 1. We will (as briefly as possible) present their result for d = 2. For notational

convenience we only consider convergence at the point x = 0. Define an alternative

period cell Ω′ = [0, 1]2, the interval I = (0, 1/2), let Ω′
0 denote the interior of Ω′ and

let f∗ define the following function,

f∗(x, y) = f(x, y) + f(−x, y) + f(x,−y) + f(−x,−y).

Now we define the set of functions F , where f ∈ F if f ∈ L1
p and there exists g ∈ L1

p

such that f = g on Ω′
0, g1, g2 ∈ L1(I) and g12 ∈ L1(I2) where

g1(t) =
g∗(t, 0)− g∗(0)

t

g2(t) =
g∗(0, t)− g∗(0)

t

g12(s, t) =
g∗(s, t)− g∗(s, 0)− g∗(0, t) + g∗(0)

st
.

[67, Theorem 4.2] then states that if f ∈ F and that, for some open ball B centred

at 0, f∗ is continuous on Ω′
0 ∩ B and has a continuous extension to ∂Ω′ ∩ B, then the

Fourier Series of f at 0 converges to

lim
N→∞

∑

|ni|≤N
[f ]n ei2πn·0 = lim

ǫ→0

f∗(ǫ, ǫ)
4

.

Now we must ask: In more practical terms, what functions are in F? It is immediate

that if f ∈ L1
p and is smooth in a neighbourhood of 0, then f ∈ F and the Fourier

Series of f converges to f at 0. In this thesis we will mostly be interested in piecewise

constant functions so we restrict the rest of this discussion to this type of function and

we consider the case when f is discontinuous at 0. Let B be an open ball centred at 0

with radius δ > 0, let m ∈ R and consider functions f ∈ L1
p such that

f(x) =





f1 x2 > mx1

1
2(f1 + f2) x2 = mx1

f2 x2 < mx1

for all x ∈ B
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or

f(x) =





f1 x1 < 0

1
2(f1 + f2) x1 = 0

f2 x1 > 0

for all x ∈ B.

It is possible to check that with f defined in this way we have f ∈ F and so the

Fourier Series of f at 0 converges to 1
2(f1 + f2). The final discontinuous function that

we consider has the form,

f(x) =





f1 x1 < 0 or x2 < 0

f2 x1 > 0 and x2 > 0

1
2(f1 + f2) x2 > 0 and x1 = 0

1
2(f1 + f2) x1 > 0 and x2 = 0

3
4f1 + 1

4f2 x = 0

for all x ∈ B

It can be shown that this function also belongs to F and its Fourier Series converges

at 0.

Other functions with this type of corner where the interfaces are aligned with the

coordinate axes are admissible in F . Unfortunately, functions with corners or curved

interfaces are generally not in F and we do not know what the Fourier Series converges

to at these points.

Before we move onto Periodic Sobolev Spaces, let us state the following lemma. It

states that the Fourier coefficients of functions in C∞
p decay superalgebraically.

Lemma 3.15. Let φ ∈ C∞
p . Then for any r ∈ N there exists a constant Cr such that

|[φ]n| ≤ Cr|n|−r for all 0 6= n ∈ Zd.

Proof. The proof of this result can be obtained by applying integration by parts to the

formula for [φ]n in Definition 3.13.

3.2.2 Periodic Sobolev Spaces

In this subsection we define Periodic Sobolev Spaces Hs
p for s ∈ R and include some

results about these spaces that will be useful in the rest of this thesis. We first define

Periodic Sobolev Spaces on Rd for d ∈ N before restricting ourselves to d ∈ {1, 2} for

particular results.

All of this subsection is based on the theory presented in [72] where the definition of

Periodic Sobolev Spaces for d = 1 is presented as well as results for d ∈ {1, 2}. Periodic

distributions for d = 2 are used in [72] but they are not explicitly defined. In this

subsection we extend the definitions in [72] to d ∈ N. All of the results for d ∈ {1, 2}
are quoted from [72], except for Theorem 3.29.
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Other references for Periodic Sobolev Spaces include [18] and [52]. In [18], Sobolev

spaces are defined on a C∞ smooth closed curve in the complex plane whereas in [52],

Sobolev spaces are defined on a C∞ class boundary of a bounded, open set in Rd. By

using an appropriate parameterization of the curve or boundary it can be shown that

Periodic Sobolev Spaces are special cases of these Sobolev spaces. To our knowledge,

[72] is the most detailed reference on Periodic Sobolev Spaces.

We begin by defining periodic distributions and we extend the definition of Fourier

coefficients in Definition 3.13 to periodic distributions. We then use the definition of

Fourier coefficients for periodic distributions to define Periodic Sobolev Spaces. We fin-

ish the subsection by presenting some embedding results for Periodic Sobolev Spaces,

interpolation results for Periodic Sobolev Spaces, estimates for periodic distributions

multiplied by continuous functions and a result that shows the equivalence of the pe-

riodic Sobolev space norms to usual Sobolev space norms.

First, we define what it means to say that a distribution is periodic.

Definition 3.16. A distribution u ∈ D′(Rd) is periodic if

〈u, τnφ〉 = 〈u, φ〉 ∀φ ∈ D(Rd),n ∈ Zd

where (τnφ)(x) = φ(x+n) for all x ∈ Rd. We denote the set of all periodic distributions

by D′
p(R

d).

Now that we have defined periodic distributions, we extend our definition of Fourier

coefficients to include the Fourier coefficients of periodic distributions. We do this in

the same way as in [72] except we extend their theory to D′
p(R

d) with d > 1. We begin

by presenting the following result which defines a partition of unity for Rd.

Lemma 3.17. There exists a function θ ∈ D(Rd) such that 0 ≤ θ(x) ≤ 1 for all

x ∈ Rd, supp θ ⊂ Ω̃ = (−3
2 ,

3
2)d, and

∑

n∈Zd

τnθ(x) =
∑

n∈Zd

θ(x + n) = 1 ∀x ∈ Rd.

Moreover, if V ⊂⊂ Ω = (−1
2 ,

1
2)d then we can define θ such that θ(x) = 1 for all x ∈ V .

Proof. On page 137 of [72] we can find a result that says there exists a function θ1 ∈
D(R) such that

∑
n∈Z

θ1(x + n) = 1 for all x ∈ R. In [72] they prove their result by

constructing an example that satisfies
∑

n∈Z
θ1(x+n) = 1 for all x ∈ R. Their example

also satisfies 0 ≤ θ1(x) ≤ 1 for all x ∈ R and supp θ1 ⊂ (−3
2 ,

3
2).

We use θ1 to construct θ. Define

θ(x) =
d∏

i=1

θ1(xi) ∀x ∈ Rd
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Then

∑

n∈Zd

θ(x + n) =
∑

n∈Zd

d∏

i=1

θ1(xi + ni) =

d∏

i=1

∑

ni∈Z

θ1(xi + ni) = 1 ∀x ∈ Rd

It is obvious that 0 ≤ θ(x) ≤ 1 for all x ∈ R and supp θ ⊂ Ω̃.

For the second part of Lemma 3.17 we construct θ1 and θ. Define

ǫ := inf
x∈V
y∈∂Ω

|x− y| and 1Ω(x) :=





1 x ∈ Ω

0 x /∈ Ω
.

Set θ1(x) = Jǫ ∗ 1Ω(x) (see Subsection 3.1.5) and θ(x) =
∏d
i=1 θ1(xi). To complete

the proof it is enough to show that θ1(xi) = 1 for i = 1, . . . , d and all x ∈ V and
∑

n∈Z
θ1(x+ n) = 1 for all x ∈ R.

Let x ∈ V . Then by the definition of ǫ we have that 1Ω(xi−y) = 1 for all y ∈ B(0, ǫ)

and so

θ1(xi) =

∫

B(0,ǫ)
Jǫ(y)1Ω(xi − y)dy =

∫

B(0,ǫ)
Jǫ(y)dy = 1

We also get, using the fact that
∑

n∈Z
1Ω(x+ n− y) = 1 for almost every x, y ∈ R,

∑

n∈Z

θ1(x+ n) =
∑

n∈Z

∫

R

Jǫ(y)1Ω(x+ n− y)dy

=

∫

R

Jǫ(y)

(
∑

n∈Z

1Ω(x+ n− y)
)
dy

=

∫

R

Jǫ(y)dy

= 1 ∀x ∈ R.

See Figure 3-1 for a plot of a θ that satisfies Lemma 3.17 in 1D. Now, using a θ

defined as in Lemma 3.17 we define the Fourier coefficients for periodic distributions.

Definition 3.18. Let u ∈ D′
p(R

d) be a periodic distribution and let θ ∈ D(Rd) be

defined as in Lemma 3.17. Then the Fourier coefficient of u with index g ∈ Zd is

defined by

[u]g = 〈u, ψ〉

where ψ(x) = θ(x) e−i2πg·x ∈ D(Rd).

From this definition it appears that the Fourier coefficient of u ∈ D′
p(R

d) depends

on the choice of θ. We will show in Lemma 3.20 that this is not the case.
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θ(x) vs. x in 1D

θ(x)
θ(x− 1)
θ(x+ 1)

θ(
x
)

x

Figure 3-1: Here is an example of a possible θ(x) in 1D from Lemma 3.17. For |x| ∈
[14 ,

3
4 ], θ1(x) = f(a−|x|)

f(a−|x|)+f(|x|−b) where f(x) = e−1/x, a = 1
4 and b = 3

4 .

Instead of defining periodic distributions in terms of functionals on the space of test

functions with compact support, sometimes it is more convenient to define periodic

distributions as functionals on a set of test functions that are periodic.

Definition 3.19. We define the space of periodic test functions on Rd as

Dp(Rd) = C∞
p .

Convergence in Dp(Rd) is defined as follows: Let {φn}∞n=1 ⊂ Dp(Rd) be a set of test

functions and let φ ∈ Dp(Rd). We say φn converges to φ in Dp(Rd) and write φn
Dp−→ φ

as n→∞ if

‖Dα(φn − φ)‖∞ → 0

as n→∞, for any multi-index α. We also define a new duality for D′
p(R

d) and Dp(Rd)

by

〈u, φ〉p := 〈u, θφ〉 ∀u ∈ D′
p(R

d), φ ∈ Dp(Rd)

where θ satisfies Lemma 3.17. Finally, we define convergence of un, u ∈ D′
p(R

d),

un → u in Dp(Rd) if 〈un, φ〉p → 〈u, φ〉p ∀φ ∈ Dp(Rd).

Lemma 3.20. For u ∈ D′
p(R

d), g ∈ Zd and φ ∈ Dp(Rd) the Fourier coefficient [u]g
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and the dual product 〈u, φ〉p are independent from the choice of θ satisfying Lemma

3.17.

Proof. If θ and θ̃ both satisfy Lemma 3.17, then

〈u, θ̃φ〉 =

〈
u,
∑

n∈Zd

(τnθ)θ̃φ

〉
by Lemma 3.17

=
∑

n∈Zd

〈u, (τnθ)θ̃φ〉 by linearity

=
∑

n∈Zd

〈u, τ−n[(τnθ)θ̃φ]〉 by Definition 3.16

=
∑

n∈Zd

〈u, θ(τ−nθ̃)φ〉 since φ is periodic

= 〈u, θφ〉 by linearity and Lemma 3.17.

Therefore, 〈u, φ〉p is independent from the choice of θ that satisfies Lemma 3.17.

The proof for [u]g independent of θ is obtained by choosing φ(x) = e−i2πg·x in the

argument above.

We extend Lemma 5.2.1 on page 139 of [72] to get the following result for d > 1. It

shows that convergence in D′
p(R

d) is equivalent to convergence in D′(Rd). The proof is

almost exactly the same as the proof given in [72] for the d = 1 case and we omit it.

Lemma 3.21. For un, u ∈ D′
p(R

d) the following statements are equivalent

1. un → u in D′
p(R

d), i.e. 〈un, φ〉p → 〈u, φ〉p for all φ ∈ Dp(Rd);

2. un → u in D′(Rd), i.e. 〈un, ψ〉 → 〈u, ψ〉 for all ψ ∈ D(Rd).

Recall that we have a defined Fourier coefficients of periodic distributions in Defi-

nition 3.18. However, we cannot yet be sure that we can write

u(x) =
∑

n∈Zd

[u]n ei2πn·x in D′
p(R

d). (3.1)

The next theorem addresses this problem as well as proving some basic properties of

periodic distributions and periodic test functions. It is an obvious extension of Theorem

5.2.1 on page 140 of [72].

Theorem 3.22. Let u ∈ D′
p(R

d) and φ ∈ Dp(Rd). Then

1. There exists a k ∈ N and consant Ck such that |[u]n| ≤ Ck|n|k for all 0 6= n ∈ Zd,

2. 〈u, φ〉p =
∑

n∈Zd[u]n[φ]−n,

3.
∑

|n|≤N [u]n ei2πn·x → u(x) in D′
p(R

d) as N →∞.
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Proof. We prove Part 1 using Definition 3.18 and Lemma 3.3. With 0 6= n ∈ Zd,

|[u]n| = |〈u, ψ〉| by Def. 3.18 with ψ(x) = θ(x) e−i2πn·x

≤ Ck
∑

|α|≤k
max

x∈supp θ
|Dαψ(x)| with k ∈ N from Theorem 3.3

≤ C ′
k|n|k since ψ(x) = θ(x) e−i2πn·x

Part 2. Since φ is continuous we can write it in terms of its Fourier Series. With θ

defined according to Lemma 3.17 we get

〈u, φ〉p = 〈u, θφ〉 by Definition 3.19

=

〈
u(x), θ(x)

∑

n∈Zd

[φ]n ei2πn·x
〉

=
∑

n∈Zd

[φ]n〈u(x), θ(x) ei2πn·x〉

=
∑

n∈Zd

[φ]n[u]−n by Definition 3.18

=
∑

m∈Zd

[u]m[φ]−m.

Part 3. Finally, we use Parts 1 and 2 and Lemma 3.15 to prove Part 3. Let

φ ∈ Dp(Rd). Then there exists a constant Cs such that

〈
∑

|n|≤N
[u]n ei2πn·x−u(x), φ

〉

p

=
∑

|n|>N
[u]n[φ]−n by Part 2

≤ Cs
∑

|n|>N
|n|−s ∀s ∈ N by Part 1 and Lem. 3.15

which converges to 0 as N →∞.

Part 3 of Theorem 3.22 ensures that we can identify u ∈ D′
p(R

d) with its Fourier

Series as in (3.1).

Now we define Periodic Sobolev Spaces in terms of the decay of these Fourier

coefficients as the magnitude of the index of the Fourier coefficients increases.

Definition 3.23. We define the following Periodic Sobolev Space and norm for s ∈ R

Hs
p = {u ∈ D′

p(R
d) : ‖u‖Hs

p
<∞}

where

‖u‖Hs
p

=


∑

n∈Zd

|n|2s⋆ |[u]n|2



1
2

and |n|⋆ =





1 n = 0

|n| n 6= 0
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Hs
p is complete with respect to this norm and it is a Hilbert space with inner product

(u, v)Hs
p

=
∑

n∈Zd

|n|2s⋆ [u]n[v]n for u, v ∈ Hs
p .

We may write (by expanding u and v in terms of their Fourier Series and then inte-

grating)

(u, v)H0
p

=

∫

Ω
u(x)v(x)dx for u, v ∈ L2

p (3.2)

and so H0
p = L2

p.

For s ∈ R, u ∈ Hs
p and v ∈ H−s

p we can write (again, by expanding u and v in

terms of their Fourier Series and using the Cauchy-Schwarz inequality)

|(u, v)H0
p
| =

∣∣∣∣
∫

Ω
uvdx

∣∣∣∣ =

∣∣∣∣∣∣

∑

n∈Zd

(|n|s⋆[u]n)(|n|−s⋆ [v]n)

∣∣∣∣∣∣
≤ ‖u‖Hs

p
‖v‖H−s

p
(3.3)

We can also extend 〈·, ·〉p defined on D′
p(R

d)×Dp(Rd) to Hs
p ×H−s

p for s ∈ R. We

get (using same arguement as in Part 2 of Theorem 3.22)

〈u, v〉p =
∑

n∈Zd

[u]n[v]−n

and similarly to (3.3) we can write

|〈u, v〉p| ≤ ‖u‖Hs
p
‖v‖H−s

p
(3.4)

for u ∈ Hs
p and v ∈ H−s

p . Furthermore, for all u ∈ Hs
p there exists a v ∈ H−s

p with

‖v‖H−s
p

= 1 such that ‖u‖Hs
p

= 〈u, v〉p (for u 6= 0 take v with Fourier coefficients

[v]n = |n|s⋆[u]−n/‖u‖Hs
p
, n ∈ Zd). From this we can write

‖u‖Hs
p

= max
v∈H−s

p

|〈u, v〉p|
‖v‖H−s

p

∀u ∈ Hs
p . (3.5)

From the definition of the norm ‖ · ‖Hs
p
, it is obvious that we have Ht

p ⊂ Hs
p for

s ≤ t. When s < t we find that the embedding is compact. The following result is an

exercise on page 143 of [72].

Lemma 3.24. If s < t then

Ht
p ⊂⊂ Hs

p .

Proof. As we have already mentioned, it is obvious from the definition of the norm that

Ht
p ⊂ Hs

p . To show that the embedding is compact we must show that the inclusion

operator I : Ht
p → Hs

p is compact.
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For N ∈ N define an operator PN : Ht
p → Hs

p by

PN u(x) =
∑

|n|≤N
[u]n ei2πn·x ∀x ∈ Rd

for all u ∈ Ht
p. PN is bounded and has finite rank. Therefore, PN is a compact

operator.

Now we show that PN → I in the operator norm as N → ∞. Let u ∈ Ht
p and

N ∈ N. Then

‖(I − PN )u‖Hs
p

= ‖u− PN u‖Hs
p

=


 ∑

|n|>N
|n|2s|[u]n|2




1
2

=


 ∑

|n|>N
|n|2s−2t|n|2t|[u]n|2




1
2

≤
(
N2s−2t

)1/2

 ∑

|n|>N
|n|2t|[u]n|2




1
2

≤ N s−t‖u‖Ht
p
.

Therefore, ‖I − Pn ‖L(Ht
p,H

s
p) ≤ N s−t → 0 as N →∞ since s < t.

The result then follows from the fact that a limit of a sequence of compact operators

with finite rank must also be compact.

Now we present two interpolation results. The first result is an extension of Lemma

5.12.2 on page 162 of [72] for d > 1 while the second result is an exercise from [72].

The proof of Lemma 3.25, although it is an extension to what is in [72], is exactly the

same as the one given in [72]. We will present a proof of Lemma 3.26. Both results

rely on a result called The Three Lines Theorem (also given in [72]). We include the

details of The Three Lines Theorem in the proof of Lemma 3.26.

Lemma 3.25. Let A be an operator such that A ∈ L(Hs1
p , H

t1
p ) and A ∈ L(Hs2

p , H
t2
p )

for s1, s2, t1, t2 ∈ R with s1 ≤ s2 and t1 ≤ t2. Then, for τ ∈ [0, 1],

‖A‖L(H
τs1+(1−τ)s2
p ,H

τt1+(1−τ)t2
p )

≤ ‖A‖τL(H
s1
p ,H

t1
p )
‖A‖1−τ

L(H
s2
p ,H

t2
p )

Lemma 3.26. Let s, t ∈ R with s ≤ t, u ∈ Ht
p and τ ∈ [0, 1]. Then

‖u‖
H

τs+(1−τ)t
p

≤ ‖u‖τHs
p
‖u‖1−τHt

p
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Proof. This proof uses The Three Lines Theorem (Lemma 5.12.1 in [72]). It is stated

as follows: Let F (z) be a continuous function in the closed strip z = x+ iy, a ≤ x ≤ b,
y ∈ R. Assume that F (z) is analytic and bounded in the open strip a < x < b, y ∈ R.

With M(x) := supy∈R |F (x+ iy)|, we get

M(x) ≤M(a)
b−x
b−aM(b)

x−a
b−a a ≤ x ≤ b. (3.6)

In this proof we will also need to define the operator, Λz : Hµ → Hµ−Rez, for z ∈ C

and µ ∈ R, by

(Λzu)(t) =
∑

n∈Zd

|n|z⋆[u]n ei2πn·t t ∈ R.

Since ||n|z⋆| = |n|Rez
⋆ , we get

‖Λzu‖Hµ
p

= ‖ΛRezu‖Hµ
p

= ‖u‖
Hµ+Rez

p
∀u ∈ Hµ

p , z ∈ C, µ ∈ R. (3.7)

For u ∈ Ht
p, v ∈ H0

p and z ∈ C with s ≤ Rez ≤ t, let us define

F (z) := 〈Λzu, v〉p =
∑

n∈Zd

|n|z⋆[u]n[v]n.

Since |n|z⋆ is analytic with respect to z for all n ∈ Zd, F (z) is analytic. Moreover,

F (z) is bounded (see (3.4)). Therefore, we can apply (3.6) with a = s, b = t and

x = τs+ (1− τ)t to get

|〈Λτs+(1−τ)tu, v〉p| = |F (τs+ (1− τ)t)|
≤ sup

y∈R

|F (τs+ (1− τ)t+ iy)|

≤
(

sup
y∈R

|F (s+ iy)|
)τ (

sup
y∈R

|F (t+ iy)|
)1−τ

by (3.6)

≤
(

sup
y∈R

‖Λs+iyu‖H0
p
‖v‖H0

p

)τ (
sup
y∈R

‖Λt+iyu‖H0
p
‖v‖H0

p

)1−τ

by (3.4)

= ‖u‖τHs
p
‖v‖τH0

p
‖u‖1−τHt

p
‖v‖1−τ

H0
p

by (3.7)

= ‖u‖τHs
p
‖u‖1−τHt

p
‖v‖H0

p
(3.8)

Now we use (3.7), (3.5) and (3.8) to get

‖u‖
H

τs+(1−τ)t
p

= ‖Λτs+(1−τ)tu‖H0
p

= sup
v∈H0

p

|〈Λτs+(1−τ)tu, v〉p|
‖v‖H0

p

≤ ‖u‖τHs
p
‖u‖1−τHt

p
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For the remainder of this subsection we will restrict ourselves to distributions on

Rd with d ∈ {1, 2}.
We now state another embedding theorem for Periodic Sobolev Spaces.

Theorem 3.27. 1. Let d = 1 and s > 1
2 . Then u ∈ Hs

p(Ω) is continuous and

‖u‖∞ ≤ Cs‖u‖Hs
p(Ω)

where Cs = (
∑

n∈Z
|n|−2s

⋆ )1/2.

2. Let d = 2 and s > 1. Then u ∈ Hs
p(Ω) is continuous and

‖u‖∞ ≤ Cs‖u‖Hs
p(Ω)

where Cs = (
∑

n∈Z2 |n|−2s
⋆ )1/2.

Proof. Both of these results are Sobolev Embedding Theorems. The statement and

proof of part 1 is Lemma 5.3.2 on page 142 of [72] while the statement of part 2 is

exercise 8.5.4 on page 254 of [72]. The proof of Part 2 is very similar to the proof of

part 1 and we present it now.

Let uN (x) =
∑

|n|≤N [u]n ei2πn·x. Then

‖uN‖∞ ≤
∑

|n|≤N
|[u]n| ≤

∑

|n|≤N
|[u]n||n|s⋆|n|−s⋆ ≤


 ∑

|n|≤N
|[u]n|2|n|2s⋆




1
2

 ∑

|n|≤N
|n|−2s

⋆




1
2

≤ Cs‖u‖Hs
p

and so

‖uN − uM‖∞ ≤ Cs‖uN − uM‖Hs
p
→ 0, N,M →∞

The result follows from the fact that Cp(Ω) is complete with respect to ‖ · ‖∞.

Finally, in this subsection we state some estimates for a distribution from a Periodic

Sobolev Space multiplied by sufficiently smooth periodic function.

Theorem 3.28. 1. With d = 1, for s ∈ R, t > 1/2, a ∈ Hmax(|s|,t)
p and u ∈ Hs

p then

there exist constants Cs and Ct such that

‖au‖Hs
p
≤ Cs‖a‖H|s|

p
‖u‖Hs

p
for |s| > 1

2

and

‖au‖Hs
p
≤ Ct‖a‖Ht

p
‖u‖Hs

p
for |s| ≤ 1

2
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2. With d = 2, for s ∈ R, t > 1, a ∈ Hmax(|s|,t)
p and u ∈ Hs

p then there exist constants

Cs and Ct such that

‖au‖Hs
p
≤ Cs‖a‖H|s|

p
‖u‖Hs

p
for |s| > 1

and

‖au‖Hs
p
≤ Ct‖a‖Ht

p
‖u‖Hs

p
for |s| ≤ 1

Proof. Part 1 is Lemma 5.13.1 on page 163 of [72], except that the statement of the

Lemma in [72] requires that a ∈ C∞
p . This is too conservative and the proof given in

[72] goes through for a ∈ Hmax(|s|,t)
p as we have stated. Part 2 is not in [72]. The proof

is very similar to the proof of Part 1 and we present it now.

We have

a(x)u(x) =
∑

m∈Z2

[a]m ei2πm·x ∑

n∈Z2

[u]n ei2πn·x

=
∑

m,n∈Z2

[a]m[u]n ei2π(m+n)·x

=
∑

k∈Z2


∑

n∈Z2

[a]k−n[u]n


 ei2πk·x

and so we may write

‖au‖Hs
p
≤




∑

k∈Z2


∑

n∈Z2

|k|s⋆|[a]k−n||[u]n|




2


1
2

(s ∈ R) (3.9)

Now we split into different cases according to s.

Case s > 1. Using |k|s⋆ ≤ 2s(|k− n|s⋆ + |n|s⋆) and (3.9) we get

‖au‖Hs
p

=




∑

k∈Z2

(|k|⋆|[au]k|)2




1
2

=




∑

k∈Z2


|k|⋆

∣∣∣∣∣∣

∑

n∈Z2

[a]k−n[u]n

∣∣∣∣∣∣




2


1
2

≤ 2s




∑

k∈Z2


∑

n∈Z2

|k− n|s⋆|[a]k−n||[u]n|+
∑

n∈Z2

|[a]k−n||n|s⋆|[u]n|




2


1
2

= 2s‖bv + dw‖H0
p
≤ 2s(‖bv‖H0

p
+ ‖dw‖H0

p
) (3.10)
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where the functions b, v, d, w are defined by their Fourier coefficients,

[b]k = |k|s⋆|[a]k| [v]n = |[u]n|
[d]k = |[a]k| [w]n = |n|s⋆|[u]n|

for k,n ∈ Z2. We have ‖a‖Hs
p

= ‖b‖H0
p

= ‖d‖Hs
p

and ‖u‖Hs
p

= ‖v‖Hs
p

= ‖w‖H0
p
. By

(3.2) and Theorem 3.27 we get

‖bv‖H0
p

=

(∫

Ω
|b(x)v(x)|2dx

) 1
2

≤ ‖b‖H0
p
‖v‖∞ ≤ Cs‖b‖H0

p
‖v‖Hs

p
= Cs‖a‖Hs

p
‖u‖Hs

p

‖dw‖H0
p

=

(∫

Ω
|d(x)w(x)|2dx

) 1
2

≤ ‖d‖∞‖w‖H0
p
≤ Cs‖d‖Hs

p
‖w‖H0

p
= Cs‖a‖Hs

p
‖u‖Hs

p

The result follows from (3.10) and is

‖au‖Hs
p
≤ 2s+1Cs‖a‖Hs

p
‖u‖Hs

p
for s > 1. (3.11)

Case s = 0. This result follows from (3.2) and Theorem 3.27 using the fact that

t > 1 and a ∈ Ht
p,

‖au‖H0
p

=

(∫

Ω
|a(x)u(x)|2dx

) 1
2

≤ ‖a‖∞‖u‖H0
p
≤ Cs‖a‖Ht

p
‖u‖H0

p
(3.12)

Case 0 < s ≤ 1. Now we apply the interpolation result in Lemma 3.25 where A

is the multiplication operator defined by Au = au. The inequality (3.11) implies that

A ∈ L(Ht
p, H

t
p) for t > 1 while (3.12) implies that A ∈ L(H0

p , H
0
p ). Applying Lemma

3.25 yields A ∈ L(H
(1−τ)t
p , H

(1−τ)t
p ) for 0 ≤ τ ≤ 1 and

‖A‖L(H
(1−τ)t
p ,H

(1−τ)t
p )

≤ (Cs‖a‖Ht
p
)τ (2s+1Cs‖a‖Ht

p
)1−τ = 2(s+1)(1−τ)Cs‖a‖Ht

p
.

The result is then

‖a‖
H

(1−τ)t
p

≤ 2(s+1)(1−τ)Cs‖a‖Ht
p
‖u‖

H
(1−τ)t
p

for t > 1, 0 ≤ τ ≤ 1.

Case s < 0. This case is proved using a duality argument that is the same as in the

d = 1 proof in [72].

Now we present a result that shows how ‖·‖Hs
p

is related to the usual Sobolev space

norms.

Theorem 3.29. For s ≥ 0 and with θ defined as in Lemma 3.17,

‖u‖Hs
p
≃ ‖u‖Hs(Ω) ≃ ‖θu‖Hs(Rd) ∀u ∈ Hs

p . (3.13)
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Proof. Let s ≥ 0 and suppose u ∈ Hs
p . The result ‖u‖Hs

p
≃ ‖u‖Hs(Ω) is from Chapter 5

of [18]. However, in [18], the norm ‖·‖Hs(Ω) is defined as the Slobodeckĭi norm, whereas

we have defined ‖ · ‖Hs(Ω) in terms of the Fourier tranform (see Subsection 3.1.4). A

result proving when these two norms are equivalent is given in Theorem 3.18 of [54].

The second result, ‖u‖Hs(Ω) ≃ ‖θu‖Hs(Rd), follows from the following simple argu-

ment. Define θ ∈ D(Rd) and Ω̃ as in Lemma 3.17. Define

θ(x) =
∑

n∈Zd

|ni|≤1

θ(x + n) ∀x ∈ Rd.

Then θ(x) = 1 for all x ∈ Ω and by the Definition of ‖ · ‖Hs(Ω),

‖u‖Hs(Ω) ≤ ‖θu‖Hs(Rd) ≤
∑

|ni|≤1

‖θ(x + n)u(x)‖Hs(Rd)

=
∑

|ni|≤1

‖θ(x + n)u(x + n)‖Hs(Rd) = 3d‖θu‖Hs(Rd).

Conversely, there is a constant C (that depends on θ and s) such that

‖θu‖Hs(Rd) = ‖θu‖
Hs(eΩ)

≤ C‖u‖
Hs(eΩ)

= 3dC‖u‖Hs(Ω).

3.2.3 Trigonometric Function Spaces

In this section we define two types of finite dimensional function spaces which consist

of functions that are in the span of a finite number of plane waves (or Fourier basis

functions).

First, we define some notation. For d ∈ N (we only need d ∈ {1, 2}) and n ∈ N,

denote

Zdn,o =
{
n ∈ Zd : |n| ≤ n

}

Zdn,� =
{
n ∈ Zd : −n

2
≤ ni <

n

2
, i = 1, . . . , d

}

where | · | denotes the usual Euclidean norm of a vector. For d = 1, Z1
n,o = Z1

2n+1,�.

Using these definitions we define

S(d)
n = span{ei2πg·x : g ∈ Zdn,o}
T (d)
n = span{ei2πg·x : g ∈ Zdn,�}

When it is obvious we will omit the superscript and just write Sn or Tn. For d = 1,

we get T2n+1 = Sn, dimSn = 2n + 1 and dimTn = n. For d = 2, dimSn = O(n2)
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and dimTn = n2. The set {ei2πg·x : g ∈ Zdn,o} is an orthogonal basis for Sn where

orthogonality is with respect to the L2(Ω) inner product. Similarly, {ei2πg·x : g ∈ Zdn,�}
is an orthogonal basis for T (d)

n . We will call each of these bases a Fourier basis and each

member of the basis set will be a Fourier basis function. Since we have a basis, every

function f ∈ S(d)
n can be expanded uniquely as a linear combination of the Fourier basis

functions and we can write

f(x) =
∑

g∈Zd
n,o

cg ei2πg·x . (3.14)

where cg = [f ]g are constants. We will refer to this expansion of f ∈ S(d)
n as the Fourier

representation of f . An alternative way of expressing this is to recognize that if we

have a vector (for d = 1) or a matrix (for d = 2) of Fourier coefficients cg for g ∈ Zdn,o
then we have uniquely defined a function f(x) ∈ S(d)

n according to (3.14). We will also

refer to a vector or matrix of Fourier coefficients as the Fourier representation of a

function.

We can also define a Fourier representation of f ∈ T (d)
n in a similar way.

3.2.4 Discrete and Fast Fourier Transforms

In this subsection we will consider functions in T (d)
n . We will show that as well as

having a Fourier representation of f ∈ T (d)
n , there is also a nodal representation of f

(we do not define a nodal representation for functions in S(d)
n ). We will then present

the Discrete Fourier Transform (DFT) which is a transform for switching between these

two representations. Finally, we discuss the Fast Fourier Transform (FFT) which is a

very efficient algorithm for computing the DFT and its inverse.

Before we define the nodal representation of f ∈ T (d)
n we must define the following

function in T (1)
n . For n ∈ N and k ∈ Z1

n,�,

φn,k(x) =
1

n

∑

j∈Z
1
n,�

ei2πj(x−k/n) =
∑

j∈Z
1
n,�

(
1

n
e−i2πjk/n

)
ei2πjx .

The function φn,k is a linear combination of the Fourier basis functions of T (1)
n and it

has the following property,

φn,k(
m
n ) = δmk for m ∈ Z1

n,� .

The functions φk,n for different k ∈ Zn are also orthogonal with respect to the L2(Ω)

inner product.
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Using φn,k we define the nodal representation of f ∈ T (d)
n as

f(x) =
∑

k∈Zd
n,�

dk ϕ
(d)
n,k(x) (3.15)

where

dk = f( 1
nk) and ϕ

(d)
n,k(x) =

d∏

i=1

φn,ki
(xi).

We see that the coefficients dk are the nodal values f(x) where the nodes are a uniform

grid with grid-spacing 1
n and it can be shown that the set {ϕ(d)

n,k(x) : k ∈ Zdn,�} is an

orthogonal basis for T (d)
n . We call this basis of T (d)

n the nodal basis and each member

of the basis is called a nodal basis function. An alternative interpretation of the nodal

representation is to recognize that if we know the values of a function in T (d)
n at the

nodes { 1
nk : k ∈ Zdn,�}, then the function is uniquely determined. A vector (for d = 1)

or a matrix (for d = 2) of nodal values, since it uniquely defines a function in T (d)
n , will

also be referred to as the nodal representation of a function in T (d)
n .

We have now seen that we can represent a function f ∈ T (d)
n using either the

Fourier representation or nodal representation. We saw that we can store f as a

vector or a matrix of either Fourier coefficients {cg = [f ]g : g ∈ Zdn,�} or nodal values

{dk = f( 1
nk) : k ∈ Zdn,�}. The Discrete Fourier Transform (DFT) specifies the Fourier

coefficients of f in terms of the nodal values of f and the Inverse Discrete Fourier

Transform (IDFT) specifies the nodal values of f in terms of the Fourier coefficients of

f . It is defined as follows.

cg =
1

n

∑

k∈Zd
n,�

dk e−i2πg·k/n ∀g ∈ Zdn,� (DFT)

dk =
∑

g∈Z
d
n,�

cg ei2πg·k/n ∀k ∈ Zdn,�. (IDFT)

The Fast Fourier Transform (FFT) is an algorithm that is able to compute the Discrete

Fourier Transform in O(nd logn) operations for any n ∈ N. However, the performance

of the FFT algorithm is the most efficient when n = 2k for k ∈ N. The Fast Fourier

Transform was first published in [10], although we use the implementation developed

by [30].

We finish this subsection by fixing some notation for the case when d = 2. Consider

a function f ∈ T (2)
n where n is even. As per our discussion above f can be uniquely

determined with either n2 Fourier coefficients or n2 nodal values. We store these values

in n× n matrices X and X̂. Our convention is to store the nodal values in X and the

Fourier coefficients in X̂. We also have a special indexing convention for these matrices.

61



3.2. Periodic Functions

Let m = n
2 + 1. Then

Xij = f
(

(i−m,j−m)
n

)

X̂ij = [f ](i−m,j−m)

for i, j = 1, . . . , n. We can now express the 2D FFT and inverse FFT as operators

on matrices. We denote the 2D FFT by fft(·) and the 2D inverse FFT by ifft(·). For

example, we get X̂ = fft(X) and X = ifft(X̂).

3.2.5 Orthogonal and Interpolation Projections

In this subsection we define projections from Hs
p onto S(d)

n and T (d)
n and we also derive

some estimates for these projections. We will define the projections in a natural way

that associates them with either the Fourier representation or nodal representation of

a function in either Sn or Tn.
We begin by defining the Orthogonal Projections, P

(S)
n : Hs

p → S
(d)
n and P

(T )
n :

Hs
p → T

(d)
n . For s ∈ R, u ∈ Hs

p and n ∈ N, they are defined by

P(S)
n u(x) =

∑

g∈Zd
n,o

[u]g ei2πg·x

P(T )
n u(x) =

∑

g∈Z
d
n,�

[u]g ei2πg·x

for all x ∈ Rd. We will now state some estimates for these two projections.

Lemma 3.30. For s, t ∈ R with s ≤ t, d ∈ {1, 2} and n ∈ N, if u ∈ Ht
p then

‖u− P(S)
n u‖Hs

p
≤ ns−t‖u‖Ht

p
(3.16)

‖u− P(T )
n u‖Hs

p
≤ (n2 )s−t‖u‖Ht

p
. (3.17)

Proof. The results in (3.16) and (3.17) for d = 1 are essentially the same since Sn =

T2n+1 in 1D and (3.17) for d = 1 is Theorem 8.2.1 on page 241 of [72].

The result in (3.17) for d = 2 is Lemma 8.5.1 on page 253 of [72] whereas (3.16) for

d = 2 is not in [72]. We prove (3.16) for d = 2 now. The proof is very similar to the

proof of the d = 1 result. For s, t ∈ R, s ≤ t, u ∈ Ht
p and n ∈ N we get

‖u− P(S)
n u‖2Hs

p
=

∑

n∈Z2\Z2
n,o

|n|2s⋆ |[u]n|2 =
∑

|n|>n
|n|2(s−t)|n|2t|[u]n|2

≤ n2(s−t) ∑

|n|>n
||n|2t|[u]n|2 ≤ n2(s−t)‖u‖2Ht

p
.
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Now we move onto defining the Interpolation Projection, Qn : Cp(Ω)→ T (d)
n (there

is no Q projection onto S(d)
n ). It is naturally associated with the nodal representation

of a trigonometric function. For a continuous periodic function u defined on Rd and

n ∈ N we define

Qn u ∈ T (d)
n such that (Qn u)(

1
nk) = u( 1

nk) ∀k ∈ Zdn,�.

From our definition of the nodal representation of functions in T (d)
n we know that this

uniquely defines a projection onto T (d)
n .

If u is discontinuous then Qn u may not be well-defined but we can extend the

definition of Qn to distributions that have a convergent Fourier Series. In this case Qn

is defined by nodal values that are given by the Fourier Series of u,

Qn u(
1
nk) =

∑

g∈Zd

[u]g ei2πg·k/n ∀k ∈ Zdn,�.

By the definition of this projection we automatically obtain the nodal representation

of Qn u ∈ T (d)
n . We know that there also exists a Fourier representation of Qn u. The

following Lemma gives us the Fourier coefficients of Qn u. It is explicitly stated in

Lemma 8.3.1 on page 242 of [72] for the case when d = 1 and u is continuous. It is

also implicitly used on page 251 of [72] for the case when d = 2. Here we state a more

general result than that stated in [72] in the sense that we let d ∈ N and we let u be

possibly discontinuous.

Lemma 3.31. Let d ∈ N and let u be a periodic function on Rd with a convergent

Fourier Series. Then

[Qn u]g =
∑

k∈Zd

[u]g+nk ∀g ∈ Zdn,�

Proof. This proof is very similar to the proof of Lemma 8.3.1 on page 242 in [72]. We

have Qn v = v for all v ∈ T (d)
n . In particular, we have Qn ei2πg·x = ei2πg·x for all

g ∈ Zdn,� . We also have, for g ∈ Zdn,� and k ∈ Zd,

ei2πg·x = ei2π(g+nk)·x

at x = 1
nm for m ∈ Zdn,� since ei2πnk·m/n = 1. That is, ei2πg·x and ei2π(g+nk)·x have

the same nodal values. Therefore,

Qn ei2π(g+nk)·x = Qn ei2πg·x = ei2πg·x (3.18)
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for all x ∈ Rd if g ∈ Zdn,� and k ∈ Zd. Using these facts we get, for all x ∈ Rd,

Qn u(x) = Qn


 ∑

m∈Zd

[u]m ei2πm·x




= Qn



∑

g∈Z
d
n,�

∑

k∈Zd

[u]g+nk ei2π(g+nk)·x




=
∑

g∈Z
d
n,�


∑

k∈Zd

[u]g+nk


Qn ei2π(g+nk)·x

=
∑

g∈Z
d
n,�


∑

k∈Zd

[u]g+nk


 ei2πg·x by (3.18).

Note that
∑

k∈Zd [u]g+nk is well-defined for all g ∈ Zdn,� since the Fourier Series of u is

convergent.

We can now go on and present the following estimates for Qn operating on contin-

uous functions (recall from Theorem 3.27 that Ht
p ⊂ Cp when t > 1/2 for d = 1 and

when t > 1 for d = 2). These results can be found in [72].

Lemma 3.32. The interpolation projection has the following approximation error

bounds.

1. For d = 1, t > 1/2, 0 ≤ s ≤ t and u ∈ Ht
p we have

‖u−Qn u‖Hs
p
≤ Ct

(
n
2

)s−t ‖u‖Ht
p

where Ct = (1 +
∑∞

j=1
1
j2t )

1/2.

2. For d = 2, t > 1, 0 ≤ s ≤ t and u ∈ Ht
p we have

‖u−Qn u‖Hs
p
≤ Cs,t

(
n
2

)s−t ‖u‖Ht

where Cs,t = (2s
∑∞

j,k=0 |j2 + k2|−t⋆ )1/2.

Proof. Part 1 is Theorem 8.3.1 on page 243 of [72]. Part 2 is Theorem 8.5.3 on page

253 of [72].

3.3 Piecewise Continuous Functions

In this section we discuss definitions and regularity results for piecewise continuous

functions. We also prove bounds on the Fourier coefficients of periodic piecewise con-

tinuous functions.
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In the first subsection we define two spaces of periodic, piecewise continuous func-

tions. For the rest of this thesis we restrict ourselves to these particular types of

piecewise continuous functions. In the second subsection we prove regularity results

for our periodic piecewise continuous functions and in the third subsection we bound

the corresponding Fourier coefficients.

3.3.1 Two Special Classes of Periodic Piecewise Continuous Functions

In this section we use PCp and PC ′
p to denote spaces of periodic piecewise continuous

functions.

For the case when d = 1, the definition of a piecewise continuous function on Ω is

clear, although for Fourier Series results to hold we must restrict ourselves to functions

with bounded variation.

When d ≥ 2, we restrict ourselves to a special class of piecewise continuous functions

such that the interfaces (sets where the funtion is discontinuous) can be described as

the boundaries of Lipschitz domains.

For both cases, d = 1 and d ≥ 2, we make a further restriction and specify that our

piecewise continuous functions must also be bounded and infinitely differentiable on

regions of continuity. This final restriction is not strictly necessary for Theorem 3.40.

However, the proof is much easier since we can apply Lemma 3.38. A weaker condition

for Theorem 3.40 would specify only finite differentiability in the regions of continuity

where the order of differentiability depends on d.

We start by defining Lipschitz continuous, Liptshitz hypographs and Lipschitz do-

mains (i.e. a domain with a Lipschitz boundary). We rely on the definitions on page

89 of [54].

Definition 3.33. For any domain Γ ⊆ Rd, a function f : Γ → R is called Lipschitz

continuous if there exists a constant C such that

|f(x)− f(y)| ≤ C|x− y| ∀x, y ∈ Γ.

Definition 3.34. Let d ≥ 2 and let ζ : Rd−1 → R be a Lipschitz continuous function.

Then the following set is a Liphshitz hypograph

{x ∈ Rd : xd < ζ(x′) for all x′ = (x1, . . . ,xd−1) ∈ Rd−1}.

Definition 3.35. Let d ≥ 2. The open set Γ ⊂ Rd is a Lipschitz domain if its boundary

∂Γ is compact and if there exist finite families {Vj} and {Wj} that have the following

properties:

1. The family {Wj} is a finite open cover of ∂Γ, i.e., each Wj is an open subset of

Rd, and ∂Γ ⊆ ⋃jWj.
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2. Each Vj ⊂ Rd is a transformation by a rigid body motion of a Lipschitz hypo-

graph, i.e. Each Vj can be transformed into a Lipschitz hypograph by rotation and

translation. For later reference we will denote this transformation by S : Rd → Rd

where S maps the Lipschitz hypograph to Vj .

3. Vj satisfies Wj ∩ Γ = Wj ∩ Vj for each j.

See Figure 3-2 for an example of how Wj and Vj are defined.

For later reference, we make the remark here that ∂Γ is a C∞ class boundary if we

replace Lipschitz hypographs with C∞ hypographs (ζ ∈ C∞(Rd−1)) in the definition

above.

Γ

Vj

Wj

Γ ∩Wj = Vj ∩Wj

Figure 3-2: Diagram of a Lipschitz domain showing how the Vj and Wj are defined.

Now, using the definition of Lipschitz domains we define our special class of piece-

wise continuous functions using the following representation.

Definnition 3.36. For d ∈ N a periodic function f is in PCp (our special class of

periodic, piecewise continuous functions) if it can be represented in the following way:

f(x) = f0 +
J∑

j=1

fj(x) ∀x ∈ Ω (3.19)

where f0 ∈ C∞
p ∩ BV (Ω) (BV (Ω) denotes the set of functions on Ω with bounded

66



Chapter 3. MATHEMATICAL TOOLS

variation) and fj(x) are periodic, piecewise continuous functions of the form

fj(x) =




cj(x) x ∈ Ωj

0 x ∈ Ω\Ωj

where each cj is the restriction to Ωj of a function in C∞(Ω) ∩BV (Ω) and the Ωj are

a finite number of Lipschitz domains such that Ωj ⊂⊂ Ω. The interfaces of f(x) are

the sets ∂Ωj .

Sometimes (in 2D) we will need to be more restrictive in our choice of periodic

piecewise constant functions. In these cases we will use the following definition.

Definition 3.37. For d = 2, a periodic function f is in PC ′
p if it is in PCp with the

additional assumption that each Ωj is a convex Lipschitz polygon with a finite number

of corners.

3.3.2 Regularity

In this section we prove the regularity of our special class of periodic, piecewise contin-

uous functions. We begin by presenting two results from [54]. The first result proves

the regularity of a simple discontinuous function where the discontinuity is on the

boundary between two half spaces. This result is given as an exercise in [54] and we

present the proof in the Appendix A.2. The second result, however, proves that we can

distort our simple discontinuous function to a discontinuous function where the shape

of the interface region can be represented with a Lipschitz continuous function and the

regularity will be preserved. We do not prove the second result as it is proved in [54].

In the main theorem we will use a third result from [54] but we do not state it in a

separate lemma.

Lemma 3.38. Let u ∈ C∞
0 (Rd) and define

f(x) :=




u(x) xd < 0

0 xd ≥ 0

Then f ∈ H1/2−ǫ(Rd) for any ǫ > 0.

This result is based on exercise 3.22 on page 112 of [54]. We present the proof in

Appendix A.2.

Now we quote Theorem 3.23 on page 85 of [54]. The proof is omitted as it is given

in [54].

Lemma 3.39. Suppose that κ : Rd → Rd is a bijective map and r is a positive integer

such that Dακ and Dακ−1 exist and are (uniformly) Lipschitz on Rd for |α| ≤ r − 1.
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Then for 1− r ≤ s ≤ r we have

u ∈ Hs(Rd) ⇐⇒ u ◦ κ ∈ Hs(Rd)

and in which case there exist constants c, C > 0 (that depend on κ) such that

c‖u‖Hs(Rd) ≤ ‖u ◦ κ‖Hs(Rd) ≤ C‖u‖Hs(Rd)

for all u ∈ Hs(Rd).

We now have the preliminary results from which we will develop our main theorem

about the regularity of our special class of piecewise continuous functions.

Theorem 3.40. Let f ∈ PCp (see Definition 3.36). Then for any ǫ > 0,

f ∈ H1/2−ǫ
p .

Proof. Let s < 1/2. Using the representation of f given in (3.19) we write

‖f‖Hs
p
≤ ‖f0‖Hs

p
+

J∑

j=1

‖fj‖Hs
p

Since f0 ∈ C∞
p , ‖f0‖Hs

p
<∞. We consider each ‖fj‖Hs

p
separately. Recall that the Ωj

associated with fj satisfy Ωj ⊂⊂ Ω. Therefore, choose θ according to Lemma 3.17 so

that θ(x) = 1 for x ∈ Ωj . Also recall that Ωj is a Lipschitz domain and according to

the definition of a Lipschitz domain, there exists a finite open cover of ∂Ωj . Denote

this by {Wk}Kk=1. Define WK+1 to cover the interior of Ωj such that WK+1 ∩ ∂Ωj = ∅.
The set {Wk}K+1

k=1 is now a finite open cover of Ωj . Now invoke Corollary 3.22 on page

84 of [54] to get a partition of unity, φ1, φ2, . . . , φK+1 for Ωj such that φm ∈ C∞(Rd)

and suppφm ⊆ Wm for every m = 1, . . . ,K + 1, and
∑

m φm = 1 on Ωj . Using φm, θ

and Lemma 3.29 we can write

‖fj‖Hs
p
≤ C‖θfj‖Hs(Rd) =

∥∥∥∥∥

K+1∑

m=1

φmθfj

∥∥∥∥∥
Hs(Rd)

≤
K+1∑

m=1

‖φmθfj‖Hs(Rd)

Now treat each ‖φmθfj‖Hs(Rd) separately. We construct a bijective κ so that we can

use Lemma 3.39. Define S to be the rotation and translation associated with Wm from

Definition 3.35 and define T : Rd → Rd as a vertical shear, T (x) := (x′, xd + ζ(x′)) for

all x ∈ Rd, where ζ is the Lipschitz continuous funciton used in the Lipschitz hypograph

in Definition 3.35. Both S and T are bijective and Lipschitz so we can define κ := S ◦T
and κ is bijective and Lipschitz. Note that for d = 1 we define κ to shift the boundary
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of Ωj to the origin. Applying Lemma 3.39 with r = 1 we get

‖φmθfj‖Hs(Rd) ≤ 1
c‖(φmθfj) ◦ κ‖Hs(Rd) for 0 ≤ s ≤ 1.

Now we show that by the construction of κ, (φmθfj) ◦ κ satisfyies the assumptions of

Lemma 3.38.

By the representation of f in (3.19) we see that fj is a restriction to Ωj of a function

gj ∈ C∞(Rd). Also, suppφm ⊆Wm implies that

φmθfj(x) =




hj(x) x ∈Wm ∩ Ωj

0 x /∈Wm ∩ Ωj

where hj = φmθgj ∈ C∞
0 (Rd). Define κ−1(Wm) = {y ∈ Rd : κ(y) ∈ Wm}. By the

definition of κ we have

x ∈Wm ∩ Ωj =⇒ x = κ(y) for y ∈ κ−1(Wm) with yd < 0

x ∈Wm ∩ (Rd\Ωj) =⇒ x = κ(y) for y ∈ κ−1(Wm) with yd ≥ 0

Therefore we have

(φmθfj) ◦ κ(y) =





h ◦ κ(y) y ∈ {κ−1(Wm) : yd < 0}
0 y ∈ {κ−1(Wm) : yd ≥ 0}
0 y /∈ κ−1(Wm)

where h ◦κ ∈ C∞
0 (Rd) and the assumptions of Lemma 3.38 are satisfied. Therefore, by

Lemma 3.38,

‖φmθfj ◦ κ‖H1/2−ǫ(Rd) <∞

Since this statement holds form = 1, . . . ,M , and j = 1, . . . , J our proof is complete.

3.3.3 Fourier Coefficients

In this subsection we try to develop results that tell us about the behaviour of the

Fourier coefficients of piecewise constant functions. We would like to estimate the

Fourier coefficients of functions in our special class of periodic piecewise continuous

functions, PCp, that we defined in Definition 3.36. Unfortunately, for the case when

d = 2 the best that we can do is estimate the Fourier coefficients of periodic piecewise

continuous functions in PC ′
p.

We begin with results for when d = 1 before considering the case when d = 2. The

following result is a corollary of Theorem 39 on page 26 of [36] and can be proved using

integration by parts.
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Lemma 3.41. If f ∈ L2
p is continuous on Ω except at a finite number of points where

there is a jump and is absolutely continuous in the intervals of continuity then there

exists a constant F such that

|[f ]n| ≤ F |n|−1 ∀n ∈ Z, n 6= 0.

Proof. Suppose f has J discontinuities at x1, x2, . . . , xJ and let dj = f(xj+0)−f(xj−0)

(i.e. let dj be the size of the jump at each discontinuity). Assume for convenience and

without loss of generality that xj 6= ±1
2 . For 0 6= n ∈ Z, subdividing Ω into intervals

of continuity and integrating by parts yields

[f ]n =
1

i2πn

J∑

j=1

dj e−i2πnxj +
1

i2πn

∫

Ω
f ′(x) e−i2πnx dx

Since f is absolutely continuous on each interval of continuity, it is has bounded vari-

ation on each interval and therefore f ′ ∈ L1(Ω) (see [4]). Therefore,

|[f ]n| ≤
1

2πn




J∑

j=1

|dj|+ ‖f ′‖L1(Ω)




Using this estimate for the coefficients of a piecewise continuous function (which

requires slightly different assumptions on f) and the definition of Hs
p we can obtain an

alternative proof for Theorem 3.40 (in the 1D case).

When d = 2 it is not so easy to estimate the asymptotic behaviour of the Fourier

coefficients of a piecewise continuous function. Before we present our main theorem of

this subsection let us present the following two illustrative examples.

a

aa

b

f0

f0

f1
f1

Figure 3-3: Diagram of f(x) from Examples 3.42 (left) and 3.43 (right).
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Example 3.42. Rectangular hole. For 0 < a, b < 1
2 and constants f0 and f1, define

f ∈ L2
p by

f(x) =




f1 |x1| < a and |x2| < b

f0 elsewhere in Ω.

See Figure 3-3. Then f(x) has Fourier coefficients,

[f ]g =





f0 + (f1 − f0)ab g = 0

(f1 − f0)a
sin(g2πb)
g2π

g1 = 0, g2 6= 0

(f1 − f0)
sin(g1πa)
g1π

b g1 6= 0, g2 = 0

(f1 − f0)
sin(g1πa) sin(g2πb)

g1g2π2 g1 6= 0, g2 6= 0.

(3.20)

From (3.20) we can see that |[f ]g| ≤ |f1−f0|
g1g2

when g is not perpendicular to any of the

interfaces of f(x) and |[f ]g| ≤ |f1−f0|
|g| when g is perpendicular to the interfaces of f(x).

With these Fourier coefficients it is possible to prove that there exists a constant F

such that

Cn =


 ∑

|g1|+|g2|=n
|[f ]g|2




1
2

≤ Fn−1 n ∈ N.

We do this using the following argument,

C2
n =

∑

|g1|+|g2|=n
|[f ]g|2 ≤ (f1 − f0)

2

(
4

π2n2 + 4
π4

n−1∑

k=1

1
k2(n−k)2

)

≤ 4(f1−f0)2
π2


 1
n2 + 2

π2

⌊n/2⌋∑

k=1

1
k2(n/2)2




= 4(f1−f0)2
π2


 1
n2 + 8

π2n2

⌊n/2⌋∑

k=1

1
k2




≤ 4(f1−f0)2
π2

(
1
n2 + 8

π2n2
π2

6

)

≤ 28(f1−f0)2
3π2

1
n2 ≤ (f1 − f0)

2n−2 n ∈ N.

For the next example, instead of having a rectangular interface, we work with a

circular interface.

Example 3.43. Circular hole. For 0 < a < 1
2 and constants f0 and f1, define f ∈ L2

p

by

f(x) =




f1 |x| < a

f0 elsewhere in Ω.
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See Figure 3-3. Then f(x) has Fourier coefficients,

[f ]g =




f0 + (f1 − f0)πa

2 g = 0

(f1 − f0)
a

2π|g|J1(π|g|a) |g| 6= 0

where J1 is the 1st order Bessel function. With these Fourier coefficients we can again

prove that there exists a constant F such that

Cn =


 ∑

|g1|+|g2|=n
|[f ]g|2




1
2

≤ Fn−1 n ∈ N.

To prove this property we use the following argument. From the properties of Bessel

functions, we know that there exists a constant A such that J1(r) ≤ Ar−1/2 for r > 0.

Therefore, |[f ]g| ≤ |f1−f0|A
2π3/2 |g|−3/2 and

C2
n =

∑

|g1|+|g2|=n
|[f ]g|2

≤ (f1 − f0)
2A2

4π3

∑

|g1|+|g2|=n

1

|g|3

≤ (f1 − f0)
2A2

4π3

4n

(n/
√

2)3

=
4
√

2(f1 − f0)
2A2

π3

1

n2
= F 2 1

n2

Now let us state some Lemmas in preparation for the main theorem of this subsec-

tion.

Lemma 3.44. Let f ∈ Hs
p for s ∈ R and define g ∈ Hs

p by g(x) = f(x + x0) for

x0 ∈ Rd. Then

[g]g = [f ]g ei2πg·x0 ∀g ∈ Zd.

Proof.

g(x) = f(x + x0) =
∑

g∈Zd

[f ]g ei2πg·(x+x0) =
∑

g∈Zd

(
[f ]g ei2πg·x0

)
ei2πg·x ∀x ∈ Rd.

Before we state the next two lemmas let us recall that

|h|⋆ =




|h| if h 6= 0

1 if h = 0
.

for all h ∈ R.
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Lemma 3.45. Let u ∈ C∞(R2) with suppu ⊂ Ω, let x0 ∈ Ω and v ∈ R2, and define

f(x) :=




u(x) (x− x0) · v ≤ 0

0 (x− x0) · v > 0.

Also define F (x) = f(x+x0) for all x ∈ R2 and define G(y) = F (S(y)) for all y ∈ R2

where S is a rotation such that G(y) = 0 for all y2 > 0. Then there exists a constant

A such that

|[f ]g| ≤
A

|h1|⋆|h2|⋆
∀g ∈ Z2, h = S−1(g).

Proof. Let 0 6= g ∈ Z. With the definitions in the lemma we get

|[f ]g| =
∣∣∣∣
∫

Ω
f(x) e−i2πg·x dx

∣∣∣∣

=

∣∣∣∣
∫

R2

f(x) e−i2πg·x dx

∣∣∣∣ since supp f ⊂ suppu ⊂ Ω

=

∣∣∣∣e
−i2πg·x0

∫

R2

F (x) e−i2πg·x dx

∣∣∣∣

=

∣∣∣∣
∫

R2

F (x) e−i2πg·x dx

∣∣∣∣

=

∣∣∣∣
∫

y2<0
G(y) e−i2πh·y dy

∣∣∣∣ with x = S(y) and h = S−1(g).

(3.21)

If g is not perpendicular or parallel to v then h1 6= 0 and h2 6= 0 and using (3.21) and

integration by parts we get,

|[f ]g| =
∣∣∣∣
∫

y2<0
G(y) e−i2πh·y dy

∣∣∣∣

= 1
2π|h1|

∣∣∣∣
∫

y2<0
(Dy1G)(y) e−i2πh·y dy

∣∣∣∣

= 1
4π2|h1||h2|

∣∣∣∣
∫

y2=0
(Dy1G)(y) e−i2πh·y dy

∣∣∣∣

+ 1
4π2|h1||h2|

∣∣∣∣
∫

y2<0
(Dy2Dy1G)(y) e−i2πh·y dy

∣∣∣∣

≤ 1
4π2|h1||h2|

(∫

y2=0
|Dy1G(y)|dy +

∫

y2<0
|Dy2Dy1G(y)|dy

)

≤ A

|h1||h2|

(3.22)

Alternatively, if g is perpendicular to v (h2 = 0) or if g is parallel to v (h1 = 0) then

we can not carry out both integrations by parts in (3.22) and we only get the following
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estimate for |[f ]g| instead,

|[f ]g| ≤





A
|h2| if h1 = 0

A
|h1| if h2 = 0

(3.23)

Hence, the result. Note that A is a generic constant that may be different for (3.22)

and (3.23).

Lemma 3.46. Let u ∈ C∞(R2) with suppu ⊂ Ω, let x0 ∈ Ω and v,w ∈ R2 such that

v 6= kw for all k ∈ R. Define

f(x) :=




u(x) if (x− x0) · v ≤ 0 and (x− x0) ·w ≤ 0

0 for all other x.

Also define F (x) = f(x+x0) for all x ∈ R2 and define G(y) = F (S(y)) for all y ∈ R2

where S is a rotation such that the lines S(v) · y = 0 and S(w) · y = 0 correspond

to the lines y1 = 0 and y2 = cy1 for −∞ < c < ∞ and G(y) = 0 for all y1 < 0 and

y2 > cy1. Then there exists a constant A such that

|[f ]g| ≤
A

|h1 + ch2|⋆|h2|⋆
∀g ∈ Z2, h = S−1(g).

Proof. Let 0 6= g ∈ Z. With the definitions in the lemma and since supp f ⊂ suppu ⊂
Ω we get

|[f ]g| =
∣∣∣∣
∫

Ω
f(x) e−i2πg·x dx

∣∣∣∣ =
∣∣∣∣
∫

R2

f(x) e−i2πg·x dx

∣∣∣∣

=

∣∣∣∣e
−i2πg·x0

∫

R2

F (x) e−i2πg·x dx

∣∣∣∣ =
∣∣∣∣
∫

R2

F (x) e−i2πg·x dx

∣∣∣∣

=

∣∣∣∣∣

∫

y1>0
y2<cy1

G(y) e−i2πh·y dy

∣∣∣∣∣ with x = S(y) and h = S−1(g).

(3.24)

If g is not parallel with v or w then h2 6= 0 and h1 + ch2 6= 0 and using (3.24) and

integration by parts we get,

|[f ]g| =
∣∣∣∣∣

∫

y1>0
y2<cy1

G(y) e−i2πh·y dy

∣∣∣∣∣

≤ 1
2π|h2|

(∣∣∣∣
∫ ∞

0

[
G(y) e−i2πh·y

]y2=cy1
y2=∞

dy1

∣∣∣∣+
∣∣∣∣∣

∫

y1>0
y2<cy1

Dy2G(y) e−i2πh·y dy

∣∣∣∣∣

)

= 1
2π|h2|

(∣∣∣∣
∫ ∞

0
G(y, cy) e−i2π(h1+ch2)y dy

∣∣∣∣+
∣∣∣∣∣

∫

y1>0
y2<cy1

Dy2G(y) e−i2πh·y dy

∣∣∣∣∣

)
.
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Continuing to integrate by parts we get,

|[f ]g| ≤ 1
4π2|h2||h1+ch2|

(
|G(0)|+

∣∣∣∣
∫ ∞

0
D(G(y, cy)) e−i2π(h1+ch2)y dy

∣∣∣∣

+

∣∣∣∣
∫

y2=cy1

Dy2G(y) e−i2πh·y dy

∣∣∣∣+
∣∣∣∣∣

∫

y1>0
y2<cy1

Dy1Dy2G(y) e−i2πh·y dy

∣∣∣∣∣

)

≤ A

|h2||h1 + ch2|
(3.25)

Note that A depends on f and c, and that c might be very large. In this sense (3.25)

may not be a particularly sharp bound.

Alternatively, if g is parallel to v or w (h2 = 0 or h1 + ch2 = 0) then we can not

carry out both integrations by parts in (3.25) and we only get the following estimate

for |[f ]g| instead,

|[f ]g| ≤





A
|h2| if h1 + ch2 = 0

A
|h1+ch2| if h2 = 0

(3.26)

Hence, the result. Note that A is a generic constant that may be different for (3.25)

and (3.26).

Now we present the main theorem of this subsection (it is an original result). Un-

fortunately, our proof is limited to the function space PC ′
p (see Definition 3.37) which is

more restrictive than PCp (see Definition 3.36), in that only convex Lipschitz polygon

interfaces with a finite number of corners are permitted. However, we think it may be

possible to extend our result to functions from PCp that have Lipschitz interfaces.

Theorem 3.47. Let d = 2 and assume that f ∈ PC ′
p (see Definition 3.37). Then there

exists a constant F such that

Cn =


 ∑

|g1|+|g2|=n
|[f ]g|2




1
2

≤ Fn−1 n ∈ N.

Proof. Recall from Definition 3.37 (and Definition 3.36) that we can write

f(x) = f0(x) +
J∑

j=1

fj(x)

With f(x) defined in this way we can split |[f ]g| into the following,

|[f ]g| ≤ |[f0]g|+
J∑

j=1

|[fj]g| ∀g ∈ Z2. (3.27)

75



3.3. Piecewise Continuous Functions

Now let us fix j and consider each |[fj]g| separately. Since Ωj (from definition of

PC ′
p) is a convex Lipschitz polygon with a finite number of corners we can define a

finite open cover of ∂Ωj , {Wk}Kk=1, such that each Wk covers either a single corner

of ∂Ωj or a straight edge of ∂Ωj . Also define WK+1 to cover the interior of Ωj so

that WK+1 ∩ ∂Ωj = ∅. The family {Wk}K+1
k=1 is a finite open cover of Ωj . Now invoke

Corollary 3.22 of [54] to get a partition of unity {φk}K+1
k=1 for Ωj such that φk ∈ C∞(R2)

and suppφk ⊂Wk for every k = 1, . . . ,K+1 and
∑

k φk = 1 on Ωj . Using our partition

of unity and the definition of a Fourier coefficient (see Definition 3.13) we get

|[fj]g| =
∣∣∣∣∣

K+1∑

k=1

[φkfj ]g

∣∣∣∣∣ ≤
K+1∑

k=1

|[φkfj ]g| g ∈ Z2. (3.28)

With (3.27) and (3.28) we can write

C2
n =

∑

|g1|+|g2|=n
|[f ]g|2

≤ (J + 1)2
∑

|g1|+|g2|=n


|[f0]g|2 +

J∑

j=1

|[fj]g|2



≤ (J + 1)2(K + 1)2
∑

|g1|+|g2|=n


|[f0]g|2 +

J∑

j=1

K+1∑

k=1

|[φkfj ]g|2



≤ (J + 1)2(K + 1)2

(
∑

|g1|+|g2|=n
|[f0]g|2

︸ ︷︷ ︸
I1(n)

+

J∑

j=1

K+1∑

k=1

∑

|g1|+|g2|=n
|[φkfj ]g|2

︸ ︷︷ ︸
I2(n)

)
.

(3.29)

Now we bound I1(n) and I2(n) separately.

By Lemma 3.15 we know that there exists a constant A0 such that |[f0]g| ≤ A0|g|−2

for every 0 6= g ∈ Z2. Using this we bound I1(n) in the following way,

I1(n) =
∑

|g1|+|g2|=n
|[f0]g|2 ≤ A2

0

∑

|g1|+|g2|=n

1

|g|4 ≤ A
2
0(4n)

1

(n/
√

2)4

=
16A2

0

n3
≤ 16A2

0

n2
= B0n

−2 ∀n ∈ N.

(3.30)

To bound I2(n) let us fix j and k and consider each |[φkfj ]g| separately. First, let us

consider the case when k = K+1. In this case φK+1fj ∈ C∞(R2) and supp(φK+1fj) ⊂
Ω so we can extend φK+1fj beyond Ω periodically and use Lemma 3.15 to show that

there exists a constant Aj,K+1 such that |[φK+1fj ]g| ≤ Aj,K+1|g|−2 for every 0 6= g ∈
Z2. Using the same argument as in (3.30) we can show that when k = K + 1 there

exists a constant Bj,K+1 such that I2(n) ≤ Bj,K+1n
−2.

Now let us consider |[φkfj ]g| for the cases when k = 1, . . . ,K. There are two
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possibilities; either Wk covers a corner of ∂Ωj or Wk covers a straight edge of ∂Ωj .

If Wk covers a straight edge of ∂Ωj , then φkfj(x) has the form of f(x) in Lemma

3.45. Therefore, applying Lemma 3.45, there exists a rotation S = Sjk and a constant

Ajk such that

|[φkfj ]g| ≤
Ajk

|h1|⋆|h2|⋆
∀g ∈ Z2, h = S−1(g). (3.31)

Alternatively, if Wk covers a corner of ∂Ωj , then φkfj(x) has the form of f(x) in

Lemma 3.46 (this is where we require that Ωj is convex). Therefore, applying Lemma

3.46, there exists a rotation S = Sjk and constants Ajk and c = cjk with −∞ < cjk <∞
such that

|[φkfj ]g| ≤
Ajk

|h1 + ch2|⋆|h2|⋆
∀g ∈ Z2, h = S−1(g). (3.32)

Now we will (3.32) to bound I2 for the case when Wk covers a corner of ∂Ωj (the

straight edge case is a special case of the corner case with c = 0). In order to bound I2

we will need to define the following four sets of points,

Un := {g ∈ Z2 : |g1|+ |g2| = n}
Vn := {v = kg : |v| = n√

2
,g ∈ Un, k ∈ R, 0 < k ≤ 1}

Wn := {w = S−1(v) : v ∈ Vn}
Xn := {x = kw : |x2| = d or |x1 + cx2| = d

√
1 + c2,w ∈ Wn, k ∈ R, 0 < k ≤ 1}

(3.33)

where d = n√
2
min(1+(

√
1 + c2± c)2)−1/2. Note that the vectors in Un lie on a rotated

(π4 radians) square with sides of length
√

2n centred at the origin; the vectors in Vn lie

on a circle with radius n√
2

centred at the origin; the vectors in Wn also lie on a circle

with radius n√
2

centred at the origin; and d has been calculated so that the points in

Xn lie on the largest possible rhombus inside a circle of radius n√
2

centred at the origin

where the sides of the rhombus are perpendicular to either (0, 1) or (1, c). Also note

that d is the closest distance that a point in Xn can be to the origin. Let us define α

to be the smallest interior angle of the rhombus, then

α =





tan−1(−1
c ) c 6= 0

π
2 c = 0.

It is possible to define bijections between each of these sets. For example, each v ∈ Vn
is a scaled vector in Un, each w ∈ Wn is a rotation of a vector in Vn, and each x ∈ Xn
is a scaled vector in Wn. All of the bijections preserve the relative angles between

the vectors in each set. Moreover, we can bound (from above and below) the angle

between neighbouring points using the following argument. If we consider the vectors

in Un then the smallest angle between neighbouring vectors will be equal to the angle
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xy

n
√

2

b

a

h

α
2

Figure 3-4: Diagram of a rhombus within a circle that correspond to the vectors inWn

and Xn respectively. x is the upper bound for the distance between two neighbouring
vectors from Xn and y is the lower bound for the distance betwen two neighbouring
vectors.

between (0, n) and (1, n− 1), which is equal to tan−1( 1
n−1). The largest angle between

neighbouring vectors will be bounded above by two times the angle between (n2 ,
n
2 )

and (n+1
2 , n−1

2 ), which is equal to 2 tan−1( 1
n). Therefore, if θ is the angle between two

neighbouring vectors in any of our sets then

1
n−1 ≤ tan θ ≤ 2n

n2−1
. (3.34)

Note that in deriving (3.34) we used the identity tan(2A) = 2 tanA
1−tan2 A

.

Now consider two neighbouring vectors in Xn, x(1) and x(2) with |x(1)
2 | = |x

(2)
2 | = d

and let θ denote the angle between them. We can use (3.34) to show that the distance

between the two points is bounded above and below independently of n, i.e. we would

like to bound |x(1)
1 − x

(2)
1 | from above and below.

As in Figure 3-4 we see that an upper bound will occur is y and the lower bound

will be at x. Using simple trigonometry identities we get (for n ≥ 2)

x ≤ b
sin(

α
2 )

=

n√
2

tan θ

sin(
α
2 )
≤ n√

2 sin(
α
2 )

2n
n2−1

≤
√

2

sin(
α
2 )

(1 + 1
n2−1

) ≤ 4
√

2

3 sin(
α
2 )

=: Ax
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and

y ≥ a = h sin θ ≥ d sin θ ≥ d sin(tan−1( 1
n−1)) = d

1
n−1√

1 + ( 1
n−1)2

≥ d 1
n−1

= 1√
2
min(1 + (

√
1 + c2 ± c)2)−1/2 n

n−1 ≥ 1√
2
min(1 + (

√
1 + c2 ± c)2)−1/2 := ax.

Therefore, there exist positive constants ax and Ax (independent of n) such that

ax ≤ |x(1)
1 − x

(2)
1 | ≤ Ax. (3.35)

By symmetry we get an equivalent result for when the two neighbouring points satisfy

|x(1)
1 + cx

(1)
2 | = |x

(2)
1 + cx

(2)
2 | = d

√
1 + c2.

Now we can bound I2(n).

I2(n) =
∑

g∈Un

|[φkfj ]g|2

≤ A2
jk

∑

g∈Un

1

|h1 + ch2|2⋆|h2|2⋆
where h = S−1(g)

≤ A2
jk

∑

g∈Vn

1

|h1 + ch2|2⋆|h2|2⋆
where h = S−1(g)

= A2
jk

∑

h∈Wn

1

|h1 + ch2|2⋆|h2|2⋆

≤ A2
jk

∑

h∈Xn

1

|h1 + ch2|2⋆|h2|2⋆

= A2
jk


2

∑

h∈Xn
|h2|=d

1

|h1 + ch2|2⋆d2
+ 2

∑

h∈Yn

|h1+ch2|=d
√

1+c2

1

d2(1 + c2)|h2|2⋆




≤
A2
jk

d2


8 + 8

⌈n/2⌉∑

k=1

1

k2a2
x| sinα|2


 by (3.35) and symmetry

≤
8A2

jk

d2

(
1 +

1

a2
x| sinα|2

∞∑

k=1

1

k2

)

≤
16A2

jk

n2 min(1 + (
√

1 + c2 ± c)2)−1/2

(
1 +

π2

6a2
x| sinα|2

)

= Bjkn
−2 for n ≥ 2.

To recap, we have shown that there exists constants B0 and Bjk such that I1(n) ≤
B0n

−2 and I2(n) ≤ Bjkn−2 (for both the straight edge and corner cases) for all n ∈ N,

n ≥ 2. Therefore, putting these results back into (3.29) yields the result.
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We can use Lemma 3.47 to obtain an alternative proof for Theorem 3.40 in the case

when f ∈ PC ′
p.

Lemma 3.48. Let d = 2. For f ∈ L2
p, if there exists a constant F such that the Fourier

coefficients of f satisfy

Cn =


 ∑

|g1|+|g2|=n
|[f ]g|2




1/2

≤ Fn−1 n ∈ N,

Then

f ∈ H1/2−ǫ
p

for every ǫ > 0.

Proof. Assume that there exists a constant F such that Cn ≤ Fn−1 for all n ∈ N.

Then, for any ǫ > 0,

‖f‖2
H

1/2−ǫ
p

=
∑

g∈Z2

|g|1−2ǫ
⋆ |[f ]g|2

≤ |[f ]0|2 +

∞∑

n=1

n1−2ǫC2
n

≤ |[f ]0|2 + F
∞∑

n=1

n−1−2ǫ <∞.

3.4 Operator and Spectral Theory

In this section we present the operator and spectral theory that we will need for studying

photonic crystal fibres in the later chapters of this thesis. We will only be considering

linear operators in this thesis. In the first subsection we will define compact, symmetric

and self-adjoint operators on Hilbert spaces. We also define an extension of an operator

and the adjoint of an operator. In another subsection we will then define the spectrum

of an operator on a Hilbert space and we will present definitions that will let us char-

acterise the spectrum of a self-adjoint operator as either essential spectrum or discrete

spectrum. Next, we will present several results that will tell us when the spectrum of an

operator is real and/or discrete. For completeness, we also define absolutely continuous

spectrum since we have already used this term earlier in this thesis. Unfortunately, the

definition of absolutely continuous spectrum is quite complicated and we will need to

invoke the spectral theorem.

Following the subsection on the spectra of operators we will present a subsection

on the Floquet Transform. We will present a definition of the Floquet Transform as
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well as the key spectral result that relates the spectrum of an operator to the union of

spectra of a family of operators obtained under the Floquet Transform.

The main reference for the spectral theory is [37] but we also use [42], whereas

Floquet Theory references include [17], [44], [45] and [69].

Before we proceed, let us define a Hilbert space.

Definition 3.49. A Hilbert space H is a linear vector space with an inner product

(·, ·)H that satisfies, for any u, v, w ∈ H and a ∈ C,

1. (au+ v, w)H = a(u,w)H + (v, w)H;

2. (u, v)H = (v, u)H;

3. (u, u)H ≥ 0 and (u, u)H = 0⇔ u = 0.

A Hilbert space H is also complete with respect to the norm induced by its inner

product, ‖·‖H = (·, ·)1/2H .

All Hilbert spaces are also reflexive Banach spaces.

3.4.1 Operator Definitions

In this subsection we will present definitions for linear operators on Hilbert Spaces.

We define the adjoint and the extension of an operator as well as what constitutes a

symmetric or self-adjoint operator. We then define a compact operator a on Hilbert

space.

Let A be a linear operator from a Hilbert space H1 to another Hilbert Space H2.

By this we mean that A has domain D(A) ⊂ H1 that is dense in H1. The following

defines the adjoint of A.

Definition 3.50. The adjoint of A, A∗, is a linear operator fromH2 toH1 with domain

D(A∗) := {v ∈ H2 : ∃v∗ ∈ H1 such that (Au, v)H2 = (u, v∗)H1∀u ∈ D(A)}.

D(A) dense in H1 implies that for every v ∈ D(A∗) there exists a unique v∗ such that

(Au, v)H2 = (u, v∗)H1 for all u ∈ D(A) and we define A∗v = v∗. In particular,

(Au, v)H2 = (u,A∗v)H1 ∀u ∈ D(A), v ∈ D(A∗).

Now we define an extension of a linear operator on a Hilbert space.

Definition 3.51. Let A1 : H1 → H2 and A2 : H1 → H2 be two linear operators. A2 is

an extension of A1 (A1 ⊂ A2) if

D(A1) ⊂ D(A2) and A1u = A2u ∀u ∈ D(A1)
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Using our definition of an extension of an operator it is easy to define a symmetric

operator.

Definition 3.52. A linear operator A : H → H is symmetric if

(Au, v)H = (u,Av)H ∀u, v ∈ D(A).

This is equivalent to saying A ⊂ A∗.

Finally, we define a self-adjoint linear operator. Note that the condition A is self-

adjoint is stronger than the condition A is symmetric.

Definition 3.53. A linear operator A : H → H is self-adjoint if A = A∗.

We see from the definition of a symmetric operator that A is self-adjoint if A is

symmetric and D(A) = D(A∗). This is the criterion we will use to show that an

operator is self-adjoint in later chapters. We also remark that if A is bounded and

symmetric then A is self-adjoint. We now define compact linear operators.

Definition 3.54. A bounded linear operator, A, on a reflexive Banach space is called

compact if it maps a weakly convergent sequence into a strongly convergent sequence.

3.4.2 Spectra

In this subsection we define the spectrum of a linear operator on a Hilbert space. We

will then define how to split the spectrum into two parts, the essential spectrum and

the discrete spectrum. We then present some results that will tell when the spectrum

of an operator is real and/or discrete. Finally, we present the definition of absolutely

continuous spectrum.

We define the spectrum of an operator by first defining the resolvent set.

Definition 3.55. Let A : H → H be a linear (possibly unbounded) operator with

domain D(A) and let λ ∈ C. λ is in the resolvent set, ρ(A), if the operator RA(λ) :=

(A− λ)−1

1. exists;

2. the domain of RA(λ) is dense in H; and

3. RA(λ) is bounded.

RA(λ) is called the resolvent of A. The spectrum of A, σ(A), is defined by

σ(A) := C\ρ(A)
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According to this definition we can classify λ ∈ σ(A) depending on how the resolvent

fails to satisfy the three conditions in the definition above. If λ ∈ σ(A) then either,

1. ker(A− λ) 6= {0}, or

2. ker(A− λ) = {0} but the range of (A− λ) is not dense in H (in this case RA(λ)

exists on the range of (A − λ) but can not be uniquely extended to a bounded

operator on H), or

3. ker(A−λ) = {0} and the range of (A−λ) is dense in H but RA(λ) is unbounded.

Definition 3.56. Let A : H → H be a linear operator and let λ ∈ σ(A). In case

1. above (ker(A − λ) 6= {0}) λ is called an eigenvalue, u ∈ ker(A − λ) is called an

eigenvector or eigenfunction and Au = λu. Moreover:

1. There is a smallest integer α, called the ascent of A− λ such that ker(A− λ)α =

ker(A− λ)α+1.

2. The functions in ker(A−λ)α are called generalized eigenfunctions of A correspond-

ing to λ and the order of a generalized eigenfunction u is the smallest integer j

such that u ∈ ker(A− λ)j .

3. The geometric multiplicty of A is equal to dim(ker(A− λ)).

4. The algebraic multiplicity of A is equal to dim(ker(A− λ)α).

Note that the algebraic multiplicity is always greater than or equal to the geometric

multiplicity.

Although we have made the distinction between algebraic and geometric multiplicity

in the preceding definition, we will mostly work with compact, self-adjoint operators

on Hilbert spaces. In this case, the ascent is 1, the algebraic multiplicity is equal to

the geometric multiplicity and all generalised eigenfunctions are eigenfunctions in the

usual sense, see page 683 in [6].

Now we split the spectrum into the discrete spectrum and the essential spectrum.

Definition 3.57. Let A : H → H be a linear operator. The discrete spectrum of

A, σd(A), is the set of all eigenvalues with finite (algebraic) multiplicity that are iso-

lated points of σ(A). The essential spectrum of A, σess(A), is defined by σess(A) =

σ(A)\σd(A).

It follows from this definition that if an eigenvalue with finite multiplicity is not

isolated then it is in the essential spectrum. For self-adjoint operators we can chacterise

the essential spectrum in terms of a Weyl sequence. See Definition 7.1 and Theorem

7.2 in [37].
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Definition 3.58. Let A : H → H be a linear self-adjoint operator. A sequence {un}
is called a Weyl sequence for A and λ if un ∈ D(A), ‖un‖H = 1, (un, v)H → 0 for all

v ∈ H and ‖(A− λ)un‖H → 0 as n→∞.

Theorem 3.59. Let A : H → H be a linear self-adjoint operator. Then λ ∈ σess(A) if

and only if there exists a Weyl sequence for A and λ.

Now we present four results that will be useful later in this thesis.

Theorem 3.60. Let A : H → H be linear self-adjoint operator. Then:

1. σ(A) ⊂ R.

2. If A is compact then σ(A) consists of nonzero isolated eigenvalues of finite multi-

plicity with the only possible accumulation point at zero, and possibly zero (which

may have infinite multiplicity).

3. If there exists a µ ∈ ρ(A) such that RA(µ) is a compact operator, then σ(A) =

σd(A).

4. If C : H → H is compact operator, then σess(A) = σess(A+ C).

Proof. The first result is a standard spectral theory result and is given in Theorem 5.5

on page 51 of [37].

Part 2 is Theorem 9.10 on page 93 of [37]. It is often called the Riesz-Schauder

Theorem.

Part 3 follows from Part 2. By definition RA(µ) is bounded, and since RA(µ) is

compact, Part 2 implies that the spectrum of RA(µ) is a sequence eigenvalues λ1, λ2, . . .

with finite multiplicity such that |λn| → 0. RA(µ) has a well-defined inverse, A − µ,

and so 0 is not an eigenvalue of RA(µ). For λ ∈ σ(RA(µ)), let u be a corresponding

eigenfunction. Then

(A− µ)−1u = λu

u = λ(A− µ)u

Au =
(
µ+ 1

λ

)
u.

Therefore, µ+ 1
λ is an eigenvalue of A with corresponding eigenfunction u. Therefore,

the spectrum of A consists of only isolated eigenvalues and the spectrum of A is discrete.

Part 4 is the classical Weyl Theorem as given on page 117 of [69].

The eigenfunctions of a compact, self-adjoint operator can also be characterised in

a special way. The following theorem is Theorem 2.36 on page 47 of [54].
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Theorem 3.61. If A : H → H is compact and self-adjoint then there exist (possibly

finite) sequences of functions u1, u2, . . . in H and real numbers λ1, λ2, . . . that have the

following properties:

1. Each uj is an eigenfunction of A with eigenvalue λj.

2. The eigenfunctions u1, u2, . . . are orthonormal.

3. The eigenvalues satisfy |λ1| ≥ |λ2| ≥ · · · > 0.

4. If the sequences are infinite then λj → 0 as j →∞.

5. The set U = span{u1, u2, . . . } is dense in H.

Now we use the spectral theorem (for example, see Chapter VI, Section 5.3 of [42])

to define the absolutely continuous spectrum of a linear self-adjoint operator. For a

linear self-adjoint operator A : H → H the spectral theorem says that we can uniquely

represent A by

A =

∫ ∞

−∞
λ dE(λ) (3.36)

where {E(λ) : −∞ < λ <∞} is a family of self-adjoint projection operators on H that

satisfy

1. E(λ)E(µ) = E(µ)E(λ) = E(min{λ, µ}) for all λ, µ ∈ R,

2. E(λ) = E(λ+ 0) for all λ ∈ R, i.e E(λ)f = limǫց0E(λ+ ǫ)f for all f ∈ H.

3. limλ→−∞E(λ) = 0 and limλ→+∞E(λ) = I.

4. If S = (λ1, λ2] ⊂ R, with E(S) := E(λ2) − E(λ1), λ1(f, f)H ≤ (Af, f)H ≤
λ2(f, f)H for all f ∈ H and ‖(A − λ)f‖H ≤ |λ1 − λ2|‖f‖H for all λ ∈ S and

f ∈ H.

5. f ∈ D(A) ⇔
∫∞
−∞ λ2d(E(λ)f, f)H =

∫∞
−∞ λ2d‖E(λ)f‖H < ∞, and if f ∈ D(A)

then Af =
∫∞
−∞ λ d(E(λ)f).

In fact, E(S) is defined for all Borel sets S of the real line and for any u ∈ H,

mu(S) := (E(S)u, u)H = ‖E(S)u‖2H is a non-negative countably additive measure

defined for Borel sets S (see page 516 of [42]). If mu(S) is absolutely continuous

(with respect to Lebesgue measure |S|) we say that u is absolutely continuous with

respect to A. The set of all u ∈ H which are absolutely continuous with respect to

A is denoted Hac. Theorems 1.5 and 1.6 on pages 516 and 517 of [42] imply that

we can consider the part of A corresponding to Hac, denoted by Aac, i.e we define

D(Aac) = {f ∈ Hac ∩ D(A) : Af ∈ Hac} and Aacf := Af for all f ∈ D(Aac). The

absolutely continuous spectrum of A is then defined as σac(A) := σ(Aac).
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As we have seen, the definition of absolutely continuous spectrum is quite technical.

All we need to know, however, is that σac(A) ⊂ σess(A) (see [42] page 519). Therefore,

if an operator has purely absolutely continuous spectrum then it must have purely

essential spectrum.

3.4.3 Floquet Transform

In this subsection we define the Floquet Transform. There are two versions that are

used in the literature and they are very closely related. We will define only one version

in this thesis as this is all we will need. We will also present the main theorem from

Floquet Theory.

The Floquet Transform is used to transform an operator with periodic coefficients

(period cell is Ω = [−1
2 ,

1
2 ]d) operating on L2(Rd) into a family of operators operating

on L2
p.

One definition of the Floquet Transform is the following.

Definition 3.62. Let v ∈ L2(Rd) with d = 1, 2. The Floquet Transform of v(x) at

x ∈ Rd is defined as

Fv(x, ξ) =
∑

r∈Zd

v(x− r) e−iξ·(x−r) ∀ξ ∈ Rd

For any fixed ξ ∈ Rd, Fv(·, ξ) is a periodic function and Fv(·, ξ) ∈ L2
p, whereas for

any fixed x ∈ Rd, Fv(x, ·) is quasi-periodic, i.e.

Fv(x, ξ + 2πej) = e−i2πx·ej Fv(x, ξ) ∀ξ ∈ Rd, ∀j ∈ {1, . . . , d}

with period cell B := [−π, π]d, where ej is a unit vector in the jth coordinate direction.

Therefore, it is sufficient to know Fv(x, ξ) for x ∈ Ω and ξ ∈ B.

We now consider the action of the Floquet transform on periodic differential oper-

ators L with the form,

L := L(x,∇) :=

n∑

i,j=1

Dxja
ij(x)Dxi +

n∑

i=1

bi(x)Dxi + c(x)

where the coefficients aij(x), bi(x) and c(x) are all periodic functions with period cell

Ω. It is easy to show that for v ∈ L2(Rd) and fixed x ∈ Rd we get

F(Lv)(x, ξ) = L(x,∇x + ξ)Fv(x, ξ) ∀ξ ∈ Rd.
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where

L(x,∇x + ξ) :=

n∑

i,j=1

(Dxj + ξj)a
ij(x)(Dxi + ξi) +

n∑

i=1

bi(x)(Dxi + ξi) + c(x).

We use the notation Lξ = L(x,∇+ ξ).

Instead of considering the Floquet Transform for fixed x ∈ Ω, we will consider

the transform for fixed ξ ∈ B. In this way, we say that the operator L (with periodic

coefficients) operating on L2(Rd) is transformed into a family of operators Lξ for ξ ∈ B
where each operator Lξ operates on L2

p.

We relate the spectrum of the original operator with the spectra of our family of

operators by stating the key result from Floquet Theory. The result and references to

the proof can be found in [45].

Theorem 3.63. If L is self-adjoint with periodic coefficients then

σ(L) =
⋃

ξ∈B
σ(Lξ)

The proof follows from the notion that the Floquet transform expands L operating

on L2(Rd) into the direct integral (see page 281 of [69]) of operators Lξ on the torus

Td = Rd/Zd.

3.5 Some Results from Functional Analysis

In this section we present some results from functional analysis for studying linear

differential operators in the weak sense. Our aim is to estimate the eigenvalue and

eigenfunction errors for approximating the solution to a variational eigenvalue problem.

In the first subsection we begin by considering the bounded linear operator T and

a family of bounded linear operators Tn such that Tn → T in norm as n → ∞.

We condense the theory in [6] to write down error bounds for the eigenvalues and

eigenfunctions of the operator Tn in terms of the difference between T and Tn.

In the second subsection we define a variational eigenvalue problem and the cor-

responding solution operator. We relate the spectrum of the variational eigenvalue

problem to the spectrum of the solution operator.

In the third subsection we apply the Galerkin method to a variational eigenvalue

problem and we construct a family of solution operators Tn that approximate the so-

lution operator of the original variational eigenvalue problem. We bound the difference

between these operators in terms of the approximation error.

In the fourth subsection we present Strang’s First Lemma in a general setting.

Strang’s First Lemma is a result that we use for estimating errors introduced by small
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modifications of the original problem (e.g. through smoothing discontinuous coeffi-

cients).

Finally, in the fifth subsection we consider a second order PDE boundary value

problem. We write it in variational form and then we prove regularity results for the

solution when we have smooth coefficients. The regularity results for the variational

eigenvalue problems we will be solving will depend on these regularity theorems for

boundary value problems. Understanding the regularity of the eigenfunctions of our

variational eigenvalue problems will be the key to making sharp estimates.

Before we begin the first subsection let us make the following definitions. Through-

out this section let H denote a Hilbert space with inner product (·, ·) and induced norm

‖ · ‖.
Eigenfunction errors will be measured in terms of the difference between eigenspaces.

To measure the difference between eigenspaces that are subspaces of H we will rely on

the following definition.

Definition 3.64. Let X and Y be two closed subspaces of H. The gap between X and

Y is defined as

δ(X,Y ) = sup
x∈X,‖x‖=1

dist(x, Y ) = sup
y∈Y,‖y‖=1

dist(y, Y )

Later in this thesis, when we use δ(·, ·) H will be the Hilbert space H1
p .

Lemma 3.65. Let X, Y and Z be closed subspaces of H. Then

δ(X,Z) ≤ δ(X,Y ) + δ(Y, Z)

The proof of this result is given in Appendix A.3.

From the second subsection onwards we will need the following definitions of prop-

erties for bilinear forms.

Definition 3.66. A bilinear form a(·, ·) : H×H → R may be:

1. bounded if there exists a constant Cb > 0 such that

|a(u, v)| ≤ Cb‖u‖‖v‖ ∀u, v ∈ H; (3.37)

2. coercive if there exists a constant Cc > 0 such that

a(v, v) ≥ Cc‖v‖2 ∀v ∈ H; and (3.38)

3. Hermitian if

a(u, v) = a(v, u) ∀u, v ∈ H.
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If a bilinear form satisfies all of the properties of Definition 3.66 then we get the

following Lemma.

Lemma 3.67. If a bilinear form a(·, ·) is bounded, coercive and Hermitian on H then

it defines an inner product on H and its induced norm |a(·, ·)|1/2 is equivalent to ‖ · ‖.

3.5.1 Error Bounds for Operators

In this subsection we consider a family of bounded linear operators Tn (n ∈ N) such

that Tn → T in norm as n → ∞. We present a result that first establishes that the

eigenvalues and eigenfunctions of Tn approximate those of T and then estimate the

errors for these approximate eigenvalues and eigenfunctions in terms of the difference

between the operators T and Tn. The result is a condensed version of the theory in [6].

Based on [6, Theorem 7.1 on page 685] and [6, Theorem 7.3 on page 689] we get

the following result.

Theorem 3.68. Let the following conditions hold:

1. T : H → H is a bounded, linear, compact operator.

2. Tn : H → H is a family of bounded, linear, compact operators such that ‖T−Tn‖ →
0 as n→∞.

3. µ is an eigenvalue of T with (algebraic) multiplicity m, and corresponding eigenspace

M := ker(µ− T)α where α denotes the ascent of (µ− T).

Then, for sufficiently large n, there exist m eigenvalues of Tn (counted according to

algebraic multiplicities), µ1(n), . . . , µm(n) with corresponding generalised eigenspaces

M1(n), . . . ,Mm(n) and a space

M =

m⊕

j=1

Mj

such that

δ(M,M) . ‖(T−Tn)|M‖

and

|µ− µj | .





m∑

i,k=1

|((T−Tn)φi, φ
∗
k)|+ ‖(T−Tn)|M‖‖(T∗−T∗

n)|M‖





1
α

for j = 1, . . . ,m, where {φ1, . . . , φm} is a basis for M , T∗ and T∗
n are the adjoints of T

and Tn respectively, and {φ∗1, . . . , φ∗m} is a basis for the generalised eigenspace of T∗.

89



3.5. Some Results from Functional Analysis

Note that in the theorem above, the eigenspaces M1, . . . ,Mm are spaces that in-

clude generalised eigenfunctions, i.e. Mj := ker(µj − Tn)
αj where αj is the ascent of

µj for j = 1, . . . ,m. Throughout this thesis we will only be working with the case when

the ascent of µ is one. This will usually be because T is compact and self-adjoint on

a Hilbert space and so M will not contain any generalised eigenfunctions. When the

ascent of µ is one, the algebraic multiplicity of µ is equal to the geometric multiplicity

of µ.

When T or Tn are self-adjoint then Theorem 3.68 can be written down in a more

simple form.

3.5.2 Variational Eigenvalue Problems

In this subsection we define a variational eigenvalue problem and we define the solution

operator that corresponds to the bilinear forms from the variational eigenvalue prob-

lem. We then show the relationship between the solution operator and the variational

eigenvalue problem.

Definition 3.69. A variational eigenvalue problem on H is defined as: Find an eigen-

value λ ∈ C and a non-zero eigenfunction u ∈ H such that

a(u, v) = λb(u, v) ∀v ∈ H (3.39)

where a(·, ·) and b(·, ·) are bilinear forms on H.

Associated with the bilinear forms a(·, ·) and b(·, ·) in Definition 3.69 we define an

operator that we call the solution operator.

Definition 3.70. Assume that a(·, ·) and b(·, ·) are bounded bilinear forms, a(·, ·) is

coercive and let f ∈ H. Then T f is uniquely defined by

a(T f, v) = b(f, v) ∀v ∈ H (3.40)

In this way we have defined an operator T : H → H. We call T the solution operator

corresponding to a(·, ·) and b(·, ·).

Sometimes, we will refer to T as the solution operator corresponding to a variational

eigenvalue problem. We really mean that T is the solution operator corresponding to

the bilinear forms in the variational eigenvalue problem.

The operator T is well-defined and bounded due to the Lax-Milgram Lemma. When

a(·, ·) is Hermitian then T is self-adjoint. The compactness of T depends on properties

of the Hilbert space H.

The following lemma gives us the link between eigenpairs of the variational eigen-

value problem and eigenpairs of its associated solution operator.
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Lemma 3.71. (λ, u) is an eigenpair of the variational eigenvalue problem (3.39) with

λ 6= 0, if and only if ( 1
λ , u) is an eigenpair of the solution operator T corresponding to

(3.39).

Proof. Let (λ, u) be an eigenpair of (3.39) with λ 6= 0. Then

a(u, v) = λb(u, v) ∀v ∈ H ⇔ a
(

1
λu, v

)
= b(u, v) ∀v ∈ H divide through by λ

⇔ Tu = 1
λu by Definition 3.70.

Since the eigenpairs of the variational eigenvalue problem and the solution operator

are linked, the idea of ascent, generalised eigenfunctions, algebraic multiplicty and

geometric multiplicity for the variational eigenvalue problem are inherited from the

solution operator.

3.5.3 Galerkin Method and Error Estimates

In this subsection we apply the Galerkin method to the variational eigenvalue problem

(3.39) to get a discrete variational eigenvalue problem. We then define a solution oper-

ator that corresponds to the discrete variational eigenvalue problem before we bound

the difference between the solution operator corresponding to the original problem

and the new solution operator corresponding to the discrete problem in terms of the

approximation error using Cea’s Lemma.

Error estimates for the Galerkin method applied to (3.39) in terms of the approxi-

mation error then follow from Theorem 3.68 and Lemma 3.71.

We now define the Galerkin method.

Definition 3.72. For n ∈ N choose a finite dimensional subspace Vn ⊂ H. The

Galerkin method applied to the variational eigenvalue problem (3.39) is: Find λn ∈ C

and non-zero un ∈ Vn such that

a(un, v) = λnb(un, v) ∀v ∈ Vn. (3.41)

We call this problem the discrete variational eigenvalue problem.

The Galerkin method is defined by the choice of finite dimensional space Vn. As-

sociated with the choice of Vn is the approximation error. We define it as follows.

Definition 3.73. Let u ∈ H. The approximation error of Vn associated with u is

defined as

inf
χ∈Vn

‖u− χ‖. (3.42)
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We want to choose a sequence of Vn so that the approximation error will tend to

zero as n→∞.

Just as we defined a solution operator corresponding to (3.39) we can define a

family of solution operators corresponding to (3.41) for n ∈ N. Assuming that a(·, ·) is

bounded and coercive and that b(·, ·) is bounded then for each n ∈ N and f ∈ H we

can uniquely define Tn f ∈ Vn by

a(Tn f, v) = b(f, v) ∀v ∈ Vn. (3.43)

In this way, for each n ∈ N, we have defined an operator Tn : H → Vn.
We now prove several properties of Tn in the following Lemma. Notice that Parts

2 and 3 are estimates for the right-hand-sides in Theorem 3.68 in terms of the approx-

imation error. Part 2 is Cea’s Lemma.

Lemma 3.74. Assume that a(·, ·) and b(·, ·) are both bounded bilinear forms and that

a(·, ·) is coercive according to Definition 3.66. Let T and Tn denote the solution op-

erators associated with (3.39) and (3.41) respectively. Then the following properties

hold:

1. Tn = Pn T where Pn is the projection from H onto Vn defined by

a(Pn u− u, v) = 0 ∀u ∈ H, ∀v ∈ Vn.

2. For any u ∈ H,

‖Tn u− Tu‖ ≤
(
1 + Cb

Cc

)
inf
χ∈Vn

‖Tu− χ‖

3. For any u, v ∈ H,

|a(Tu− Tn u, v)| ≤ Cb
(
1 + Cb

Cc

)
inf
χ∈Vn

‖Tu− χ‖ inf
χ∈Vn

‖v − χ‖

where Cb and Cc are the constants from (3.37) and (3.38) associated with the bilinear

form a(·, ·).

Proof. Part 1. For any u ∈ H and any vn ∈ Vn we get

a(Tn u, vn) = b(u, vn) by definition of Tn

= a(Tu, vn) by definition of T

= a(Pn Tu, vn) + a(Tu− Pn Tu, v)

= a(Pn Tu, vn) by definition of Pn.
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It then follows that

a((Tn−Pn T)u, vn) = 0 ∀u ∈ H, ∀vn ∈ Vn
=⇒ a((Tn−Pn T)u, (Tn−Pn T)u) = 0 choosing vn = (Tn−Pn T)u

=⇒ ‖(Tn−Pn T)u‖ = 0 by coercivity of a(·, ·).

The final statement is true for all u ∈ H and so Tn = Pn T.

Part 2. This is just Cea’s Lemma. Let u ∈ H. Using Vn ⊂ H, subtract (3.43) from

(3.40) to get

a(Tu− Tn u, vn) = 0 ∀vn ∈ Vn. (3.44)

For all vn, wn ∈ Vn and using (3.44) we then get

a(Tu− wn, vn) = a(Tu− Tn u, vn) + a(Tn u− wn, vn)
= a(Tn u− wn, vn). (3.45)

Now choose wn ∈ Vn such that Tn u− wn 6= 0. We get

‖Tn u− wn‖ ≤ 1
Cc

|a(Tn u− wn,Tn u− wn)|
‖Tn u− wn‖

by coercivity of a(·, ·)

≤ 1
Cc

sup
0 6=vn∈Vn

|a(Tn u− wn, vn)|
‖vn‖

= 1
Cc

sup
0 6=vn∈Vn

|a(Tu− wn, vn)|
‖vn‖

by (3.45)

≤ Cb
Cc
‖Tu− wn‖ by boundedness of a(·, ·)

Notice that this statement still holds if Tn u− wn = 0. Therefore,

‖Tu− Tn u‖ ≤ ‖Tu− wn‖+ ‖Tn u− wn‖

≤
(
1 + Cb

Cc

)
‖Tu− wn‖ ∀wn ∈ Vn

The result follows by taking the infimum over wn ∈ Vn.

Part 3. This result is an adaptation of part of a proof in [6]. With u, v ∈ H we get

|a((T−Tn)u, v)| = |a((T−Tn)u, v − χ)| ∀χ ∈ Vn by (3.44)

≤ Cb‖(T−Tn)u‖‖v − χ‖ by boundedness of a(·, ·)
= Cb‖(T−Tn)u‖ inf

χ∈Vn

‖v − χ‖

≤ Cb
(
1 + Cb

Cc

)
inf
χ∈Vn

‖Tu− χ‖ inf
χ∈Vn

‖v − χ‖ by Part 2.
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In later chapters of this thesis we will use these three properties in conjuction with

Theorem 3.68 to develop the error analysis of the spectral Galerkin method.

3.5.4 Strang’s First Lemma

In this subsection we present Strang’s First Lemma (as in Theorem 4.1.1 on page 186

of [9]). In [9], Strang’s (first) Lemma is used to obtain error estimates when numerical

integration is needed to evaluate the bilinear form a(·, ·) to determine the entries of

the coefficient matrix. By using a quadrature formula to evaluate a(·, ·) we effectively

solve a discrete variational problem with a different bilinear form ã(·, ·). By solving a

modified problem we have introduced an additional error and Strang’s Lemma bounds

this error in terms of the difference between a(·, ·) and ã(·, ·).
Here, we will not be using quadrature to evaluate a(·, ·). However, we will be

using a modified bilinear form ã(·, ·) instead of a(·, ·) when we apply the smoothing

method, where the discontinuous coefficients of our problem are replaced with smooth

coefficients. We are interested in bounding the error that we introduce by using this

modified bilinear form.

It is important to note that in the following theorem V ⊂ H is not necessarily a finite

dimensional subspace. Indeed, we will apply the result when V is infinite dimensional.

Theorem 3.75. Let u ∈ H be the solution to

a(u, v) = F (v) ∀v ∈ H

where a(·, ·) is a bounded, coercive bilinear form and F (·) is a bounded linear functional

on H. Also let V ⊂ H and let ũ ∈ V be the solution to

ã(ũ, v) = F̃ (v) ∀v ∈ V

where ã(·, ·) is a bilinear form that is coercive on V and F̃ (·) is a bounded linear func-

tional on V. Then

‖u− ũ‖ ≤ C
(

inf
v∈V

{
‖u− v‖+ sup

w∈V

|a(v, w)− ã(v, w)|
‖w‖

}
+ sup
w∈V

|F (w)− F̃ (w)|
‖w‖

)

where C = max( 1
C̃c
, 1 + Cb

C̃c
), Cb is the constant in (3.37) corresponding to a(·, ·) and

C̃c corresponds to ã(·, ·) in (3.38).

Proof. Let v ∈ V such that v 6= ũ. Then we may write

‖u− ũ‖ ≤ ‖u− v‖+ ‖v − ũ‖ (3.46)

Now set 0 6= w = ũ− v ∈ V. Then, using the coercivity of ã(·, ·) and the boundedness
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of a(·, ·), we get

C̃c‖ũ− v‖2 ≤ ã(ũ− v, ũ− v)
= ã(ũ− v, w)

= a(u− v, w) + [a(v, w)− ã(v, w)] + [ã(ũ, w)− a(u,w)]

= a(u− v, w) + [a(v, w)− ã(v, w)] + [F̃ (w)− F (w)]

≤ Cb‖u− v‖‖w‖+ [a(v, w)− ã(v, w)] + [F̃ (w)− F (w)]

Now divide through by C̃c‖ũ− v‖ = C̃c‖w‖ to get

‖ũ− v‖ ≤ Cb

C̃c
‖u− v‖+ 1

C̃c

|a(v, w)− ã(v, w)|
‖w‖ + 1

C̃c

|F̃ (w)− F (w)|
‖w‖ . (3.47)

Now take the supremum over w ∈ V to get

‖ũ− v‖ ≤ Cb

C̃c
‖u− v‖+ 1

C̃c
sup
w∈V

|a(v, w)− ã(v, w)|
‖w‖ + 1

C̃c
sup
w∈V

|F̃ (w)− F (w)|
‖w‖ (3.48)

Notice that if (3.48) also holds if v = ũ (w = 0). Now put (3.46) and (3.48) together

and take the infimum over v ∈ V to get

‖u− ũ‖ ≤ inf
v∈V

{(
1 + Cb

C̃c

)
‖u− v‖+ 1

C̃c
sup
w∈V

|a(v, w)− ã(v, w)|
‖w‖

}

+ 1
C̃c

sup
w∈V

|F (w)− F̃ (w)|
‖w‖

3.5.5 Regularity

In this subsection we consider two second order elliptic PDE boundary value problems

and we develop a regularity result with estimates for each problem. The first problem

we look at will be posed on a bounded domain with homogeneous Dirichlet boundary

conditions while the second problem will have periodic boundary conditons and periodic

coefficients. Both problems will have smooth coefficients as well as other restrictions

that we will assume.

We will use the regularity result for the periodic boundary value problem to obtain

the regularity of periodic eigenfunctions for the same differential operators in later

chapters.

Let Ω′ ⊂ Rd be a bounded open set such that ∂Ω′ is of class C∞ (see remark after
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Definition 3.35). Consider an elliptic boundary value problem for f ∈ L2(Ω′),

Lu = f in Ω′

u = 0 on ∂Ω′
(3.49)

where

L := −
d∑

i,j=1

Dxj (a
ij(x)Dxi) +

d∑

i=1

bi(x)Dxi + c(x), (3.50)

with coefficients aij , bi, c ∈ C∞(Ω′) that satisfy

d∑

i,j=1

aij(x)ξiξj ≥ C|ξ|2 ∀ξ ∈ Rd,x ∈ Ω′

for some constant C > 0 (this is the definition of elliptic). We also restrict the coeffi-

cients so that L is self-adjoint in the sense defined in [52]. This requires that aij = aji,

bi = −bi and c = c −∑d
i=1Dxib

i for all i, j = 1, . . . , d. (The adjoint problem also has

homogeneous Dirichlet boundary conditions).

In the usual way, we solve (3.49) in the weak sense. This leads to the variational

problem: find u ∈ H1
0 (Ω′) such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω′) (3.51)

where a(·, ·) is a bilinear form and F (v) is a linear functional, given by

a(u, v) :=

∫

Ω′

d∑

i,j=1

aijDxiuDxjv +
d∑

i=1

biDxiuv + cuvdx

F (v) := (f, v)L2(Ω′).

The assumptions on the coefficients of L that we have given above imply that a(·, ·) is

a bounded and coercive bilinear form and we can condense the result given on pages

188 and 189 of [52] to get the following result.

Theorem 3.76. Consider the problem (3.49) with all of the restrictions on the coeffi-

cients listed above. Let s ∈ R, with s ≥ 2 and let f ∈ Hs−2(Ω′). Then there exists a

unique solution u to (3.51) such that u ∈ Hs(Ω′) and

‖u‖Hs(Ω′) ≤ C‖f‖Hs−2(Ω′)

for a constant C (independent of f).

Proof. The uniqueness of the solution follows from the Lax-Milgram Lemma whereas

the regularity and estimate come from the result on pages 188 and 189 of [52].
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Now let us consider a boundary value problem with periodic boundary conditions.

With period cell Ω defined as in previous sections, the boundary value problem with

periodic boundary conditions for f ∈ L2
p is

Lu = f in Rd (3.52)

u is periodic with period cell Ω

where L has the same expression as in (3.50) except we now assume that aij , bi, c ∈ C∞
p ,

and
d∑

i,j=1

aij(x)ξiξj ≥ C|ξ|2 ∀ξ ∈ Rd,x ∈ Rd

for some constant C > 0. We still require that aij = aji, bi = −bi and c = c−∑d
i=1Dxib

i

for all i, j = 1, . . . , d. The weak form of this problem is to search for u ∈ H1
p such that

a(u, v) = F (v) ∀v ∈ H1
p . (3.53)

where

a(u, v) :=

∫

Ω

d∑

i,j=1

aijDxiuDxjv +

d∑

i=1

biDxiuv + cuvdx

F (v) :=

∫

Ω
fvdx.

Given these assumptions we use Theorem 3.76 to prove the following result.

Theorem 3.77. Consider the problem (3.52) with all of the restrictions on the coeffi-

cients listed above. Let s ∈ R, with s ≥ 2 and let f ∈ Hs−2
p . Then there exists a unique

solution u to (3.53) such that u ∈ Hs
p and

‖u‖Hs
p
≤ C‖f‖Hs−2

p
(3.54)

for a constant C.

Proof. Because of our assumptions on the coefficients aij , bi and c, the bilinear form

a(·, ·) is bounded and coercive, and we can apply the Lax-Milgram Lemma to get that

(3.53) has a unique solution u ∈ H1
p and

‖u‖H1
p

. ‖f‖H0
p
≤ ‖f‖Hs−2

p
. (3.55)

Define θ ∈ D(Rd) according to Lemma 3.17 and choose Ω′ ⊂ Rd such that ∂Ω′ is of

class C∞ and supp θ ⊂ Ω′ (e.g. choose Ω′ to be the open ball with a sufficiently large

radius so that supp θ ⊂ Ω′).
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Then, by applying L to w = θu we see that w is the unique weak solution to the

problem

Lw = θf + g in Ω′

w = 0 on ∂Ω′

where

g =
d∑

i,j=1

aij(Dxjθ)(Dxiu) + aij(Dxiθ)(Dxju) + (Dxja
ijDxiθ)u+

d∑

i=1

bi(Dxiθ)u (3.56)

Now consider the case when s = 2. By Theorem 3.76, θu ∈ H2(Ω′) and we get

‖u‖H2
p

. ‖θu‖H2(Rd) by Theorem 3.29

= ‖θu‖H2(Ω′) since supp θu ⊂ Ω′

. ‖θf + g‖H0(Ω′) by Theorem 3.76

. ‖f‖H0
p

+ ‖g‖H0(Rd) by Theorem 3.29 and extending g with zero

Now choose θ̃ ∈ D(Rd) to be another function that satisfies the conditions of Lemma

3.17 and define θ̃k(x) = θ̃(x + k). Since suppu ⊂ Ω′, θ̃ku 6= 0 for a finite number of

k ∈ Zd and we get the following where the sum is over a finite number of k ∈ Zd,

‖u‖H2
p

. ‖f‖H0
p

+

∥∥∥∥∥∥


∑

k∈Zd

θ̃k


 g

∥∥∥∥∥∥
H0(Rd)

since
∑

k θ̃k = 1

. ‖f‖H0
p

+
∑

k∈Zd

(
d∑

i=1

‖θ̃k(Dxiu)‖H0(Rd) + ‖θ̃ku‖H0(Rd)

)
by (3.56)

where the coefficients of u and Dxi in (3.56) have been absorbed into the constant from

“.”. Now see that since suppu ⊂ Ω′, θ̃ku 6= 0 for a finite number of k ∈ Zd and using

Theorem 3.29 we get

‖u‖H2
p

. ‖f‖H0
p

+

d∑

i=1

‖Dxiu‖H0
p

+ ‖u‖H0
p

. ‖f‖H0
p

+ ‖u‖H1
p

. ‖f‖H0
p

by (3.55).

This completes the case s = 2.

Now consider the case for general s ∈ R, s > 2. Note first that using (3.54) with
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s = 2 we also get

‖u‖Hs
p

. ‖u‖H2
p

. ‖f‖H0
p

∀s ∈ [1, 2]. (3.57)

Now let f ∈ Hs−2
p . By Theorem 3.76, θu ∈ Hs(Ω′) and

‖u‖Hs
p

. ‖θu‖Hs(Rd) by Theorem 3.29

= ‖θu‖Hs(Ω′) since supp θu ⊂ Ω′

. ‖θf + g‖Hs−2(Ω′) by Theorem 3.76

. ‖f‖Hs−2
p

+ ‖g‖Hs−2(Rd) by Theorem 3.29 and extending g with zero

. ‖f‖Hs−2
p

+ ‖u‖Hs−1
p

by the same argument as for s = 2

Now, if s− 1 ≤ 2 (s ≤ 3) we can use (3.57) to get

‖u‖Hs
p

. ‖f‖Hs−2
p

+ ‖f‖H0
p

. ‖f‖Hs−2
p

or, if s − 1 > 2 (s > 3) we can repeat the arguement above, applying Theorem 3.76

again to get

‖u‖Hs
p

. ‖f‖Hs−2
p

+ ‖f‖Hs−3
p

+ ‖u‖Hs−2
p

. ‖f‖Hs−2
p

+ ‖u‖Hs−2
p

.

Now consider whether s − 2 ≤ 2 and apply (3.57) or apply Theorem 3.76 again. The

result follows by repeating the argument above as many times as necessary.

3.6 Numerical Linear Algebra

In this section we present the tools from numerical linear algebra for solving matrix

eigenvalue problems of the form

Ax = λx A ∈ Rn×n. (3.58)

This is not the central focus of this thesis so we will be relatively brief.

We will consider the case when A is symmetric, positive definite (spd) as well as

the case when A is unsymmetric. We also note that in practice, we only need to solve

(3.58) for the smallest few eigenvalues and corresponding eigenvectors.

The rest of this section is divided into three subsections. In Subsection 3.6.1 we

present a Krylov subspace iteration method for finding a subset of the eigenpairs of

(3.58). Each step of the method will require us to solve a linear system of the form

Ax = b (3.59)

for x given b. In Subsection 3.6.2 we present the conjugate gradient method (CG)
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and the generalised minimal residual method (GMRES) for solving (3.59). Finally,

in Subsection 3.6.3 we introduce preconditioning. We rewrite the algorithms for CG

and GMRES to include preconditioning and we link the number of iterations required

to solve (3.59) to the condition number of the coefficient matrix, where the condition

number of a matrix A is defined as

κ(A) := ‖A ‖‖A−1 ‖.

Throughout this section we will let MVc denote the number of operations required

to compute a matrix-vector product with A. If A is dense thenMVc = O(n2). However,

for our numerical examples later in this thesis we will have MVc = O(n logn).

3.6.1 Krylov Subspace Iteration

In this subsection we describe Arnoldi’s method for approximating the k most extremal

eigenvalues of A (i.e k eigenvalues that are away from other eigenvalues). When A is

symmetric Arnoldi’s method symplifies to Lanczos’ method.

The idea of Arnoldi’s method is to transform the problem of finding k eigenvalues of

A, where A is n×n, to finding k eigenvalues of H, where H is anm×m upper Hessenberg

matrix (only one non-zero sub-diagonal) with k ≤ m≪ n. The transformation can be

achieved through an iterative scheme. A direct method - the QR algorithm - is used

to find the eigenvalues of H.

The iterative scheme for transforming A to upper Hessenberg H is called the Arnoldi

process (not to be confused with the Arnoldi method. The Arnoldi method includes

computing the eigenvalues and eigenfunctions of H.). We present the Arnoldi process

in the following algorithm. Let ‖·‖ denote here the Euclidean norm for vectors.

Algorithm 3.78. Arnoldi Process. Choose a tolerance ǫtol > 0 and a starting vector

q. The Arnoldi process is as follows:

q1 = q/‖q‖.
For i = 1, 2, 3, . . .

v = Aqi

(⋆) For j = 1, 2, 3, . . . , i

hji = qTj v

v = v − hjiqj
hi+1,i = ‖v‖
If hi+1,i < ǫtol and i ≥ k then set qi+1 = v, m = i and exit the Arnoldi process.

If hi+1,i < ǫtol and i < k then select random v and go to (⋆).

qi+1 = v/hi+1,i

The output of the Arnoldi process is described by the following lemma which is

[73, Propositions 6.5 & 6.6]. The proof of the lemma follows from the algorithm and is
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given in [73].

Lemma 3.79. 1. The vectors q1, . . . ,qm form an orthonormal basis for the Krylov

subspace Km = span{q,Aq, . . . ,Am−1 q}.

2. If we define a n ×m matrix Qm with columns q1, . . . ,qm and a m ×m matrix

Hm with entries hij defined by the algorithm then

A Qm = Qm Hm+qm+1e
T
m (3.60)

QT
mA Qm = Hm

where em is an n-vector of zeros with a one in the mth position.

The cost of m steps of the Arnoldi process is the cost of m matrix-vector product

operations (mMVc) and the operations to compute Hm and Qm (O(mn)). Therefore,

the total cost of m steps of the Arnoldi process is O(mn+mMVc).

The next step of Arnoldi’s method is to compute the k largest eigenvalues and

corresponding eigenvectors of Hm. This is done using the QR Algorithm. Since Hm

is already upper Hessenberg each iteration of the QR Algorithm will cost only O(m2)

operations since the QR Factorization step will only cost O(m2) operations. Assuming

that the QR Algorithm converges in O(m) iterations the total cost of the QR Algorithm

will be O(m3) operations (see page 194 of [83]).

Therefore, assuming that the Arnoldi process terminates after m steps and that the

QR Algorithm converges in O(m) iterations, then the complete Arnoldi method will

cost O(mn+mMVc +m3) operations.

The following theorem explains why the eigenvalues of Hm approximate the eigen-

values of A, thus ensuring that Arnoldi’s method works.

Theorem 3.80. Let (µ,y) be an eigenpair of Hm with ‖y‖ = 1. Then µ and x := Qm y

are an approximate eigenpair of A with

‖Ax− µx‖ = hm+1,m|ym| ≤ ǫtol

where ym is the mth component of y.

Proof. From (3.60) we get

Ax = A Qm y

= QmHm y + qm+1e
T
my

= Qm µy + qm+1ym

= µx + qm+1ym
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The result then follows from

‖Ax− µx‖ = ‖qm+1‖|ym| = hm+1,m|ym|.

It remains to show that the eigenvalues ofHm approximate the extremal eigenvalues

of A (i.e. eigenvalues that are away from the other eigenvalues of A). By Theorem 3.80

and Lemma 3.79 we have that the m eigenvectors approximated by the Arnoldi process

are in the m-dimensional Krylov subspace Km. We present a result that estimates the

distance between an exact eigenvector of A and Km. The bound will depend on the

initial vector q and the spectrum of A. A secondary result, will show that the bound

is smaller when the exact eigenvector corresponds to an extremal eigenvalue. The

following results are from Chapter 6.7 of [73] and we assume that A is diagonalizable.

Theorem 3.81. Assume that A is diagonalizable and that the initial vector q is ex-

panded q =
∑n

j=1 αjuj with respect to the eigenbasis {uj}nj=1 of A where ‖uj‖2 = 1 for

j = 1, . . . , n. Let Pm define the orthogonal projection onto Km. Assume that αi 6= 0

for some i ∈ {1, 2, . . . , n}. Then

‖(I − Pm)ui‖2 ≤ Ciǫ(m)
i (3.61)

where

Ci =
∑

k=1
k 6=i

|αk|
|αi|

ǫ
(m)
i = min

p∈Pm−1

p(λi)=1

max
λ∈σ(A)
λ6=λi

|p(λ)|

and Pm−1 denotes the set of all polynomials with degree at most m− 1.

In the Theorem above note that Ci entirely depends the choice of the initial vector

q and that q must have a component in the direction of the eigenvector we want to

approximate. Also note that ǫ
(m)
i only depends on the spectrum of A. We show that

Arnoldi’s process approximates the extremal eigenvalues of A by showing that ǫ
(m)
i is

smaller for λi away from other eigenvalues of A. For this we need the following theorem

(also from Chapter 6.7 of [73]).

Theorem 3.82. Let m < n, let i ∈ {1, 2, . . . , n} and let (λi, ui) be an eigenpair of A.

Then there exist m eigenvalues of A which can be labelled λi,1, λi,2, . . . , λi,m such that

ǫ
(m)
i =




m∑

j=1

m∏

k=1
k 6=j

|λi,k − λi|
|λi,k − λi,j |




−1

(3.62)
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To bound ǫ
(m)
i from above we should choose λi,1, . . . , λi,m so that the right-hand-

side of (3.62) is as large as possible. This corresponds to choosing λi,1, . . . , λi,m so that

they are relatively as close as possible to λ compared with each other. If λ is far away

from the other eigenvalues of A then choosing λi,1, . . . , λi,m in this way will still give a

small upper bound on ǫ
(m)
i . However, if λ is clustered together with other eigenvalues

then our strategy for choosing λi,1, . . . , λi,m will result in a large ǫ
(m)
i . Therefore, we

can construct a smaller bound in (3.61) for an extremal eigenvalue provided our initial

guess has a component in the direction of the eigenvector that corresponds to the

extremal eigenvalue. This is not a rigorous proof but it agrees with our observations

that extremal eigenvalues are approximated first by Arnoldi’s method.

As we have stated it, we expect Arnoldi’s method to approximate k extremal eigen-

values of a matrix A and these eigenvalues may be the largest or smallest eigenvalues

of A (or they may be in the middle of the spectrum if the largest and smallest eigen-

values are densely clustered). If the smallest eigenvalues of A are densely clustered and

we want to approximate the smallest k eigenvalues of A then we can apply Arnoldi’s

method to A−1. The clustered smallest eigenvalues will then become the largest eigen-

values of A−1 and they will be (relatively) widely spaced. Similarly, to approximate

the k eigenvalues closest to a particular value σ, we replace A in Arnoldi’s method with

(A−σ)−1. Arnoldi’s method will then approximate k extremal eigenvalues of (A−σ)−1,

which we denote by µ1, . . . , µk. The k eigenvalues of A closest to σ are then given by

λi = 1
µi

+ σ for i = 1, . . . , k. The eigenvector corresponding to µi is the eigenvector

corresponding to λi. We do not necessarily need to store the matrices A−1 or (A−σ)−1

to calculate these eigenvalues. Since the Arnoldi process only requires the action of A

on a vector (the matrix-vector product), we only need the action of A−1 or (A−σ)−1

on a vector. This can be obtained by solving linear systems of the form of (3.59) or

(A−σ)x = b. This is the topic of the next subsection.

A variation of Arnoldi’s method is the Implicitly Restarted Arnoldi Method (IRA)

(first published in [77], also described in [87]). The idea of IRA is to reduce the

computational cost of Arnoldi’s method by limiting the number of steps in the Arnoldi

process and therefore limiting the size of the matrices Qm and Hm. We see from

Theorem 3.81 that the convergence of the Arnoldi process depends on the choice of

starting vector q. The idea of the IRA method is to restart the Arnoldi process after

a fixed number of iterations with a better choice of q, if the Arnoldi process has not

already converged. Let m = ℓ + j denote when the Arnoldi process will restart. As

well as restarting the Arnoldi process, the IRA method also implicity computes the

first ℓ iterations after each restart. So, after each restart, the IRA method only needs

to compute j iterations of the Arnoldi process before the next restart (to effectively

compute m iterations). The IRA method is not equivalent to Arnoldi’s method and

some information is lost at each restart.

103



3.6. Numerical Linear Algebra

For the computation of examples in later chapters of this thesis we use the IRA

method that is implemented in ARPACK [51].

If A is symmetric then Arnoldi’s method becomes Lanczos’ method. We replace

the Arnoldi process in Algorithm 3.78 with the Lanczos process (see [83] or [13]). The

result is an algorithm that computes a symmetric tridiagonal matrix T instead an

upper Hessenberg matrix H. The eigenvalues of T then approximate the eigenvalues of

A and Theorem 3.80 holds with H replaced with T. The cost of computing the Lanczos

process is the same as for the Arnoldi process but the cost of applying the QR algorithm

to T is reduced to O(m2) operations (from O(m3) for Arnoldi) if only eigenvalues are

required (assuming that the QR algorithm converges in O(m) operations). See page

194 of [83] for a discussion of this. Therefore, the total cost of the Lanczos’ method is

O(mn +mMVc +m2) if only eigenvalues are required. There are more results about

the convergence of Lanczos’ method to the extremal eigenvalues of A given in [73].

3.6.2 Linear Systems

In this subsection we discuss the problem of solving (3.59) for x given a right-hand-side

b. We present two methods: the conjugate gradient method (CG) and the generalized

minimum residual method (GMRES). We use CG when A is symmetric positive definite

(spd), otherwise we use GMRES. We begin with CG. The algorithm that follows is from

[74].

Algorithm 3.83. CG. Choose a tolerance ǫtol > 0, a starting vector x0 and set

r0 = p0 = b−Ax0.

For k = 0, 1, 2, . . .

If ‖rk‖ < ǫtol‖r0‖ then exit

α =
rT

k rk

pT
k Apk

xk+1 = xk + αpk

rk+1 = b− αApk

β =
rT

k+1rk+1

rT
k rk

pk+1 = rk+1 + βpk

The CG algorithm has the following two properties that we present in a theorem.

These results are Theorems 38.2 and 38.5 of [83]. We omit the proofs.

Theorem 3.84. Let A be spd. Each step of the CG algorithm computes xk ∈ x0 +

Kk(A, r0) such that ‖x−xk‖A is minimal where Kk(A, r0) = span{r0,A r0, . . . ,A
k−1 r0}

and ‖y‖A =
√

yT Ay is the energy norm induced by A (exists for A spd). Moreover

‖x− xk‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x− x0‖A.
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We can see from this theorem that convergence of the CG method is geometric.

However, if κ(A) is large then the geometric convergence will be slow. On the other

hand, if κ(A) is close to one then the convergence of the CG method will be very fast.

Now we discuss GMRES. In some sense it mimics the behaviour of CG for non-

symmetric systems, i.e. it is designed to minimise ‖b−Axk‖ over all xk ∈ x0+Kk(A, r0)

in some specific norm ‖·‖. Before we present the GMRES algorithm from page 45 of [43]

we must define the following matrices. We define the Given’s rotation matrix Gj(c, s)

by

Gj(c, s) =




1 0 · · · 0

0
. . .

. . .

. . . c −s
... s c 0

...

0 1
. . .

. . .
. . . 0

0 · · · 0 1




where the 2× 2 block
(
c −s
s c

)
is in the jth and j + 1st row and column. We also define

Qk = Gk(ck, sk) . . . G1(c1, s1) and Vk = [v1v2 · · ·vk] where vi are orthonormal vectors.

We can now define the GMRES algorithm. It is based again on the Arnoldi process.

Algorithm 3.85. GMRES. Choose a tolerance ǫtol > 0, a maximum number of

iterations kmax, a starting vector x0, set r0 = b − Ax0, ρ = ‖r0‖, v1 = r0
ρ and

g = ρe1 ∈ Rkmax+1.

For k = 1, 2, . . . , kmax

If ρ < ǫtol‖b‖ then exit

vk+1 = Avk

For j = 1, . . . , k

hjk = vTk+1vj

vk+1 = vk+1 − hjkvj
hk+1,k = ‖vk+1‖
vk+1 = vk+1/hk+1,k

If k > 1 then apply Qk−1 to the kth column of H.

ν =
√
h2
k,k + h2

k+1,k

ck = hk,k/ν, sk = −hk+1,k/ν

hk,k = ckhk,k − skhk+1,k, hk+1,k = 0

g = Gk(ck, sk)g

ρ = |gk+1|
Set rij = hij for 1 ≤ i, j ≤ k
Set wi = gi for 1 ≤ i ≤ k
Solve upper triangular system Ryk = w
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xk = x0 + Vk yk

The cost of each iteration of the GMRES algorithm is O(kn + MVc) operations.

The break-down of this cost is: MVc operations for the matrix-vector product; O(kn)

for the orthogonalization procedure (Arnoldi process/Gram-Schmidt); O(k2) for the

triangular solve; and O(kn) for constructing xk. The storage required by the GMRES

algorithm is O(kn) since the n× k matrix Vk is stored (assuming that we do not store

A explicitly).

The GMRES algorithm is also guaranteed to terminate after n iterations (Theorem

3.1.2 on page 34 of [43]). However, if we did in fact iterate up to k = n then GMRES

would cost O(n3) operations and the storage requirement would be O(n2).

Often it is the storage requirement that makes standard GMRES impractical. To

alleviate the storage requirements of GMRES we use a variation of GMRES: Restarted

GMRES. In Restarted GMRES we set kmax = m ≪ n and restart the algorithm with

x0 = xm if it does not terminate before k = kmax. Restarted GMRES is not equivalent

to GMRES because the information in Vm (the basis for K(A, r0) is discarded when

the algorithm is restarted. For this reason, [43, Theorem 3.1.2] can not be applied to

Restarted GMRES and it is not guaranteed to terminate. However, it works well in

practice and only requires O(mn) storage.

The residual at each iteration of GMRES can be bounded in the following way.

Theorem 3.86. At each step k of GMRES, the residual rk is bounded by

‖rk‖
‖r0‖

≤ inf
pk∈Pk

‖pk(A)‖

where Pk is the space of all degree k polynomials. If A is diagonalizable we may write

A = V ΛV−1 where V is orthogonal and Λ is diagonal containing the eigenvalues of A.

Then
‖rk‖
‖r0‖

≤ κ(V) inf
pk∈Pk

sup
λ∈Λ(A)

|pk(λ)|

where Λ(A) is the set of all eigenvalues of A.

In Theorem 3.84 we saw that the convergence of CG depended on κ(A) = λmax
λmin

(for

‖ · ‖ = ‖ · ‖2), i.e. the convergence of CG depends only on the spectrum of A. This is

in contrast to GMRES where in Theorem 3.86 we see that the convergence depends on

the eigenfunctions of A (through κ(V)) as well as the spectrum of A.

3.6.3 Preconditioning Linear Systems

In this subsection we discuss the technique called preconditioning that is used to make

(3.59) easier to solve. Instead of solving (3.59), we solve

(P−1 A)x = (P−1 b) (3.63)
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where the matrix P is called the preconditioner. The idea is to choose P so that the

condition number of P−1 A is less than the condition number of A and the operation

of P−1 cheap to compute.

In both the CG method and the GMRES method we have chosen to terminate when

the relative residual ‖b−Axk‖
‖b−Ax0‖ is bounded by a tolerance ǫtol. We hope that the relative

residual gives a good indication of the actual error in xk. It is possible to derive the

following bound, where x⋆ is the exact solution to (3.59),

‖xk − x⋆‖
‖x0 − x⋆‖ ≤ κ(A)

‖b−Axk‖
‖b−Ax0‖

.

Therefore, if we choose P so that κ(P−1 A) ≪ κ(A) then both CG and GMRES will

terminate when the relative residual error is a more acurate bound of the actual relative

error.

As well as achieving a better indication of the actual error by preconditioning (3.59)

we also achieve faster convergence for either CG or GMRES through preconditioning.

First, we will present the Preconditioned Conjugate Gradient (PCG) method, then we

consider preconditioning with GMRES.

For the CG method the coefficient matrix must be spd but for A and P−1 spd,

P−1 A is unsymmetric in general. Therefore, if we want to solve the preconditioned

linear system we must choose P−1 spd and solve

(P−1/2 AP−1/2)y = P−1/2 b (3.64)

for y. The solution of (3.59) is then given by x = P−1/2 y. The following algorithm is

called the PCG method and solves (3.64) without having to apply or calculate P−1/2.

It is from page 246 of [74]. It is just Algorithm 3.83 constructed with the P−1 norm

and inner product, ‖x‖P−1 =
√

xT P−1 x, (x,y)P−1 = xT P−1 y.

Algorithm 3.87. PCG. Choose a tolerance ǫtol > 0, starting vector x0, set r0 =

b−Ax0 and z0 = p0 = P−1 r0.

For k = 0, 1, 2, . . .

If ‖rk‖ < ǫtol‖r0‖ then exit

α =
zT

k rk

pT
k Apk

xk+1 = xk + αpk

rk+1 = b− αApk

zk+1 = P−1 rk+1

β =
zT

k+1rk+1

zT
k rk

pk+1 = zk+1 + βpk

If κ(P−1 A) ≪ κ(A) then Theorem 3.84 guarantees that using the PCG method

will converge faster than the CG method.
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In the case of the GMRES method, we do not require that the coefficient matrix is

symmetric or positive definite. Therefore, we are free to choose P−1 without restriction

and we simply apply GMRES to (3.63). Algorithm 3.85 must be modified in two steps.

In the initial set up we compute the initial residual as r0 = P−1(b − Ax0) and we

replace the step vk+1 = Avk with vk+1 = P−1 Avk.

Theorem 3.86 implies that to choose a good preconditioner for GMRES we should

choose P so that

inf
pk∈Pk

‖pk(P−1 A)‖ ≪ inf
pk∈Pk

‖pk(A)‖.

If P−1 A is diagonalizable and P−1 A = V ΛV−1 then we want to have chosen P−1 so

that κ(V) is small and

inf
pk∈Pk

sup
λ∈Λ(P−1 A)

|pk(λ)| ≪ inf
pk∈Pk

sup
λ∈Λ(A)

|pk(λ)|.
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CHAPTER 4

SCALAR 2D PROBLEM & 1D TE

MODE PROBLEM

In this chapter we solve the Scalar 2D Problem (2.19) and the 1D TE Mode Problem

(2.20), as defined in Chapter 2, using the plane wave expansion method, and variations

of the plane wave expansion method. As well as including details for the efficient

implementation of the different methods, the main emphasis of this chapter will be on

the error convergence analysis for each of the methods.

Since the 1D and 2D problems are very similar we will focus on the 2D problem

most of the time. Indeed, we will find that the same theory applies to both problems

more often than not, but where there are differences between the problems we will

point these out.

The chapter is divided into six sections. In the first section we introduce the 2D

problem as an operator on a Hilbert space with unknown spectrum that we would like

to approximate. We apply the Floquet Transform from Subsection 3.4.3 to obtain a

family of operators on a bounded domain, each with discrete spectrum. Therefore, we

can write down a variational eigenvalue problem corresponding to each new operator.

We then prove a regularity result for the eigenfunctions of the variational problems.

Next, we consider the special features of the 1D problem before defining examples that

will be referred to throughout this chapter.

In the second section we apply the plane wave expansion method to the variational

eigenvalue problem. We then include implementation details for the method before

we develop a full error convergence analysis for the standard plane wave expansion

method.

In Sections 4.3 - 4.5 we present variations of the plane wave expansion method: the

smoothing method, the sampling method, and the smoothing and sampling method.

We include implementation details together with error convergence analysis for each of
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these methods.

In the final section we briefly discuss an expansion method based on curvilinear

coordinates and how we lose an optimal preconditioner for this method.

Throughout this chapter we will make use of the mathematical tools that we pre-

sented in Chapter 3.

4.1 The Problem

4.1.1 The Spectral Problem

From (2.19) the formal equation for the Scalar 2D Problem is

∇2h+ γ(x)h = β2h (4.1)

where ∇ is the 2D gradient operator, h = h(x) is a 2D scalar field, β2 is an eigenvalue

and γ(x) is a 2D scalar field that is periodic on a Bravais lattice in R2. For simplicity

and as discussed in Section 3.2, we restrict all of our presentation to the Bravais lattice

Z2 with period cell Ω = (−1
2 ,

1
2)2. We also assume that γ ∈ PCp, i.e. γ(x) is in our

special class of piecewise continuous functions that we defined in Definition 3.36. This

implies that γ ∈ L∞
p and without loss of generality we specify that 0 < γ(x) ≤ γmax

for all x ∈ R2. For some results we will also assume certain symmetries of γ(x) or that

γ ∈ PC ′
p (see Definition 3.37).

The aim is to find the unknown eigenvalues β2 and the corresponding eigenfunctions

h of (4.1).

Mathematically, we state our problem as a spectral problem. We want to find the

spectrum of an operator on a Hilbert space. For this problem the Hilbert space is

L2(R2) with the usual inner product and the operator is

L := −∇2 − γ(x) + K (4.2)

with domain H2(R2). To obtain L from (4.1) we have multiplied (4.1) by −1 and we

have added a constant K to shift the spectrum and ensure that L is always positive

definite. If λ ∈ σ(L) then we say that β2 = −λ+ K is an eigenvalue of (4.1). For now,

we will only say that K is sufficiently large to ensure that L is positive definite. We

will be more specific about our choice of K later.

The following result is a well known classical result.

Theorem 4.1. The spectrum of L is real and purely essential, i.e.

σ(L) = σess(L) ⊂ R.

where σess(L) denotes the essential spectrum of L.
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Proof. It is easy to see that L is self-adjoint and σ(L) ⊂ R follows from Theorem 3.60.

σ(L) = σess(L) follows from Theorem XIII.100 on page 309 of [69].

We are only interested in the spectrum of (4.1) that lies in the positive real half

plane. This is because eigenvalues with a negative real part correspond to evanes-

cent eigenfunctions (i.e. non-physical electromagnetic waves). Therefore, we are only

interested in the spectrum of L that is in the interval [0,K].

4.1.2 Applying the Floquet Transform

Since the coefficients of L are periodic we can apply the Floquet Transform to L on

L2(R2) as in [17], [45] or [78]. We defined the Floquet Transform in Subsection 3.4.3.

After applying the transform we obtain a family of operators parameterised by ξ ∈ B
on a bounded domain, where B = [−π, π]2 is the 1st Brillouin Zone corresponding to

the Bravais lattice Z2. In photonics literature ξ is called the quasi-momentum. The

transformed problems are posed on the Hilbert space L2
p with the usual L2(Ω) inner

product, where Ω is the period cell of the Bravais lattice. For each ξ ∈ B the operator

is defined as

Lξ := −(∇+ iξ)2 − γ(x) + K

with domain H2
p (defined in Section 3.2). We can prove the following properties about

the spectrum of our new family of operators.

Lemma 4.2. The spectrum of Lξ has the following properties:

1. σ(Lξ) ⊂ R for every ξ ∈ B.

2. σ(Lξ) = σd(Lξ)) where σd(Lξ) denotes the discrete spectrum of Lξ for every

ξ ∈ B.

3. λ(ξ) ∈ σ(Lξ) considered as a function of ξ is continuous on B.

Proof. 1. σ(Lξ) ⊂ R follows from the fact that Lξ is self-adjoint with domain D(Lξ) =

H2
p . To see that Lξ is self-adjoint, notice that we have (Lξ u, v)L2(Ω) = (u,Lξ v)L2(Ω)

for all u, v ∈ D(Lξ), using integration by parts. This implies that Lξ is symmetric, i.e.

D(Lξ) ⊂ D(L∗
ξ). Moreover, in the above working for the integration by parts we require

that v ∈ H2
p (Ω) for (Lξ u, v)L2(Ω) = (u,Lξ v)L2(Ω) to hold for all u ∈ D(Lξ). Therefore,

D(L∗
ξ) = D(Lξ) and Lξ = L∗

ξ.

2. According to part a) of Lemma 2 on page 308 of [69] there exists a µ /∈ σ(Lξ) such

that the resolvant of Lξ is compact. Therefore, the spectrum of Lξ is purely discrete

by part 3 of Theorem 3.60.

3. This result follows from the discussion in [69] and is stated in [69, Lemma 2 on

page 308].
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Part 2 of Lemma 4.2 is a useful result for developing a numerical method because a

numerical method will attempt to approximate Lξ with an operator on a finite dimen-

sional Hilbert space and such an operator will also have discrete spectrum. If Lξ had

essential spectrum then it would be difficult to measure the accuracy of our numerical

method because it is not clear how the discrete spectrum from an approximate problem

would approximate essential spectrum of Lξ.

Part 3 of Lemma 4.2 is also a useful result in light of the next theorem as it tells

us how the discrete spectrum of Lξ will approximate the essential spectrum of L. We

can take advantage of the contininuity of the eigenvalues with respect to ξ by only

approximating the spectrum of Lξ for a finite number of ξ ∈ B.

Now we apply the key result from Floquet theory, Theorem 3.63, to get the following

result.

Theorem 4.3.

σ(L) =
⋃

ξ∈B
σ(Lξ)

If γ(x) has certain symmetries, then we get the following result. This type of result

can also be found in [39].

Corollary 4.4. If γ ∈ PCp and γ(x1, x2) = γ(−x1, x2) = γ(x1,−x2) = γ(x2, x1)

for all x1, x2 ∈ R. Then λ(ξ) ∈ σ(Lξ) also has these symmetries for all ξ ∈ B, i.e.

λ(ξ1, ξ2) = λ(−ξ1, ξ2) = λ(ξ1,−ξ2) = λ(ξ2, ξ1) for all ξ1, ξ2 ∈ R and

σ(L) =
⋃

ξ∈BI

σ(Lξ)

where BI is the irreducible Brillouin zone defined as the triangular region with vertices

(0, 0), (π, 0), and (π, π), i.e. BI = {ξ ∈ B : 0 ≤ ξ1 ≤ π, 0 ≤ ξ2 ≤ ξ1}.

Proof. We will prove that if γ(x1, x2) = γ(−x1, x2) for all x1, x2 ∈ R then λ(ξ1, ξ2) =

λ(−ξ1, ξ2) for all ξ1, ξ2 ∈ R for all λ(ξ) ∈ σ(Lξ). The results for mirror symmetries in

the other directions are proved in a similar way.

Let ξ ∈ B and let y(x) = (−x1, x2)
T . By Part 2 of Lemma 4.2 we know that the

spectrum of Lξ is discrete. Therefore any λ(ξ) ∈ σ(Lξ) is an eigenvalue of Lξ with

corresponding eigenfunction u(x). We will show that (λ(ξ), u(y(x)) is an eigenpair of

L(−ξ1,ξ2). Using the chain rule we get

∇xu(y(x)) =

(
∂u
∂y1

∂y1
∂x1

+ ∂u
∂y2

∂y2
∂x1

∂u
∂y1

∂y1
∂x2

+ ∂u
∂y2

∂y2
∂x2

)
=

(
− ∂u
∂y1
∂u
∂y2

)
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And so,

L(−ξ1,ξ2) u(y(x)) =

((
− ∂u
∂y1

∂u
∂y2

)
+ i

(
−ξ1
ξ2

))2

u(y(x))− γ(x)u(y(x)) + Ku(y(x))

= (∇y + iξ)2u(y)− γ(y)u(y) + Ku(y)

= Lξ u(y)

= λ(ξ)u(y)

and so (λ(ξ), u(y(x))) is an eigenpair of L(−ξ1,ξ2)
. It follows that λ(ξ) as a function of

ξ ∈ B is mirror symmetric with respect to the ξ1 coordinate direction.

The final statement that σ(L) =
⋃

ξ∈BI
σ(Lξ) follows from Theorem 4.3 and the

symmetries of λ(ξ) ∈ σ(Lξ).

Finally, we state an unproven conjecture that is often used (implicitly) in photonics

literature, see for example, [5], [8], [15], [34], [38] and [79].

The conjecture allows us to make a further restriction on the ξ ∈ B that we need

to consider. If the conjecture holds then we only need to consider ξ ∈ ∂BI where ∂BI

is the boundary of BI (BI is defined in Corollary 4.4).

Conjecture 4.5. Assume that γ ∈ PCp satisfies the symmetries in Corollary 4.4. For

any ξ ∈ B let λj(ξ) denote the the jth smallest eigenvalue in σ(Lξ). Define

λj,min := min
ξ′∈∂BI

λj(ξ
′) λj,max := max

ξ′∈∂BI

λj(ξ
′)

where ∂BI is the boundary of BI (BI is defined in Corollary 4.4). Then

λj(ξ) ∈ [λj,min, λj,max] .

The significant consequence of this conjecture is that to approximate σ(L) we only

need to compute σ(Lξ) for ξ ∈ ∂BI , i.e. we only need to compute the spectrum of

Lξ on the boundary of the irreducible Brillouin zone. This is a significant saving in

computational cost because without the conjecture we would need to compute σ(Lξ)

for all ξ ∈ BI .
An alternative approach that is sometimes used in the photonics literature (see for

example [66]), that does not rely on this conjecture, is the density of states method.

The density of states method samples ξ ∈ BI (usually on a uniform grid) and counts

the number of times that an eigenvalue appears in a small interval of possible β2 values

and in a small frequency range. This count determines the density of the state where

the state is determined by the small range of frequencies and small range of β2. A plot

is then drawn for the density of states vs. both frequency and β2. Regions where the

density of states is low are considered to be bandgaps.
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For the 1D problem, defined later in this section, Conjecture 4.5 has been proven

and the result can be found on page 293 of [69]. We present an equivalent result in

Lemma 4.14.

In this thesis we will rely on Conjecture 4.5. Let us now focus on the central problem

of approximating the spectrum of Lξ for a fixed ξ ∈ B.

4.1.3 Variational Formulation

In this subsection we take advantage of the fact that the spectrum of Lξ is discrete and

we write down the variational eigenvalue problem which, under additional regularity

assumptions, is equivalent to finding a λ ∈ σ(Lξ) and its corresponding eigenfunction.

The variational eigenvalue problem is defined as

Problem 4.6. For a fixed ξ ∈ B, find an eigenpair (λ, u) where λ ∈ C and 0 6= u ∈ H1
p

such that

a(u, v) = λb(u, v) ∀v ∈ H1
p (4.3)

where

a(u, v) =

∫

Ω
(∇+ iξ)u · (∇+ iξ) v + (K−γ) uvdx

b(u, v) =

∫

Ω
uvdx.

We will now prove some properties of the bilinear form a(·, ·) that will enable us to

say more about the spectral properties of Problem 4.6. The following lemma will also

be very important for the error convergence results later in this chapter.

Lemma 4.7. Provided we choose K ≥ γmax + 2π2 + 1
2 , the bilinear form a(·, ·) from

Problem 4.6 is bounded, coercive and Hermitian on H1
p .

Proof. Part 1. a(·, ·) bounded.

|a(u, v)| =
∣∣∣∣
∫

Ω
(∇+ iξ)u · (∇+ iξ) v + (K−γ)uvdx

∣∣∣∣

≤
∫

Ω
|∇u · ∇v + iξu · ∇v − iξ · ∇uv + (|ξ|2 + K−γ)uv|dx

≤
(
1 + 2|ξ|+ |ξ|2 + ‖K−γ‖∞

)
‖u‖H1(Ω)‖v‖H1(Ω)

≤
(
(1 + π)2 + K

)
‖u‖H1(Ω)‖v‖H1(Ω)

= C‖u‖H1(Ω)‖v‖H1(Ω)

= C‖u‖H1
p
‖v‖H1

p
∀u, v ∈ H1

p

with C = (1 + π)2 + K.
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Part 2. a(·, ·) coercive. We will use the Cauchy Schwarz inequality (CS) and the

arithmetic-geometric mean inequality (AG), that says 2xy ≤ x2 + y2.

a(v, v) =

∫

Ω
(∇+ iξ) v · (∇+ iξ) v + (K−γ) vvdx

=

∫

Ω
|∇v|2 + iξv · ∇v − iξ · ∇vv + (|ξ|2 + K−γ)|v|2dx

≥ |v|2H1(Ω) + (|ξ|2 + K−γmax)‖v‖2L2(Ω) − 2|ξ||v|H1‖v‖L2(Ω) (CS)

≥ |v|2H1(Ω) + (|ξ|2 + K−γmax)‖v‖2L2(Ω) − 1
2

(
|v|2H1(Ω) + 4|ξ|2‖v‖2L2(Ω)

)
(AG)

= 1
2 |v|2H1(Ω) + (−|ξ|2 + K−γmax)‖v‖2L2(Ω)

≥ 1
2 |v|2H1(Ω) + (−2π2 + K−γmax)‖v‖2L2(Ω)

≥ C‖v‖2H1(Ω)

= C‖v‖2H1
p

∀v ∈ H1
p

with C = 1
2 provided that K is chosen so that K ≥ γmax + 2π2 + 1

2 .

Part 3. a(·, ·) Hermitian. The proof that a(·, ·) is Hermitian is obvious from the

definition of a(·, ·).

Also note that b(·, ·) from Problem 4.6 is the usual L2(Ω) inner product and it is

bounded and Hermitian on L2
p.

The previous lemma leads directly to the following corollary that will be necessary

for later in the chapter.

Corollary 4.8. a(·, ·) defines an inner product on H1
p and the induced norm ‖·‖a =

a(·, ·) 1
2 is equivalent to ‖·‖H1

p
.

4.1.4 Properties of the Spectrum

In this subsection we introduce the solution operator corresponding to Problem 4.6 as a

means of proving more results about the spectrum of Lξ. We will also use the solution

operator later in the chapter as a tool for proving error convergence results.

The solution operator T corresponding to Problem 4.6 is defined according to Def-

inition 3.70 in Subsection 3.5.2 with H := H1
p . The following lemma proves some basic

properties of T.

Lemma 4.9. The solution operator T corresponding to Problem 4.6 has the following

properties

1. T : L2
p(Ω)→ H1

p (Ω) is bounded.

2. T : H1
p → H1

p is compact.

3. T : H1
p → H1

p is self-adjoint with respect to a(·, ·).
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4. T : H1
p → H1

p is positive definite with respect to a(·, ·).

Proof. Part 1. T : L2
p → H1

p bounded follows from the Lax-Milgram Lemma since

a(·, ·) and b(·, ·) are bounded and a(·, ·) is coercive (Lemma 4.7).

Part 2. Since H1
p is compactly embedded in L2

p (Theorem 3.24), the inclusion

operator I : H1
p → L2

p is compact. Using this with Part 1 it follows that T : H1
p → H1

p

is compact (since the composition of a compact operator and a linear bounded operator

is compact, see page 233-234 of [50]). Using a similar argument we can also show that

T : L2
p → L2

p is compact.

Part 3. T : H1
p → H1

p is symmetric with respect to a(·, ·) since a(Tf, g) = b(f, g) =

b(g, f) = a(Tg, f) = a(f,Tg) for all f, g ∈ H1
p . T : H1

p → H1
p is also bounded with

respect to ‖·‖a (the norm induced by a(·, ·)). Therefore, T : H1
p → H1

p is self-adjoint

with respect to a(·, ·).
Part 4. a(Tf, f) = b(f, f) > 0 for all 0 6= f ∈ H1

p .

Now we use these properties of the solution operator to describe the spectrum of

Problem 4.6. Before we write down the result and proof, note that since T is compact

and self-adjoint on a Hilbert space we know that the ascent of any eigenvalue of T

will be 1 and algebraic multiplicity is equal to geometric multiplicity. Therefore, we do

not need to consider generalised eigenfunctions. See our comments in Subsection 3.4.2.

This reasoning is also used on page 683 of [6].

Lemma 4.10. Problem 4.6 has eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ր +∞

counted up to multiplicity (i.e. if λj has multiplicity 2 then set λj+1 = λj) with corre-

sponding eigenfunctions

u1, u2, . . .

that can be chosen such that

a(ui, uj) = δij ∀i, j ∈ N.

Moreover, the eigenfunctions are complete in L2
p. For every f ∈ L2

p there exist {cj, j ∈
N} such that

f =
∞∑

j=1

cjuj and cj = a(f, uj).

Proof. Since T is self-adjoint and compact (Lemma 4.9), we can apply Theorem 3.60

and Theorem 3.61. Moreover, since T is also bounded and positive definite, T has

eigenvalues

0ւ . . . µ2 ≤ µ1
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where we have counted each eigenvalue according to its multiplicity. By Theorem 3.61

the corresponding eigenfunctions

u1, u2, . . .

can be chosen so that they are orthonormal (with respect to a(·, ·)) and the span of

them is dense in L2
p. The result then follows from Lemma 3.71.

4.1.5 Regularity

With the assumption that γ ∈ PCp (see Definition 3.36), we can derive three results

about the regularity of Tu when u ∈ H1
p and the eigenfunctions of Problem 4.6.

We begin by proving a regularity result for Tu when u ∈ H1
p that depends on the

regularity of γ(x). More specifically, we will use Theorem 3.40 which states γ(x) ∈
H

1/2−ǫ
p for any ǫ > 0 to prove that Tu ∈ H

5/2−ǫ
p . Therefore, it is the regularity of

γ(x) that limits the regularity of Tu. As well as using Theorem 3.40 to prove the

result, we will also use the regularity theory for elliptic boundary value problems that

we quoted in Chapter 3. In particular, we use Theorem 3.77 which states that for an

elliptic boundary value problem of the form Lu = f on R2 such that u is periodic (and

L has smooth coefficients), if f ∈ Hs
p for s ≥ 0, then u ∈ Hs+2

p . At first glance it

may not seem possible that we can apply this theorem because γ(x) is not smooth.

However, we will incorporate γ(x) into f , leaving L with constant coefficients. This

result (Theorem 4.11) is the most important result of this section and our error bounds

later in this chapter will rely on it.

The second result is a simple corollary to the first result and is specific for eigen-

functions of Problem 4.6.

The third result is also specific to the eigenfunctions of Problem 4.6. In it we prove

that the eigenfunctions of Problem 4.6 are infinitely smooth away from the discontinu-

ities of γ(x). Therefore, any limitations on the regularity of the eigenfunctions must

come from the behaviour of the eigenfunctions near or at the interface regions. The

proof of the third result will use standard regularity theory for elliptic boundary value

problems which can be found in [21].

The second and third results about eigenfunctions of Problem 4.6 will allow us to

identify an eigenpair of Problem 4.6 with an eigenpair of Lξ as well as letting us have

more insight into the behaviour of the eigenfunctions, even though the results are not

required in the rest of this thesis.

Recall our definition of the notation . from Section 3.1.

Theorem 4.11. Assume γ ∈ PCp, u ∈ H1
p and ǫ > 0. Then Tu ∈ H5/2−ǫ

p and

‖Tu‖
H

5/2−ǫ
p

. ‖u‖H1
p
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where T is the solution operator corresponding to Problem ?? defined the sense of

Definition 3.70.

Proof. Since γ ∈ PCp (see Definition 3.36) we can use Theorem 3.40 to get γ ∈ H1/2−ǫ′
p

for any ǫ′ > 0.

By the definition of T (see Definition 3.70) we have that w = Tu is the weak

solution of an elliptic boundary value problem of the form

Lw = f on R2

w periodic with period cell Ω
(4.4)

where L := −(∇+iξ)2+K and f := u+γ(x) T u. L is an elliptic operator with constant

coefficients. Note that we have shifted the term γ(x) Tu onto the right-hand-side of

(4.4) so that L has constant coefficients.

The key to completing the proof is to show that f ∈ H1/2−ǫ
p and ‖f‖

H
1/2−ǫ
p

. ‖u‖H1
p

so that we can apply Theorem 3.77 to (4.4) to get

‖Tu‖
H

5/2−ǫ
p

. ‖f‖
H

1/2−ǫ
p

. ‖u‖H1
p
.

By Theorem 3.28 and the definition of f we get

‖f‖
H

1/2−ǫ
p

. ‖u‖
H

1/2−ǫ
p

+ ‖γ‖
H

1/2−ǫ
p
‖Tu‖Ht

p
(4.5)

for any t > 1. We will show that Tu ∈ H2
p . We do this by showing that f ∈ L2

p

and then use Theorem 3.77 applied to (4.4) to get Tu ∈ H2
p . Since u ∈ H1

p ⊂ L2
p,

γ ∈ L∞
p ⊂ PCp, Tu ∈ H1

p ⊂ L2
p by definition and T is bounded on H1

p , it follows that

‖f‖L2
p

. ‖u‖L2
p
+ ‖γ‖∞‖Tu‖L2

p
. ‖u‖H1

p
<∞.

Therefore, f ∈ L2
p, and by Theorem 3.77 applied to (4.4) we get Tu ∈ H2

p with

‖Tu‖H2
p

. ‖u‖H1
p
.

Combining this with (4.5) we get ‖f‖
H

1/2−ǫ
p

. ‖u‖H1
p

and the result follows by applying

Theorem 3.77 to (4.4).

In 1D the proof does not require two applications of Theorem 3.77 because the 1D

result from Theorem 3.28 for estimating ‖γ Tu‖
H

1/2−ǫ
p

is easier to work with and we

can show ‖f‖
H

1/2−ǫ
p

. ‖u‖H1
p

directly.

Corollary 4.12. Let (λ, u) be an eigenpair of Problem 4.6 with γ ∈ PCp. Then for

ǫ > 0 we get u ∈ H5/2−ǫ
p and

‖u‖
H

5/2−ǫ
p

. ‖u‖H1
p
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Proof. The result follows directly from Theorem 4.11 using Lemma 3.71 and Tu =
1
λu.

The following result, although not required in the rest of this chapter, gives us a

useful insight into the limitations on the regularity of the eigenfunctions of Problem

4.6.

Theorem 4.13. With γ ∈ PCp, divide Ω into regions Ωj, j = 1, ..., J where γ(x) is

constant. Let (λ, u) be an eigenpair of Problem 4.6. Then

u ∈ C∞(Ωj) for each j = 1, ..., J .

Proof. Let j ∈ {1, ..., J} and let (λ, u) be an eigenpair of Problem 4.6. In each Ωj we

can rewrite Problem 4.6 as an elliptic boundary value problem of the form Lw = 0

on Ωj where L = Lξ−λ. L has constant coefficients since γ(x) is constant in each

Ωj . w = u|Ωj is a weak solution to this boundary value problem and by the definition

of Problem 4.6 we have u ∈ H1
p . Theorem 3 on page 316 of [21] then states that

u ∈ C∞(Ωj).

Theorem 4.13 does not include any information about the behaiviour of u on the

boundary of each Ωj , but it does show that if an eigenfunction has a singularity in

one of its derivatives, then it must be confined to the interfaces of γ(x) and it can not

“propagate” into regions where γ(x) is constant.

4.1.6 Special Case: 1D TE Mode Problem

In this subsection we consider the 1D TE Mode Problem defined by (2.20). We can

also think of this problem as being the 1D version of the Scalar 2D Problem that we

have been looking at so far in this chapter. In fact, all of the results that we have

presented from the Scalar 2D Problem also apply to this 1D problem. We introduce

the 1D problem because it is a physically relevant problem in its own right as well as

to point out a few results that only hold in 1D or that we were only able to prove in

1D.

Formally, the 1D TE Mode Problem is

d2h

dx2
+ γ(x)h = β2h (4.6)

where h is the x-component of the magnetic field and β is the component of the wave

vector in the z-direction. The coefficient function γ ∈ PCp is piecewise constant and

periodic with period cell Ω = [−1
2 ,

1
2 ]. We also assume that 0 < γ(x) ≤ γmax. We are

again interested in finding the eigenfunctions h and the correponding eigenvalues β2 in

(4.6).
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We state the problem mathematically as trying to find the spectrum of an operator

on a Hilbert space. In this case the Hilbert space is L2(R) with the usual inner product

and the operator is

L = − d

dx
− γ(x) + K

with domain H2(R). To obtain L from (4.6) we have multiplied (4.6) by −1 and added

a constant K to shift the spectrum into (0,∞) and ensure that L is postive definite.

By the same reasoning as in Theorem 4.1 we have σ(L) = σess(L) ⊂ R. We apply the

Floquet Transform to obtain a family of problems: for ξ ∈ B := [−π, π] we want to

find σ(Lξ) where

Lξ := −
(
d

dx
+ iξ

)2

− γ(x) + K

has domain H2
p and we are now working in the Hilbert space L2

p. Lemma 4.2 applies to

the 1D problem except there is an extension to Part 3 which can be found in Theorem

XIII.89 on pages 293 and 294 of [69]. The extension is stated in the following lemma.

Lemma 4.14. If γ is even then λ(ξ) ∈ σ(Lξ) considered as a function of ξ is also an

even function. Moreover, λ(ξ) is continuous and monotone on [−π, 0] and [0, π].

This result is a confirmation of Conjecture 4.5 for the 1D case. Since λ(ξ) is con-

tinuous, even and monotone between 0 and π we can conclude that λ(ξ) ∈ [λ(0), λ(π)]

if λ(0) ≤ λ(π) and λ(ξ) ∈ [λ(π), λ(0)] if λ(0) > λ(π). Therefore, it is sufficient to only

calculate σ(L0) and σ(Lπ) to determine σ(L) (see Theorem 3.63).

We are now free to concentrate on calculating σ(Lξ) for a fixed ξ ∈ B. We write

down the variational problem corresponding to finding an eigenvalue of σ(Lξ) and

corresponding eigenfunction.

Problem 4.15. For a fixed ξ ∈ B, find an eigenpair (λ, u) where λ ∈ C and 0 6= u ∈ H1
p

such that

a(u, v) = λb(u, v) ∀v ∈ H1
p (4.7)

where

a(u, v) =

∫

Ω

(
d
dx + iξ

)
u
(
d
dx + iξ

)
v + (K−γ) uvdx

b(u, v) =

∫

Ω
uvdx.

This variational problem is just the 1D version of Problem 4.6. We can prove that

a(·, ·) is bounded, coercive and Hermitian in the same way as in Lemma 4.7 and it

follows that a(·, ·) defines an inner product on H1
p with ‖ · ‖a := a(·, ·)1/2 defining the

induced norm. We can also define a solution operator T for the 1D problem. It has

the same properties as T for the 2D problem and we can deduce the same properties

of the spectrum of Problem 4.15 as we could for the spectrum of Problem 4.6.
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We can also follow the same proof as in Subsection 4.1.5 to show that the eigen-

functions of Problem 4.15 have H
5/2−ǫ
p regularity for every ǫ > 0. However, we can

also prove a slightly different regularity result for the eigenfunctions of Problem 4.15.

We get the following Theorem.

Theorem 4.16. Let u ∈ H1
p . Then Tu and (Tu)′ are absolutely continuous and (Tu)′′

is continuous except where γ(x) is discontinuous and is absolutely continuous on the

intervals of continuity.

Proof. As in Theorem 4.11 we define a boundary value problem Lw = f on R such that

w is periodic with period cell Ω and where L := −(∇+ iξ)2 +K and f := u+ γ(x) Tu.

L is an elliptic operator with constant coefficients and f ∈ L2
p. w = Tu is a weak

solution to Lw = f . Therefore, using Theorem 3.77, Tu ∈ H2
p . This implies that

(Tu)′′ ∈ L2
p. It then follows that (Tu)′′ ∈ L1(Ω) since L2

p ⊂ L2(Ω) ⊂ L1(Ω). Next,

we use Lemma 7.3.5 on page 317 of [4] to get (Tu)′ is absolutely continuous. It also

follows that Tu is absolutely continuous. Now we apply integration by parts to

a(Tu, φ) = b(u, φ) ∀φ ∈ C∞
0 (Ω)

to get ∫

Ω

(
( ddx + iξ)2 Tu− (K−γ) T u+ u

)
φdx = 0 ∀φ ∈ C∞

0 (Ω).

Therefore, (Tu)′′ = −2iξ(Tu)′ + (ξ2 + K−γ(x)) Tu − u almost everywhere. It then

follows that (Tu)′′ is continuous except at the discontinuities of γ(x) and absolutely

continuous on the intervals of continuity.

It follows, just as in Corollary 4.12, that if u is an eigenfunction of Problem 4.15,

then u and u′ are absolutely continuous and u′′ is continuous except where γ(x) is

discontinuous and is absolutely continuous on the intervals of continuity.

4.1.7 Examples

In this subsection we define 1D and 2D model problems that we will use in numerical

computations to verify our theoretical results in the rest of this chapter.

In all of the model problems γ(x) will have two possible values, γa = 157.9 or

γg = 309.5. These two values of γ correspond to a photonic crystal fibre that is made

from glass and air with refractive indices of 1.4 and 1 respectively. In all of the model

problems we have fixed the period cell of the cladding structure so that it has a period

cell of length 1, and we are considering light that has a wavelength that is half of the

cladding period cell width, i.e. λ0 = 1
2 , for all of the model problems. Also, in all of

our model problems we have chosen γ(x) to be an even function. This is because real

121



4.1. The Problem

−1.5 −1 −0.5 0 0.5 1 1.5
0

100

200

300

−20 −15 −10 −5 0 5 10 15 20
0

100

200

300

x

x

γ
(x

)
γ
(x

)

γ(x) for Model Problem 1

γ(x) for Model Problem 2

Figure 4-1: Plot of γ(x) for Model Problems 1 and 2. Notice that the period cell of
γ(x) in Model Problem 1 is the same length as a cell in the cladding of Model Problem
2.

PCFs usually have some form of symmetry and since all of our PCFs have a square

structure even symmetry is the natural choice of symmetry.

Model Problem 1 is a 1D problem where γ(x) is describing a pure photonic crystal

that has a 50:50 glass to air ratio and a period cell Ω = (−1/2, 1/2). Figure 4-1 has a

plot of γ(x) for Model Problem 1.

Model Problem 2 models a 1D PCF by using the supercell method. γ(x) describes

the cladding structure together with a central defect where there are 12 period cells

of cladding between each defect. For this problem Ω = (−13
2 ,

13
2 ) and B = [− π

13 ,
π
13 ].

The reason Ω 6= (−1
2 ,

1
2) is so that if we removed the defect in the supercell of γ(x) for

Model Problem 2 then γ(x) would be exactly the same as in Model Problem 1. Put

another way, a cell in the cladding of γ(x) of Model Problem 2 is exactly the same as

a period cell of γ(x) from Model Problem 1. This will ensure that the band gaps in

Model Problem 1 are the same as the band gaps in Model Problem 2. A theoretical

justification for the band gaps remaining unchanged is given in Part 4 of Theorem 3.60.

Figure 4-1 has a plot of γ(x) for Model Problem 2.

Model Problem 3 is a 2D version of Model Problem 1. Again, γ(x) describes a

photonic crystal. It consists of glass with square air holes. Figure 4-2 has a diagram

of the period cell for γ(x) in this problem.

Model Problem 4 is a 2D version of Model Problem 2 except that the cladding in
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γ(x) for Model Problem 3 γ(x) for Model Problem 4

Figure 4-2: Plot of γ(x) for Model Problems 3 and 4. The scale of γ(x) in Model
Problem 4 is such that a period cell from Problem 3 is the same length as a cell in
the cladding of γ(x) in Problem 4. The black regions are glass and the white regions
correspond to air holes.

Model Problem 4 has fewer cells. γ(x) has a 5x5 supercell with a central defect. The

reason we have chosen a supercell with fewer cells between each defect than Model

Problem 2 is to make this problem easier to solve. γ(x) represents a PCF in this

problem and Figure 4-2 has a diagram of the period cell of γ(x) for this problem.

Since Problems 1 and 3 correspond to pure photonic crystal we want to accurately

calculate the band gaps for these problems (see Chapter 2 for a discussion of the back-

ground physics). Therefore, we will be interested in the convergence of our numerical

method for all of the eigenvalues that lie in the interval [0, γg]. For Problem 1 this

requires the first 5 eigenvalues whereas Problem 3 requires the first 22 eigenvalues.

The bands for Problems 1 and 3 are plotted in Figures 4-3 and 4-4. The bands are

constructed by solving the Floquet transformed problem for a range of ξ ∈ B. This

idea is represented by plotting the eigenvalues of the Floquet transformed problem

against ξ. The lines are then projected onto the vertical axis to construct the bands.

For Problem 1 in Figure 4-3 we have taken ξ ∈ B = [−π, π], although the plot confirms

Lemma 4.14, that we only need to do calculations for ξ = 0 and ξ = π. For Problem 3

we take ξ ∈ ∂BI where BI is an irreducible Brillouin zone to construct the bands (γ(x)

has horizontal, vertical and diagonal mirror symmetry). For Problem 3, the boundary

of the irreducible Brillouin zone ∂BI is the boundary of a triangle with vertices (0, 0),

(0, π13) and ( π13 ,
π
13). In this thesis we are interested in the convergence of our numerical

method and we will take ξ = (0, 0) and ξ = (π, π) as representative examples for the

rest of our computations (except in Figure 4-4).

Model Problems 2 and 4 are supercell problems and they are attempting to model

a PCF with a central defect that is surrounded by photonic crystal. The cladding for
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Figure 4-3: A plot of the spectra of Model Problems 1 and 2. The spectra are repre-
sented with solid black blocks (or bands) running vertically nearest the middle of the
page. Each band is constructed by projecting the corresponding line onto the vertical
axis. And each line is an eigenvalue of the Floquet transformed problem as a function
of ξ ∈ B, i.e. λ(ξ). Problem 1 has five bands in the interval [0, γg]. Problem 2 has
approximately the same band gaps as Model Problem 2 except there appears to be an
isolated eigenvalue (38th from top) in the third band gap (dashed line). For each band
in Problem 1 there are approximately 13 bands in Problem 2. This corresponds to
the number of cells in the supercell of Problem 2. There are small band gaps between
every band of Problem 2 but these small gaps arise from having a supercell with finite
cladding.

Problem 2 is the photonic crystal in Problem 1 and the cladding for Problem 4 is the

photonic crystal in Problem 3. By this we mean that a period cell of γ(x) in Problem

1 is the same as a cell of the cladding in Problem 2. Likewise for Problems 3 and 4.

We expect the bands of Problems 2 and 4 to approximate the bands of Problems 1

and 3 respectively (see Figure 4-3). Indeed, if we changed Problems 2 and 4 so that

there is more cladding between the defects in the structure of γ(x) then the bands of

Problem 2 and 4 would provide a better approximation of the bands of Problems 1 and

3 (see discussion of supercell method in Chapter 2). Therefore, once we have located

the band gaps for Problems 1 and 3 we will search for guided modes of Problems 2 and

4 that lie in these band gaps. We can see in Figure 4-3 that in Problem 2 the 38th

eigenvalue appears to be an isolated eigenvalue. In Figure 4-4 we can see that there

is a band gap in the interval [279.6259, 286.9147] and this is where we will search for
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Figure 4-4: A plot of the spectrum of model problem 3. The spectrum is represented
with the solid black vertical bands on the right. These bands are the projection of all
of the lines onto the vertical axis. Model problem 3 only has one band gap, the interval
[279.6259, 286.9147]. The horizontal axis of the plot is a parameterization of ξ as it
runs around the edge of BI , a triangle with vertices (0, 0), ( π13 , 0) and ( π13 ,

π
13).

guided modes in Problem 4. Since the band gap in Problem 3 is after the first band we

expect the possible guided mode to be approximately the 25th eigenvalue in Problem

4.

The usual technique for searching for a guided mode in a band gap is to use a

“shift-invert” strategy to find the the eigenvalue closest to the middle of the gap.

However, since the number of eigenvalues up to the guided mode is not too large for

these problems this is not the only strategy available to us. Alternatively, we can

compute all of the eigenvalues up to and including the possible guided mode. This is

the strategy that we will use since in the next section we find that the matrix from

the discretization method is positive definite and we can use PCG instead of GMRES

to solve linear systems in the implementation when the “shift-invert” strategy is not

used. We will calculate the first 30 eigenvalues of Model Problem 4.

4.2 Standard Spectral Galerkin Method

In this section we describe the basic method that we have chosen to use and analyze

for approximating the spectrum of Lξ for a fixed ξ ∈ B. It is a spectral Galerkin
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method, but it is more commonly referred to as the plane wave expansion method. The

method replaces the infinite dimensional Problem 4.6 with a finite dimensional problem

that we represent as a matrix eigenvalue problem. The matrix eigenvalue problem is

solved using existing iterative techniques. As well as presenting details for the efficient

implementation, the main focus is the error analysis for the method. We also support

our theory with numerical examples.

The section is divided into four subsections. In the first subsection we describe

the method. In the second subsection we give some details relating to the efficient

implementation of the method as well as defining a preconditioner matrix and prov-

ing a result about our preconditioner. In the third subsection we present our main

error bounds and in the fourth subsection we present the results from some numerical

computations for our model problems.

4.2.1 The Method

In this subsection we apply a spectral Galerkin method to Problem 4.6 to get a finite

dimensional problem.

For G ∈ N we choose a finite dimensional space SG ⊂ H1
p and apply the Galerkin

method (see Definition 3.72) to Problem 4.6. We refer to this method as a spectral

Galerkin method because we construct SG from functions that have global support in

Ω. The method is not a spectral method in the sense that the finite dimensional space

consists of functions that are eigenfunctions of Lξ. More specifically, we define

SG := S
(2)
G = span{ei2πg·x : g ∈ Z2

G,o} (4.8)

where Z2
G,o = {n ∈ Z2 : |n| ≤ G} (see Subsection 3.2.3). We also denote the dimension

of SG by N := dimSG = O(G2). Applying the Galerkin method to Problem 4.6 gives

us the following discrete variational eigenvalue problem

Problem 4.17. Find λG ∈ R and 0 6= uG ∈ SG such that

a(uG, vG) = λGb(uG, vG) ∀vG ∈ SG. (4.9)

This problem, since it is finite dimensional, can be rewritten as a matrix eigenvalue

problem. We do this by first expanding uG in terms of a basis for SG. This expansion

is just the Fourier Series of uG,

uG(x) =
∑

g∈Z
2
G,o

ug ei2πg·x (4.10)

where the coefficients of the expansion are the Fourier coefficients of uG, ug = [uG]g.

Since the functions ei2πg·x, with g ∈ Z2
G,o form a basis for SG, it is sufficient to
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only choose vG = ei2πg
′·x for g′ ∈ Z2

G,o as test functions in (4.9). Restricting the test

functions vG to this finite number of possiblities, Problem 4.17 is equivalent to

∑

g∈Z2
G,o

uga(e
i2πg·x, ei2πg

′·x) = λG
∑

g∈Z2
G,o

ugb(e
i2πg·x, ei2πg

′·x) ∀g′ ∈ Z2
G,o. (4.11)

Now define a one-to-one map i : Z2
G,o → {n ∈ N : n ≤ N} that orders Z2

G,o in ascending

order of magnitude, i.e. i(g) < i(g′) if |g| < |g′|. Using this map we can define a vector

u of length N that contains all of the Fourier coefficients in the expansion of uG in

(4.10). The entries of u, are defined as

ui(g) = ug = [uG]g ∀g ∈ Z2
G,o.

Now define a N ×N matrix A with entries defined by

Ai(g′),i(g) = a(ei2πg·x, ei2πg
′·x) (4.12)

=

∫

Ω
(∇+ iξ) ei2πg

′·x ·(∇+ iξ) ei2πg·x + (K−γ) ei2πg
′·x ei2πg·xdx

= (iξ + i2πg′) · (−iξ − i2πg)

∫

Ω
ei2π(g′−g)·x dx

+ K

∫

Ω
ei2π(g′−g)·x dx−

∫

Ω
γ(x) ei2π(g′−g)·x dx

=
(
|ξ + 2πg|2 + K

)
δi(g),i(g′) − [γ]g−g′ ∀g,g′ ∈ Z2

G,o. (4.13)

If we use this together with the fact that

b(ei2πg·x, ei2πg
′·x) = δi(g),i(g′) ∀g,g′ ∈ Z2

G,o

we can write (4.11) as a matrix eigenvalue problem

Au = λGu. (4.14)

The matrix A has a special form due to our choice of basis functions of SG. Since ei2πg·x

are eigenfunctions of the Laplacian and since they are orthogonal with respect to the

L2(Ω) inner product we can see in (4.13) that A has a special form. It can be expanded

as A = D−V where D is a diagonal matrix with diagonal entries given by Di(g),i(g) =

|ξ + 2πg|2 + K and V is a dense matrix with entries given by Vi(g),i(g′) = [γ]g−g′ . For

a given vector v ∈ RN , it is obvious that Dv can be computed very quickly since D is

diagonal but it is not immediately obvious how Vv can be computed quickly.

The matrix V contains the Fourier coefficients of γ(x) whereas the vector v con-

tains the Fourier coefficients of another function. In a certain sense, the product Vv

represents the multiplication of γ(x) and this other function, and this multiplication
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can be computed efficiently using the Fast Fourier Transform. This is the topic of the

next subsection.

Now we prove that A is Hermitian and positive definite. If γ(x) is an even function

then the Fourier coefficients of γ(x) are real and A will be a real matrix (see (4.13)).

Therefore, A Hermitian implies that A is symmetric. All of our model problems from

Section 4.1.7 have even γ(x) and so we will refer to A as being symmetric positive

definite in the rest of this chapter. The proof relies on the fact that a(·, ·) is coercive

and Hermitian.

Theorem 4.18. The matrix A from (4.14) is Hermitian and positive definite.

Proof. First, we show that A is Hermitian. From (4.12) and a(·, ·) Hermitian we get

Ai(g),i(g′) = a(ei2πg
′·x, ei2πg·x) = a(ei2πg·x, ei2πg′·x) = Ai(g′),i(g) ∀g,g′ ∈ Z2

G,o.

Therefore, A is Hermitian.

Now we show that A is postive definite. Let x ∈ CN such that x 6= 0 and define

X ∈ SG by

X (x) =
∑

g∈Z
2
G,o

xi(g) ei2πg·x .

From (4.12) and a(·, ·) coercive we then get

xH Ax =
∑

g,g′∈Z
2
G,o

Ai(g′)i(g) xi(g′)xi(g)

=
∑

g,g′∈Z
2
G,o

a(ei2πg·x, ei2πg
′·x)xi(g′)xi(g)

= a(X ,X ) & ‖X‖H1
p
> 0.

Before we move onto the implementation of our method let us discuss the 1D

problem and the matrix eigenproblem that is derived in that case.

For the 1D problem we define SG := S(1)
G as in Subsection 3.2.3. We apply the

Galerkin method with SG replacing H1
p to obtain a discrete variational problem as

in Problem 4.17. We then write down a N × N matrix eigenvalue problem that is

equivalent to the discrete variational problem where N = 2G+ 1. The only difference

from the 2D formulation is that instead of using i(·) to define an ordering for the matrix

and vector entries we order the matrix and vector entries from −G to G. For example,

u is now a N vector

u = [u−G . . . u−1 u0 u1 . . . uG]T , (4.15)

the diagonal entries of D are given by Dii = (ξ2+2π(i−G−1))2+K and the entries of V
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are given by Vij = [γ]i−j, for i, j = 1, ..., 2G+1. We see that V is a Toeplitz matrix and

we know from [84] (Algorithm 4.2.2 on page 209) that Toeplitz matrix vector products

may be computed in O(N logN) operations using the Fast Fourier Transform as in the

2D case.

We return to discussing the 2D problem in the next subsection.

4.2.2 Implementation

In this subsection we discuss our method for solving the matrix eigenvalue problem

(4.14). Again, the general discussion will be for the 2D problem with particular com-

ments about the 1D problem where necessary. We frequently refer to theory that was

presented in Section 3.6.

We want to find the eigenvalues of A (from (4.14)) in the interval [0,K] and cor-

responding eigenfunctions. Since A is a positive definite matrix (Theorem 4.18), this

corresponds to the smallest eigenvalues of A up to K. We use a Krylov subspace itera-

tive method since we are not interested in computing all of the eigenvalues of A. Indeed,

it would be too costly to compute all of them when N is large. More specifically, we

use the Implicitly Restarted Arnoldi’s (IRA) method applied to A−1.

The IRA method applied to A was our first choice for calculating the smallest eigen-

values of A because it approximates the extremal eigenvalues of a matrix. However, the

matrix A has many well-spaced, very large eigenvalues and the smallest eigenvalues of

A are clustered. This causes the IRA method applied to A to approximate the largest

eigenvalues of A better than the smallest eigenvalues of A. Applying the IRA method

to A−1 reverses this situation.

At each step or iteration of the IRA method we require the operation of A−1. This is

obtained by solving a linear system with coefficient matrix A. Since A is symmetric and

positive definite (spd) (Theorem 4.18) we can use the preconditioned conjugate gradient

method (PCG). PCG only requires scalar-vector multiplication, vector-vector addition

and matrix-vector multiplications. Of these three operations, matrix-vector multiplica-

tions are potentially the most costly as scalar-vector multiplication and vector-vector

addition only require O(N) operations. We improve the performance of PCG by us-

ing a preconditioner that is effective at limiting the number of iterations required in

PCG to O(1) as well as using an algorithm that can compute matrix-vector products

in O(N logN) operations. All together, we obtain the operation of A−1 in O(N logN)

operations. This is a big improvement over a direct method such as Gauss elimination

which would require O(N3) operations to solve a system with A. Our method also

improves on the amount of storage required to compute the operations of A−1. Gauss

elimination requires the storage of every non-zero entry of A. For our problem this

would be N2 entries since A is dense. Our algoritm only requires O(N) entries to store

A since A = D−V where D is a diagonal matrix and V is a matrix with only O(N)
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distinct entries.

In this subsection we present the algorithm that can compute matrix-vector prod-

ucts with A in O(N logN) operations, define a preconditioner for A and prove a result

that shows the optimality of the preconditioner. We begin with the algorithm for

computing matrix-vector products.

Since A = D−V where D is diagonal, and matrix-vector products with diagonal

matrices can be computed in O(N) operations, we need a fast algorithm for matrix-

vector products with V. The algorithm presented below uses the Fast Fourier Transform

(FFT) to compute the matrix vector product with V for the 2D problem. It is essentially

an algorithm for computing the convolution of two Fourier Series.

In this section Nf defines is the size of the space that the FFT operates on and in

the algorithm below we must choose Nf ≥ 4G+ 1. To get the best performance from

the FFT we want to choose Nf = 2n for some n ∈ N. In practice we fix Nf , and then

we choose G = Nf/4 − 1. N is then determined by the number of elements in Z2
G,o.

Note that N represents the number of degrees of freedom in the discrete problem and

is O(G2) for the 2D problem which we are currently discussing.

We now make a remark about the notation used in the algorithm that follows.

Capital letters X,Y, X̂, Ŷ are all Nf × Nf matrices that represent functions in T (2)
Nf

.

X,Y store nodal values of functions in T (2)
Nf

while X̂, Ŷ store Fourier coefficients of

functions in T (2)
Nf

. The indexing convention is the same as in Subsection 3.2.4, i.e. for

f ∈ T (2)
Nf

we write

Xij = f( 1
Nf

((i, j)− g0))

X̂ij = [f ](i,j)−g0

for all i, j = 1, . . . , Nf where g0 := (
Nf

2 + 1,
Nf

2 + 1) = (2G+ 3, 2G+ 3).

We also let fft(·) and ifft(·) denote the 2D FFT and the 2D Inverse FFT respectively,

as in Subsection 3.2.4, so that X̂ = fft(X) and X = ifft(X̂).

Algorithm 4.19. Let x be a vector of length N and let Ŷ be the Nf ×Nf matrix of

Fourier coefficients of γ such that Ŷij = [γ](i,j)−g0
for i, j = 1, . . . , Nf . Pre-compute

Y ← ifft(Ŷ ). The following algorithm computes a new vector that is denoted, V(x).

X̂ij ← 0 for i, j = 1, . . . , Nf

X̂g+g0 ← xi(g) for every g ∈ Z2
G,o

X ← ifft(X̂)

Xij ← YijXij for i, j = 1, . . . , Nf

X̂ ← fft(X)

(V(x))i(g) ← X̂g+g0 for every g ∈ Z2
G,o.

The main cost of this algorithm are the Fast Fourier Transforms which are com-
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puted in O(N2
f logNf ) operations (O(N logN) since N = O(N2

f )). In practice, each

application of the algorithm uses one inverse FFT and one FFT. The inverse FFT

Y ← ifft(Ŷ ) is usually computed only once in the setup and then stored for use when

the algorithm is applied repeatedly.

We can view Algorithm 4.19 as an algorithm that converts the Fourier coefficients

in x and V into real space; multiplies the two functions together in real space; then

converts the real space data back into Fourier space; before finally, discarding unwanted

high frequency components. We will use results from Subsection 3.2.5 and [72] to prove

that the action of Algorithm 4.19 is equal to matrix-vector multiplication by the matrix

V.

Theorem 4.20. V(x) = V x for all x ∈ CN .

Proof. Recall from Subsection 3.2.3 that

Z2
G,o =

{
n ∈ Z2 : |n| ≤ G

}

Z2
G,� =

{
n ∈ Z2 : −G

2 ≤ ni < G
2 , i = 1, 2

}
.

Let x ∈ CN and define X ∈ S(2)
G by

X (t) :=
∑

g∈Z
2
G,o

xi(g) ei2πg·t ∀t ∈ R2.

We will also define

Y(t) := P
(T )
Nf

γ(t) =
∑

g∈Z
2
G,�

[γ]g ei2πg·t ∀t ∈ R2

where P
(T )
Nf

is the projection onto T (2)
Nf

defined in Subsection 3.2.5. Recall that [·]g
denotes the Fourier coefficient with index g and let (·)n denote the n-th entry of a

vector. We also use the projection onto T (2)
Nf

that is based on the nodal values of a

function, QNf
. This projection is also defined in Subsection 3.2.5.

The proof is divided into three parts:

1. (V x)i(g) = [XY ]g for all g ∈ Z2
G,o.

2. [XY ]g = [QNf
(XY)]g for all g ∈ Z2

G,o.

3. [QNf
(XY)]g = (V(x))i(g) for all g ∈ Z2

G,o.
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Part 1. For g ∈ Z2
G,o,

(V x)g(g) =
∑

g′∈Z
2
G,o

Vg(g)g(g′) xg(g′)

=
∑

g′∈Z
2
G,o

[γ]g−g′ [X ]g′ by definition of V

=
∑

g′∈Z
2
G,o

[Y ]g−g′ [X ]g′ by definition of Y

=
∑

g′∈Z2

[Y ]g−g′ [X ]g′ since X ∈ S(2)
G

= [XY ]g by Theorem 28 on page 23 of [36].

Part 2. According to Lemma 3.31 we have,

[QNf
(XY)]g =

∑

g′∈Z2

[XY ]g+Nfg′ for g ∈ Z2
Nf ,�

. (4.16)

Now observe that since X ∈ S(2)
G ⊂ T (2)

2G and Y ∈ T (2)
Nf

, we get XY ∈ T (2)
Nf +2G (follows

from Theorem 28 on page 23 of [36]). Therefore,

[XY ]g = 0 ∀g ∈ Z2\Z2
Nf+2G,�. (4.17)

Now consider [XY ]g+Nfg′ for g ∈ Z2
G,o and 0 6= g′ ∈ Z2. Since g ∈ Z2

G,o, we have

|g| ≤ G. And since Nf = 4G+ 1, it follows that |(g +g′Nf )i| > 3G+ 3 for either i = 1

or i = 2. Therefore, g + g′Nf /∈ Z2
Nf+2G,� and [XY ]g+g′Nf

= 0 by (4.17).

Therefore (4.16) implies that

[QNf
(XY)]g = [XY ]g+Nf0 = [XY ]g ∀g ∈ Z2

G,o

Part 3. This part follows directly from the definition of the algorithm and ideas dis-

cussed in Subsection 3.2.4, i.e. that a function in T (2)
Nf

can be represented as a matrix of

nodal values or a matrix of Fourier coefficients and that the FFT and inverse FFT can

be used to swap between these two representations. First, note that Y is represented in

the matrix Ŷ with a matrix of Fourier coefficients before we pre-compute Y ← ifft(Ŷ )

to represent Y with a matrix of nodal values.

Now consider what the algorithm does. Step 1 and 2 are equivalent to representing

X with a matrix X̂ of Fourier coefficients. In Step 3, the representation of X is swapped

to a matrix X of nodal values by computing the inverse FFT of X̂. In Step 4 we sample

XY at nodal values and store the information in X. Sampling XY at these nodes

corresponds to taking the QNf
projection of XY . The matrix X is a representation

of QNf
(XY) in terms of its nodal values. In Step 5 we swap the representation of
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Memory Required for Implementation

Part of Implementation Amount Type

Eigenvectors NEV ×N double

Storage of A 4× d×N double

ARPACK 4×N double
2×NEV ×N double

PCG 5×N double

Matrix-Vector Product 2× d×N complex
double

Total (3NEV + 8d+ 9)N double

Table 4.1: Estimates for the memory required for the implementation of both the 1D
and 2D Problems in terms of N = dim A, neglecting lower order terms. NEV denotes
the number of eigenpairs being sought.

QNf
(XY) to a matrix X̂ of Fourier coefficients by computing the FFT of X. In Step 6

we select the Fourier coefficients from X that correspond to g ∈ Z2
G,o This corresponds

to taking [QNf
(XY)]g for g ∈ Z2

G,o.

Now that we have an algorithm for computing matrix-vector products with A and

we have specified that our implementation is using PCG and the IRA method, we

present the total memory requirements of our implementation in Table 4.1. Note that

we only worry about the leading order terms and we have ignored memory requirements

that do not depend on N = dimA and are generally small in comparison. Recall that

N = 2G+ 1 for the 1D problem and N ≤ 4G2 for the 2D problem.

Now we consider preconditioning A (where A is the matrix from (4.14)). The first

preconditioner that we consider is the diagonal of A. Recall that A = D−V where D

is a diagonal matrix and V is a dense matrix with entries

Di(g),i(g) = |ξ + 2πg|2 + K

Vi(g),i(g′) = [γ]g−g′

for g,g′ ∈ Z2
G,o. We define our preconditioner as

P := diag(A) = D−[γ]0 I

In practice we observe that using this preconditioner is optimal in the sense that PCG

converges in O(1) iterations (independent of G). An informal explanation for this is

that all of the contributions from the derivative components in the bilinear form of

a(·, ·) are located in D and by preconditioning with the diagonal of A we negate their

effect on the condition number of A.

We now prove two rigorous results about the condition number of P−1 A. First,
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we prove a result for the 2D problem and then we prove a similar result for the 1D

problem.

Theorem 4.21. For any C > 1, if γ ∈ PC ′
p and

K ≥ [γ]0 + C+1
C−1211/4F

√
G then κ(P−1 A) ≤ C

where F is a constant that depends on the discontinuities in γ(x).

Note that we must choose K→∞ as G→∞.

Proof. The proof of this result relies on Theorem 3.47 and Gershgorin’s Circle Theorem

which says: For any matrix T,

σ(T) ⊂
N⋃

i=1

B(Tii, ri)

where B(Tii, ri) is an open ball centred at Tii with radius ri :=
∑N

j 6=i |Tij |.
Our choice of P gives (P−1 A)i(g)i(g) = 1 for all g ∈ Z2

G,o. We bound ri(g) in the

following way. For g ∈ Z2
G,o we have

ri(g) =
∑

g′∈Z2
G,o

g′ 6=g

|(P−1 A)i(g)i(g′)| ≤ 1
|ξ+2πg|2+K−[γ]0

∑

g′∈Z2
G,o

g′ 6=g

|[γ]g−g′ |

≤ 1
K−[γ]0

∑

g∈Z2
G,o

g 6=0

|[γ]g| ≤ 1
K−[γ]0

∑

|g1|+|g2|≤2
√

2G
g 6=0

|[γ]g|

= 1
K−[γ]0

⌊2
√

2G⌋∑

n=1

∑

|g1|+|g2|=n
|[γ]g|

≤ 1
K−[γ]0

⌊2
√

2G⌋∑

n=1


 ∑

|g1|+|g2|=n
1




1
2

 ∑

|g1|+|g2|=n
|[γ]g|2




1
2

by Cauchy-Schwarz

= 1
K−[γ]0

⌊2
√

2G⌋∑

n=1

(4n)1/2Cn where Cn :=
(∑

|g1|+|g2|=n |[γ]n|2
)1/2

≤ 2F
K−[γ]0

⌊2
√

2G⌋∑

n=1

n−1/2 since Cn ≤ Fn−1 by Theorem 3.47

≤ 2F
K−[γ]0

(
1 +

∫ 2
√

2G

1
x−1/2dx

)
by Lemma 3.9

≤ 211/4F
√
G

K−[γ]0
≤ C−1

C+1 if K ≥ [γ]0 + C+1
C−1211/4F

√
G

Note that F depends on the number and height of the discontinuities in γ(x).
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Applying Gershgorin’s Circle Theorem we get

σ(P−1 A) ⊂
[
1− C−1

C+1 , 1 + C−1
C+1

]
.

Therefore κ(P−1 A) = λmax
λmin

≤ C.

Now we present the corresponding 1D result for diagonal preconditioning.

Theorem 4.22. Let A be the matrix from (4.14) corresponding to the 1D problem.

That is,

A = D−V

where D is a diagonal matrix and V is a Toeplitz matrix with entries given by

Dii = (ξ2 + 2π(i−G− 1))2 + K

Vij = [γ]i−j

for i, j = 1, ..., N = 2G+ 1. Define a preconditioner

P := diag(A) = D−[γ]0 I

Then for any C > 1, if

K ≥ [γ]0 + C+1
C−12F (1 + logG) then κ(P−1 A) ≤ C.

F is a constant that depends on γ.

Proof. This proof is similar to the proof of Theorem 4.21 and we again use Gershgorin’s

Circle Theorem. With our definition of P we get (P−1 A)ii = 1 for all i = 1, . . . , N . We

then bound ri in the following way

ri =
∑

i6=j∈Z
1
G,o

|(P−1 A)ij| ≤ 1
(ξ+2π(i−G−1))2+K−[γ]0

∑

i6=j∈Z
1
G,o

|[γ]i−j|

≤ 1
K−[γ]0

∑

0 6=|j|≤G
|[γ]j|

≤ 2F
K−[γ]0

G∑

n=1

n−1 since |[γ]n| ≤ F |n|−1 by Lemma 3.41

≤ 2F
K−[γ]0

(
1 +

∫ G

1
x−1dx

)
by Lemma 3.9

= 2F (1+logG)
K−[γ]0

≤ C−1
C+1 if K ≥ [γ]0 + C+1

C−12F (1 + logG)
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Applying Gershgorin’s Circle Theorem we get

σ(P−1 A) ⊂
[
1− C−1

C+1 , 1 + C−1
C+1

]
.

Therefore κ(P−1 A) = λmax
λmin

≤ C.

Theorems 4.21 and 4.22 imply that we should choose a sufficiently large shift K

that depends on G and precondition with the diagonal of A. However, practice tells us

that choosing a large K results in more iterations for the IRA method to converge. An

explanation for this follows from the fact that as we increase K the relative distance

between the eigenvalues of A (and A−1) decreases and this has a negative effect on the

performance of our our eigensolver, see Theorem 3.82. Also, if K is very large then we

might experience round-off errors when shifting back and calculating β2 = −(λ−K).

Instead of preconditioning with the diagonal of A with K large, we choose K just

large enough to satisfy Lemma 4.7 and precondition with the following block matrix

(in the 2D case)

P =

[
B1 0

0 B2

]
(4.18)

where B1 is a Nb × Nb dense matrix with entries that are the same as the entries in

A, and B2 is a (N − Nb) × (N − Nb) diagonal matrix that has diagonal entries that

correspond to the diagonal of A, i.e.

(B1)ij = Aij for i, j = 1, . . . , Nb

(B2)ii = A(i+Nb,i+Nb) for i = 1, . . . , (N −Nb).

This choice of preconditioner keeps the advantages of preconditioning with the diagonal

of A as well as picking the parts of A that correspond to the low frequency plane wave

terms. This is because the block B1 corresponds to the entries of A that are generated

from the Nb basis functions with smallest frequency, i.e. the g ∈ Z2
G,o with smallest

|g|.
An important property for a preconditioner is that we can compute the action of P−1

easily. In this case if we can compute the action of B−1
1 and B−1

2 then we can compute

the action of P−1. B−1
2 is trivial since B2 is a diagonal matrix. To compute the action

of B−1
1 we solve a linear system using Cholesky factorization and back substitution at

a cost of O(N3
b ) operations for the Cholesky factorization and O(N2

b ) operations for

the back substitution. In practice, we compute the Cholesky factorization only once

and store the factors.

Other than choosing Nb ≤ N , we are free to tune our preconditioner by choosing

Nb to give us the best results. The larger we choose Nb the more information from

A is represented in P. Therefore, we expect P−1 A to more closely approximate the
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identity matrix and have a small condition number. However, the cost of computing

P−1 increases with large Nb. In practice, we can choose Nb up to 1000.

In the 1D case, the structure of A is slightly different because the ordering of the

entries is different. The entries of A that correspond to the low frequency basis functions

are located in the middle of the matrix, and not the top left corner. Therefore, in the

1D case we choose our preconditioner to be

P =



B2 0 0

0 B1 0

0 0 B3


 (4.19)

where B1 is a (2Nb + 1)× (2Nb + 1) dense matrix with entries that correspond to the

same entries in A, and B2 and B3 are (N − Nb) × (N − Nb) diagonal matrices with

entries on the diagonal that correspond to the diagonal of A, i.e.

(B1)ij = A(i+(G−Nb),j+(G−Nb)) for i, j = 1, . . . , 2Nb + 1

(B2)ii = Aii for i = 1, . . . , G−Nb

(B3)ii = A(i+(G+1+Nb),i+(G+1+Nb)) for i = 1, . . . , G−Nb.

Now we must choose Nb so that 1 ≤ Nb ≤ G. In practice, we choose Nb up to 500

for the 1D case.

For both the 1D and 2D problems we observe that this new preconditioner is optimal

in the sense that we get convergence in O(1) iterations in the PCG algorithm.

Now we will consider the computing requirements of our implementation for Model

Problems 1 - 4 that we defined in Section 4.1.7. As we will see in Subsection 4.2.4, the

computing requirements are the most extreme when we compute reference solutions

and we give a summary of the parameters, memory and CPU time requirements for

these problems in Table 4.2. All of the computations in this thesis were carried out on

a Dual Core AMD Opteron Processor 285 with speed 2600 MHz and 1024 Kb cache,

and 8 Gb of memory. All of the programs were written in Fortran 95 and compiled

with GNU Fortran 4.2.0. Other libraries that were used include: LAPACK 3.1.1-4,

BLAS 3.1.1-4, ARPACK 2.1-7 and FFTW 4.2-3.1.2-1.

Finally, in Tables 4.3 and 4.4 and Figure 4-5 we present data that confirm the claims

that we have made throughout this subsection.

In Table 4.3 we have solved Model Problem 2 (from Section 4.1.7) using different

preconditioners and varying G (and a shift K = γg + π2 + 1
2 unless otherwise stated).

The different precondtioners are defined as P1 = I, P2 = diag(A), P3 = diag(A) (with

large shift K = 5000) and P4 = P from (4.19) (where Nb = 2k−1 for k ≤ 9 and Nb = 29

for k ≥ 10). We have recorded the number of iterations that PCG requires per IRA

iteration as well as the number of restarts that IRA needs. The total number of calls
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Computing Reference Solutions to Model Problems 1-4

Model Problem 1 2 3 4

NEV (# of eigenpairs) 5 60 5 30

G 218 − 1 218 − 1 210 − 1 210 − 1

N = dimA ≈ 5× 105 ≈ 5× 105 ≈ 3× 106 ≈ 3× 106

(Nf )
d (FFT size) 220 220 224 224

Total Memory (Mb) ≈ 130 ≈ 750 ≈ 1000 ≈ 2500

CPU time (seconds) O(102) O(103) O(103) O(104)

Table 4.2: The details of the largest problems that we solve when we compute the
reference solutions for Model Problems 1-4 in Subsection 4.2.4.

to PCG required by IRA is approximately (number of restarts)×NEV since we have set

IRA to restart after NEV iterations if it has not already converged (recall NEV denotes

the number of eigenpairs being sought).

Table 4.4 is similar to Table 4.3 except it is for solving Model Problem 4 instead

of Model Problem 2. For this table, P4 = P from (4.18) (with Nb = 2k for k ≤ 5 and

Nb = 29 for k ≥ 6).

In these two tables we see that the number of iterations required by PCG is O(1)

when we use the diagonal of A as a preconditioner and that even fewer iterations are

needed by PCG when K is large. However, choosing K large has an adverse effect on

the number of iterations required by our eigensolver. We see that it is possible to get

the best of both worlds using the preconditioner that we defined in (4.18) and (4.19).

Note that the results for Model Problems 2 and 4 are also representative of the results

for Model Problems 1 and 3.

In Figure 4-5 we have plotted the CPU time required to solve Model Problems 1-4

for varying N = dim A using the preconditioner P4. The plots confirms the overarching

claim that the total implementation only requires O(N logN) operations. Note that

the kinks in the Model Problem 1 and 2 lines are due to how we choose Nb in the

preconditioner.

In conclusion we have a very efficient algorithm for computing matrix-vector prod-

ucts for both the 1D and 2D problems using FFT, we observe that we have an optimal

preconditioner that allows us to solve linear systems in a fixed number of iterations

independent of the size of the system, and we have an iterative Krylov subspace eigen-

solver that also converges in a fixed number of iterations independent of the system

size. Therefore, we have an implementation that solves (4.14) in O(N logN) oper-

ations. This is in contrast to a direct method that would require O(N3) iterations.

(Recall that in 2D N = O(G2) and in 1D N = 2G+ 1).
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Model Problem 2 with different preconditioners

G = 2k − 1 PCG iterations IRA restarts

k P1 P2 P3 P4 P1 P2 P3 P4

6 16 26 8 17 2 2 2 2
7 45 25 8 12 2 2 5 2
8 98 25 8 9 2 2 8 2
9 X 25 8 7 X 2 10 2
10 X 25 8 6 X 2 10 2
11 X 25 8 6 X 2 10 2
12 X 25 8 6 X 2 10 2

Table 4.3: Solving Model Problem 2 with different preconditioners and varying G (with
shift K = γg + π2 + 1

2 unless otherwise stated).

Model Problem 4 with different preconditioners

G = 2k − 1 PCG iterations IRA restarts

k P1 P2 P3 P4 P1 P2 P3 P4

3 28 36 8 36 6 6 11 6
4 50 38 8 39 7 7 22 11
5 99 38 8 39 7 7 41 7
6 204 39 8 18 7 7 65 7
7 410 39 8 18 7 7 96 7

Table 4.4: Solving Model Problem 4 with different preconditioners and varying G (with
shift K = γg + π2 + 1

2 unless otherwise stated).
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4.2.3 Error Analysis

In this subsection we derive error bounds for the eigenvalue and eigenfunction errors

for the approximate solution to Problem 4.6 that we obtain by solving Problem 4.17,

i.e. by applying the spectral Galerkin method to Problem 4.6. The error bounds are

derived so that we can see the rate at which the errors decrease as we increase G. That

is, as we include more basis functions in our finite dimensional space SG (see (4.8)),

what reduction in the errors should we expect to see in our numerical computations?

These results are based on results in Section 3.5 and are an application of [6]. The

main analytical tool that we use is the solution operator for Problem 4.6, T, which was

defined in Subsection 4.1.4. Problem 4.17 also has a solution operator, TG (defined in

a similar way to Tn in (3.43)).

We will predominantly focus on the 2D problem in this subsection, however, all of

the results also apply to the 1D problem with very similar proofs. At the end of this

subsection we present an additional result that only applies to the 1D problem.

We begin by examining the properties of TG. The following lemma proves that TG

has similar properties to those of T (see Lemma 4.9) as well as proving that TG → T

in norm as G→∞. We also prove an approximation error bound in the subspace SG
for approximating eigenfunctions of Problem 4.6. The results in the following lemma

are all needed for the main theorem of this section.

Lemma 4.23. Let γ ∈ PCp. Then the following properties hold for T, TG and SG.

1. TG = PGT where PG is the projection from H1
p onto SG defined by

a(PGu− u, v) = 0 ∀u ∈ H1
p , ∀v ∈ SG.

2. TG : H1
p → H1

p is a bounded, compact, self-adjoint operator with respect to a(·, ·).

3. For u ∈ H1
p and ǫ > 0,

inf
χ∈SG

‖Tu− χ‖H1
p

. G−3/2+ǫ‖u‖H1
p
.

4. For ǫ > 0,

‖T−TG ‖H1
p

. G−3/2+ǫ.

5. If u is an eigenfunction of Problem 4.6 then, for ǫ > 0,

inf
χ∈SG

‖u− χ‖H1
p

. G−3/2+ǫ‖u‖H1
p
.

Proof. Part 1 is Part 1 of Lemma 3.74 with Sn = SG.

Part 2. TG is bounded since TG = PG T from Part 1 and PG and T are both bounded.
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TG compact follows from Part 1 since PG is bounded and linear and T is compact

(Lemma 4.9 and the fact that the composition of a compact operator with a linear

bounded operator is compact). TG is self-adjoint by the same argument as for T self-

adjoint (see Lemma 4.9).

Part 3. With P
(S)
G defined in Subsection 3.2.5,

inf
χ∈SG

‖Tu− χ‖H1
p
≤ ‖Tu− P

(S)
G Tu‖H1

p
choosing χ = P

(S)
G Tu

≤ G−3/2+ǫ‖Tu‖
H

5/2−ǫ
p

by Lemma 3.30

. G−3/2+ǫ‖u‖H1
p

by Theorem 4.11.

Part 4 follows from Part 3 using Part 2 of Lemma 3.74,

‖TG−T ‖H1
p

= sup
u∈H1

p

‖TGu− Tu‖H1
p

‖u‖H1
p

. sup
u∈H1

p

inf
χ∈SG

‖Tu− χ‖H1
p

‖u‖H1
p

by Part 2 of Lemma 3.74

. G−3/2+ǫ by Part 3.

Part 5 uses the same argument as Part 3.

inf
χ∈SG

‖u− χ‖H1
p
≤ ‖u− P

(S)
G u‖H1

p

≤ G−3/2+ǫ‖u‖
H

5/2−ǫ
p

by Lemma 3.30

. G−3/2+ǫ‖u‖H1
p

by Theorem 4.11.

We can now apply the theory in [6] by using Theorem 3.68 to obtain our main

theorem for this section.

Theorem 4.24. Let γ ∈ PCp and let λ be an eigenvalue of Problem 4.6 with multiplic-

ity m and corresponding eigenspace M . Then for sufficiently large G and arbitrarily

small ǫ > 0, there exist m eigenvalues λ1(G), . . . , λm(G) of Problem 4.17 (counted ac-

cording to their multiplicty) with corresponding eigenspaces M1(λ1), . . . ,Mm(λm) and

MG :=

m⊕

j=1

Mj(λj)

such that

δ(M,MG) . G−3/2+ǫ
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and

|λ− λj | . G−3+2ǫ for j = 1, . . . ,m.

Here, δ(·, ·) is defined as in Definition 3.64 but with H = H1
p since all of the

eigenspaces are subspaces of H1
p .

Proof. The proof of this result is a direct application Theorem 3.68 and Lemma 3.71.

We first check that the assumptions of Theorem 3.68 are satisfied.

1. Our Hilbert space is H1
p (Ω) and a(·, ·) is an inner product for this Hilbert space

by Corollary 4.8.

2. T is bounded, compact and self-adjoint on this Hilbert space by Lemma 4.9.

3. TG (for G ∈ N) are a family of bounded, compact operators such that TG → T

in norm as G→∞ by Lemma 4.23.

4. 1
λ is an eigenvalue of T with eigenspace M by Lemma 3.71.

This completes checking the assumptions of Theorem 3.68. Applying Theorem 3.68

we get

δ(M,MG) . ‖(T−TG)|M‖H1
p

and

|λ− λj | .
m∑

i,k=1

|a((T−TG)φi, φk)|+ ‖(T−TG)|M‖2H1
p

j = 1, . . . ,m

where φ1, . . . , φm is a basis for M .

The result follows using Lemma 3.74 and Parts 3-5 of Lemma 4.23.

In the special case of the 1D problem we can improve these bounds so that we may

choose ǫ = 0. This is based on being able to derive an improved approximation error

result and we present this now.

Lemma 4.25. In 1D, let u ∈ H1
p . Then

inf
χ∈SG

‖Tu− χ‖H1
p

. G−3/2

Proof. Since u ∈ H1
p , by Theorem 4.16 we know that Tu and (Tu)′ are absolutely

continuous and (Tu)′′ is continuous except where γ(x) is discontinuous and is absolutely

continuous on the intervals of continuity. Theorem 39 on page 26 of [36] then implies

that [(Tu)′′]g = O(g−1). Since [(Tu)′′]g = (i2πg)2[Tu]g for all g ∈ Z we then get
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[Tu]g = O(g−3) and

inf
χ∈SG

‖Tu− χ‖2H1
p
≤ ‖Tu− P

(S)
G Tu‖2H1

p

=
∑

|g|>G
|g|2|[Tu]g|2

.

∞∑

g=G+1

g−4 since [Tu]g = O(g−3)

≤
∫ ∞

G
x−4dx by Lemma 3.9

= 1
3G

−3

The result follows by taking the square root of both sides.

The approximation error of an eigenfunction of the 1D problem can also be bounded

using the same technique. We can then obtain the results from Theorem 4.24 with ǫ = 0

by the same proof, using Lemma 4.25 instead of Parts 3-5 of Lemma 4.23.

To recap, we have proven that Problem 4.17 approximates Problem 4.6 in the

sense that given an eigenpair of Problem 4.6 and sufficiently large G, then there is an

eigenpair of Problem 4.17 that approximates the eigenpair of Problem 4.6. We have

proven error bounds for the eigenvalue and eigenfunction error in terms of G. We can

now say that as G gets bigger we know that the eigenvalue and eigenfunction errors will

decrease at specific rates. Moreover, the results for the H1
p error of the eigenfunctions

decreases at an optimal rate with respect to G since our eigenfunction error results are

in terms of the approximation error for SG in H1
p . This means that the eigenfunction

error is equivalent to the error between the exact eigenfunction and the best possible

approximation of that eigenfunction from SG.

Interestingly, our theory implies that the convergence of the eigenvalues is twice

as fast as the convergence of the eigenfunctions. This result is analogous to the con-

vergence of numerical linear algebra techniques for solving symmetric matrix eigen-

problems where the convergence of eigenvalues is twice as fast as the convergence of

eigenvectors.

We must also point out that the convergence of this method is not superalgebraic.

We can not expect superalgebraic convergence (despite having global basis functions)

because the eigenfunctions of Problem 4.6 are not in C∞
p .

The next subsection will verify the results of this subsection with some numerical

experiments.
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4.2.4 Examples

In this section we solve (4.14) for Model Problems 1-4 (see Section 4.1.7) for increasing

values of G to see how the eigenvalues and eigenfunctions of these problems converge.

In particular, we would like to verify our error estimates from Theorem 4.24.

We compare the eigenvalues and eigenfunctions of (4.14) with a reference solution

that has been computed with an especially large value of G (Model Problems 1 and 2:

G = 218 − 1 which corresponds to Nf = 220; Model Problems 3 and 4: G = 210 − 1

corresponding to Nf = 212). We calculate the relative error of eigenvalues and the H1
p

norm of eigenfunction errors. All of the plots will have logarithmically scaled axes so

that a function y = Cxr with constants C and r will be represented as a straight line

of slope r on a plot with horizontal axis x and vertical axis y. Our analysis has focused

on obtaining the correct rate of convergence and so we are interested in the slope of

the lines we plot.

We see that in Figures 4-6 to 4-9 the eigenfunction errors decay with O(G−3/2)

while the eigenvalue errors decay with O(−3). Both of these rates agree with the error

bounds that we proved in Theorem 4.24 for both the 1D and 2D problems. Moreover, it

appears that the hidden constant in the error bounds of Theorem 4.24 does not depend

on ǫ.
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Figure 4-6: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the first 5 eigenpairs of Model Problem 1 (solved for
both ξ = 0 and ξ = π).
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Figure 4-7: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the 37-39th eigenpairs of Model Problem 2 (solved for
both ξ = 0 and ξ = π

13).
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Figure 4-8: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the first 5 eigenpairs of Model Problem 3 (solved for
both ξ = (0, 0) and ξ = (π, π)).
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Figure 4-9: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the 23-27th eigenpairs of Model Problem 4 (solved for
both ξ = (0, 0) and ξ = (π5 ,

π
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4.3 Smoothing

In the previous section we applied a standard spectral Galerkin method to Problem

4.6. If we ignored the fact that γ(x) is discontinuous, then we might have expected

superalgebraic convergence since the method has global basis functions. However, we

saw that the eigenfunctions of Problem 4.6 are not C∞ and therefore, we could only

obtain algebraic convergence of limited order. Methods that attempt to recover faster

(possibly superalgebraic) convergence have been suggested in [40], [53], [62], [63], [64]

and [66]. All of the methods require that an effective n2 that is smooth is used instead

of a discontinuous n2. In this thesis we focus on the method used in [62], [63], [64] and

[66]. The method first modifies the operator (4.2) so that γ(x) is a smooth function

and then the same spectral Galerkin method is applied. In this section we examine the

convergence properties of this method.

This section is divided into the three subsections. In the first subsection we define

the new method. This is done by first defining the infinite dimensional smooth problem

and then approximating the solution to this smooth problem via the spectral Galerkin

method. In the second subsection we derive error bounds for the errors of this new

method. The error is split into the error between the original problem and the smooth

problem and the error from applying the spectral Galerkin method to the smooth

problem. To obtain bounds for these errors it will be necessary to prove some properties

of the smooth problem and this is included in the second subsection. Finally, in the

third subsection we present some examples that verify our theoretical results.

In this section we assume that γ ∈ PC ′
p (see Definition 3.37). We make this

assumption so that we can apply Theorem 3.47.

4.3.1 The method

In this subsection we define the new method as well as some properties that will be

useful in the rest of this section. Let G(x) be a normalized Gaussian function defined

by

G(x) = CG exp

(
− |x|

2

2∆2

)
(4.20)

for small ∆ > 0. In the 2D problem the normalization constant is CG = 1
2π∆2 and in the

1D problem the normalization constant is CG = 1√
2π∆

. The parameter ∆ determines

the “effective” width of the Gaussian function, and as ∆→ 0, G approaches the Dirac

delta function. In the papers where this method is used ∆ is referred to as FWHM

(Full-Width-Half-Maximum). Using this Gaussian function we smooth the piecewise

constant coefficient function γ(x) and define γ̃(x) as

γ̃(x) := (G ∗ γ)(x) =

∫

Rd

G(x− y)γ(y)dx.
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4.3. Smoothing

Now ∆ determines the amount of smoothing. Large ∆ corresponds to a lot of smoothing

while ∆ = 0 corresponds to no smoothing provided we consider G in the distributional

sense. See Figure 4-10 for an example of γ̃(x) for Model Problem 1 (see Section 4.1.7).

Before we define the smooth problem let us state a result about γ̃(x) and its relationship

to γ(x).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

 

 

x

γ
(x

)

A plot of γ(x) and γ̃(x)
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Figure 4-10: Plot of γ̃(x) in 1D.

Lemma 4.26. With γ ∈ PC ′
p and γ̃(x) defined above, s ∈ R and ∆ > 0 the following

three properties hold

1. The Fourier coefficients of γ̃(x) are related to the Fourier coefficients of γ(x) by

[γ̃]g = e−2π2|g|2∆2
[γ]g ∀g ∈ Z2

2.

‖γ − γ̃‖Hs
p

. ∆−s+1/2 −3
2 < s < 1

2

3.

‖γ̃‖Hs
p

.





∆−s+1/2 s > 1
2√

log(∆−1) s = 1
2

1 s < 1
2

Proof. Part 1. In this proof we will need the following.

∫

R

exp
(
− y2

2∆2 − i2πny
)
dy =

∫

R

exp
(
− (y+i2πn∆2)2

2∆2 − 2π2n2∆2
)
dy

= e−2π2n2∆2

∫

R

exp
(
− η2

2∆2

)
dη

=
√

2∆ e−2π2n2∆2

∫

R

e−τ
2
dτ =

√
2π∆ e−2π2n2∆2

. (4.21)
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Using (4.21), for g ∈ Z2, we get

[γ̃]g =

∫

Ω
γ̃(x) e−i2πg·x dx

=

∫

Ω

(∫

R2

G(y)γ(x− y)dy

)
e−i2πg·x dx

=

∫

Ω

∫

R2

G(y)


∑

g′∈Z2

[γ]g′ ei2πg
′·(x−y)


 dy e−i2πg·x dx

=
∑

g′∈Z2

[γ]g′

∫

R2

G(y) e−i2πg
′·y dy

∫

Ω
ei2π(g′−g)·x dx

= [γ]g

∫

R2

G(y) e−i2πg·y dy

=
[γ]g

2π∆2

∫

R2

exp
(
− |y|2

2∆2 − i2πg · y
)
dy

=
[γ]g

2π∆2

(∫

R

exp
(
− y2

1
2∆2 − i2πg1y1

)
dy1

)(∫

R

exp
(
− y2

2
2∆2 − i2πg2y2

)
dy2

)

= [γ]g e−2π2g21∆2
e−2π2g22∆2

by (4.21)

= [γ]g e−2π2|g|2∆2
.

Part 2. Recall the definition of Hs
p in Definition 3.23 (includes definition of | · |⋆).

‖γ − γ̃‖2Hs
p

=
∑

g∈Z2

|g|2s⋆ |[γ − γ̃]g|2

=
∑

g∈Z2

|g|2s⋆
(
1− e−2π2∆2|g|2

)2
|[γ]g|2

=
∞∑

n=1

∑

|g1|+|g2|=n
|g|2s

(
1− e−2π2∆2|g|2

)2
|[γ]g|2

.

∞∑

n=1

n2s
(
1− e−2π2∆2n2

)2 ∑

|g1|+|g2|=n
|[γ]g|2

=
∞∑

n=1

n2s
(
1− e−2π2∆2n2

)2
C2
n with C2

n =
∑ |[γ]g|2

.

∞∑

n=1

n2s−2
(
1− e−2π2∆2n2

)2
since Cn = O(n−1) by Theorem 3.47.

(4.22)

To bound the expression above we need to consider the function f(t) = 1 − e−t
2
. By

expanding e−t
2

in the usual way it can be shown that if t4

2! ≥ t6

3! or |t| ≤
√

3 then

f(t) = t2 − t4

2! + t6

3! − t8

4! + t10

5! − · · · = t2 −
(
t4

2! − t6

3!

)
−
(
t8

4! − t10

5!

)
− · · · ≤ t2
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Therefore,

1− e−2π2∆2x2
= f(

√
2π∆x) ≤





2π2∆2x2 if x2 ≤ 3
2π2∆2

1 for all x ∈ R
. (4.23)

From (4.22) and (4.23) it follows that

‖γ − γ̃‖2Hs
p

.

∞∑

n=1

n2s−2f(
√

2π∆n)2

≤ 4π4∆4

⌊ 1
π∆

⌋∑

n=1

n2s+2

︸ ︷︷ ︸
I1

+
∞∑

n=⌈ 1
π∆

⌉
n2s−2.

︸ ︷︷ ︸
I2

(4.24)

We now consider I1 and I2 seprately. First, consider I1 for −1 ≤ s < 1/2,

I1 = 4π4∆4

⌊ 1
π∆

⌋∑

n=1

n2s+2

= 4π4∆4

⌊ 1
π∆

⌋−1∑

n=1

n2s+2 + 4π4∆4
⌊

1
π∆

⌋2s+2

≤ 4π4∆4

∫ 1
π∆

1
x2s+2dx+ 4π4∆4

(
1
π∆

)2s+2
by Lemma 3.9

≤ 4π4∆4

2s+3

(
(π∆)−2s−3 − 1

)
+ 4(π∆)2−2s

= 4(π∆)1−2s

2s+3 − 4π4∆4

2s+3 + 4(π∆)2−2s

. ∆1−2s.

Now consider I1 for −3/2 < s < −1.

I1 = 4π4∆4

⌊ 1
π∆

⌋∑

n=1

n2s+2

= 4π4∆4 +

⌊ 1
π∆

⌋∑

n=2

n2s+2

≤ 4π4∆4 + 4π4∆4

∫ 1
π∆

1
x2s+2dx by Lemma 3.9

= 4π4∆4 + 4π4∆4

2s+3

(
(π∆)−2s−3 − 1

)
dx

= 4π4∆4 + 4(π∆)1−2s

2s+3 − 4π4∆4

2s+3

. ∆1−2s.
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Therefore,

I1 . ∆1−2s for all −3/2 < s < 1/2. (4.25)

Now consider I2. For −3/2 < s < 1/2 we get

I2 =
∞∑

n=⌈ 1
π∆

⌉
n2s−2

≤
⌈

1
π∆

⌉2s−2
+

∫ ∞

⌈ 1
π∆ ⌉

x2s−2dx by Lemma 3.9

≤
(

1

π∆

)2s−2

+

∫ ∞

1
π∆

x2s−2dx

= (π∆)2−2s +
1

2s− 1

(
0− (π∆)1−2s

)

. ∆1−2s (4.26)

Putting (4.24), (4.25) and (4.26) together we get

‖γ − γ̃‖2Hs
p

. I1 + I2 . ∆1−2s for −3
2 < s < 1

2 .

The result then follows by taking the square root of both sides.

Part 3. For s > 1/2 we get

‖γ̃‖2Hs
p

=
∑

g∈Z2

|g|2s⋆ |[γ̃]g|2

=
∑

g∈Z2

|g|2s⋆ e−4π2∆2|g|2 |[γ]g|2 by Part 1

≤ |[γ]0|2 +
∞∑

n=1

∑

|g1|+|g2|=n
|g|2s e−2π2∆2|g|2 |[γ]g|2

≤ |[γ]0|2 +

∞∑

n=1

n2s e−2π2∆2n2
C2
n with C2

n =
∑ |[γ]g|2

. 1 +
∞∑

n=1

n2s−2 e−2π2∆2n2
since Cn = O(|n|−1) by Theorem 3.47. (4.27)

Now we must consider the cases 1/2 < s ≤ 1 and s > 1 separately. Let f(t) =

t2s−2 e−2π2∆2t2 . If 1/2 < s ≤ 1 then f(t) is monotonically decreasing for t > 0 and

using Lemma 3.9 we get

∞∑

n=1

n2s−2 e−2π2∆2n2 ≤
∫ ∞

0
x2s−2 e−2π2∆2x2

dx (4.28)

Alternatively, if s > 1 then f(t) (for t ≥ 0) has a single maximum at t0 =
√

2s−2
2π∆ ,
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and is monotonically increasing on the interval [0, t0] and monotonically decreasing on

[t0,∞). Moreover, f(t0) . ∆2−2s. Therefore, Lemma 3.9 gives us

∞∑

n=1

n2s−2 e−2π2∆2n2
=

⌊t0⌋−1∑

n=1

f(n) + f(⌊t0⌋) + f(⌈t0⌉) +
∑

⌈t0⌉+1

f(n)

≤
∫ ⌊t0⌋

1
f(x)dx+ 2f(t0) +

∫ ∞

⌈t0⌉
f(x)dx

. ∆2−2s +

∫ ∞

0
x2s−2 e−2π2∆2x2

dx (4.29)

Now put (4.27), (4.28) and (4.29) together to get, for s > 1/2,

‖γ̃‖2Hs
p

. 1 + ∆2−2s +

∫ ∞

0
x2s−2 e−2π2∆2x2

dx

= 1 + ∆2−2s +
1

∆2s−1

∫ ∞

0
y2s−2 e−2π2y2

dy substituting y = ∆x

. ∆1−2s since the integral is bounded independent of ∆.

Therefore, ‖γ̃‖Hs
p

. ∆−s+1/2 for s > 1/2. Now consider the case when s = 1/2.

Following the same argument to that in (4.27) we get

‖γ̃‖2
H

1/2
p

. 1 +
∞∑

n=1

n−1 e−2π2∆2n2 ≤ 2 +
∞∑

n=2

n−1 e−2π2∆2n2

≤ 2 +

∫ ∞

1
x−1 e−2π2∆2x2

dx by Lemma 3.9

= 2 +

∫ ∞

∆
y−1 e−2π2y2

dy substituting y = ∆x

= 2 +

∫ 1

∆
y−1 e−2π2y2

dy +

∫ ∞

1
y−1 e−2π2y2

dy

≤ 2 +

∫ 1

∆
y−1dy +

∫ ∞

1
y−1 e−2π2y2

dy

= 2 + log(∆−1) +

∫ ∞

1
y−1 e−2π2y2

dy

. log(∆−1).

Therefore, ‖γ̃‖
H

1/2
p

.
√

log(∆−1).

Finally, for s < 1/2 we get

‖γ̃‖2Hs
p

=
∑

g∈Z2

|g|2s⋆ |[γ̃]g|2 =
∑

g∈Z2

|g|2s⋆ e−4π2∆2|g|2 |[γ]g|2 by Part 1

≤
∑

g∈Z2

|g|2s⋆ |[γ]g|2 = ‖γ‖2Hs
p
.
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Therefore, ‖γ̃‖Hs
p
≤ ‖γ‖Hs

p
for s < 1/2. Since γ ∈ Hs

p for s < 1/2 by Theorem 3.40, we

get ‖γ̃‖Hs
p

. 1 for s < 1/2.

The results from Lemma 4.26 have analogous results in 1D and the proofs use the

same techniques.

We now define the smooth problem. The operator L is modified and we define the

modified opeator L̃ as

L̃ = −∇2 − γ̃(x) + K

which is the same as the operator in (4.2) except γ(x) has been replaced with γ̃(x).

As in the previous section we consider this operator on the Hilbert space L2(R2). We

apply the Floquet tranform to L̃ in just the same way as in Subsection 4.1.2 and it is

possible to show that all of the results from Subsection 4.1.2 that were given for L also

apply for L̃ and the proofs are the same. Just as in Subsection 4.1.3 for L and Lξ we

define the variational form of the smooth problem as

Problem 4.27. For a fixed ξ ∈ B, find an eigenpair (λ̃, u) where λ̃ ∈ C and 0 6= u ∈ H1
p

such that

ã(u, v) = λ̃b(u, v) ∀v ∈ H1
p (4.30)

where

ã(u, v) =

∫

Ω
(∇+ iξ)u · (∇+ iξ) v + (K−γ̃)uvdx

and b(·, ·) is the same as in Problem 4.6.

The method is to now approximate the solution to Problem 4.27 via the spectral

Galerkin method of Section 4.2. We replace H1
p with SG in Problem 4.27 to get the

corresponding discrete variational eigenvalue problem,

Problem 4.28. Find λ̃G ∈ R and 0 6= uG ∈ SG such that

ã(uG, vG) = λ̃Gb(uG, vG) ∀vG ∈ SG. (4.31)

As in Section 4.2 we can write this problem as a matrix eigenvalue problem and we

solve it using the same implementation as we did for the original problem.

Using the same proof techniques as in Theorem 4.22 and Theorem 4.21 we can show

that exactly the same preconditioning results hold. We now develop the error analysis

to include smoothing in the next section.

4.3.2 Error Analysis

In this subsection we bound the error between the eigenvalues and eigenfunctions of

Problem 4.6 and Problem 4.28. To do this we consider Problem 4.27 as an intermediate

problem and we express the error between Problem 4.6 and Problem 4.28 as the sum
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of two separate error contributions. The first contribution is the smoothing error that

was introduced when we replaced piecewise constant γ(x) with a smooth function

γ̃(x). This is measured by considering the difference in the solutions of Problem 4.6 and

Problem 4.27. The second error contribution comes from our spectral Galerkin method.

This is measured by considering the difference between the solutions of Problem 4.27

and Problem 4.28.

Before we prove any error bounds we must first prove the following lemma.

Lemma 4.29. Problem 4.27 (with γ ∈ PC ′
p) has the following properties:

1. The bilinear form ã(·, ·) is bounded, coercive and Hermitian.

2. The bilinear form ã(·, ·) defines an inner product on H1
p which has an induced

norm ‖·‖ã := |ã(·, ·)|1/2 that is equivalent to ‖ · ‖H1
p
.

3. The solution operator corresponding to Problem 4.27, T̃ : H1
p → H1

p , is bounded,

positive, compact and self-adjoint with respect to ã(·, ·).

4. Problem 4.27 has a countable set of real eigenvalues that are positive and the cor-

responding eigenfunctions can be chosen so that they are orthogonal with respect

to ã(·, ·) and they are complete in L2
p.

5. If u is an eigenfunction of Problem 4.27 (with γ ∈ PC ′
p) then u ∈ C∞

p and

‖u‖Hs
p

.





‖u‖H1
p

for s < 5
2√

log(∆−1)‖u‖H1
p

for s = 5
2

∆−s+5/2‖u‖H1
p

for s > 5
2

Proof. We only prove Part 5 as the proofs for Parts 1-4 are the same as the proofs for

Lemmas 4.7, 4.9 and 4.10.

Let λ̃ be the eigenvalue of Problem 4.27 that corresponds to the eigenfunction u.

Since u is an eigenfunction of Problem 4.27 we have that u is a weak solution of an

elliptic boundary value problem of the same form as (3.52) with L := L̃ξ and f := λ̃u

where L is elliptic with C∞
p coefficients. Using Theorem 3.77 we can “boot-strap” our

way to u ∈ Hs
p for any s ∈ R. We then use Theorem 3.27 to get u ∈ C∞

p .

To obtain the estimates of ‖u‖Hs
p

in Part 5 of our lemma we consider a new boundary

value problem of the same form as (3.52). Now let L := −(∇+iξ)2+K and f := λ̃u+γ̃u.

Again L is elliptic, and now it has constant coefficients. u is a weak solution to this

boundary value problem.

First, let us bound ‖f‖L2
p
. ‖f‖L2

p
≤ |λ|‖u‖L2

p
+ ‖γ̃‖∞‖u‖L2

p
. ‖u‖H1

p
since γ̃ is

continuous. Theorem 3.77 implies that

‖u‖H2
p

. ‖u‖H1
p
. (4.32)
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Now consider ‖f‖Hs
p

for s < 1
2 . We have

‖f‖Hs
p

. ‖u‖Hs
p

+ ‖γ̃‖Hs
p
‖u‖H2

p
by Theorem 3.28

. ‖u‖H1
p

by Lemma 4.26 and (4.32).

Theorem 3.77 now implies that

‖u‖Hs
p

. ‖u‖H1
p

for s < 5
2 . (4.33)

Now consider ‖f‖Hs
p

for 1
2 ≤ s < 5

2 . We have

‖f‖Hs
p

.




‖u‖Hs

p
+ ‖γ̃‖Hs

p
‖u‖H2

p

1
2 ≤ s ≤ 1

‖u‖Hs
p

+ ‖γ̃‖Hs
p
‖u‖Hs

p
1 < s < 5

2

by Theorem 3.28

.





√
log(∆−1)‖u‖H1

p
s = 1

2

∆−s+1/2‖u‖H1
p

1
2 < s < 5

2

by (4.33) and Lemma 4.26.

We apply Theorem 3.77 once again to get

‖u‖Hs
p

.





√
log(∆−1)‖u‖H1

p
s = 5

2

∆−s+5/2‖u‖H1
p

5
2 < s < 9

2 .
(4.34)

We now use induction to prove that ‖u‖Hs
p

. ∆−s+5/2‖u‖H1
p

for s ∈ N, s ≥ 4. We have

already proved the s = 4 case in (4.34). Our inductive hypothesis is to assume that for

k ∈ N,

‖u‖Hs
p

. ∆−s+5/2‖u‖H1
p

for s ∈ N, 4 ≤ s ≤ k. (4.35)

Consider ‖f‖Hk−1
p

. By (4.35) we get

‖f‖Hk−1
p

. ‖u‖Hk−1
p

+ ‖γ̃u‖Hk−1
p

. ∆−k+3/2‖u‖H1
p

+ ‖γ̃u‖Hk−1
p

(4.36)

The key is to now bound ‖γ̃u‖
Hk−1

p
in an efficient way. We do not use Theorem 3.28

because the bound is not sharp enough. Instead we do the following. Let α and β
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define multi-indices. We write α ≤ β, for αi ≤ βi for all i.

‖γ̃u‖2
Hk−1

p
= ‖γ̃u‖2Hk−1(Ω)

=
∑

|α|≤k−1

‖Dα(γ̃u)‖2L2(Ω)

=
∑

|α|≤k−1

∥∥∥∥∥∥

∑

β≤α

(
α

β

)(
Dβ γ̃

)(
Dα−βu

)
∥∥∥∥∥∥

2

L2(Ω)

.
∑

|α|≤k−1

∑

β≤α
‖(Dβ γ̃)(Dα−βu)‖2L2(Ω)

=
∑

|α|≤k−1

|α|∑

j=0

∑

|β|=j
β≤α

‖(Dβγ̃)(Dα−βu)‖2L2(Ω)

=
∑

|α|≤k−1


‖γ̃Dαu‖2L2(Ω) +

|α|∑

j=1

∑

|β|=j
β≤α

‖(Dβ γ̃)(Dα−βu)‖2L2(Ω)




≤
∑

|α|≤k−1


‖γ̃‖2∞‖Dαu‖2L2(Ω) +

|α|∑

j=1

∑

|β|=j
β≤α

‖Dβ γ̃‖2L2(Ω)‖Dα−βu‖2∞




. ‖γ̃‖2∞‖u‖2Hk−1(Ω) +
∑

|α|≤k−1

|α|∑

j=1

‖γ̃‖2Hj(Ω) max
|β|≤|α|−j

‖Dβu‖2∞

. ‖γ̃‖2∞‖u‖2Hk−1(Ω) +
∑

|α|≤k−1

|α|∑

j=1

‖γ̃‖2Hj(Ω) max
|β|≤|α|−j

‖Dβu‖2H2(Ω) by Thm. 3.27

≤ ‖γ̃‖2∞‖u‖2Hk−1(Ω) +
∑

|α|≤k−1

|α|∑

j=1

‖γ̃‖2Hj(Ω)‖u‖2H|α|−j+2(Ω)

. ‖γ̃‖2∞‖u‖2Hk−1(Ω) +
k−1∑

j=1

‖γ̃‖2Hj(Ω)‖u‖2Hk−j+1(Ω)

= ‖γ̃‖2∞‖u‖2Hk−1(Ω) +
k−2∑

j=1

‖γ̃‖2Hj(Ω)‖u‖2Hk−j+1(Ω) + ‖γ̃‖2Hk−1(Ω)‖u‖2H2(Ω)

.


∆−2k+3 +

k−2∑

j=1

∆−2j+1∆−2(k−j+1)+5 + ∆−2k+3


 ‖u‖H1

p

by (4.35) and Lemma 4.26

=


∆−2k+3 +

k−2∑

j=1

∆−2k+4 + ∆−2k+3


 ‖u‖H1

p

. ∆−2k+3‖u‖H1
p
.
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Putting this back into (4.36) we get

‖f‖Hk−1
p

. ∆−k+3/2‖u‖H1
p
.

Theorem 3.77 implies that

‖u‖Hk+1
p

. ∆−k+3/2‖u‖H1
p

= ∆−(k+1)+5/2‖u‖H1
p
.

Therefore, by induction, (4.33) and (4.34) we have

‖u‖Hs
p

.





‖u‖Hs
p

s < 5
2√

log(∆−1)‖u‖H1
p

s = 5
2

∆−s+5/2‖u‖H1
p

∈
(

5
2 ,

9
2

)
∪ {s ∈ N : s ≥ 5}.

The result then follows by applying Lemma 3.26.

The first error contribution we examine is that of smoothing. We bound the dif-

ference between Problem 4.6 and Problem 4.27. These are both infinite dimensional

problems but we can still apply Theorem 3.68. To do this T and T̃ must satisfy the

conditions of Theorem 3.68. We must show that T̃ → T in norm as ∆ → 0. This

property is proved using the following lemma. The proof will use Strang’s 1st Lemma

(Theorem 3.75) in a non-standard way in the sense that we apply it when an infinite

dimensional problem approximates another infinite dimensional problem.

Lemma 4.30. For ∆ ≥ 0 (and γ ∈ PC ′
p) we get:

1.

‖T−T̃‖H1
p

. ∆3/2.

2. The adjoint of T̃ with respect to a(·, ·), T̃
∗
, satisfies

‖T−T̃
∗‖H1

p
. ∆3/2.

3. For u, v ∈ H1
p , ∣∣∣a((T−T̃)u, v)

∣∣∣ . ∆3/2‖u‖H1
p
‖v‖H1

p
.

Proof. Part 1. The proof for this result relies on Strang’s 1st Lemma (Theorem 3.75).
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Let f ∈ H1
p . Then using Theorem 3.75 we get

∥∥∥T f − T̃f
∥∥∥
H1

p

. inf
v∈H1

p

{
‖T f − v‖H1

p
+ sup
w∈H1

p

|a(v, w)− ã(v, w)|
‖w‖H1

p

}

≤ sup
w∈H1

p

|a(T f, w)− ã(T f, w)|
‖w‖H1

p

choosing v = Tf

≤ sup
w∈H1

p

∫
Ω |(γ̃ − γ) Tfw|dx

‖w‖H1
p

≤ sup
w∈H1

p

‖T f‖∞
∫
Ω |(γ̃ − γ)w|dx
‖w‖H1

p

≤ sup
w∈H1

p

‖T f‖∞‖γ̃ − γ‖H−1
p
‖w‖H1

p

‖w‖H1
p

by (3.3)

= ‖T f‖∞‖γ̃ − γ‖H−1
p

. ‖T f‖H2
p
‖γ̃ − γ‖H−1

p
by Theorem 3.27

. ‖f‖H1
p
‖γ̃ − γ‖H−1

p
by Theorem 4.11

. ‖f‖H1
p
∆3/2 by Lemma 4.26.

Part 2. The proof of Part 2 uses Part 1 and the fact that a(·, ·) is bounded in H1
p . For

f ∈ H1
p we get

‖(T−T̃
∗
)f‖2H1

p
. ‖(T−T̃

∗
)f‖2a

= a((T−T̃
∗
)f, (T−T̃

∗
)f)

= a((T−T̃)(T−T̃
∗
)f, f)

. ‖(T−T̃)(T−T̃
∗
)f‖H1

p
‖f‖H1

p

≤ ‖T−T̃‖H1
p
‖(T−T̃

∗
)f‖H1

p
‖f‖H1

p
.

By dividing through by ‖(T−T̃
∗
)f‖H1

p
we get

‖(T−T̃
∗
)f‖H1

p
. ‖T−T̃‖H1

p
‖f‖H1

p
.

The result then follows by using Part 1.

Part 3. The proof of Part 3 follows directly from Part 1 using the fact that a(·, ·)
is bounded.

We now apply Theorem 3.68 to obtain bounds on the eigenvalue and eigenfunction

errors of Problem 4.27 as an approximation of Problem 4.6 for sufficiently small ∆.

Theorem 4.31. Let λ be an eigenvalue of Problem 4.6 (with γ ∈ PC ′
p) with multi-

plicity m and corresponding eigenspace M . Then for sufficiently small ∆ there exist m
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eigenvalues λ̃1(∆), . . . , λ̃m(∆) (counted according to multiplicity) of Problem 4.27 with

corresponding eigenspaces M1(λ̃1), . . . ,Mm(λ̃m) and a space

M∆ :=
m⊕

j=1

Mj(λ̃j)

such that

δ(M,M∆) . ∆3/2

and

|λ− λ̃j | . ∆3/2 for j = 1, . . . ,m.

Proof. The proof of this result is very similar to the proof of Theorem 4.24. First we

check that the conditions of Theorem 3.68 are satisfied. Just as in the proof of Theorem

4.24, H1
p is our Hilbert space with inner product a(·, ·). T is bounded, compact and

self-adjoint. T̃ (∆ > 0) is a family of bounded compact operators (Lemma 4.29) and

Part 1 of Lemma 4.30 ensures that T̃ → T in norm as ∆ → 0. T̃ is not self-adjoint

with respect to a(·, ·) but it is self-adjoint with respect to ã(·, ·). T̃ bounded, compact

and self-adjoint (with respect to ã(·, ·)) ensures that T̃ does not have any generalised

eigenvectors. Now we apply Theorem 3.68, Lemma 3.71 and Lemma 4.30 to obtain the

result.

We now have a result that quantifies the difference between Problem 4.6 and 4.27.

As we expect, as ∆ → 0 the eigenvalues and eigenfunctions of the smooth problem

converge to the eigenvalues and eigenfunctions of our original problem. However, we

might have expected to obtain an eigenvalue estimate that decreased at twice the rate

of the eigenfunction error, as we did in Theorem 4.24. We have not been able to

prove this type of result because there is no “Galerkin orthogonality” condition that

the eigenfunctions of both problems satisfy. Later, numerical results will show that the

eigenvalue errors do not decrease at twice the rate of the eigenfunction errors. However,

the numerical results will show that our result is not completely sharp for the eigenvalue

error estimate. Theorem 4.31 also holds for the 1D problem.

We are now free to concentrate on the error that we introduce when we approximate

Problem 4.27 with a discrete problem, Problem 4.28. We studied this error in the

previous section when we applied the spectral Galerkin method to our original problem.

The error analysis for the spectral Galerkin method applied to the smooth problem is

the same except for the approximation error estimate, which depends on the regularity

of the eigenfunctions. We have already shown, in Lemma 4.29, that because γ̃ is

smooth, the eigenfunctions of Problem 4.27 are in C∞
p . Therefore, we now expect the

approximation error to decrease superalgebraically with respect to G (i.e. decrease

with arbitrary algebraic order). However, we also expect the approximation error to

depend on the amount of smoothing, ∆. We expect to see the approximation error
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increase as ∆ → 0 since the derivatives of the coefficient function γ̃(x) will become

larger as ∆→ 0. Indeed, our task will be to derive an approximation error bound that

shows the dependence on G and ∆, which we do the following lemma. We have already

done the hard work when we proved the estimates of ‖u‖Hs
p

in Part 5 of Lemma 4.29

and the following approximation error result follows neatly from this.

Lemma 4.32. Let u be an eigenfunction of Problem 4.27 (with γ ∈ PC ′
p). Then we

obtain the following family of bounds for the approximation error,

inf
χ∈SG

‖u− χ‖H1
p

.





G−3/2+ǫ‖u‖H1
p

for ǫ > 0

G−3/2
√

log(∆−1)‖u‖H1
p

G−3/2−s∆−s‖u‖H1
p

for s > 0.

Proof. This result follows from Part 5 of Lemma 4.29 and Lemma 3.30 by taking

χ = P
(S)
G u.

We have shown that the approximation error for eigenfunctions of Problem 4.27 and

our finite dimensional space SG decreases at a superalgebraic rate (arbitrary polynomial

order) with respect to G. However, the fast convergence with respect to G does not

come without a penalty when ∆ is small. Indeed, when we take s larger in Lemma 4.32

(to obtain faster convergence with respect to G), the penalty for small ∆ also becomes

larger.

We now state a result for the errors of the spectral Galerkin method applied to

Problem 4.27 that is similar to Theorem 4.24, except we use our new approximation

error result (Lemma 4.32) to obtain different error estimates. The proof is analogous

to the proof of Theorem 4.24, except we use Lemma 4.32 instead of Part 5 of Lemma

4.23.

Theorem 4.33. Let λ̃ be an eigenvalue of Problem 4.27 (with γ ∈ PC ′
p) with multi-

plicity m and corresponding eigenspace M̃ . Then, for sufficiently large G, there exist

m eigenvalues λ̃1(G,∆), . . . , λ̃m(G,∆), counted according to multiplicity, of Problem

4.28 with corresponding eigenspaces M̃1(λ̃1), . . . , M̃m(λ̃m) and a space

M̃G,∆ :=
m⊕

j=1

M̃j(λ̃j)

such that

δ(M̃,M̃G,∆) .





G−3/2+ǫ for ǫ > 0

G−3/2
√

log(∆−1)

G−3/2−s∆−s for s > 0
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and

|λ̃− λ̃j | .





G−3+2ǫ for ǫ > 0

G−3 log(∆−1)

G−3−2s∆−2s for s > 0

for j = 1, . . . ,m.

In Theorem 4.33 we have proved that the eigenvalues and eigenfunctions of the

discrete smooth problem converge superalgebraically to the eigenvalues and eigenfunc-

tions of the exact smooth problem. Notice also that the eigenvalues converge at twice

the rate of the eigenfunctions in this case.

So far we have analysed the error from modifying the original problem and we

have analysed the error from solving the modified problem with the spectral Galerkin

method. The next step of the smooth problem error analysis is to add the two error

contributions together. We do this and get the following Theorem. The proof is omitted

because it is a simple application of the triangle inequality to the results of Theorem

4.31 and Theorem 4.33.

Theorem 4.34. Let λ be an eigenvalue of Problem 4.6 (with γ ∈ PC ′
p) with multiplicity

m and corresponding eigenspace M . Then, for sufficiently large G and small ∆ > 0,

there exist m eigenvalues λ̃1(G,∆), . . . , λ̃m(G,∆) of Problem 4.28 with corresponding

eigenspaces M̃1(λ̃1), . . . , M̃m(λ̃m) and a space

M̃G,∆ :=
m⊕

j=1

M̃j(λ̃j)

such that

δ(M,M̃G,∆) .





∆3/2 +G−3/2+ǫ for ǫ > 0

∆3/2 +G−3/2
√

log(∆−1)

∆3/2 +G−3/2−s∆−s for s > 0

(4.37)

and

|λ̃− λ̃j | .





∆3/2 +G−3+2ǫ for ǫ > 0

∆3/2 +G−3 log(∆−1)

∆3/2 +G−3−2s∆−2s for s > 0

(4.38)

for j = 1, . . . ,m.

The final step of the error analysis for the smoothing method is to suggest a smooth-

ing technique based on our theoretical error bounds. We want to choose ∆ = f(G) to

minimise the error. As we will see, to obtain optimal error convergence rates for our

method it will be sufficient to choose ∆ = CGr for some degree r ∈ R and constant C.
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It is possible to approach the problem of choosing an optimal amount of smoothing

from two directions. The first approach is to minimise the error bounds in Theorem 4.34

by balancing the two terms on the right-hand-sides of (4.37) and (4.38). This approach

will give a value of r that produces an optimal error bound. The second approach is

to remember that this method is supposed to improve the standard method (with no

smoothing). With this in mind we aim to choose r so that the two error bounds in

Theorem 4.34 are smaller than the corresponding error bounds from Theorem 4.24.

Corollary 4.35. To optimize the error bounds in Theorem 4.34 with ∆ := Gr we must

choose

1. r = −1 to optimize the error bound for the eigenfunction errors. This gives us

an error bound of

δ(M,M̃G,∆) . G−3/2

2. r = −2 to optimize the error bound for the eigenvalue errors. This gives us an

error bound of

|λ̃− λ̃j | . G−3+2ǫ for ǫ > 0

and j = 1, . . . ,m.

Therefore, no choice of smoothing will result in an error bound that decreases at a faster

rate than the error bounds for the standard method in Theorem 4.24.

Proof. We will first consider the eigenfunction error bound from Theorem 4.34. We

must use the third case of (4.37) with the form

∆3/2 +G−3/2−s∆−s for s > 0 (4.39)

since the first two cases of (4.37) will result in an error bound that converges slower

than O(G−3/2) (which is the rate of decay of the error bound for the standard method

in Theorem 4.24). We substitute ∆ = Gr into (4.39) and balance the terms by equating

the degree of each term. We get 3r
2 = 3

2 − s− sr. Solving for r we get r = −1 and the

result follows.

We now consider the eigenvalue error bound from Theorem 4.34. We must use the

third case of (4.38) where the error has the form

∆3/2 +G−3−2s∆−2s for s > 0 (4.40)

since the first two cases of (4.38) cannot give us an error bound that converges faster

than O(G−3) which is the rate of decay of the error bound for the standard method in

Theorem 4.24). We substitute ∆ = Gr into (4.40) and balance the terms by equating
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the degree of each term. We get 3r
2 = −3− 2s− 2sr. Solving for r we get

r = −
(

1 +
3

3 + 4s

)
. (4.41)

With this choice of r for ∆ = Gr we get eigenvalue errors that have O(G− 3
2
(1+ 3

3+4s
))

for s > 0. Choosing s → 0 we get the fastest rate of decay and the eigenvalues errors

decrease with a rate that approaches O(G−3).

In fact, if we choose r = −2 then we get eigenvalue error of O(G−3+2s) which also

approaches O(G−3) as s→ 0 and is also optimal.

The previous corollary contains the main conclusion of this section, “No choice of

smoothing will give us an error bound that decays faster than the error bound for the

standard method”. It also gives specific values of r in ∆ = Gr that will recover the

decay rates of the error bounds of the standard method. However, the result does not

say that these values of r are the only values that will recover the decay rates of the

error bounds of the standard method.

Indeed, for the eigenfunction errors we can choose any r ≤ −1 and substitute

∆ = Gr into δ(M,M̃G,∆) . ∆3/2 + G−3/2+ǫ (from (4.37)) to get eigenfunction errors

that are O(G−3/2+ǫ) for any ǫ > 0, i.e. by choosing any r ≤ −1 we have recovered the

eigenfunction error decay rate for the standard method.

For the eigenvalue errors there are also many choices of r that will recover the

convergence rate from the standard method. If we choose r ≤ −2 and substitute

∆ = Gr into |λ̃ − λ̃j | . ∆3/2 + G−3+2ǫ (from (4.38)) then we get an eigenvalue error

that is O(G−3+ǫ) for any ǫ > 0, i.e. by choosing any r ≤ −2 we can recover the

eigenvalue error convergence rate for the standard method.

Now we realise that these choices of r all correspond to choosing very small ∆,

and when we choose very small ∆ the errors behave in the same way as the standard

method. It is as if we have chosen ∆ so small that the method does not recognise that

there is any smoothing at all.

This concludes our theoretical error convergence analysis for the smooth problem.

However, we mention that all of the above results are also true for the 1D problem with

very similar proofs but they are omitted from this thesis.

We now compute some numerical examples to test our theory.

4.3.3 Examples

In this subsection we present numerical examples that support the theoretical results

we have developed for solving the smooth problem. We solve Model Problems 1-4 from

Section 4.1.7 using the method we have described in this section for ∆ 6= 0 and varying
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G, and for varying ∆ with fixed G. We then implement various strategies to balance

the errors by choosing ∆ = Gr for different constants r.

In Figures 4-11 to 4-14 we have plotted the errors of the Galerkin method applied to

the smooth problem (Problem 4.28) for fixed ∆ and varying G for Model Problems 1-4.

For Problems 1 and 2 we have fixed ∆ = 10−4 and in Problems 3 and 4 we have fixed

∆ = 10−2. The reference solution, which should be the solution to Problem 4.27, is

the computed solution to Problem 4.28 with ∆ = 10−4 and G = 218− 1 for Problems 1

and 2 and ∆ = 10−2 and G = 210− 1 for Problems 3 and 4. Theorem 4.33 implies that

we should observe algebraic convergence with respect to G of arbitrary degree for both

the eigenvalue and eigenfunction, i.e. superalgebraic convergence. This is indeed what

we observe in Figures 4-11 - 4-14 before the error tolerance of the computed reference

solutions are reached. However, Theorem 4.33 is an asymptotic result and in some of

the plots the faster convergence only occurs for larger G.

In Figures 4-15 - 4-18 we plot the error of Problem 4.27 with respect to the solution

of Problem 4.6 for varying ∆. We do not have the exact solutions for these problems

so we approximate their solutions by solving Problems 4.17 and 4.28 with large G

(218 − 1 for the 1D problems and 210 − 1 for the 2D problems) to get our reference

solution and the solution to Problem 4.27 for varying ∆. Theorem 4.31 implies that the

eigenvalue and eigenfunction errors should converge with rate ∆3/2. We see that this

is indeed the case for the eigenfunctions in all of the model problems. However, for the

eigenvalue errors, we observe that our theory is not completely sharp. The eigenvalue

errors appear to actually converge with rate ∆2.

Given this new (numerically observed) rate of convergence for the eigenvalue error

of Problem 4.27, we can redo the optimisation for the eigenvalue error in Corollary 4.35

to check whether this changes our conclusion that “no amount of smoothing will give

faster convergence than the standard method”. We find that based on the numerically

observed rate of convergence for the eigenvalue error, the optimal choice for r is r =

−3/2 (actually, we could choose any r ≤ −3/2 and get the same rate of convergence).

This gives an error bound of the form

|λ̃− λ̃j | . G−3+2ǫ for ǫ > 0

and j = 1, . . . ,m, which is again not faster than the rate of decay of the error bound

for the standard method in Section 4.2. Therefore, our conclusion based on numerical

observations is the same, “No choice of smoothing will result in a rate of convergence

that is faster than the standard method”.

Finally, we plot the errors of Problem 4.28 for varying G where we have chosen

∆ = Gr for different values of r. We plot the 1st eigenvalue error from Model Problems

1 and 2 in Figure 4-19 and the 1st eigenvalue error from Model Problem 3 and 4

in Figure 4-20. The 1st eigenfunction errors for Model Problems 1-4 are plotted in
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Figures 4-21 and 4-22. The reference solution is Problem 4.17 with G = 218 − 1 for

the 1D problems and G = 210 − 1 for the 2D problems. As well as plotting errors for

∆ = G−1/2, ∆ = G−1 and ∆ = G−3/2 we have also plotted the case when ∆ = 0

for comparison. The ∆ = 0 case corresponds to the standard method of Section 4.2.

In all of the plots we observe that the error convergence rate is never better than the

convergence rate of the standard method. We also observe that our optimal choice of

smoothing from Corollary 4.35 and the discussion in the previous paragraph (r = −1

for eigenfunctions and r = −3/2 for eigenvalues) corresponds to the largest choice of

∆ (i.e. largest amount of smoothing) that can be chosen without the error converging

at a slower rate than the standard method. We interpret this as, “if the amount of

smoothing is too big, then the error from smoothing is larger than the error from the

plane wave approximation”.

To reiterate our conclusion, there is no choice of smoothing that will improve the

rate of convergence so that the smoothing method performs better than the standard

method. However, we can apply smoothing, up to a point, without having a detrimental

effect on the rate of convergence.
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Figure 4-11: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the 1st 5 eigenpairs of Problem 4.28 with ∆ = 10−4

fixed.
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Figure 4-12: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the 37-39th eigenpairs of Problem 4.28 with ∆ = 10−4

fixed.
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Figure 4-13: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the first 5 eigenpairs of Problem 4.28 with ∆ = 10−2

fixed.
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Figure 4-14: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the 23-27th eigenpairs of Problem 4.28 with ∆ = 10−2

fixed.
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Figure 4-15: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the 1st 5 eigenpairs of Problem 4.28 with G = 216 − 1
fixed.
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Figure 4-16: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the 37-39th eigenpairs of Problem 4.28 with G = 216−1
fixed.
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Figure 4-17: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the 1st 5 eigenpairs of Problem 4.28 with G = 28 − 1
fixed.
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Figure 4-18: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the 23-27th eigenpairs of Problem 4.28 with G = 28− 1
fixed.
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13 (for Model Problem 2). Note that
machine accuracy is reached for the ∆ = 0 case for large G.
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π
5 ) (for Model Problem 4).
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Figure 4-21: Plot of the H1
p norm of the error vs. G for the 1st eigenfunction of Problem

4.28 for ξ = 0, and ξ = π (for Model Problem 1) or ξ = π
13 (for Model Problem 2).
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Figure 4-22: Plot of the H1
p norm of the error vs. G for the 1st eigenfunction of Problem

4.28 for ξ = (0, 0), and ξ = (π, π) (for Model Problem 3) or ξ = (π5 ,
π
5 ) (for Model

Problem 4).
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4.4 Sampling

In practice, for more complicated γ(x) ∈ PCp, we may not have an explicit formula

for the Fourier coefficients of γ(x). In this case we do not know the entries of the

matrix A in (4.14), or equivalently, we do not have the input values for Algorithm 4.19

to compute the action of matrix-vector multiplication with A. So far in this chapter

we have assumed that we have an explicit formula for the Fourier coefficients of γ(x).

Let us now consider the case where we do not have an explicit formula, and we must

somehow approximate the Fourier coefficients of γ(x).

In this section we make the assumption that γ ∈ PC ′
p so that we can apply 3.47

when d = 2.

In the first subsection we present a fast and efficient method that utilises the Fast

Fourier Transform (FFT) for approximating the Fourier coefficients of γ(x). We call

this new method the sampling method. In the second subsection we analyse the addi-

tional error that the sampling method introduces and in the final subsection we present

some examples to support our theoretical results.

4.4.1 The method

In this subsection we define the sampling method for solving Problem 4.6 when we

do not have an explicit formula for the Fourier coefficients of γ(x). As we saw in

Algorithm 4.19 we do not need all of the Fourier coefficients of γ(x). We only require

[γ]g for g ∈ Z2
Nf ,�

where Nf is the number that defines the size of the FFT that is

used in Algorithm 4.19. The sampling method is to approximate [γ]g with [QM γ]g for

g ∈ Z2
Nf ,�

where QM is the interpolation projector described in Subsection 3.2.5 and

M is a chosen integer that will determine the accuracy of the sampling method.

The reason that we choose this particular projection of γ(x) is because it is very

easy and efficient to compute [QM γ]g for g ∈ Z2
Nf ,�

. Recall that QM γ ∈ T (2)
M and so,

according to our discussion in Subsection 3.2.4, we can represent QM γ as a M ×M
matrix of either nodal values on a uniform grid or Fourier coefficients. Moreover, using

the FFT will allow us to swap between these two different representations a cost of

only O(M2 logM) operations. This is the basis of the sampling method.

First, we represent QM γ with a matrix of nodal values by sampling γ(x) on a

uniform grid. We then compute [QM γ]g for g ∈ Z2
M,� using the FFT. If M ≥ Nf

(as is usually the case in practice) then we automatically have [QM γ]g for g ∈ Z2
Nf ,�

.

However, if M < Nf then we recall that [QM γ]g = 0 for g ∈ Z2
Nf ,�
\Z2

M,�. We present

this process more formally in the following algorithm.

Algorithm 4.36. Choose M = 2n for some n ∈ N. Define g0 = (
Nf

2 + 1,
Nf

2 + 1) and

m0 = (M2 + 1, M2 + 1). Let fft(·) denote the 2D Fast Fourier Transform as defined in

Subsection 3.2.4. This algorithm computes [QM γ]g for g ∈ Z2
Nf

and stores the values
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in a matrix Ŷ where Ŷij = [QM γ](i,j)−g0
for i, j = 1, . . . , Nf .

Wij ← γ
(

(i,j)−m0

M

)
for i, j = 1, . . . ,M

Ŵ ← fft(W )

if Nf ≤M then

Ŷij ← Ŵ(i,j)+x0−g0
for i, j = 1, . . . , Nf .

else

Ŷij ← 0 for i, j = 1, . . . , Nf .

Ŷij ← Ŵ(i,j)+x0−g0
for i, j = 1, . . . ,M .

end if

This is the algorithm we use for the 2D problem. There is a similar algorithm for

the 1D problem.

Algorithm 4.36 requires one FFT and the total computational cost of the algorithm

is O(M2 logM) operations (O(M logM) for the 1D problem). When we use Algorithm

4.36 with Algorithm 4.19 to solve (4.14) we only apply Algorithm 4.36 once, while

Algorithm 4.19 is applied many times. For this reason we may choose M significantly

larger than Nf without incurring a significant increase to the computational cost of

solving (4.14).

The additional memory required for the sampling method is an M ×M complex

double matrix.

To see that Algorithm 4.36 for approximating [γ]g is efficient, let us compare it

with a quadrature method for approximating [γ]g for g ∈ Z2
Nf ,�

. For each g ∈ Z2
Nf ,�

an M2-point quadrature rule method to approximate the integral

γg =

∫

Ω
γ(x) e−i2πg·x dxdy

would require O(M2) operations. The total cost of computing [γ]g for g ∈ Z2
Nf ,�

would

be O(M2N2
f ). Thus, the O(M2 logM) cost of Algorithm 4.36 compares extremely

favourably with using M2-point quadrature to approximate [γ]g for g ∈ Z2
Nf ,�

. The

main saving comes from computing all of the approximate Fourier coefficients at once

rather than repeating the quadrature rule for each approximate Fourier coefficient.

We must now consider the error associated with approximating [γ]g with [QM γ]g

for g ∈ Z2
Nf ,�

. To bound the errors for the variational eigenvalue problem we must

bound ‖γ − QM γ‖H−1
p

. To do this we cannot directly apply Lemma 3.32 because we

are not sure if γ ∈ Ht
p for some t > 1 (t > 1/2 in 1D). Therefore, we consider a mollified

γ(x), γδ(x). For small δ > 0 we define γδ(x) by

γδ(x) := Jδ ∗ γ(x) =

∫

Rd

Jδ(y)γ(x− y)dy =

∫

Rd

Jδ(x− y)γ(y)dy ∀x ∈ Rd

where Jδ(x) = δ−dJ(δ−1x) and J(x) is the standard mollifier that we defined in Sub-
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section 3.1.5. In a lemma that follows, Lemma 4.37, we prove some properties about

γδ(x).

Also note that, Lemma 3.32 can only provide an upper bound for ‖γδ −QM γδ‖H0
p

and not ‖γδ −QM γδ‖Hs
p

with s < 0 (in particular s = −1) and we will need to use the

fact that ‖u‖Hs
p
≤ ‖u‖Ht

p
for all u ∈ Hs

p for any s < t. This might be where we loose

the sharpness for our error bounds.

When we replace γ(x) with γδ(x) ∈ C∞
p we will obtain QM γ = QM γδ if we choose

δ > 0 sufficiently small so that γ( 1
M k) = γδ( 1

M k) for all k ∈ Z2
M,� . However, we

cannot choose δ arbitrarily small without penalty. The penalty appears in the form of

a negative exponent of δ in Parts 3 and 5 of Lemma 4.37. To alleviate this penalty we

define yet another approximation to γ(x) that will ensure that we can choose δ ∝M−1.

Associated with QM are the nodes, { 1
M k : k ∈ ZdM,�}. For d = 1 we construct a

mesh of uniform intervals with length 1
M and for d = 2 we construct a mesh of uniform

squares with side length 1
M such that each node is the centre of an interval (for d = 1)

or a square (for d = 2). We define a perturbed γ(x), γ(x), such that γ(x) is constant

on each of the intervals or squares in the mesh and γ(x) is equal to γ(x) at the nodes,

i.e. γ(x) = γ(x) for all x ∈ { 1
M k : k ∈ ZdM,�}. See Figure 4-23 for an example of how

we construct γ from γ for d = 2. In Lemma 4.38 we bound the difference between γ(x)

and γ(x) in the L2
p norm (which is the same as the L2(Ω) norm and is equivalent to

the H0
p norm). Before we bound ‖γ − QM γ‖H0

p
let us prove some properties for the

molified γ(x).

Figure 4-23: Diagram of γ and γ for d = 2. “x” mark the nodes corresponding to QM .
The dotted lines are the uniform mesh of squares and the grey region is γ. The curved
line is an interface of γ.
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Lemma 4.37. Let d = 1, 2 and assume γ ∈ PC ′
p. For 1

2 > δ > 0 and any ǫ > 0 we

get:

1.

[γδ]g = [γ]g[Jδ]g for all g ∈ Zd.

2. [Jδ]0 = 1, |[Jδ]g| ≤ 1 for all g ∈ Zd, and for any k ∈ N,

|[Jδ]g| . (δ|g|)−k for all 0 6= g ∈ Zd.

3.

‖γδ‖Hs
p

.





1 if s < 1
2

δ−s+1/2−ǫ if s ≥ 1
2

.

4.

|[γ − γδ]g| .





0 g = 0

|[γ]g| g ∈ Z2

(δ|g|)2|[γ]g| g ∈ Z2, |gi| ≤ δ−1.

.

5.

‖γ − γδ‖Hs
p

. δ−s+1/2 for −3
2 < s < 1

2 .

Proof. Part 1. From Definition 3.13 we have for g ∈ Zd,

[γδ]g =

∫

Ω
γδ(x) e−i2πg·x dx

=

∫

Ω

∫

B(0,δ)
Jδ(y)γ(x− y) e−i2πg·x dydx

=

∫

Ω

∫

B(0,δ)
Jδ(y)


∑

n∈Zd

[γ]n ei2πn·(x−y)


 e−i2πg·x dydx

=
∑

n∈Zd

[γ]n

∫

Ω
ei2π(n−g)·x dx

∫

B(0,δ)
Jδ(y) e−i2πn·y dy

= [γ]g

∫

B(0,δ)
Jδ(y) e−i2πg·y dy

= [γ]g

∫

Ω
Jδ(y) e−i2πg·y dy

= [γ]g[Jδ]g.

Part 2. [Jδ]0 = 1 follows from the definition of Jδ. For all g ∈ Zd,

|[Jδ]g| =
∣∣∣∣
∫

Ω
Jδ(x) e−i2πg·x dx

∣∣∣∣ ≤
∫

Ω
Jδ(x)dx = 1.
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For 0 6= g ∈ Zd, gi 6= 0 and integrating by parts gives us

[Jδ]g =

∫

Ω
Jδ(x) e−i2πg·x dx

=
(

−1
i2πgi

)k ∫

Ω
Dk
xi
Jδ(x) e−i2πg·x dx

=
(

−1
i2πgi

)k ∫

Ω
δ−d−k

(
Dk
yi
J(y)

) ∣∣∣
y=x

δ

e−i2πg·x dx

=
(

−1
i2πgi

)k ∫

B(0,δ)
δ−d−k

(
Dk
yi
J(y)

) ∣∣∣
y=x

δ

e−i2πg·x dx.

This implies that

|[Jδ]g| ≤
(

1
2πgiδ

)k
max
|α|=k

‖DαJ‖∞.

Now, the result follows from

|g|k|[Jδ]g| ≤ dk/2
d∑

i=1

|gi|k|[Jδ]g| ≤ dk+1/2

(2πδ)k max
|α|=k

‖DαJ‖∞.

Part 3. We only prove Part 3 for d = 2. The proof for d = 1 is similar. First consider

the case when s < 1/2. Using Parts 1 and 2 we get |[γδ]g| ≤ |[γ]g| for all g ∈ Zd.

Therefore, ‖γδ‖Hs
p
≤ ‖γ‖Hs

p
. 1 by Theorem 3.40.

For s ≥ 1/2, let k ∈ N ∪ {0}, and get

‖γδ‖2Hs
p

=
∑

g∈Z2

|g|2s⋆ |[γδ]g|2

. |[γ]0|+ δ−2k
∑

0 6=g∈Z2

|g|2s−2k|[γ]g|2 by Parts 1 and 2

= |[γ]0|+ δ−2k
∞∑

n=1

∑

|g1|+|g2|=n
|g|2s−2k|[γ]g|2

. |[γ]0|+ δ−2k
∞∑

n=1

n2s−2kC2
n Cn from Theorem 3.47

. δ−2k
∞∑

n=1

n2s−2k−2 by Theorem 3.47

. δ−2k provided s < k + 1
2 .

Therefore, ‖γδ‖Hs
p

. δ−k provided s < k + 1/2. The result follows by using Lemma

3.26 with (s from Lemma 3.26) s = k + 1/2− ǫ and t = k + 3/2− ǫ.
Part 4. We do this proof for d = 2. The argument for d = 1 is similar and easier,

and so we omit it. Part 2 gives us [Jδ]0 = 1. This together with Part 1 imply that

|[γ − γδ]0| = 0. Also, it follows from Parts 1 and 2 that |[γ − γδ]g| ≤ 2|[γ]g| for all

g ∈ Z2.
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For 0 6= g ∈ Z2 we can also get

|[γ − γδ]g| = |[γ]g − [γδ]g| = |[γ]g|
∣∣∣∣∣

∫

B(0,1)
J(x)

(
1− e−i2πδg·x

)
dx

∣∣∣∣∣ by Part 1

≤ |[γ]g|
∣∣∣∣
∫ 1

−1

∫ 1

−1
J(x) (1− cos(2πδg1x1) cos(2πδg2x2)) dx1dx2

∣∣∣∣

≤ |[γ]g|‖J‖∞
∫ 1

−1

∫ 1

−1
(1− cos(2πδg1x1) cos(2πδg2x2)) dx1dx2

= |[γ]g|4‖J‖∞
(
1− sin(2πδg1)

2πδg1

sin(2πδg2)
2πδg2

)

Note that the third line follows from the second line above because the imaginary

integral is 0, since sine is odd and J is even. If A2 ≤ 42, then A4

5! − A6

7! ≥ 0 and

sinA
A = 1− A2

3! +
(
A4

5! − A6

7!

)
+ · · · ≥ 1− A2

6 .

Using this inequality it follows that

|[γ − γδ]g| ≤ |[γ]g|4‖J‖∞
(
1−

(
1− (2πδg1)2

6

)(
1− (2πδg2)2

6

))

≤ |[γ]g|4‖J‖∞ (2πδg1)2+(2πδg1)2

6

= 16‖J‖∞π2

3 δ2|g|2|[γ]g| if |gi| ≤ δ−1.

Part 5. Finally, we prove Part 5 for the d = 2 case. Let −3
2 < s < 1

2 . Using Part 4,

Lemma 3.47 and Lemma 3.9 we get

‖γ − γδ‖2Hs
p

=
∑

0 6=g∈Z2

|g|2s|[γ − γδ]g|2

.
∑

|g1|+|g2|≤⌊δ−1⌋
δ4|g|2s+4|[γ]g|2 +

∑

|g1|+|g2|≥⌈δ−1⌉
|g|2s|[γ]g|2

≤ δ4
⌊δ−1⌋∑

n=1

n2s+4C2
n +

∞∑

n=⌈δ−1⌉
n2sC2

n Cn from Theorem 3.47

. δ4
⌊δ−1⌋∑

n=1

n2s+2 +
∞∑

n=⌈δ−1⌉
n2s−2 by Theorem 3.47

≤ δ4
(

1 +

∫ δ−1

1
x2s+2dx+ δ−2−2s

)
+

(
δ2−2s +

∫ ∞

δ−1

x2s−2dx

)

= δ4 +
1

2s+ 3
(δ1−2s − δ4) + δ2−2s + δ2−2s +

1

1− 2s
δ1−2s

. δ1−2s.

The result follows by taking the square root of this expression.
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In Part 5 of the preceding Lemma we have restricted ourselves to the case when

−3
2 < s < 1

2 . Note, however, that although it is strictly necessary to have s < 1
2 , we

may in fact choose s < −3
2 . We do not include this case because ‖γ − γδ‖Hs

p
does not

depend on s for s < 3
2 and the result would be ‖γ − γδ‖Hs

p
. δ2.

We now prove a lemma that bounds the difference between γ and γ in the L2
p norm.

This will be sufficient for our purposes.

Lemma 4.38. Let d = 1, 2. For γ ∈ PC ′
p, M ∈ N and with γ(x) defined in the

discussion before Lemma 4.37 we get

‖γ − γ‖L2
p

. M−1/2

Proof. We first consider the d = 1 case. Let JΩ denote the number of intervals Ωj

in γ(x). Therefore, there are 2JΩ jumps in γ(x). At each jump there is a potential

difference between γ(x) and γ(x). The size of the difference is bounded by γmax, and

for each jump the area in Ω where γ(x) and γ(x) are different is limited to an interval

of size M−1. Therefore, we get

‖γ − γ‖L2
p

=

(∫

Ω
|γ − γ|2dx

)1/2

≤
√

2JγmaxM
−1/2.

For d = 2 there are O(M) possible squares where γ is different from γ since there are

finitely many Ωj and each Ωj is convex. Again, the size of the difference between γ

and γ is bounded by γmax and each square has area M−2. Therefore, we get

‖γ − γ‖L2
p

=

(∫

Ω
|γ − γ|2dx

)1/2

.
(
MγmaxM

−2
)1/2

. M−1/2.

Now we can (finally) bound the difference between γ and QM γ.

Lemma 4.39. Let d = 1, 2, γ ∈ PC ′
p and ǫ > 0. Then

‖γ −QM γ‖L2
p

. M−1/2+ǫ. (4.42)

Proof. For this proof we would like to apply Lemma 3.32, but we are not sure that

γ ∈ Ht
p for t > 1 if d = 2, or t > 1/2 if d = 1. Instead we could try applying Lemma

3.32 to γδ for small δ > 0. But choosing δ too small will not work because the bound

will depend on δs for some s < 0. To avoid having to take very small δ we will apply

Lemma 3.32 to γδ with δ = 1
2M . With this choice of δ we have γ(x) = γ(x) = γδ(x)

for all x ∈ { 1
M k : k ∈ ZdM,�} as well as being able to apply Lemma 3.32. Since we have

equality at the nodes, QM γ = QM γ = QM γδ.
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Using the triangle inequality we split (4.42) into the following,

‖γ −QM γ‖Hs
p
≤ ‖γ − γ‖Hs

p︸ ︷︷ ︸
I1

+ ‖γ − γδ‖Hs
p︸ ︷︷ ︸

I2

+ ‖γδ −QM γδ‖Hs
p︸ ︷︷ ︸

I3

We use Lemma 4.38 to bound I1 and we obtain

I1 = ‖γ − γ‖Hs
p

. M−1/2 for s ≤ 0. (4.43)

To bound I2 we use Part 5 of Lemma 4.37. Note that γ ∈ H1/2−ǫ for any ǫ > 0 and

we get

I2 = ‖γ − γδ‖Hs
p

. δ−s+1/2 . M−1/2+s for −3
2 < s < 1

2 (4.44)

since δ = 1
2M .

To bound I3 we use Lemma 3.32 and Part 3 of Lemma 4.37 to get (with t > 1 for

d = 2 and t > 1/2 for d = 1),

I3 = ‖γδ −QM γδ‖Hs
p

. M s−t‖γδ‖Ht
p

. M s−tδ−t+1/2−ǫ

. M−1/2+s+ǫ for s ≥ 0 since δ = 1
2M .

(4.45)

Finally, putting together (4.43) - (4.45) with s = 0 gives us the result.

4.4.2 Error Analysis

In this subsection we derive theoretical error bounds for the additional error that we

introduce when we use the sampling method with the spectral Galerkin method to

approximate the solution to Problem 4.6. As in the previous sections we will define the

discrete problem that our method is actually solving and we define the corresponding

solution operator for this discrete problem. We then prove some properties of the

new solution operator, including bounding the difference between the new solution

operator and the solution operator that corresponds to Problem 4.6 in terms of G and

M (our sampling parameter). We can then apply Theorem 3.68 to get eigenfunction

and eigenvalue error bounds.

The bound for the difference between the solution operators is proved using Strang’s

1st Lemma (Theorem 3.75). Unlike the analysis of the smoothing method in Section

4.3 we will not define an intermediate problem and then add two error contributions

together. Instead we will bound the error all in one go. We do this because we do not

expect (and therefore do not attempt to prove) that the sampling method will improve

the the performance of the planewave expansion method.
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Throughout this section we assume that γ ∈ PC ′
p.

By approximating the Fourier coefficients of γ(x) with the sampling method, the

discrete problem we actually solve is,

Problem 4.40. Find λG ∈ R and 0 6= uG ∈ SG such that

aQ(uG, vG) = λGb(uG, vG) ∀vG ∈ SG. (4.46)

where

aQ(u, v) =

∫

Ω
(∇+ iξ)u · (∇+ iξ) v + (K−QM γ) uvdx

Using very similar proofs to Lemma 4.7 we have that aQ(·, ·) is a bounded, coercive

and Hermitian bilinear form and therefore aQ(·, ·) also defines an inner product on

H1
p (Ω) with an induced norm ‖·‖aQ := aQ(·, ·)1/2. We may now define a solution

operator corresponding to Problem 4.40 as well as proving some properties for our new

solution operator.

Lemma 4.41. Let γ ∈ PC ′
p. Problem 4.40 has a corresponding solution operator,

TQ(G,M), that is defined according to Definition 3.70. TQ : H1
p → H1

p is bounded and

compact, and self-adjoint with respect to aQ(·, ·), (but not self-adjoint with respect to

a(·, ·) in general). For sufficiently large G and M , and small ǫ > 0 we get:

1.

‖T−TQ‖H1
p

. G−3/2+ǫ +M−1/2+ǫ.

2. The adjoint T∗
Q of TQ with respect to a(·, ·) satisfies

∥∥T−T∗
Q

∥∥
H1(Ω)

. G−3/2+ǫ +M−1/2+ǫ.

3. For u, v eigenfunctions of Problem 4.6 we get

|a((T−TQ)u, v)| . (G−3+2ǫ +M−1/2+ǫ)‖u‖H1
p
‖v‖H1

p
.

Proof. Using similar proofs to those given in Lemma 4.23 we can show that TQ : H1
p →

H1
p is bounded and compact, and self-adjoint with respect to aQ(·, ·).

The proof of Part 1 relies on Strang’s 1st Lemma (Theorem 3.75). For f ∈ H1
p and
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ǫ > 0 we get

‖Tf − TQ f‖H1
p

. inf
vG∈SG

{
‖Tf − vG‖H1

p
+ sup
wG∈SG

|a(vG, wG)− aQ(vG, wG)|
‖wG‖H1

p

}

≤ ‖Tf − ν‖H1
p

+ sup
wG∈SG

|a(ν, wG)− aQ(ν, wG)|
‖wG‖H1

p

where ν = PSG
Tf

≤
‖Tf‖

H
5/2−ǫ
p

G3/2−ǫ + sup
wG∈SG

∫
Ω |(QM γ − γ)νwG|dx

‖wG‖H1
p

by Lemma 3.30

≤
‖Tf‖

H
5/2−ǫ
p

G3/2−ǫ + sup
wG∈SG

‖ν‖∞
∫
Ω |(QM γ − γ)wG|dx
‖wG‖H1

p

.
‖Tf‖

H
5/2−ǫ
p

G3/2−ǫ + ‖ν‖H2
p
‖QM γ − γ‖H−1

p
by Theorem 3.27

≤
‖Tf‖

H
5/2−ǫ
p

G3/2−ǫ + ‖Tf‖H2
p
‖QM γ − γ‖H0

p
(4.47)

.
‖Tf‖

H
5/2−ǫ
p

G3/2−ǫ +
‖T f‖H2

p

M1/2−ǫ by Lemma 4.39

.

(
1

G3/2−ǫ +
1

M1/2−ǫ

)
‖f‖H1

p
by Theorem 4.11.

That concludes Part 1.

The proof of Part 2 is identical to the proof of Part 2 in Lemma 4.30. To get the

result of Part 3, let u, v ∈ H1
p and let ν = P

(S)
G v. Then

|a((T−TQ)u, v)| ≤ |a((T−TQ)u, v − ν)|︸ ︷︷ ︸
I1

+|a(Tu, ν)− aQ(TQ u, ν)|

+ |aQ(TQ u, ν)− a(TQ u, ν)|︸ ︷︷ ︸
I2

. (4.48)

By the definition of T and TQ we get that a(Tu, ν)− aQ(TQ u, ν) = 0. Now treat I1

and I2 separately.

For I1 we use that a(·, ·) is bounded and Part 1 of this Lemma to get

I1 = |a((T−TQ)u, v − ν)|
. ‖(T−TQ)u‖H1

p
‖v − PSG

v‖H1
p

a(·, ·) bounded

.

(
1

G3/2−ǫ +
1

M1/2−ǫ

)
1

G3/2−ǫ‖u‖H1
p
‖v‖

H
5/2−ǫ
p

Part 1 & Lemma 3.30

.
(
G−3+2ǫ +M−1/2+ǫ

)
‖u‖H1

p
‖v‖H1

p
Corollary 4.12.
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For I2 we do the following,

I2 = |aQ(TQ u, ν)− a(TQ u, ν)| =
∣∣∣∣
∫

Ω
(γ −QM γ)(TQ u)ν dx

∣∣∣∣

≤ ‖ν‖∞
∫

Ω
|(γ −QM γ) TQ u| dx

. ‖PSG
v‖H2

p
‖γ −QM γ‖H−1

p
‖TQ u‖H1

p
Theorem 3.27

. ‖v‖H2
p
‖γ −QM γ‖H0

p
‖u‖H1

p
TQ bounded (4.49)

. M−1/2+ǫ‖u‖H1
p
‖v‖H1

p
Cor.4.12 & Lem.4.39.

Now we put I1 and I2 back into (4.48) to get the result for Part 3.

In the preceding proof at (4.47) and (4.49), we may have ‘thrown away’ the sharp-

ness of our bounds when we bounded ‖γ − QM γ‖H−1
p

with ‖γ − QM γ‖H0
p
. We did

this because we were unable to bound ‖γ − QM γ‖H−1
p

with a better dependence on

M in Lemma 4.39. In the numerical examples later in this section we show that our

error bounds are not sharp, and this may be where we are losing the sharpness of our

eigenfunction bound.

We now apply Theorem 3.68 to get bounds on the eigenvalue and eigenfunction

errors of solving Problem 4.6 with the sampling method. The proof of the following

result is analogous to the proof of Theorem 4.24 and it requires Lemma 4.41.

Theorem 4.42. Let λ be an eigenvalue of Problem 4.6 (with γ ∈ PC ′
p) with multi-

plicity m and corresponding eigenspaceM. Then, for sufficiently large G and large M

there exist m eigenvalues λ1(G,M), . . . , λm(G,M) of Problem 4.40 with corresponding

eigenspaces M1(λ1), . . . ,Mm(λm) and a space

MG,M :=

m⊕

j=1

Mj(λj)

such that for ǫ > 0,

δ(M,MG,M ) . G−3/2+ǫ +M−1/2+ǫ

and

|λ− λj | . G−3+2ǫ +M−1/2+ǫ for j = 1, . . . ,m.

We could now proceed to balance/optimise the errors by devising a method where

we choose M = CGr for a constant C and r. However, in the numerical examples of

the next subsection we discover that our error bounds are not sharp with respect to

M . Therefore, we will delay our discussion for choosing r until after we observe the

actual dependence of the errors on M .

As we have already discussed, the computational cost for using our sampling method

is O(Md logM), but the additional cost is only in the “setup”, i.e. we only need to
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compute one FFT on an Md ×Md matrix to compute the approximate the Fourier

coefficients of γ(x). This is in contrast to computing many FFT’s and inverse FFT’s,

each with a cost of O(Gd logG), to solve the matrix eigenproblem. In essence, we

can choose M larger than G with no significant additional computational cost, up to

the point where the setup cost is approximately equal to the cost of solving the matrix

eigensystem. Another factor that inhibits us from choosing very large M is the memory

requirement for the storage of a Md ×Md matrix of Fourier coefficients/nodal values.

In conclusion, approximating the Fourier coefficients of γ(x) appears to be a signif-

icant handicap because of the large errors that are introduced. To alleviate this using

the method we have described, we should choose M larger than G, but we do not yet

know how much larger we should choose M . Depending on what our numerical obser-

vations tell us about our strategy for choosing M as a function of G we may obtain

a method where the cost of computing the approximate Fourier coefficients of γ(x)

exceeds the cost of solving the matrix eigenproblem from our method.

We now present some results from numerical experiments to support our theory.

4.4.3 Examples

In this subsection we apply the sampling method to Model Problems 1-4 to support

our theoretical error bounds for the sampling method. In the following plots, the

reference solution is the solution to Problem 4.17 with G = 218−1 for Model Problems

1 and 2 and G = 210 − 1 for Model Problems 3 and 4. All of the following plots have

logarithmically scaled axes.

In Figures 4-24 - 4-26 we plot the errors from the sampling method for fixed G and

varying M .

In Figure 4-24 we plot the errors for Model Problem 1 and Model Problem 1a

where Model Problem 1a is the same as Model Problem 1 except we have changed the

ratio of glass to air in the photonic crystal from 50:50 to 55:45. We have introduced

Model Problem 1a because Model Problem 1 appears to be a special case for the

sampling method. For Model Problem 1 we observe that the eigenvalue errors are

O(M−2), whereas for Model Problem 1a they are only O(M−1). We also observe

that the eigenfunction errors of Model Problem 1 decay slightly quicker than O(M−1)

while Model Problem 1a clearly exhihits O(M−1) decay. The observation that Model

Problem 1 is a special case is reinforced when we consider the convergence rates of

Model Problems 2-4.

In Figures 4-25 and 4-26 we observe that both the eigenvalue and eigenfunction

errors of Model Problems 2-4 are O(M−1). This shows that the bounds that we proved

in Theorem 4.42 are not sharp, and they should be O(M−1) instead of O(M−1/2).

With this observed error dependence on M we now optimise the errors by choosing

M = CGr for a constants C and r. Our aim is to recover the convergence rates of
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the spectral Galerkin method without sampling with the smallest amount of additional

computational effort, i.e. we want to recover O(G−3/2) for the eigenfunction errors and

O(G−3) for the eigenvalue errors with the smallest possible M . A simple calculation

(using the observation that the eigenvalue and eigenfunction errors are O(M−1) rather

than the bound in Theorem 4.42) shows that the eigenfunction convergence rate is

recovered provided that we choose M ≥ G3/2 and the eigenvalue convergence rate is

recovered if we choose M ≥ G3. For implementation, we should ensure that M = 2n for

some n ∈ N (for best FFT performance). Therefore, we set M = N r
f . This corresponds

to choosing a constant C 6= 1 in M = CGr. To minimise the additional computational

cost we should chooseM = G3/2 for the eigenfunctions andM = G3 for the eigenvalues.

In practice, with M = G3/2 the setup cost is approximately the same as the cost

of solving the matrix eigenproblem, but with M = G3 we either get a method where

the setup cost exceeds the cost of solving the matrix eigenproblem or we run out of

computer memory for storing the M2×M2 matrix of sampled γ(x) values. Therefore,

in the case of the eigenvalue errors, the sampling method adds a significant amount of

error that can not always be avoided.

We will now experiment with different strategies for choosingM = N r
f with different

constants r to demonstrate that our error optimisation strategy is correct.

First, we consider the eigenfunction errors. In Figures 4-27 and 4-28 we plot the

1st eigenfunction errors of Model Problems 1a and 2-4 (since Model Problem 1 was a

special case) for r = 1, 3
2 , 2. We observe that we achieve errors that are O(G−3/2) (same

as standard method with exact Fourier coefficients) when r = 3
2 and r = 2, but we

only get O(G−1) errors when r = 1. Since there is more computational effort required

when r = 2, this confirms that r = 3
2 is the best strategy to minimise the eigenfunction

errors with the least amount of extra computational work. Unsurprisingly, we do not

observe errors that are smaller than the errors for the standard method for any choice

of r.

Now we consider the strategy for choosing r to minimise the eigenvalue errors. In

Figures 4-29 - 4-31 we plot the 1st eigenvalue errors of Model Problems 1a and 2-

4 for different choices of r. We see (most clearly in Figure 4-29 for Model Problem

1a) that the we recover O(G−3) convergence when M = N3
f . Unfortunately, memory

constraints have limited our ability to compute many points for this case in all of the

model problem examples.

In conclusion, it is possible to recover the convergence rates for the eigenvalues and

eigenfunctions that we saw for the standard method by choosing M wisely. However,

to achieve this there is a significant amount of extra computational work required (es-

pecially for eigenvalue calculations), and in some cases this extra work is prohibitively

expensive. In these cases we must choose M as large as practicable and the errors will

be dominated by the sampling method error.
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Figure 4-24: Plot of the error vs. M for Problem 4.40 (fixed G) for Model Problem 1
and 1a. The reference solution is the solution to Problem 4.17 with G = 218 − 1.
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Figure 4-25: Plot of the error vs. M for Problem 4.40 (fixed G). The reference solution
is the solution to Problem 4.17 with G = 218 − 1.
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Figure 4-26: Plot of the error vs. M for Problem 4.40 (fixed G). The reference solution
is the solution to Problem 4.17 with G = 218 − 1.
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Figure 4-27: Plot of the 1st eigenfunction error vs. G for Problem 4.40. The reference
solution is Problem 4.17 with G = 218 − 1.
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Figure 4-28: Plot of the 1st eigenfunction error vs. G for Problem 4.40. The reference
solution is Problem 4.17 with G = 218 − 1.
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Figure 4-29: Plot of the 1st eigenvalue error vs. G for Problem 4.40. The reference
solution is Problem 4.17 with G = 218 − 1.
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Figure 4-30: Plot of the 1st eigenvalue error vs. G for Problem 4.40. The reference
solution is Problem 4.17 with G = 218 − 1.
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Figure 4-31: Plot of the 1st eigenvalue error vs. G for Problem 4.40. The reference
solution is Problem 4.17 with G = 218 − 1.
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4.5 Smoothing and Sampling

In the final section of this chapter we put together our analysis of the smoothing method

and the sampling method to analyse a method that uses both of these techniques

simultaneously, as in [64].

In the previous section we saw that the sampling method provides us with an

efficient method for approximating the Fourier coefficients of γ(x). However, there was

an additional error that was particularly significant for the eigenvalues. It is thought

that this new method, that uses smoothing and sampling, will have smaller errors

than the sampling method, or it might allow “rough” calculations to be made with

relatively few plane waves. Both our analysis and numerical experiments will show

that this new method does not yield faster convergence or smaller errors. However, our

observations are inconclusive as to whether or not “rough” calculations are possible

with smoothing and sampling instead of just sampling and this could be an area for

further investigation.

The section is divided into three subsections. In the first subsection we describe

the method, in the second subsection we perform the error analysis, and in the third

subsection we present some numerical examples.

We assume that γ(x) ∈ PC ′
p throughout this section.

4.5.1 The Method

The method for smoothing and sampling is the same as for the sampling method

(Subsection 4.4.1), except we replace [QM γ]g with [Q̃M γ]g for g ∈ Z2
Nf ,�

, where Q̃M γ

denotes the Gaussian smoothed QM γ and we defined Gaussian smoothing in Section

4.3.

To compute [Q̃M γ]g for g ∈ Z2
Nf ,�

we first use Algorithm 4.36 to compute [QM γ]g

for g ∈ Z2
Nf ,�

. Then we use the formula in Part 1 of Lemma 4.26 to get

[Q̃M γ]g = e−2π2|g|2∆2
[QM γ]g for all g ∈ Z2

Nf ,�
.

The [Q̃M γ]g are then used instead of [γ]g in Algorithm 4.19. Thus, the cost for comput-

ing the smoothing and sampling method has the same order as the cost for computing

the sampling method and the memory requirements are the same.

Note that the smoothing we have applied acts as a filter after sampling.

4.5.2 Error Analysis

As we saw for the sampling method the error convergence rates for this method will

depend on how ‖γ − Q̃M γ‖H−1
p

behaves with respect to ∆ and M (recall that ∆

determines the amount of Gaussian smoothing). Here we present a relatively simple
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proof for a result that says: smoothing and sampling is at least as good as the sampling

method, provided ∆ is chosen appropriately. It does not show that smoothing and

sampling is in any way better than sampling.

Lemma 4.43. Let d = 1, 2, γ ∈ PC ′
p and define Q̃M γ := G ∗ QM γ as in Subsection

3.2.5 and (4.20). With −1 ≤ s ≤ 0 and ǫ > 0 we get:

‖γ − Q̃M γ‖Hs
p

. ∆−s+1/2 +M−1/2+ǫ. (4.50)

Proof. With γ̃ = G ∗ γ we split ‖γ − Q̃M γ‖Hs
p

into two parts

‖γ − Q̃M γ‖Hs
p
≤ ‖γ − γ̃‖Hs

p︸ ︷︷ ︸
I1

+ ‖γ̃ − Q̃M γ‖Hs
p︸ ︷︷ ︸

I2

.

From Part 2 of Lemma 4.26 we get I1 . ∆−s+1/2. For I2 we realise that γ̃ − Q̃M γ =

G ∗ (γ −QM γ). Part 1 of Lemma 4.26 then tells us that

∣∣∣∣
[
γ̃ − Q̃M γ

]
g

∣∣∣∣ = e−2π2|g|2∆2
∣∣∣[γ −QM γ]g

∣∣∣ ≤
∣∣∣[γ −QM γ]g

∣∣∣ (4.51)

for all g ∈ Z2. Therefore, we get ‖γ̃ − Q̃M γ‖Hs
p
≤ ‖γ − QM γ‖Hs

p
≤ M−1/2+ǫ using

Lemma 4.39.

In (4.51) it might appear as though we are being too convservative in throwing

away the exponential term but the g = 0 case is sharp.

Now we use exactly the same approach as for the error analysis of the sampling

method in Subsection 4.4.2. First we define the discrete variational eigenvalue problem

that our smoothing and sampling method is actually solving.

Problem 4.44. Find λG ∈ R and 0 6= uG ∈ SG such that

aeQ
(uG, vG) = λGb(uG, vG) ∀vG ∈ SG (4.52)

where

aeQ
(u, v) =

∫

Ω
(∇+ iξ)u · (∇+ iξ) v +

(
K−Q̃M γ

)
uvdx.

Now, we quote the main result, with the proof being the same as in Subsection

4.4.2.

Theorem 4.45. Let λ be an eigenvalue of Problem 4.6 (with γ ∈ PC ′
p) with multiplicity

m and corresponding eigenspace M. Then for sufficiently large G, large M and small

∆ > 0 there exist m eigenvalues λ1(G,∆,M), . . . , λm(G,∆,M) of Problem 4.44 with
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corresponding eigenspaces M1(λ1), . . . ,Mm(λm) and a space

MG,∆,M :=
m⊕

j=1

Mj(λj)

such that for ǫ > 0,

δ(M,MG,∆,M ) . G−3/2+ǫ + ∆3/2 +M−1/2+ǫ

and

|λ− λj | . G−3+2ǫ + ∆3/2 +M−1/2+ǫ for j = 1, . . . ,m.

From the numerical results in the previous sections we do not expect that the

bounds in Theorem 4.45 are sharp. Instead, we expect that the eigenfunction error

bound in Theorem 4.45 should be

δ(M,MG,∆,M ) . G−3/2+ǫ + ∆3/2 +M−1+ǫ

and the eigenvalue error bound should have the form

|λ− λj | . G−3+2ǫ + ∆2 +M−1+ǫ for j = 1, . . . ,m.

Let us now consider some numerical examples to decide how to balance the error

contributions by choosing ∆ and M as functions that depend on G.

4.5.3 Examples

In this subsection we apply the smoothing and sampling method to Model Problems

1a, 2 and 3 to support our theoretical error bounds for the smoothing and sampling

method. We calculate the error of Problem 4.44 for varying G where we have chosen

∆ = G−r and M = N s
f for different constants r and s. As a benchmark, we also plot

the errors of the standard method which uses exact Fourier coefficients of γ(x).

In the previous sections we saw that the smoothing method and the sampling

method could not improve the convergence rate of the standard method. Here, we

also expect this to be the case, but we will be interested in strategies for choosing the

smoothing and sampling that recover the performance of the standard method.

We do not consider Model Problem 1 because it was a special case for the sampling

method, and we do not plot any results for Model Problem 4 because the errors have not

entered the asymptotic regime for the range of G that we consider and choosing larger

G is beyond the memory capabilities of the computer we used for the computations.

In the following plots, the reference solution is the solution to Problem 4.17 with

G = 218 − 1 for Model Problems 1a and 2 and G = 210 − 1 for Model Problem 3.
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We first consider the eigenfunction errors of our model problems, which are plotted

in Figures 4-32 - 4-34. For all of these plots we see that the fastest rate of decay is

O(G−3/2), as for the standard method. Moreover, the O(G−3/2) rate of decay is only

achieved when s = 3
2 . Therefore, we recommend the strategy of choosing M = N

3/2
f .

This strategy is the same as for the sampling method without smoothing. It appears

that our strategy for choosing s = 3
2 is independent from our choice of r for the values

of r that we have plotted.

From the plots it appears that the best strategy for choosing r is r = 3
2 (or r = 2 for

Model Problem 3), which corresponds to smaller ∆ and less smoothing. Ultimately, we

observe that less smoothing is better and we therefore recommend choosing ∆ = 0 and

reverting back to the sampling method. However, since the optimal rate of decay is also

achieved for r = 1, and r > 1 corresponds to smaller ∆, we could potentially recover

the performance of the standard method by choosing any ∆ ≤ CG−r with r = 1 and

a fixed constant C ≪ 1.

Now let us consider the eigenvalue errors of our model problems. These are plotted

in Figures 4-35 - 4-37. For Model Problem 1a in Figure 4-35 we see that we should

choose s as large as possible (s = 2 is the largest that we have plotted) and r ≥ 3
2

to achieve the best results, but unlike the eigenfunction errors we do not recover the

convergence rate of the standard method. Choosing s = 2 corresponds to choosing

M = N2
f which is the largest M that we can compute with. Perhaps if we could do

computations for s = 3 we would recover O(G−3) convergence, but we are limited to

s = 2 by computer memory restraints. Choosing r = 3
2 corresponds to the largest

amount of smoothing that is permissible without adding a significant error. Therefore,

choosing any r ≥ 3
2 is an acceptable strategy that will recover the optimal convergence

rate, O(G−3). In fact, we could choose ∆ = 0 without penalty and revert to the

sampling method.

The eigenvalue error plots for Model Problems 2 and 3 are not as clean as the plot

for Model Problem 1a but we can still see the overall theme: we get the smallest errors

when M is as large as practicable and when ∆ is sufficiently small. Moreover, we do

not see errors decay at a rate that is faster than the optimal rate, O(G−3).

In conclusion, we have not found any evidence that smoothing with sampling is in

any way a better method than the sampling method without smoothing. Indeed, when

we have been optimising our choice of smoothing by choosing r we have essentially

been ensuring that the smoothing is sufficiently small as to not contribute to the overall

error. It still remains open as to whether or not smoothing will assist in making “rough”

calculations and this requires further investigation.
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Figure 4-32: Plot of the 1st eigenfunction error vs. G for Problem 4.40 where we have
chosen ∆ = G−r and M = N s

f for different constants r and s.
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Figure 4-33: Plot of the 1st eigenfunction error vs. G for Problem 4.40 where we have
chosen ∆ = G−r and M = N s

f for different constants r and s.
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Figure 4-34: Plot of the 1st eigenfunction error vs. G for Problem 4.40 where we have
chosen ∆ = G−r and M = N s

f for different constants r and s. The reference solution

is Problem 4.17 with G = 218 − 1.
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Figure 4-36: Plot of the 1st eigenvalue error vs. G for Problem 4.40 where we have
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Figure 4-37: Plot of the 1st eigenvalue error vs. G for Problem 4.40 where we have
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f for different constants r and s. The reference solution

is Problem 4.17 with G = 218 − 1.
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4.6 Curvilinear Coordinates

Finally, and briefly, we make a remark about another variation of the plane wave

expansion method that has been used in [63] and [64]. In this method γ(x) and u(x)

are sampled on a non-uniform grid, unlike in Section 4.4. This is intended to allow

the sampling nodes to be more concentrated near the material interfaces and therefore

provide a better approximation of γ(x) and of u(x). In [63] and [64] the method is

presented and the author cleverly devises a way of computing matrix-vector products

with the system matrix whilst preserving the efficiency (O(N logN) operations), albeit

with 6 FFTs instead of the 2 FFTs that are currently required. The additional FFTs

arise because the Laplacian part of the matrix is no longer confined to the diagonal (c.f.

(4.14)). This is because the expansion terms are no longer orthogonal. An important

consequence of the Laplacian part of the matrix no longer being confined to the diagonal

is that the simple preconditioners ((4.18) and (4.19)) no longer “cancel” the Laplacian

part of the operator and are no longer optimal. A method for obtaining an optimal

preconditioner to use with a curvilinear coordinate expansion method would require

further investigation and we do not consider this method any further in this thesis. We

only mention that without a suitable preconditioner this method very quickly becomes

very costly to compute and thus unfeasible. It is also not immediately obvious in what

way the curvilinear expansion improves the approximation error for a fixed number of

expansion terms, and how one would go about proving an improved error bounds with

a faster convergence rate.
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CHAPTER 5

1D TM MODE PROBLEM

In this chapter we consider the errors from the plane wave expansion method applied

to the 1D TM Mode Problem, Problem 2.4 (in Section 2.5). The error analysis is not

as straight forward as for the Scalar 2D Problem and for the 1D TE Mode Problem in

Chapter 4.

We begin by applying results from [25] to obtain a variational eigenvalue problem

to solve. To do this we consider the 1D TM Mode Problem written in divergence form,

(2.22), and we quote some results from [25]. We then present the implementation details

for the plane wave expansion method applied to this problem. We do this by following

the technique used in [64] and [39] where plane wave expansions of the eigenfunction

and coefficient functions are substituted into the governing equation before neglecting

high-frequency terms to get a finite dimensional problem. This is in contrast to how

we presented the plane wave expansion method in Chapter 4 where we presented it as

a Galerkin method.

To begin the error analysis we develop regularity results for the variational eigen-

problem that corresponds to the divergence form of the 1D TM Mode Problem. We see

that the 1D TM Mode Problem has less regularity than the 1D TE Mode Problem. We

then develop error analysis for the spectral Galerkin method applied to this problem

using the same techniques that we used in Chapter 4 for the 1D TE Mode Problem

and the Scalar 2D Problem. Unfortunately, this method is not equivalent to the plane

wave expansion method and it can not be implemented as efficiently as the plane wave

expansion method. To develop error analysis for the plane wave expansion method

we write the method in terms of the variational eigenproblem corresponding to the

divergence form of the 1D TM Mode Problem and we discover that it is equivalent to

a non-conforming Petrov-Galerkin method. Unfortunately, using the existing theory

for Petrov-Galerkin methods does not yield the required results. Nevertheless, it still
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seems to be the most promising route for future investigations. We can, however, derive

approximation error results for the exact eigenfunctions approximated with plane waves

using the regularity results that we developed earlier. These approximation error re-

sults give us an upper limit for the rate at which the plane wave expansion method can

converge (to the exact eigenfunctions). With numerical examples we then confirm that

the plane wave expansion method actually achieves this upper limit and it converges at

the fastest possible rate, given the limited regularity of the exact eigenfunctions. Note

that this is substantially lower than for the 1D TE Mode Problem, namely O(N−1/2)

instead of O(N−3/2) where N is the number of plane waves.

As well as computing numerical examples for the standard plane wave expansion

method we also present numerical examples for smoothing and sampling within the

plane wave expansion method. As for the 1D TE Mode Problem we observe that

smoothing does not improve the convergence of the plane wave expansion method, and

the sampling method requires a sufficiently fine sampling grid to recover the convergence

rate of the standard plane wave expansion method (where exact Fourier coefficients are

used).

The main motivation for studying the 1D TM Mode Problem is to gain insight into

the behaviour of the Full 2D Problem since the 1D TM Mode Problem can be thought

of as a restriction to 1D of the the Full 2D Problem.

5.1 The Problem

Formally, the 1D TM mode problem (see Problem 2.4) is

d2h

dx2
+ γ(x)h− dη

dx

dh

dx
= β2h (5.1)

where h = h(x) is an eigenfunction, γ(x) = 4π2n2(x)
λ2
0

and η(x) = logn2(x) are periodic

and piecewise constant, and β2 is an eigenvalue. More details about this equation

are given in Chapter 2. As in Chapter 4 we restrict n2(x) so that it is periodic with

period cell Ω = [−1
2 ,

1
2 ] and 1 ≤ n2(x) ≤ n2

max. More specifically, we assume that n2(x)

is discontinous at points xj ∈ Ω for j = 1, . . . , J . We then divide Ω into intervals

Ωj = (xj, xj+1) for j = 1, . . . , J (we define xJ+1 := x1 +1) and specify that n2(x) = n2
j

for x ∈ Ωj where the nj are constants. For notational purposes let us define xj+ 1
2

as

the midpoint of the interval Ωj , i.e. define xj+ 1
2

:= 1
2(xj + xj+1) for j = 1, . . . , J .

This problem can be rewritten in divergence form (see (2.22)),

d

dx

(
1

n2

dh

dx

)
+ ch =

β2

n2
h (5.2)

where c = 4π2

λ2
0

is constant.
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Applying Floquet/Bloch theory to this problem is not as straight forward as for the

1D TE Mode Problem or the Scalar 2D Problem in the previous chapter. However, this

issue has been addressed in [25]. According to [25] there exists a linear non-negative self-

adjoint operator on a Hilbert space that corresponds to (5.2) (whose action is expressed

in terms of a quadratic form). Moreover, Floquet/Bloch theory can be applied (through

the quadratic forms) to obtain a family of problems to solve, from which we can recover

the spectrum of the original operator. Each member of the new family of problems is

given below.

Problem 5.1. For ξ ∈ B := [−π, π], find λ ∈ C and 0 6= u ∈ H1
p such that

a(u, v) = λb(u, v) ∀v ∈ H1
p

where

a(u, v) =

∫

Ω

1
n2

(
( ddx + iξ)u

(
d
dx + iξ

)
v + (K−cn2)uv

)
dx

b(u, v) =

∫

Ω

1
n2uvdx

and K ≥ cn2
max + 2π2n4

max + 1
2 .

According to [25] there exists a non-negative self-adjoint operator on H1
p corre-

sponding to this problem, and a result (Corollary 3.9 in [25]) that is equivalent to

Theorem 3.63 also applies in this case from which we recover the spectrum of the

original operator by solving Problem 5.1 for a range of ξ ∈ B.

We now restrict our attention to solving Problem 5.1 for fixed ξ ∈ B. For each

ξ ∈ B, the bilinear form a(·, ·) is bounded and coercive.

Lemma 5.2. The bilinear form a(·, ·) is bounded and coercive on H1
p provided we

choose K ≥ cn2
max + 2π2n4

max + 1
2 .

Proof. a(·, ·) bounded. Using a similar proof to the proof of Lemma 4.7 we get

|a(u, v)| =
∣∣∣∣
∫

Ω

1
n2

(
( ddx + iξ)u

(
d
dx + iξ

)
v + (K−cn2)uv

)
dx

∣∣∣∣

≤ ‖ 1
n2 ‖∞

∫

Ω

∣∣∣( d
dx + iξ)u

(
d
dx + iξ

)
v + (K−cn2)uv

∣∣∣ dx

≤ ‖ 1
n2 ‖∞

(
(1 + π)2 + K

)
‖u‖H1

p
‖v‖H1

p
∀u, v ∈ H1

p .

a(·, ·) coercive. Using the Cauchy-Schwarz inequality and the arithmetic-geometric
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mean inequality (2ab ≤ a2 + b2)

a(v, v) =

∫

Ω

1
n2

(
|( ddx + iξ)v|2 + (K−cn2)|v|2

)
dx

=

∫

Ω

1
n2

(
|v′|2 + iξvv′ − iξv′v + |ξ|2|v|2 + (K−cn2)|v|2

)
dx

≥ 1
n2

max

(
|v|2H1 + (|ξ|2 + K−cn2

max)‖v‖2L2
p

)
− 2|ξ||v|H1‖v‖L2

p

=
|v|2

H1

n2
max

+
(|ξ|2+K−cn2

max)‖v‖2
L2

p

n2
max

− 2

(
|v|H1√
2n2

max

)(√
2n2

max|ξ|‖v‖L2
p

)

≥ 1
2n2

max
|v|2H1 +

(
K

n2
max
− c− 2π2n2

max

)
‖v‖2L2

p

≥ 1
2n2

max
‖v‖2H1

p

provided we choose K ≥ cn2
max + 2π2n4

max + 1
2 .

Following our approach from previous chapters we now define the solution operator

T : L2
p → H1

p that corresponds to Problem ??. As in Definition 3.70, for f ∈ L2
p we

define T f ∈ H1
p by

a(T f, v) = b(f, v) ∀v ∈ H1
p . (5.3)

Theorem 5.3. With T : L2
p → H1

p defined by (5.3) we get:

1. T : H1
p → H1

p is bounded, compact, positive definite and self-adjoint with respect

to a(·, ·).

2. σ(T) ⊂ R.

3. σ(T) is discrete, i.e. σ(T) consists of nonzero isolated eigenvalues of finite mul-

tiplicity with no accumulation point.

Proof. The proof for Part 1 is the same as the proof for Lemma 4.9. Parts 2 and 3

then follow from Theorem 3.60.

By Lemma 3.71 we know that (µ, u) is an eigenpair of T if and only if ( 1
µ , u) is an

eigenpair of the following variational eigenvalue problem. Note that µ 6= 0 since T is

positive.

Thus, the 1D TM Mode Problem can be solved by solving Problem 5.1. However,

it is not yet clear how the plane wave expansion method can be expressed as a Galerkin

method applied to Problem 5.1 so that we can apply the convergence theory in [6]. In

the next section we present the details of the plane wave expansion method as we have

implemented it, and we address the issue of how the plane wave expansion method

relates to Problem 5.1 in Section 5.3.
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5.2 Plane Wave Expansion Method and Implementation

In this section we present the plane wave expansion method applied to the 1D TM

Mode Problem as it is presented in [64] or [39], and as we have implemented it. We

do not apply the Galerkin method to Problem 5.1 because the 1
n2 factor in a(·, ·) ruins

the orthogonality of the plane waves. This has the effect of causing the contributions

from the derivatives in a(·, ·) to spill off the main diagonal of the matrix in the matrix

eigenproblem (that is equivalent to the discrete variational problem we get from ap-

plying the Galerkin method). Another reason why we do not use the Galerkin method

applied to Problem 5.1 is that we can not use the Fast Fourier Transform to efficiently

compute matrix-vector products as we can for the method that we now present.

We begin by adding Kh (where K is from the definition of Problem 5.1) to (5.1).

Following the approach in [39] we can write h(x) = u(x) eiξx for some ξ ∈ B := [−π, π]

where u(x) is a periodic function. The equation we obtain is

−( d
dx + iξ)2u+ d(logn2)

dx ( ddx + iξ)u− γu+ Ku = λu (5.4)

where γ(x) = 4π2n2(x)
λ2
0

is the same as γ(x) in Chapter 4. Thus, for each ξ ∈ B, we

would like to solve (5.4) for eigenvalues λ and eigenfunctions h. In [3], it is claimed

that solving the problem for all ξ ∈ B is sufficient to obtain all possible eigenvalues

and modes of (5.1). In [3] this is referred to as Bloch Theory.

To apply the plane wave expansion method to (5.4) we do the following: Expand u,

γ and logn2 in terms of their plane wave expansions (or Fourier Series), for example,

u(x) =
∑

g∈Z

[u]g ei2πgx .

Substitute the expansions of u, γ and log n2 into (5.4) to get

∑

g∈Z

(
(ξ + 2πg)2 −

∑

k∈Z

(2πk)[logn2]k(ξ + 2πg) ei2πkx−
∑

k∈Z

[γ]k ei2πkx +K

)
[u]g ei2πgx

= λ
∑

g∈Z

[u]g ei2πgx (5.5)

Now multiply both sides of (5.5) by ei2πg
′x for g′ ∈ Z and integrate over Ω to get

(ξ + 2πg′)2[u]g′ −
∑

g∈Z

2π(g′ − g)[logn2]g′−g(ξ + 2πg)[u]g −
∑

g∈Z

[γ]g′−g[u]g + K[u]g′

= λ[u]g′ (5.6)

So far we have an infinite dimensional problem. To approximate h and λ and make the
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problem finite dimensional we restrict g and g′ so that |g|, |g′| ≤ G for a chosen G ∈ N.

Equivalently, we force [u]g = 0 for all |g| > G and we only consider (5.6) for |g′| ≤ G.

Equation (5.6) becomes

(ξ + 2πg′)2[u]g′ −
∑

|g|≤G
2π(g′ − g)[logn2]g′−g(ξ + 2πg)[u]g −

∑

|g|≤G
[γ]g′−g[u]g + K[u]g′

= λG[u]g′ for |g′| ≤ G (5.7)

The final step of the plane wave expansion method is to rewrite (5.7) as a N×N (where

N = 2G+ 1) matrix eigenvalue problem,

Au = λGu, (5.8)

where u is the N -vector with entries (by a slight abuse of notation) ug = [u]g for

g = −G, . . . , G. The matrix A can be written as

A = D−W−V

where D is a diagonal matrix with diagonal entries Dgg = |ξ + 2πg|2 + K, W is a full

matrix with entries Wgg′ = 2π(g − g′)(ξ + 2πg′)[logn2]g−g′ , and V is the same matrix

as in Section 4.2 with entries given by Vgg′ = [γ]g−g′ , for g, g′ = −G, . . . , G.

It remains to solve (5.8). We want to find the eigenvalues of (5.8) in the interval

[0,K] and the corresponding eigenvectors (of which there are only finitely many, in-

dependent of G). We use the same implementation as in Subsection 4.2.2. However,

this implementation again requires an efficient algorithm for computing matrix-vector

products with A, and since A is non-symmetric, we use GMRES instead of PCG to

obtain the action of A−1. To compute Ax for a vector x, we need to compute Dx,

W x and Vx. Computing Dx is easy because D is diagonal and we can compute V x

in O(N logN) operations using the Fast Fourier Transform since V is Toeplitz. All we

need now is an efficient algorithm to compute W x.

To compute W x we first realise that we can write W as the product of two matrices,

W = W1 W2

where W1 is Toeplitz and W2 is diagonal, with entries

(W1)gg′ = 2π(g − g′)[logn2]g−g′ and (W2)gg = ξ + 2π(g)

for g, g′ = −G, . . . , G. Thus, to compute Wx we first compute y = W2 x in O(N) op-

erations and then we compute W1 y in O(N logN) operations, again using the FFT. In

summary, we see that we can compute Ax = (D−W−V)x in O(N logN) operations.
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As well as using the FFT to efficiently compute matrix-vector products with A

we also use a preconditioner to solve linear systems with A (to obtain the action of

A−1). For this problem we use exactly the same preconditioner as for the 1D TE Mode

Problem, see (4.19), together with the GMRES algorithm to solve linear systems. We

observe that this preconditioner is sufficient to guarantee that GMRES converges in

O(1) iterations and that (provided K is sufficiently small) the Implicitly Restarted

Arnoldi method solves (5.8) (for the fixed number of eigenpairs that we want) in O(1)

iterations. Altogether, we can solve (5.8) in O(N logN) operations.

5.3 Error Analysis

In this section we present the error analysis for two methods applied to Problem 5.1:

The plane wave expansion method and the spectral Galerkin method. Unlike for the

Scalar 2D Problem and the 1D TE Mode Problem, these two methods are not the same.

We will find that the plane wave expansion method has implementation advantages but

we can only do a full error analysis of the spectral Galerkin method.

We begin by proving a regularity result for Problem 5.1. In Chapter 4 we saw that

the convergence properties of the plane wave expansion method were limited by the

regularity of the eigenfunctions of the exact problem. Using the regularity result we also

prove an approximation error estimate for eigenfunctions of Problem 5.1 approximated

using plane waves.

Following the regularity result for Problem 5.1 we define the spectral Galerkin

method and then investigate the convergence properties of this method. We consider

this method before we consider the plane wave expansion method because we are able

to use the same techniques that we used in Chapter 4 to analyse the error. Despite

the ease with which we do a complete error analysis for the spectral Galerkin method,

unfortunately, it does not share the same implementation efficiencies as the plane wave

expansion method, as we discussed at the beginning of the previous section.

After our discussion of the spectral Galerkin method we return to the error analysis

for the plane wave expansion method. First, we show that it is equivalent to two

different variational problems: a Galerkin method where the bilinear form is not the

same as that in Problem 5.1, and a non-conforming Petrov-Galerkin method applied to

Problem 5.1. Neither of these presentations has so far lead to a complete error analysis

and we have not been able to prove the stability of the plane wave expansion method.

However, assuming stability of the method, we can nevertheless use the approximation

error result for plane waves approximating eigenfunctions of Problem 5.1 to give us

an upper limit for the rate of convergence of the plane wave expansion method. The

numerical results in Section 5.4 suggest that such a stability result should be possible

to prove.
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5.3.1 Regularity

We start by proving a regularity result for eigenfunctions of Problem 5.1 and then use

the regularity result to estimate the approximation error for plane wave approximation

of the an eigenfunctions of Problem 5.1.

Theorem 5.4. Let f ∈ Hs
p for some s ≥ 0. Define fj := f |Ωj and uj := T f |Ωj for

each j = 1, . . . , J . Then

1. uj ∈ Hs+2(Ωj) and

‖uj‖Hs+2(Ωj) . ‖fj‖Hs(Ωj)

2. 1
n2 ( d

dx + iξ) T f ∈ H1
p (and is therefore continuous by Theorem 3.27) and

‖ 1
n2

(
d
dx + iξ

)
T f‖∞ . ‖ 1

n2

(
d
dx + iξ

)
T f‖H1

p
. ‖f‖L2

p

3. T f ∈ H3/2−ǫ
p for any ǫ > 0 and

‖T f‖
H

3/2−ǫ
p

. ‖f‖L2
p

Proof. Let f ∈ Hs
p for some s ≥ 0. By the definition of T (see (5.3)) we have T f ∈ H1

p

(T exists and is well-defined by Lax-Milgram). Therefore, T f is continuous (Theorem

3.27). Let j ∈ {1, . . . , J}. Since f ∈ Hs
p , we have fj ∈ Hs(Ωj). From (5.3) and since

T f is continuous and n2
j is constant on Ωj , we also have that wj = uj is a weak solution

to the boundary value problem,

Ljwj = hj in Ωj (5.9)

wj = T f on ∂Ωj

where Lj := − 1
n2

j
( ddx + iξ)2 + (K

n2
j
− c) and hj := 1

n2
j
fj . Therefore, with equality in the

distributional sense, we have

u′′j = −2iξu′j + (ξ2 + cn2
j −K)uj + fj

and so, taking the ‖ · ‖Hs(Ωj) norm and using the triangle inequality, we get

‖uj‖Hs+2(Ωj) . ‖uj‖Hs+1(Ωj) + ‖fj‖Hs(Ωj) (5.10)

The result of Part 1 for s = 0 then follows from (5.10) using ‖uj‖H1(Ωj) . ‖fj‖L2(Ωj)

(Lax-Milgram). We can then prove Part 1 for s ∈ R, s > 0 by using the following

inductive argument.

First, we prove that Part 1 is true for s ∈ R, 0 ≤ s ≤ 1. Equation (5.10) implies
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that

‖uj‖Hs+2(Ωj) . ‖uj‖Hs+1(Ωj) + ‖fj‖Hs(Ωj)

≤ ‖uj‖H2(Ωj) + ‖fj‖Hs(Ωj) since s ≤ 1

. ‖fj‖L2(Ωj) + ‖fj‖Hs(Ωj) by Part 1 with s = 0

. ‖fj‖Hs(Ωj)

(5.11)

Now assume that Part 1 is true for s ∈ R, 0 ≤ s ≤ t for some t ∈ N (IH). Let s ∈ [t, t+1].

Then, using (5.10), we get

‖uj‖Hs+2(Ωj) . ‖uj‖Hs+1(Ωj) + ‖fj‖Hs(Ωj)

. ‖fj‖Hs−1(Ωj) + ‖fj‖Hs(Ωj) by (IH)

. ‖fj‖Hs(Ωj).

(5.12)

Therefore, Part 1 is true for s ∈ R, s ≥ 0 by induction using (5.11) and (5.12).

Part 2. Part 1 implies that uj ∈ H2(Ωj). Theorem 3.27 then implies that uj ∈
C1(Ωj) and 1

n2
j
( ddx + iξ)uj ∈ C(Ωj) for each j = 1, . . . , J since the n2

j are constants.

Therefore, to show that 1
n2 ( ddx + iξ) T f ∈ Cp(Ω) we only need to consider 1

n2 ( ddx +

iξ) T f(x) at x = xj for j = 1, . . . , J .

Fix j ∈ {1, 2, . . . , J}. We will show that 1
n2 ( ddx + iξ) T f(x) is continuous at x = xj

via an arguement similar to that used on page 582 of [12]. But first, we multiply T f by

a cut-off function ψ ∈ C∞(R) so that suppψT f ⊂⊂ (xj−1, xj+1) and 1
n2 ( ddx+iξ)(ψT f)

is continuous for all x ∈ R\{xj}

We define ψ ∈ C∞(R) in the following way, define the open interval Ij = (xj− 1
2
, xj+ 1

2
)

and set ψ := Jδ ∗1Ij (recall definition of the usual mollifier function Jδ from Subsection

3.1.5) where 0 < δ < 1
2 min{|Ωj−1|, |Ωj|} and 1Ij (x) is the characteristic function for

Ij . By our definition we have ψ(xk) = δjk (Kronecker delta) for k = 1, . . . , J .

Using the product rule, the definition of T (see (5.3)) and the fact that ψ is real-
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valued, we can write

a(ψT f, φ) =

∫

Ω

1
n2

([
( ddx + iξ)(ψT f)

]
( ddx + iξ)φ+ (K−cn2)(ψT f)φ

)
dx

=

∫

Ω

1
n2

([
( ddx + iξ) T f

]
( d
dx + iξ)φ+ (K−cn2)(ψT f)φ

)
dx

+

∫

Ω

dψ
dx

1
n2 T f( ddx + iξ)φdx

=

∫

Ω

1
n2

([
( ddx + iξ) T f

]
( d
dx + iξ)(ψφ) + (K−cn2) T f(ψφ)

)
dx

+

∫

Ω

dψ
dx

1
n2

(
T f( ddx + iξ)φ−

[
( ddx + iξ) T f

]
φ
)
dx

= b(f, ψφ) +

∫

Ω

dψ
dx

1
n2

(
T f( ddx + iξ)φ−

[
( d
dx + iξ) T f

]
φ
)
dx

= b(ψf, φ) +

∫

Ω

dψ
dx

1
n2

(
T f( ddx + iξ)φ−

[
( d
dx + iξ) T f

]
φ
)
dx ∀φ ∈ H1

p .

(5.13)

For every k ∈ {1, . . . , J} we find that, by restricting the choice of φ ∈ H1
p so that

φ ∈ C∞
p and supp(φ|Ω) ⊂⊂ Ωj , (5.13) implies that

∫

Ωk

1
n2

k
( ddx + iξ)(ψuk)(

d
dx + iξ)φ+

(
K
n2

k
− c
)

(ψuk)φdx =

∫

Ωk

1
n2

k
(ψuk)φdx+

∫

Ωk

dψ
dx

1
n2

k

(
uk(

d
dx + iξ)φ− ( ddx + iξ)ukφ

)
dx ∀φ ∈ C∞

0 (Ωk).

From Part 1 and Lemma 3.28 we have ψuk ∈ H2(Ωj). Therefore, we may apply

integration by parts to get

∫

Ωk

(
−( ddx + iξ) 1

n2
k
( ddx + iξ)(ψuk) + ( K

n2
k
− c)ψuk

)
φdx =

∫

Ωk

1
n2

k
(ψuk)φdx

+

∫

Ωk

(
− 1
n2

k
( ddx + iξ)(dψdxuk)−

dψ
dx

1
n2

k
( ddx + iξ)uk

)
φdx ∀φ ∈ C∞

0 (Ωk). (5.14)

Since (5.14) is true for all k ∈ {1, . . . , J}, we get

− ( d
dx + iξ) 1

n2 ( ddx + iξ)(ψT f) + (K
n2 − c)ψT f = 1

n2 (ψT f)

+
(
− 1
n2 ( d

dx + iξ)(dψdx T f)− dψ
dx

1
n2 ( ddx + iξ) T f

)
(5.15)

almost everywhere in Ω.

Now let φ ∈ C∞
0 (Ω) (then φ = 0 on ∂Ω and it can be extended periodically so that
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it is in C∞
p ⊂ H1

p ). Using (5.13) and the fact that suppψ ⊂⊂ [xj−1, xj+1] we get

b(ψf, φ) +

∫

Ω

(
− 1
n2 ( ddx + iξ)(dψdx T f)− dψ

dx
1
n2 ( ddx + iξ) T f

)
φdx

= b(ψf, φ) +

∫

Ω

dψ
dx

1
n2

(
T f( ddx + iξ)φ− ( ddx + iξ) T fφ

)
dx

= a(ψT f, φ) by (5.13)

=

∫

Ωj−1

1
n2

j−1
( ddx + iξ)(ψuj−1)(

d
dx + iξ)φ+

(
K
n2

j−1
− c
)
ψuj−1φdx

+

∫

Ωj

1
n2

j
( ddx + iξ)(ψuj)(

d
dx + iξ)φ+

(
K
n2

j
− c
)
ψujφdx

=

[
1

n2
j−1

( d
dx + iξ)(ψuj−1)φ

]xj

xj−1

−
∫

Ωj−1

(
( ddx + iξ) 1

n2
j−1

( d
dx + iξ)(ψuj−1) + ( K

n2
j−1
− c)ψuj−1

)
φdx

+

[
1
n2

j
( d
dx + iξ)(ψuj)φ

]xj+1

xj

−
∫

Ωj

(
( ddx + iξ) 1

n2
j
( ddx + iξ)(ψuj) + (K

n2
j
− c)ψuj

)
φdx

= lim
ǫ1ց0

(
1

n2
j−1

( d
dx + iξ) T f(xj − ǫ1)

)
− lim
ǫ1ց0

(
1
n2

j
( ddx + iξ) T f(xj + ǫ1)

)

−
∫

Ω

(
( d
dx + iξ) 1

n2 ( d
dx + iξ)(ψT f) + (K

n2 − c)(ψT f)
)
φdx.

By (5.15) and the properties of ψ, this implies that

lim
ǫ1ց0

1
n2

j
( ddx + iξ) T f(xj + ǫ1) = lim

ǫ1ց0

1
n2

j−1
( ddx + iξ) T f(xj − ǫ1).

Therefore, 1
n2 ( ddx + iξ) T f(x) is continuous at x = xj and we have now shown that

1
n2 ( d

dx + iξ) T f ∈ Cp(Ω).

We now show that ‖ 1
n2 ( ddx + iξ) T f‖H1

p
. ‖f‖H2

p
. In a distributional sense, the

definition of T (see (5.3)) implies

−( ddx + iξ) 1
n2 ( ddx + iξ) T f + (K

n2 − c) T f = 1
n2 f

which further implies that

− d
dx( 1

n2 ( ddx + iξ) T f) = iξ 1
n2 ( ddx + iξ) T f − (K

n2 − c) T f + 1
n2 f. (5.16)
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Therefore, by taking the ‖ · ‖L2
p

of (5.16) and using the triangle inequality we get

‖ 1
n2 ( d

dx + iξ) T f‖H1
p

. ‖ ddx( 1
n2 ( d

dx + iξ) T f)‖L2
p
+ ‖ 1

n2 ( ddx + iξ) T f‖L2
p

. ‖T f‖H1
p

+ ‖T f‖L2
p
+ ‖f‖L2

p
by (5.16)

. ‖f‖L2
p

by Lax-Milgram.

The remainder of the result follows from Theorem 3.27.

Part 3. Our proof of T f ∈ H
3/2−ǫ
p for ǫ > 0 in Part 3 is similar to a proof in

[65] and relies on a result in [32]. Instead of showing that T f ∈ Hs
p for s < 3/2, it is

sufficient to show that (T f)′ ∈ Hs
p for s < 1/2. From Part 1 we have uj ∈ H2(Ωj)

for every j = 1, . . . , J . This implies that u′j ∈ H1(Ωj) ⊂ Hs(Ωj) for s < 1/2. Now

extend each uj with zero to all of R. Denote this extension of uj with ũj . Define

ũ =
∑J

j=1 ũj . A remark after Theorem 1.2.16 in [32] (using Definition 1.2.4 in [32])

says that u′j ∈ Hs(Ωj) =⇒ ũ′j ∈ Hs(R) for 0 ≤ s < 1/2. By the definition of ũ it then

follows that ũ′ ∈ Hs(R) for 0 ≤ s < 1/2. Then, by the definition of Hs(Ω), we get

ũ′|Ω ∈ Hs(Ω). But T f = ũ|Ω almost everywhere. Therefore, (T f)′ = ũ′|Ω ∈ Hs(Ω) for

0 ≤ s < 1/2. Theorem 3.29 then implies that (T f)′ ∈ Hs
p for 0 ≤ s < 1/2.

To prove the estimate for ‖T f‖
H

3/2−ǫ
p

for ǫ > 0 we use the estimate from Part 2

and the following argument,

‖T f‖
H

3/2−ǫ
p

. ‖(T f)′‖
H

1/2−ǫ
p

+ |[T f ]0| by definition of ‖ · ‖Hs
p

= ‖( ddx + iξ) T f − iξT f‖
H

1/2−ǫ
p

+ |[T f ]0|

. ‖( ddx + iξ) T f‖
H

1/2−ǫ
p

+ ‖T f‖
H

1/2−ǫ
p

by triangle inequality

. ‖n2‖
H

1/2−ǫ
p
‖ 1
n2 ( ddx + iξ) T f‖H1

p
+ ‖T f‖H1

p
by Theorem 3.28

. ‖n2‖
H

1/2−ǫ
p
‖f‖L2

p
+ ‖T f‖H1

p
by Part 2

. ‖n2‖
H

1/2−ǫ
p
‖f‖L2

p
+ ‖f‖L2

p
by Lax-Milgram

. ‖f‖L2
p

by Theorem 3.40.

We now present a corollary to Theorem 5.4 for eigenfunctions of Problem 5.1. The

proof is an elementary application of Theorem 5.4.

Corollary 5.5. Let u be an eigenfunction of Problem 5.1 and define uj := u|Ωj for

each j = 1, . . . , J . Then

1. uj ∈ C∞(Ωj) for each j = 1, . . . , J .
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2. 1
n2 ( ddx + iξ)u ∈ H1

p (and is continuous by Theorem 3.27) and

‖ 1
n2

(
d
dx + iξ

)
u‖∞ . ‖ 1

n2

(
d
dx + iξ

)
u‖H1

p
. ‖u‖H1

p

3. u ∈ H3/2−ǫ
p for any ǫ > 0 and

‖u‖
H

3/2−ǫ
p

. ‖u‖H1
p

Using these regularity results we can derive the following approximation error results

for plane waves. Recall the definition of SG ⊂ H1
p for G ∈ N,

SG := span{ei2πgx : g ∈ Z, |g| ≤ G}.

Corollary 5.6. Using Theorem 5.4 we get the following two corollary results:

1. If u ∈ H1
p then

inf
χ∈SG

‖Tu− χ‖H1
p

. G−1/2+ǫ‖u‖H1
p

∀ǫ > 0.

2. If u is an eigenfunction of Problem 5.1 then

inf
χ∈SG

‖u− χ‖H1
p

. G−1/2+ǫ‖u‖H1
p

∀ǫ > 0.

Proof. Part 1. Let u ∈ H1
p and ǫ > 0. Then, by choosing χ = P

(S)
G Tu (where P

(S)
G is

defined in Subsection 3.2.5) we get

inf
χ∈SG

‖Tu− χ‖H1
p
≤ ‖Tu− P

(S)
G Tu‖H1

p

≤ G−1/2+ǫ‖Tu‖
H

3/2−ǫ
p

by Lemma 3.30

. G−1/2+ǫ‖u‖H1
p

by Part 3 of Theorem 5.4.

Part 2 follows directly from Part 1.

5.3.2 Spectral Galerkin Method

Before considering the errors for the plane wave expansion method let us first consider

the spectral Galerkin method applied to Problem 5.1. As we discussed at the beginning

of Section 5.2 this method is not the plane wave expansion method (we will prove

this in the next subsection) and it does not share the computational efficiencies of

the plane wave expansion method (unlike for the 1D TE Mode Problem where the

these two methods are the same). It does, however, allow us to apply all of the error
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analysis techniques from [6] that we used in Subsection 4.2.3 to develop a complete

error analysis.

Applying the spectral Galerkin method with finite dimensional subspace SG to

Problem 5.1 yields the following discrete variational eigenvalue problem.

Problem 5.7. Find λG ∈ R and 0 6= uG ∈ SG such that

a(uG, vG) = λGb(uG, vG) ∀vG ∈ SG.

This finite dimensional problem is equivalent to a matrix eigenproblem and matrix-

vector products can be computed in O(N logN) operations using the Fast Fourier

Transform, but the 2nd-order part of the differential operator does not reduce to a

simple diagonal matrix and we do not have an optimal preconditioner for solving linear

systems.

The first step of the error analysis is to define the solution operator TG : L2
p → SG

that is associated with Problem 5.7. For f ∈ L2
p we define TG f by

a(TG f, vG) = b(f, vG) ∀vG ∈ SG.

Note that the definition of TG is similar to the definition of Tn in (3.43). Recall that T

is the solution operator associated with Problem 5.1 (see (5.3)). The following lemma

proves some properties of TG.

Lemma 5.8. The following properties hold for T and TG.

1. TG : H1
p → H1

p is bounded, compact and self-adjoint with respect to a(·, ·).

2. For ǫ > 0,

‖T−TG ‖H1
p

. G−1/2+ǫ.

Proof. The proof of Part 1 is the same as the proof of Part 2 of Lemma 4.23, whereas

the proof of Part 2 follows from Corollary 5.6 using Part 2 of Lemma 3.74.

Now we use Theorem 3.68 to prove the main result of this subsection.

Theorem 5.9. Let λ be an eigenvalue of Problem 5.1 with multiplicity m and cor-

responding eigenspace M . Then, for sufficiently large G and arbitrarily small ǫ > 0

there exist m eigenvalues λ1(G), λ2(G), . . . , λm(G) of Problem 5.7 (counted according

to their multiplicity) with corresponding eigenspaces M1(λ1), . . . ,Mm(λm) and a space

MG =

m⊕

j=1

Mj(λj)

such that

δ(M,MG) . G−1/2+ǫ
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and

|λ− λj | . G−1+ǫ for j = 1, . . . ,m.

Proof. For the proof of this result we would like to apply Theorem 3.68. We have

already defined the solution operator T that is associated with Problem 5.1. From

Theorem 5.3 we know that T is bounded, compact, and self-adjoint with respect to

a(·, ·). From Lemma 5.8 we know that TG for G ∈ N are a family of bounded, compact,

self-adjoint operators such that ‖T−TG ‖H1
p
→ 0 as G→∞. The result then follows

by applying Theorem 3.68 and Lemma 3.74.

So, we see that the error analysis for Problem 5.7 is the same as for the Scalar 2D

Problem and the 1D TE Mode Problem. We have shown that the eigenfunction error

is optimal in the sense that it decays at the same rate as the approximation error of SG
approximating exact eigenfunctions and the approximation error decay rate depends

on the regularity of the exact eigenfunctions. Therefore, the limiting factor for the

spectral Galerkin method applied to the 1D TM Mode Problem is the regularity of

the exact eigenfunctions, and because the eigenfunctions of the 1D TM Mode Problem

have less regularity than the eigenfunctions of the 1D TE Mode Problem, the spectral

Galerkin method converges at a slower rate for the 1D TM Mode Problem than for the

1D TE Mode Problem. We have also shown that the eigenvalues converge at twice the

rate of the eigenfunctions as we did for the spectral Galerkin method applied to the

1D TE Mode Problem. This property is the same for the TE and TM Mode Problems

because they are both self-adjoint and they both possess “Galerkin orthogonality”.

Now we will consider the plane wave expansion method. One of the first things

we prove is that the plane wave expansion method is not equivalent to the spectral

Galerkin method for the 1D TM Mode Problem.

5.3.3 Plane Wave Expansion Method

In this subsection we attempt to analyse the errors of the plane wave expansion method

applied to the 1D TM Mode Problem. The presentation of the plane wave expansion

method that we gave in Subsection 5.2 is the same as that used in [64] and [39] and does

not lend itself easily to our error analysis approach. For the error analysis we attempt

to write down a discrete variational eigenproblem that is equivalent to (5.8). In this

subsection we begin by defining two discrete variational problems that are equivalent

to (5.8).

Unfortunately, neither of these discrete variational eigenproblems are equivalent to

the spectral Galerkin method (Problem 5.7) and we can not use the error analysis from

the previous subsection for the plane wave expansion method. Attempting to analyse

the error using other theoretical techniques has also failed so far for both of our discrete

variational eigenproblems, as we explain.
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Without a complete error analysis for the plane wave expansion method we will use

the approximation error result that we proved in Corollary 5.6 for eigenfunctions of

Problem 5.1 approximated by plane waves. This estimate gives us an upper limit for

the rate at which the plane wave expansion method can converge for the eigenfunctions

of Problem 5.1. In the next subsection we will see that for our numerical examples,

the plane wave expansion method actually achieves this fastest possible convergence

rate for the eigenfunctions and we conclude that we should be able to prove that the

planeave expansion method is stable and that, as in all other cases, the limiting factor

for the method is the regularity of the eigenfunctions of Problem 5.1.

We will need to define the following two finite dimensional function spaces. For the

same G ∈ N, define

SG := S(1)
G = span{ei2πgx : |g| ≤ G}

SG⋆ := span{n2(x) ei2πgx : |g| ≤ G}.

We have N = dimSG = dimSG⋆ = 2G+ 1. Note that we have already used SG many

times throughout this thesis but we have not seen SG⋆ before.

Now we define two discrete variational eigenproblems and prove that they are both

equivalent to (5.8) (see Lemma 5.12 below).

Problem 5.10. Find λG ∈ R and 0 6= uG ∈ SG such that

a1(uG, vG) = λGb1(uG, vG) ∀vG ∈ SG

where

a1(uG, vG) =

∫

Ω

(
d
dx + iξ

)
uG
(
d
dx + iξ

)
vG + (logn2)′

(
d
dx + iξ

)
uGvG + (K − γ)uGvGdx

b1(uG, vG) =

∫

Ω
uGvGdx.

Problem 5.11. Find λG ∈ R and 0 6= uG ∈ SG such that

a(uG, vG) = λGb(uG, vG) ∀vG ∈ SG⋆.

In Problem 5.10 it is not entirely clear how a1(·, ·) is defined because (logn2)′ is not

a classical function. It is a derivative of a discontinuous function and we interpret it in

the following way. For any f ∈ D′
p(R) (i.e. f is a periodic distribution), Theorem 3.22

ensures that f has a Fourier Series and we get

∫

Ω
fφdx =

∫

Ω
(P

(S)
G f)φdx ∀φ ∈ SG
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where the projection P
(S)
G is defined in Subsection 3.2.5. Therefore,

∫

Ω
(logn2)′( ddx + iξ)uGvGdx =

∫

Ω
(P

(S)
2G (logn2)′)( ddx + iξ)uGvGdx ∀uG, vG ∈ SG.

Now we show that Problems 5.10 and 5.11 are both representations of the plane

wave expansion method applied to the 1D TM Mode Problem by showing that they

are equivalent to the matrix eigenproblem (5.8).

Lemma 5.12. Problem 5.10, Problem 5.11 and (5.8) are equivalent problems.

Proof. First, we show that Problem 5.10 is equivalent to Problem 5.11. We need to

recognise that VG = {ei2πgx : g ∈ Z, |g| ≤ G} is a basis for SG and VG⋆ = {n2(x) ei2πgx :

g ∈ Z, |g| ≤ G} is a basis for SG⋆. Then, (λG, uG) is an eigenpair of Problem 5.10 if

and only if

a1(uG, vG) = λGb1(uG, vG) ∀vG ∈ VG

⇔
∫

Ω
( ddx + iξ)uG( ddx + iξ)vG + (n2)′

n2 ( d
dx + iξ)uGvG

+(K−γ)uGvGdx = λG

∫

Ω
uGvGdx ∀vG ∈ VG

⇔
∫

Ω

1
n2

(
( ddx + iξ)uG(n2( ddx + iξ)vG + (n2)′vG)

+(K−γ)uG(n2vG)
)
dx = λG

∫

Ω

1
n2uG(n2vG)dx ∀vG ∈ VG

⇔
∫

Ω

1
n2

(
( d
dx + iξ)uG( ddx + iξ)(n2vG)

+(K−γ)uG(n2vG)
)
dx = λG

∫

Ω

1
n2uG(n2vG)dx ∀vG ∈ VG

⇔
∫

Ω

1
n2

(
( ddx + iξ)uG( ddx + iξ)wG

+(K−γ)uGwG
)
dx = λG

∫

Ω

1
n2uGwGdx ∀wG ∈ VG⋆

a(uG, wG) = λGb(uG, wG) ∀wG ∈ VG⋆

if and only if (λG, uG) is an eigenpair of Problem 5.11. Therefore, Problem 5.10 is

equivalent to Problem 5.11.

To complete the proof we will now show that Problem 5.10 is equivalent to (5.8).

Note first that the entries of A in (5.8) satisfy

Ajk := a1(e
i2πg′x, ei2πgx) g, g′ = −G, . . . , G.
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Now suppose that (λG, uG) is an eigenpair of Problem 5.10. Expand uG as

uG(x) =
∑

|h|≤G
[uG]h ei2πhx

and define a vector u with entries uh = [uG]h for h = −G, . . . , G. Then (λG, uG) is an

eigenpair of Problem 5.10 if and only if

a1(uG, e
i2πgx) = λGb1(uG, e

i2πgx) ∀g = −G, . . . , G
⇔

∑

|h|≤G
a1(e

i2πhx, ei2πgx)[uG]h = λG
∑

|h|≤G
b1(e

i2πhx, ei2πgx)[uG]h ∀g = −G, . . . , G

⇔
∑

|h|≤G
a1(e

i2πhx, ei2πgx)[uG]h = λG[uG]g ∀g = −G, . . . , G

⇔
∑

|h|≤G
Agh uh = λGug ∀g = −G, . . . , G

if and only if (λ,u) is an eigenpair of (5.8).

Now we consider the error analysis for Problems 5.10 and 5.11 as approximations

to Problem 5.1. First, we consider the error analysis for Problem 5.10. The difficulty

with using Problem 5.10 is two-fold. The first problem is that a1(·, ·) is not defined on

H1
p ×H1

p . This is because ∫

Ω
(logn2)′( ddx + iξ)uvdx

is not defined for all u, v ∈ H1
p . However, as noted after the definition of Problems 5.10

and 5.11 we can replace (logn2)′ with P
(S)
2G (logn2)′ in a1(·, ·). Unfortunately, this leads

to the second difficulty. The new a1(·, ·) (with P
(S)
2G (logn2)′ instead of (logn2)′) is not

bounded independently of G on H1
p and we can not prove that it is coercive on H1

p .

Consequently, when we try to apply our usual theory we find that we can not prove

that the error will decrease as we increase G.

Now consider Problem 5.11. Since SG⋆ * H1
p , Problem 5.11 corresponds to a non-

conforming Petrov-Galerkin method applied to Problem 5.1. Although we have not

been successful with developing the error analysis in this case, we think that represent-

ing the plane wave expansion method in this way, as a non-conforming Petrov-Galerkin

method, might be amenable to theory such as that in [85], but this requires further

investigation.

In the absence of a complete error analysis for the plane wave expansion method

we assume that the method is stable and use the approximation error result from

Corollary 5.6 to predict the rate at which the plane wave expansion method should

converge. Using Corollary 5.6 we predict that the H1
p norm of the eigenfunction error

should decay with O(G−1/2+ǫ) for arbitrarily small ǫ > 0. The numerical results in
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Section 5.4 suggest that our assumption that the method is stable is justified and we

actually achieve a convergence rate of O(G−1/2+ǫ) for arbitrarily small ǫ > 0 for the

eigenfunctions.

5.4 Examples

In this section we compute approximations to the 1D TM Mode Problem using the plane

wave expansion method. We will be solving (5.8) as an approximation to Problem 5.1.

We observe that the eigenfunction error decays at the same rate as the approximation

error estimate that we proved in Corollary 5.6. This confirms that the plane wave

expansion method is stable for these examples and the convergence rate is entirely

dependent on the regularity of the eigenfunctions of Problem 5.1. We also observe

that the eigenvalues decay at twice the rate of the eigenfunctions. This agrees with

the analysis of the spectral Galerkin method that we proved in Subsection 5.3.2. Even

though (5.8) is a non-symmentric eigenvalue problem there still appears to be sufficient

symmetry in the plane wave expansion method so that the eigenvalues to converge at

twice the rate of the eigenfunctions.

We do computations for the PCF structures of Model Problems 1 and 2 that we

defined in Subsection 4.1.7 for the 1D TE Mode Problem. In particular, n(x) is a

piecewise constant function where n(x) = 1 in the air regions and n(x) = 1.4 in the

glass regions. Figure 4-1 represents the structure of n(x). As in Chapter 4, λ0 = 1
2 and

there is a 50:50 glass to air ratio. In Figure 5-1 we have plotted the band structure

of the spectrum for Model Problems 1 and 2. We see that the band structure is very

similar to that of the 1D TE Mode Problem, see Figure 4-3. In Figure 5-1, each band is

constructed by projecting the corresponding line onto the vertical axis. And each line

is an eigenvalue of (5.8) as a function of ξ ∈ B, i.e. λ(ξ). Problem 1 has five bands in

[0,∞). Problem 2 has approximately the same band gaps as Problem 1 and there do

not appear to be any obviously isolated eigenvalues. For each band in Problem 1 there

are approximately 13 bands in Problem 2. This number corresponds to the number of

cells in the supercell of Problem 2. There are small band gaps between every band of

Problem 2 but these small gaps arise from having a supercell with finite cladding.

To examine the convergence of the plane wave expansion method we solve (5.8)

over a range of values of G. We calculate the error by comparing our eigenvalues and

eigenvectors against a reference solution, which is computed by solving (5.8) with G =

218 − 1. In Figures 5-2 and 5-3 we see that the errors of the normalised eigenfunctions

measured in ‖ · ‖H1
p

decay with O(G−1/2). This is the fastest rate of decay that we

could have expected given the approximation error result that we proved in Corollary

5.6. We recall that this approximation error result was limited by the regularity of the

exact eigenfunctions. Thus, the rate at which the eigenfunction error decays appears
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Figure 5-1: A plot of the spectra of Model Problems 1 and 2. The spectra are repre-
sented with solid black blocks (or bands) running vertically nearest the middle of the
page.

to entirely depend on the regularity of the exact problem. The numerically observed

rate of O(G−1/2) for the eigenfunction error is also the same as the convergence rate

that we were able to prove for the spectral Galerkin method in Subsection 5.3.2.

In Figures 5-2 and 5-3 we also observe that the relative errors of the eigenvalues are

O(G−1). This rate of decay is twice as fast as the decay rate for the eigenfunctions. We

managed to prove a similar result for the spectral Galerkin method applied to Problem

5.1 in Subsection 5.3.2, and the proof depended on the self-adjointness of Problem 5.1

as well as on the self-adjointness of Problem 5.7. We also proved and observed this

phenomenon in Chapter 4 for the plane wave expansion method applied to the 1D

TE Mode Problem and the Scalar 2D Problem, where the proof also depended on the

self-adjointness of the continuous and discrete problems. The fact that it also seems to

be the case for the plane wave expansion method applied to Problem 5.1 suggests that

it might be possible to reformulate 5.8 as a symmetric eigenvalue problem.
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Figure 5-2: Plot of the relative eigenvalue error (eval) and the eigenfunction error
measured in the H1

p norm (efun) vs. G for the first 5 eigenpairs of Model Problem 1
(solved for both ξ = 0 and ξ = π).
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Figure 5-3: Plot of the relative eigenvalue error (eval) and the eigenfunction error
measured in the H1

p norm (efun) vs. G for the 21st-30th eigenpairs of Model Problem
2 (solved for both ξ = 0 and ξ = π

13).
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5.5 Other Examples: Smoothing and Sampling

Although we have not mentioned it yet for the 1D TM Mode Problem we can apply

smoothing and/or sampling within the plane wave expansion method, as in Sections 4.3

and 4.4, by modifying the Fourier coefficients of n2(x) and (logn2)′. We are interested

to see whether or not our conclusions about smoothing and sampling from Chapter 4

for the smoothing and sampling methods applied to the 1D TE Mode Problem and

the Scalar 2D Problem are also true for the 1D TM Mode Problem. In particular, we

would like to know if smoothing will help the plane wave expansion method and what

grid-spacing we should choose in our sampling grid to recover the accuracy of exact

Fourier coefficients.

First, we consider the smoothing method. To apply this method we solve (5.8)

with [γ]j and [logn2]j in the definition of A in (5.8) replaced with e−2π2|j|2∆2
[γ]j and

e−2π2|j|2∆2
[logn2]j respectively, where ∆ is the parameter that determines the amount

of smoothing. In Figure 5-4 we have plotted the errors of the eigenvalues and eigenfunc-

tions for the plane wave expansion method with smoothing with G fixed (G = 217− 1)

and varying amounts of smoothing (varying ∆). In this case the reference solution is

the solution to (5.8) with G = 218 − 1 and ∆ = 0 (no smoothing). We see that the

error depends on ∆ in a more complicated way than for the Scalar 2D Problem and

the 1D TE Mode Problem in Section 4.3 (c.f. Figure 4-15). There appear to be two

“regimes” for how the error depends on ∆. Here, we will discuss the eigenfunction

errors because the error dependence on ∆ is clearer in this case than in the case of

the eigenvalue errors. For ∆ ∈ [10−7, 10−5] the eigenfunction errors appear to have

O(∆3/2) dependence on ∆. This is the same dependence that we saw for the 1D TE

Mode Problem, but for ∆ > 10−3 we see that the eigenfunction errors appear to have

O(∆1/2) dependence on ∆. Although we do not have any rigorous mathematical ex-

planation for this behaviour, one possible explanation is that in the smoothing method

we modify A from (5.8) by changing the entries of both W and V, and the changes to

W and V are contributing to the error in different ways, resulting in two “regimes”.

Also, in one of the “regimes” we see the same error behaviour as for the 1D TE Mode

Problem. This might be because the matrix V is the same matrix V as was used in the

1D TE Mode Problem.

In Figures 5-5 and 5-6 we have plotted the errors of the plane wave expansion

method with smoothing for varying G where we have chosen ∆ = Gr for different

constants r. Again, the reference solution is the solution to (5.8) with G = 218− 1 and

∆ = 0, i.e. the plane wave expansion method without smoothing. From these plots

we conclude that we should choose ∆ ≤ G−3/2 to recover the convergence rate that we

see for the plane wave expansion method without smoothing and as before, smoothing

does not improve the plane wave expansion method for the 1D TM Mode Problem.

Now, let us consider the sampling method. This method is applied in a similar way
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as in Section 4.4. Again we modify [γ]j and [logn2]j from the definition of A in (5.8).

We replace [γ]j and [logn2]j with [QM γ]j and [QM logn2]j respectively, where M ∈ N

is fixed and QM is the Interpolation Projection defined in Subsection 3.2.5. In Figure

5-7 we have plotted the errors of the eigenvalues and eigenfunctions for the plane wave

expansion method with sampling for fixed G (G = 216 − 1) and varying grid spacing

(varying M). Again, the reference solution is the solution to (5.8) with G = 218−1 (and

exact Fourier coefficients). We see that both the eigenvalue and eigenfunction errors

appear to have O(M−3/2) dependence on M . However, O(M−3/2) convergence only

appears in a small range of M values (when M ≈ Nf ) for the eigenfunction errors. For

M ≫ Nf , the eigenfunction error does not converge, but this is because the accuracy

of the reference solution has been reached (see Figure 5-2). Recall that for the 1D TE

Mode Problem we observed O(M−1) error dependence for both the eigenfunction and

eigenvalue errors in general but Model Problem 1 was a special case. We are still unsure

as to whether or not Model Problem 1 is a special case for the 1D TM Mode Problem

and we do not use the results in Figure 5-7 to predict how to choose the grid-spacing

in the sampling grid to recover the convergence rate of exact Fourier coefficients.

In Figures 5-8 and 5-9 we have plotted the errors of the plane wave expansion

method with sampling for varying G where we have chosen M = N r
f for different con-

stants r (recall that Nf = 4G+4). Again, the reference solution is the solution to (5.8)

with G = 218−1, i.e. the plane wave expansion method with exact Fourier coefficients.

From these plots we observe that if M ≥ N
3/2
f then we recover the error convergence

rate for both the eigenfunctions and eigenvalues of the plane wave expansion method

with exact Fourier coefficients, and choosing M = Nf gives us a method that does

not converge. Recall that for the 1D TE Mode Problem in Chapter 4 we needed to

choose M ≥ N3/2
f to recover the O(G−3/2) convergence rate for the eigenfunction error

and M ≥ N3
f to recover the O(G−3) convergence rate for the eigenvalue error. If we

compare these results then it suggests that the sampling method performs better for

the eigenvalue error of the 1D TM Mode Problem than it does for the 1D TE Mode

Problem in the sense that a smaller M may be chosen to recover the convergence rate

of the plane wave expansion method with exact Fourier coefficients. However, we must

temper this “favourable” result by remembering that with M = N
3/2
f the eigenvalue

errors for the 1D TE Mode Problem will still decay faster (O(G−3/2) vs. O(G−1)) than

the 1D TM Mode Problem.
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Smoothing: Model Problem 1

eval, ξ = 0
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Figure 5-4: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the first 5 eigenpairs of the plane wave expansion method
with smoothing (fixed G) applied to Model Problem 1 for ξ = 0 and ξ = π.
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Figure 5-5: Plot of the H1
p norm of the error vs. G for the 1st eigenfunction of the

plane wave expansion method with smoothing approximation to Problem 5.1 for ξ = 0,
and ξ = π (for Model Problem 1) or ξ = π

13 (for Model Problem 2).
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Smoothing: Eigenvalues of Model Problems 1 and 2
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Figure 5-6: Plot of the relative error of the 1st eigenvalue vs. G for the plane wave
expansion method with smoothing approximation to Problem 5.1 for ξ = 0, and ξ = π
(for Model Problem 1) or ξ = π

13 (for Model Problem 2).
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Sampling: Model Problem 1

Model 1 eval ξ = 0

Model 1 efun ξ = 0

Model 1 eval ξ = π

Model 1 efun ξ = π

M = Nf = 218

Figure 5-7: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. M for the first 5 eigenpairs of plane wave expansion method
with sampling (fixed G = 216 − 1 ≈ 6.5× 104) applied to Model Problem 1 for ξ = 0,
and ξ = π. Nf = 218 ≈ 2.6× 105.
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Sampling: Eigenfunctions of Model Problems 1 and 2

Model 1 std. method

Model 2 std. method
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Figure 5-8: Plot of the 1st eigenfunction error vs. G for the plane wave expansion
method with sampling applied to Model Problems 1 and 2 where M = N r

f for different
r.
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Sampling: Eigenvalues of Model Problems 1 and 2
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Figure 5-9: Plot of the 1st eigenvalue error vs. G for the plane wave expansion method
with sampling applied to Model Problems 1 and 2 where M = N r

f for different r.

222



Chapter 6. FULL 2D PROBLEM

CHAPTER 6

FULL 2D PROBLEM

In this chapter we consider the plane wave expansion method applied to the Full 2D

Problem (see Problem 2.1 in Section 2.5). As for the 1D TM Mode Problem (see

previous chapter) the error analysis is not as straight forward as for the Scalar 2D

Problem or the 1D TE Mode Problem (see Chapter 4). However, unlike the 1D TM

Mode Problem, we can not even write the problem in divergence form and to gain any

insight into the theoretical properties of the problem we will have to consider Maxwell’s

equations in 3D.

We begin by presenting the plane wave expansion method in the same way as it

is done in [64], and we explain how the Fast Fourier Transform is used to obtain an

efficient implementation of the method. We also discuss a preconditioner that can be

used with the implementation of the plane wave expansion method.

Once we have presented the method that we use we will consider the theoretical

analysis of our method. Although we have been unsuccessful in developing a stability

result for the plane wave expansion method applied to this problem, we have managed

to prove existence of eigenpairs for the exact problem and regularity results for at least

some of the eigenfunctions of the exact problem. Since we can not write down the Full

2D Problem in divergence form (as we could for the 1D TM Mode Problem, see (5.2))

we resort to studying Maxwell’s equations in 3D. Via Maxwell’s equations in 3D we

prove that there exist eigenpairs of the Full 2D Problem that are in H
3/2−ǫ
p for some

0 ≤ ǫ < 1/2. Unfortunately, we can not be sure that all eigenfunctions of the Full

2D Problem share this regularity. Also, recall that for the 1D TM Mode Problem we

showed that the eigenfunctions are in H
3/2−ǫ
p for arbitrarily small ǫ > 0. Our result in

this chapter is not quite as strong as the result for the 1D TM Mode Problem, but we

have not ruled out the possibility that the eigenfunctions of the Full 2D Problem could

be in H
3/2−ǫ
p for arbitrarily small ǫ > 0, and we have at least shown that some of the

eigenfunctions are in H1+s
p for some s > 0.
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The regularity result falls short of what we managed to prove for the Scalar 2D

Problem in Chapter 4, where we showed the eigenfunctions of the Scalar 2D Problem

are in H
5/2−ǫ
p for all ǫ > 0. This deficiency in regularity can be explained by the

presence of the additional vector or coupling term in the equation for the Full 2D

Problem (that was not present in the Scalar 2D Problem).

Following our analysis we compute some numerical examples of the plane wave

expansion method applied to the Full 2D Problem. In our computations we observe

that the eigenvalue errors and the eigenfunction errors decay at the same rates as the

1D TM Mode Problem. That is, we observe that the eigenfunction error decays at

the same rate as the approximation error for a function in H
3/2−ǫ
p for arbitrarily small

ǫ > 0 approximated by plane waves. This suggests that the eigenfunctions of the Full

2D Problem are in fact in H
3/2−ǫ
p for arbitrarily small ǫ > 0 and that the plane wave

expansion method is stable. We also observe that the eigenvalue error decays at twice

the rate of the eigenfunction error. This suggests that the problem has a certain degree

of symmetry even though the matrix eigenproblem from the plane wave expansion

method is non-symmetric. The convergence rates that we observe are not a surprise

because, in a certain sense, the Full 2D Problem is the 2D extension of the 1D TM

Mode Problem.

Finally, we briefly present a few numerical computations that experiment with the

use of the smoothing and sampling methods applied to the Full 2D Problem, and

find that with appropriate choices of the smoothing and sampling parameters, we can

recover the convergence rates of the standard plane wave expansion method. As for all

of the other problems we have examined in previous chapters we find that we can not

improve the standard plane wave expansion method by smoothing or sampling.

6.1 The Problem

Unlike the problems we have looked at so far in this thesis, the Full 2D problem is a

vectorial problem. Formally, the Full 2D Problem (see Problem 2.1 in Section 2.5) is

(∇2
t + γ)ht − (∇t × ht)× (∇tη) = β2ht on R2 (6.1)

where ∇t = ( ∂∂x ,
∂
∂y , 0) and ht = (hx, hy, 0) is a 2D vector field eigenfunction with

components hx and hy. The coefficients γ = γ(x, y) and η = η(x, y) are piecewise

constant, 2D-periodic scalar fields, and β2 is an eigenvalue. Note that for notational

convenience we will keep working with 3D vectors (even though the last component

will be 0). In physical terms, ht and β both represent different parts of the magnetic

field in the following way,

H(x) = (ht(x, y) + hz(x, y)ẑ) eiβz . (6.2)
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The z-component of the magnetic field, hz(x, y), and the electric field are uniquely

determined given ht and β. See Subsection 2.2.2 for more details on this.

The functions γ(x, y) and η(x, y) are given by,

γ(x, y) =
4π2n2(x, y)

λ2
0

η(x, y) = log(n2(x, y))

where n2(x, y) is the refractive index of the photonic crystal or photonic crystal fi-

bre. We assume that the scalar field n2(x, y) is independent of z (i.e. a genuine 2D

scalar field) and that it belongs to our special class of 2D-periodic, piecewise con-

stant functions that we defined in Definition 3.36, with period cell Ω = [−1
2 ,

1
2 ]2 and

1 ≤ n2(x, y) ≤ n2
max. Recall that for photonic crystal fibres n(x, y) is not necessarily

periodic but we have forced n2(x, y) to be periodic by applying the supercell method

and we are already satisfied that the supercell method converges as the size of the

supercell increases. The constant λ0 specifies the wavelength of light relative to the

size of the structure and log(·) is the natural logarithm.

Notice that (6.1) differs from (4.1) (the equation for the Scalar 2D Problem) only

because of the presencse of the (∇t × ht) × (∇tη(x, y)) term. In physics literature

this term is sometimes referred to as the vector or coupling term. We can also think

of (6.1) as being similar to the equation for the 1D TM Mode Problem, (5.1). The

terms of (6.1) are the same as (5.1) in that we have a Schrödinger operator where the

potential term is periodic and piecewise constant, with an additional first order term

that has a coefficient that is the derivative of a periodic piecewise constant coefficient.

A difference between the two equations is that (6.1) is a 2D vector equation while (5.1)

is a 1D scalar equation. Another difference from the 1D TM Mode Problem is that we

were able to write the 1D TM Mode Problem equation in “divergence form” (see (5.2)),

and in doing so we were able to avoid writing a governing equation (or a variational

form) with a distribution as a coefficient. Unfortunately, we can not do this for (6.1).

The analysis of the 1D TM Mode Problem depended on being able to write the problem

in divergence form. Therefore, we can not use the same approach to study the Full 2D

Problem as we did for the 1D TM Mode Problem.

In fact, we are not aware of any attempt in the mathematical literature that tackles

the Full 2D Problem in a spectral theory framework. However, there are a number

of papers in the phyisics literature (from the Centre for Photonics and Photonic Ma-

terials in the Physics Department at the University of Bath) that tackle (6.1) from a

computational perspective. See for example, [7], [62], [63], [64] and [66].

Without the proper mathematical analysis we proceed as in [39] and assume a

certain form for ht (the physics literature often refers to this as Bloch theory) to

reduce (6.1) to a problem where the eigenfunctions are periodic with period cell Ω.
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Note that in the following, since we are not considering the spectrum of an operator

on a Hilbert space, we use the term “eigenfunction” for a function that satisfies the

governing equation in the distributional sense and we are not referring to eigenfunctions

as we defined them in Subsection 3.4.2. The symmetry argument in [39] is as follows:

Since n2(x, y) is periodic in the directions of the lattice vectors (i.e. in the x and

y coordinate directions for how we have defined n2(x, y)), it suffices to only consider

eigenfunctions of (6.1) that can be written as

ht(x, y) = eiξ·x u(x, y) ∀x ∈ R3 (6.3)

where ξ ∈ B = [−π, π]2 × {0} where u = (u1, u2, 0) is a periodic vector field on R2

with period cell Ω. More general eigenfunctions can then be obtained by taking linear

combinations of eigenfunctions with this form. With this expansion of ht, (6.1) reduces

to the following family of eigenproblems, where u is the new eigenfunction:

(∇t + iξ)2u + γ(x, y)u− ((∇t + iξ)× u)× (∇tη(x, y)) = β2u on R2, (6.4)

for ξ ∈ B. Moreover, we can see that given an eigenpair (β2,u) of (6.4) for ξ ∈ B,

then (β2, eiξ·x u(x, y)) is an eigenpair of (6.1).

Since u is periodic with period cell Ω, we can now consider the problem of solving

(6.4) on Ω with periodic boundary conditions.

6.2 Method and Implementation

In this section we apply the plane wave expansion method to (6.4) for a fixed ξ ∈ B to

obtain a matrix eigenvalue problem. We then give some details for how we solve this

matrix eigenvalue problem. We want to solve (6.4) for periodic eigenfunctions u and

eigenvalues λ := β2.

To help us understand the implementation let us write (6.4) component-wise,

(∇t + iξ)2u1 + γu1 + ∂η
∂y

(
( ∂∂x + iξ1)u2 − ( ∂∂y + iξ2)u1

)
= λu1 (6.5)

(∇t + iξ)2u2 + γu2 − ∂η
∂x

(
( ∂∂x + iξ1)u2 − ( ∂∂y + iξ2)u1

)
= λu1 (6.6)

As in Section 5.2 for the 1D TM mode problem we apply the plane wave expansion

method as it is presented in [64], rather than presenting it as a Galerkin method for a

variational eigenvalue problem. Since u in (6.4) is periodic with period cell Ω we can

expand u1 and u2 in terms of plane waves,

ui(x) =
∑

g∈Z2

[ui]g ei2πg·x x ∈ R2, i = 1, 2.
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We then substitute this, together with the plane wave expansions of γ(x, y) and η(x, y)

into (6.5) to get

−
∑

g∈Z2

|ξ + 2πg|2[u1]g ei2πg·x +
∑

g∈Z2

∑

k∈Z2

[γ]k[u1]g ei2π(k+g)·x

−
∑

g∈Z2

∑

k∈Z2

(2πk2)[η]k

(
(ξ1 + 2πg1)[u2]g − (ξ2 + 2πg2)[u1]g

)
ei2π(k+g)·x

= λ
∑

g∈Z2

[u1]g ei2πg·x x ∈ R2

(6.7)

and into (6.6) to get

−
∑

g∈Z2

|ξ + 2πg|2[u2]g ei2πg·x +
∑

g∈Z2

∑

k∈Z2

[γ]k[u2]g ei2π(k+g)·x

+
∑

g∈Z2

∑

k∈Z2

(2πk1)[η]k

(
(ξ1 + 2πg1)[u2]g − (ξ2 + 2πg2)[u1]g

)
ei2π(k+g)·x

= λ
∑

g∈Z2

[u2]g ei2πg·x x ∈ R2.

(6.8)

Now we multiply (6.7) and (6.8) by e−i2πg
′·x for g′ ∈ Z2 and integrate over Ω to get

∑

g∈Z

(
A11 A12

A21 A22

)(
[u1]g

[u2]g

)
= λ

(
[u1]g′

[u2]g′

)
∀g′ ∈ Z2 (6.9)

where the Aij are given by

A11(g
′,g) = −|ξ + 2πg|2δg,g′ + [γ]g′−g + 2π(g′2 − g2)(ξ2 + 2πg2)[η]g′−g

A12(g
′,g) = −2π(g′2 − g2)(ξ1 + 2πg1)[η]g′−g

A21(g
′,g) = −2π(g′1 − g1)(ξ2 + 2πg2)[η]g′−g

A22(g
′,g) = −|ξ + 2πg|2δg,g′ + [γ]g′−g + 2π(g′1 − g1)(ξ1 + 2πg1)[η]g′−g

(6.10)

To create a finite dimensional problem we restrict g and g′ so that |g|, |g′| ≤ G for

a chosen G ∈ N. This is equivalent to restricting g and g′ so that g,g′ ∈ Z2
G,o, or

[u1]g = [u2]g = 0 for all |g| > G. To define a matrix eigenproblem that is equivalent

to the finite dimensional problem we first define N := dim Z2
G,o and a one-to-one map

i : Z2
G,o → {n ∈ N : n ≤ N} that orders the elements in Z2

G,o in ascending order, i.e.

i(g) < i(g′) if |g| < |g′|. The 2N × 2N matrix eigenproblem is then

Ax = λGx (6.11)
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where A and x can be split into N ×N submatrices and subvectors of length N ,

A =

[
A11 A12

A21 A22

]
x =

(
x1

x2

)

and the submatricies and subvectors have entries defined by (see (6.10))

(A11)i(g′),i(g) = A11(g
′,g)

(A12)i(g′),i(g) = A12(g
′,g)

(A21)i(g′),i(g) = A21(g
′,g)

(A22)i(g′),i(g) = A22(g
′,g) ∀g,g′ ∈ Z2

G,o

and

(x1)i(g) = [u1]g

(x2)i(g) = [u2]g g ∈ Z2
G,o.

(6.12)

To solve (6.11) we use the same implementation and a similar preconditioner that

we have used throughout this thesis. Namely, we use an iterative eigensolver (Implicitly

Restarted Arnoldi method) since we are only interested in a small number of extremal

eigenvalues of (6.11). We apply our eigensolver to A−1 (instead of A because this gives

us better convergence towards the smallest eigenvalues of A) and at each iteration of

the eigensolver we are required to solve a linear system to obtain the operation of A−1.

We use GMRES to do this because A is non-symmetric. In the inner iteration of the

GMRES algorithm we are required to compute matrix-vector products with A. Since

A is in general very large and dense, the efficiency of the method for solving (6.11)

depends crucially on our ability to compute Av efficiently. We obtain such an efficient

algorithm for computing Av by taking advantage of the submatrix structure of A.

With v split into two subvectors v1 and v2 of length N as in (6.12) we can reduce

the problem of computing Av efficiently to the problem of computing A11 v1, A12 v2,

A21 v1 and A22 v2 efficiently.

From (6.10) we realise that each of the submatrices Aij can be expanded in the

following way,

A11 = −D +V +W2 D2

A12 = −W2 D1

A21 = −W1 D2

A22 = −D +V +W1 D1
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where D, D1 and D2 are all diagonal matrices with entries given by

Di(g),i(g) = |ξ + 2πg|2

(D1)i(g),i(g) = ξ1 + 2πg1

(D2)i(g),i(g) = ξ2 + 2πg2 ∀g ∈ Z2
G,o

and V, W1 and W2 are dense matrices with entries given by

Vi(g′),i(g) = [γ]g′−g

Wi(g′),i(g) = 2π(g′1 − g1)[logn2]g′−g = [i ∂∂x(logn2)]g′−g

Wi(g′),i(g) = 2π(g′2 − g2)[logn2]g′−g = [i ∂∂y (logn2)]g′−g ∀g,g′ ∈ Z2
G,o.

Obviously, it is very cheap to compute matrix-vector products with D, D1 and D2

because they are diagonal matrices. To compute matrix-vector products with V, W1

and W2 we use a similar algorithm to Algorithm 4.19, each at a cost of O(N logN)

operations. From our work so far it appears that to compute Av will require 12 FFTs

or inverse FFTs (two applications of V, W1 and W2 requiring two FFTs each). In

actual fact, we can reduce this number to 6 (see Algorithm 6.1 below).

For completeness, we now present the complete algorithm for computing Av for

a given vector v ∈ C2N . As in Chapter 4 we choose Nf = 2n for n ∈ N (to get the

best performance for our FFT), set G =
Nf

4 − 1, then N = dim Z2
G,o. We also use the

same matrix notation convention that we used in Chapter 4 (see just before Algorithm

4.19) where X,Y, X̂ and Ŷ represent functions in T 2
Nf

with nodal values (X and Y ) or

Fourier coefficients (X̂ and Ŷ ), so that for example, X̂ = fft(X) and X = ifft(X̂). Let

g0 := (
Nf

2 + 1,
Nf

2 + 1) = (2G+ 3, 2G+ 3).

Algorithm 6.1. Let v ∈ C2N , let Ŷ1 be a matrix of Fourier coefficients of (i ∂∂x(logn2)),

let Ŷ2 be a matrix of Fourier coefficients of (i ∂∂y (logn2)) and let Ẑ be a matrix of Fourier

coefficients of γ, so that

(Ŷ1)ij = (2πg1)[logn2]g

(Ŷ2)ij = (2πg2)[logn2]g

(Ẑ)ij = [γ]g

where g = (i, j) − g0 and i, j = 1, . . . , Nf . Pre-compute Y1 ← ifft(Ŷ ), Y2 ← ifft(Ŷ2)

and Z ← ifft(Ẑ) and compute Av in the following way.

V̂1, V̂2, Â1, Â2, B̂1, B̂1 ← 0.

(V̂1)g+g0 ← vi(g) for g ∈ Z2
G,o.

(V̂2)g+g0 ← vi(g)+N for g ∈ Z2
G,o.

(Â1)g+g0 ← |ξ + 2πg|2(V̂1)g+g0 for g ∈ Z2
G,o.

229



6.2. Method and Implementation

(Â2)g+g0 ← |ξ + 2πg|2(V̂2)g+g0 for g ∈ Z2
G,o.

(B̂1)g+g0 ← (ξ2 + 2πg2)(V̂1)g+g0 for g ∈ Z2
G,o.

(B̂2)g+g0 ← (ξ1 + 2πg1)(V̂2)g+g0 for g ∈ Z2
G,o.

V1 ← ifft(V̂1).

V2 ← ifft(V̂2).

B1 ← ifft(B̂1).

B2 ← ifft(B̂2).

(V1)ij ← (Z)ij(V1)ij + (Y2)ij(B1)ij − (Y2)ij(B2)ij for i, j = 1, . . . , Nf .

(V2)ij ← (Z)ij(V2)ij + (Y1)ij(B2)ij − (Y1)ij(B1)ij for i, j = 1, . . . , Nf .

V̂1 ← fft(V1).

V̂2 ← fft(V2).

V̂1 ← V̂1 − Â1.

V̂2 ← V̂2 − Â2.

(Av)i(g) ← (V̂1)g+g0 for g ∈ Z2
G,o.

(Av)i(g)+N ← (V̂2)g+g0 for g ∈ Z2
G,o.

We see that Algorithm 6.1 we require only 2 FFTs and 4 inverse FFTs. The total

cost of Algorithm 6.1 is O(N logN).

To precondition the coefficient matrix A when we solve linear systems we use a

similar preconditioner that we have used in the previous chapters. We use

P =

[
P11 P12

P21 P22

]

where Pij are N ×N submatrices defined as

P11 =

[
B11 0

0 D11

]
P12 =

[
B12 0

0 0

]

P21 =

[
B21 0

0 0

]
P22 =

[
B22 0

0 D22

]

where the matrices Bij are Nb ×Nb dense matrices and Dii are (N −Nb)× (N −Nb)

diagonal matrices defined by

(Bij)kℓ = (Aij)kℓ for i, j = 1, 2 and k, ℓ = 1, . . . Nb

(Dii)kk = (Aii)kk for i = 1, 2 and k = 1, . . . , (N −Nb).

In practice we can choose Nb up to 1000.

Although we do not have a theoretical result to prove it, we observe that as in the

case of the Scalar 2D Problem in Chapter 4 this preconditioner is optimal in the sense

that the number of iterations required by the GMRES algorithm does not appear to
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depend on N .

Finally, we write down a discrete variational eigenproblem that is equivalent to the

plane wave expansion method and (6.11). For the error analysis of the plane wave

expansion method applied to the Full 2D Problem we would like to know how this

problem approximates (6.4).

Problem 6.2. For G ∈ N find λG and 0 6= u ∈ (SG)2 such that

a1(u,v) = λGb1(u,v)

a2(u,v) = λGb2(u,v) ∀v ∈ (SG)2

where

a1(u,v) =

∫

Ω
(∇t + iξ)2u1v1 + γu1v1 + ∂η

∂y ((
∂
∂x + iξ1)u2 − ( ∂∂y + iξ2)u1)v1dx

a2(u,v) =

∫

Ω
(∇t + iξ)2u2v2 + γu2v2 − ∂η

∂x(( ∂
∂x + iξ1)u2 − ( ∂∂y + iξ2)u1)v1dx

b1(u,v) =

∫

Ω
u1v1dx

b2(u,v) =

∫

Ω
u2v2dx.

6.3 Regularity and Error Analysis

In this section we discuss our efforts to analyze the Full 2D Problem and the errors

of the plane wave expansion method applied to this problem. First, we discuss the

difference between the Full 2D Problem and the 1D TM Mode Problem and why we

can not use the approach that we used in the previous chapter. Instead, we resort

to considering Maxwell’s equations in 3D. Using theory developed in [24] we apply

Floquet theory to the 3D problem and we write down a 3D variational eigenvalue

problem that is related to (6.4). From this variational eigenvalue problem we are then

able to confirm the existence of eigenpairs of (6.4) as well as determining a regularity

result for at least some of the eigenfunctions of (6.4). Our regularity result allows us

to guarantee that the approximation error of plane waves approximating some of the

eigenfunctions of (6.4) (measured in the H1
p norm) will decay to zero if the number of

plane waves increases. If we assume that the plane wave expansion method applied to

(6.4) is stable, i.e. the errors are bounded in terms of the approximation error, then

the plane wave expansion method will converge. Unfortunately, we have not yet been

able to prove this stability result and we have not been able to prove that all of the

eigenfunctions of (6.4) share the same regularity result.

Unlike the 1D TM Mode problem we could not find a way to write (6.1) in “diver-
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gence form” (or “curl form” for that matter), i.e we could not write (6.1) as

∇ · (F (ht)) = β2G(ht)

or

∇× (F (ht)) = β2G(ht)

where F and G are differential operators with L∞(R2) coefficients. Therefore, we

were not able to follow the approach from Chapter 5 and write down a variational

eigenvalue problem, from which it would be possible to determine the regularity of

the eigenfunctions. Instead, we have had to find a different way of writing down a

variational problem that is equivalent to (6.1) in order to determine the regularity of

the eigenfunctions and in order to study the convergence of Problem 6.2 as G→∞.

The standard approach would be to multiply each component of (6.1) by a test

function φ ∈ C∞(R2), integrate over R2 and take the closure of the subsequent bilinear

form with respect to (C∞(R2))2. Since ∇tη is not a classical function, it is not clear to

us how to do this, in particular how to choose the appropriate Hilbert space, and we

do not get a variational problem that is easy to work with. Thus, we had to consider

an alternative approach.

Our idea for approaching this problem is to go back to Maxwell’s equations in 3D

from which (6.1) was derived. It follows from our derivations in Chapter 2 that if

(β2,ht) is an eigenpair of (6.1) then

H(x) = (hx(x, y), hy(x, y),
i
β∇t · ht(x, y)) eiβz (6.13)

must satisfy the time-harmonic 3D Maxwell equations,

∇×
(

1
n2∇×H

)
− k2

0H = 0

∇ ·H = 0
(6.14)

on R3 in the distributional sense (see Subsections 2.2.1 and 2.2.2). Moreover, if we have

a solution to (6.14) and H has the form (6.13) then we must also have an eigenpair of

(6.1).

If we think of k2
0 in (6.14) as an eigenvalue then we can express (6.14) as an operator

on a Hilbert space, where the operator is

L = ∇× 1
n2∇×

on the Hilbert space {f ∈ (L2(R3))3 : ∇× f ∈ (L2(R3))3, ‖∇ · f‖L2
p

= 0}.
We then recognise that since n2(x, y) is periodic with respect to x and y and constant

with respect to z, n2(x, y) is periodic in all three coordinate directions and L is an
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operator with periodic coefficients. Following the work in [24], we can apply Floquet

theory to this operator to obtain the following family of operators:

Lk = (∇+ ik)× 1
n2 (∇+ ik)×

for k ∈ Q = [−π, π]3, where each operator operates on the Hilbert space

Fk = {f ∈ (L2
p)

3 : ∇× f ∈ (L2
p)

3, ‖(∇+ ik) · f‖L2
p

= 0}.

According to [24] Lk has compact resolvent and so σ(Lk) is discrete. We can also find

the following result in [24] that is similar to Theorem 3.63,

σ(L) =
⋃

k∈Q
σ(Lk).

Since σ(Lk) is discrete for each k ∈ Q, we can write down the following variational

eigenvalue problem.

Problem 6.3. For k ∈ Q, find λ ∈ R and 0 6= u ∈ Fk such that

a(u,v) = λb(u,v) ∀v ∈ Fk (6.15)

where

a(u,v) =

∫

Ω

1
n2 (∇+ ik)× u · (∇+ ik)× vdx

b(u,v) = (u,v)(L2
p)3 =

∫

Ω
u · vdx

Before we prove the existence of eigenpairs to Problem 6.3 let us make some def-

initions and examine the properties of the function space Fk. Define the following

function spaces

Hp(curl) = {f ∈ (L2
p)

3 : ∇× f ∈ (L2
p)

3}
Hp(div) = {f ∈ (L2

p)
3 : ∇ · f ∈ L2

p}

and equip them with the following norms,

‖f‖Hp(curl) =
(
‖f‖2(L2

p)3 + ‖∇ × f‖2(L2
p)3

)1/2
∀f ∈ Hp(curl)

‖f‖Hp(div) =
(
‖f‖2(L2

p)3 + ‖∇ · f‖L2
p

)1/2
∀f ∈ Hp(div).

We equip Fk with the Hp(curl) norm so that ‖ · ‖Sk
= ‖ · ‖Hp(curl). We also define the
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following function space,

Gk = {f ∈ (L2
p)

3 : f = (∇+ ik)g, g ∈ H1
p}

With these definitions of function spaces and their norms we can state some well-known

properties that Fk, Hp(curl), Hp(div) and Gk possess. Note that the symbol “⊂⊂”

indicates a compact embedding (for a definition see page 271 of [21]).

Lemma 6.4. With k ∈ Q, we can state the following properties of Fk,

1. Fk ⊂ Hp(curl) ∩Hp(div) ⊂ (H
1/2
p )3.

2. Fk ⊂⊂ (L2
p)

3.

3. (H1
p )

3 ( Hp(curl).

4. (L2
p)

3 = Fk ⊕Gk.

Proof. Part 1. Fk ⊂ Hp(curl) follows directly from the definition of Fk. Fk ⊂ Hp(div)

follows from the fact that ∇ · f = −ik · f and f ∈ (L2
p)

3 for all f ∈ Fk. Therefore

Fk ⊂ Hp(curl)∩Hp(div). To prove that Hp(curl)∩Hp(div) ⊂ (H
1/2
p )3 we use Theorem

3.47 on page 69 of [57] which states: Let Ω̃ ⊂ R3 be a bounded Lipschitz domain and

let ν defind the outward pointing normal of ∂Ω̃. Suppose u ∈ (L2(Ω̃))3 such that

∇× u ∈ (L2(Ω̃))3, ∇ · u ∈ L2(Ω̃) and u× ν ∈ (L2(Ω̃))3. Then u ∈ (H1/2(Ω̃))3 and

‖u‖
(H1/2(eΩ))3

. ‖u‖
(L2(eΩ))3

+ ‖∇×u‖
(L2(eΩ))3

+ ‖∇ ·u‖
L2(eΩ)

+ ‖u×ν‖
(L2(∂eΩ))3

. (6.16)

We now show that Hp(curl)∩Hp(div) ⊂ (H
1/2
p )3. Define θ ∈ D(R3) and Ω̃ as in Lemma

3.17 and let u ∈ Hp(curl) ∩Hp(div). Then

‖u‖
(H

1/2
p )3

. ‖θu‖(H1/2(R3))3 by Theorem 3.29

= ‖θu‖
(H1/2(eΩ))3

since supp θ ⊂ Ω̃

. ‖θu‖
(L2(eΩ))3

+ ‖∇ × (θu)‖
(L2(eΩ))3

+ ‖∇ · (θu)‖
L2(eΩ)

+ ‖(θu)× ν‖
(L2(∂ eΩ))3

by (6.16)

= ‖θu‖(L2(eΩ))3 + ‖∇ × (θu)‖(L2(eΩ))3 + ‖∇ · (θu)‖L2(eΩ) since θu|∂eΩ = 0

≤ ‖θu‖
(L2(eΩ))3

+ ‖θ∇× u‖
(L2(eΩ))3

+ ‖(∇θ)× u‖
(L2(eΩ))3

+ ‖θ∇ · u‖
L2(eΩ)

+ ‖(∇θ) · u‖
L2(eΩ)
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Continuing,

‖u‖
(H

1/2
p )3

. ‖θu‖
(L2(eΩ))3

+ ‖θ∇× u‖
(L2(eΩ))3

+ ‖u‖
(L2(eΩ))3

+ ‖θ∇ · u‖L2(eΩ) + ‖u‖(L2(eΩ))3 since θ ∈ D(R3)

. ‖θu‖(L2(R3))3 + ‖θ∇× u‖(L2(R3))3 + ‖u‖(L2(Ω))3 since supp θ ⊂ Ω̃

+ ‖θ∇ · u‖L2(R3) + ‖u‖(L2(Ω))3 and u is periodic

. ‖u‖(L2
p)3 + ‖∇ × u‖(L2

p)3 + ‖∇ · u‖L2
p

by Theorem 3.29

. ‖u‖Hp(curl) + ‖u‖Hp(div).

Therefore, u ∈ (H
1/2
p )3 and Hp(curl) ∩Hp(div) ⊂ (H

1/2
p )3.

Part 2. The compact embedding Fk ⊂⊂ (L2
p)

3 follows from the fact that Fk is

continuously embedded in (H
1/2
p )3 (Part 1) and that H

1/2
p ⊂⊂ L2

p (see Lemma 3.24).

Part 3. It is obvious that (H1
p )

3 ⊂ Hp(curl) since ‖∇ × f‖(L2
p)3 . ‖f‖(H1

p)3 for

all f ∈ (H1
p )

3. To show that (H1
p )

3 6= Hp(curl) we can construct a function that is

in Hp(curl) but not in (H1
p )

3. For example, a function u = (u, 0, 0) with u ∈ L2
p,

Dx2u ∈ L2
p, Dx3u ∈ L2

p, but Dx1u /∈ L2
p satisfies u ∈ Hp(curl) and u /∈ (H1

p )
3.

Part 4. This result is known as a Helmholtz decomposition and is given in [24].

Now let us prove the following lemma about a(·, ·) from Problem 6.3.

Lemma 6.5. The bilinear form a(·, ·) from Problem 6.3 is bounded and Hermitian on

Fk, as well as satisfying

a(v,v) + 6π2+1
2n2

max
‖v‖2(L2

p)3 & ‖v‖2Sk
∀v ∈ Fk. (6.17)

Proof. First, let us show that a(·, ·) is bounded on Fk. For u,v ∈ Fk we get,

|a(u,v)| =
∣∣∣∣
∫

Ω

1
n2 (∇+ ik)× u · (∇+ ik)× vdx

∣∣∣∣

≤ ‖ 1
n2 ‖∞‖(∇+ ik)× u‖(L2

p)3‖(∇+ ik)× v‖(L2
p)3

≤
(
‖∇ × u‖(L2

p)3 + |k|‖u‖(L2
p)3

)(
‖∇ × v‖(L2

p)3 + |k|‖v‖(L2
p)3

)
since n2 ≥ 1

≤ max{1, |k|2}‖u‖Sk
‖v‖Sk

≤ 3π2‖u‖Sk
‖v‖Sk

.

From the definition of a(·, ·), it is obvious that a(u,v) = a(v,u) for all u,v ∈ Fk

and so a(·, ·) is Hermitian on Fk.

Now let us show that a(·, ·) satisfies (6.17). For v ∈ Fk we get (using the Cauchy-

235



6.3. Regularity and Error Analysis

Schwarz and Arithmetic-Geometric Mean inequalities),

a(v,v) =

∫

Ω

1
n2 |(∇+ ik)× v|2dx ≥ 1

n2
max

∫

Ω
|(∇+ ik)× v|2dx

≥ 1
n2

max

∫

Ω
(|∇ × v| − |k||v|)2 dx since |a+ b| ≥ ||a| − |b||

= 1
n2

max

∫

Ω
|∇ × v|2 − 2|k||∇ × v||v|+ |k|2|v|2dx

= 1
n2

max

(
‖∇ × v‖2(L2

p)3 + |k|2‖v‖2(L2
p)3 − ‖∇× v‖(L2

p)3

(
2|k|‖v‖(L2

p)3

))

≥ 1
n2

max

(
‖∇ × v‖2(L2

p)3 + |k|2‖v‖2(L2
p)3 − 1

2‖∇ × v‖2(L2
p)3 − 2|k|2‖v‖2(L2

p)3

)

= 1
2n2

max
‖∇ × v‖2(L2

p)3 −
|k|2
n2

max
‖v‖2(L2

p)3

≥ 1
2n2

max
‖∇ × v‖2(L2

p)3 − 3π2

n2
max
‖v‖2(L2

p)3

= 1
2n2

max
‖v‖2Sk

− 6π2+1
2n2

max
‖v‖2(L2

p)3 .

Therefore, a(·, ·) satisfies (6.17)

Now we can use Lemmas 6.4 and 6.5 to prove the existence of eigenpairs for Problem

6.3 as well as a regularity result for the eigenfunctions of Problem 6.3.

Theorem 6.6. Problem 6.3 has real eigenvalues

− 6π2+1
2n2

max
< λ1 ≤ λ2 ≤ . . .ր +∞

with corresponding eigenfunctions u1,u2, . . . ∈ Fk that satisfy

(∇+ ik)× ( 1
n2 (∇+ ik)× uj) ∈ Fk for j = 1, 2, . . .

Proof. Define an operator F : Fk → Fk such that

a(Fu,v) + ( 6π2+1
2n2

max
)(Fu,v)(L2

p)3 = b(u,v) ∀v ∈ Fk.

From Lemma 6.5 and the Lax-Milgram Lemma we know that F is well-defined and

‖Fu‖Sk
. ‖u‖(L2

p)3 . This, together with the fact that Fk ⊂⊂ (L2
p)

3 implies that F is

compact. We can also show that F is self-adjoint with respect to a(·, ·)+( 6π2+1
2n2

max
)(·, ·)(L2

p)3

by using the fact that a(·, ·) is Hermitian (see Lemma 6.5). Therefore, by Theorem

3.60, σ(F ) consists of real eigenvalues, µj , of finite multiplicity with the only possible

accumulation point at zero, i.e.

µ1 ≥ µ2 ≥ . . . > 0.

It is easy to show (c.f. Lemma 3.71) that if (µ,u) is an eigenpair of F then ( 1
µ− 6π2+1

2n2
max

, u)
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is an eigenpair of Problem 6.3. Therefore, Problem 6.3 has real eigenvalues

− 6π2+1
2n2

max
< λ1 ≤ λ2 ≤ . . .ր +∞

where λj = 1
µj
− 6π2+1

2n2
max

for j ∈ N.

Now let (λ,u) be an eigenpair of Problem 6.3. Using the following two properties

of functions in Gk,

(∇+ ik)× v = 0 for all v ∈ Gk∫

Ω
u · v = 0 for all u ∈ Fk,v ∈ Gk

and Part 4 of Lemma 6.4 we have

a(u,v) = λb(u,v) ∀v ∈ (L2
p)

3.

Therefore,

(∇+ ik)× ( 1
n2 (∇+ ik)× u) = λu (6.18)

in the distributional sense. Since u ∈ Fk we get (∇+ ik)× ( 1
n2 (∇+ ik)×u) ∈ Fk.

We would now like to use what we know about Problem 6.3 to try and prove a result

about the existence and regularity of eigenpairs of the Full 2D Problem. Our first task

is to relate an eigenpair of Problem 6.3 to an eigenpair of (6.4). Unfortunately, the

following result is “one-way”. It remains an open problem to prove that an eigenpair

of (6.4) (in the distributional sense) is an eigenpair of Problem 6.3.

Recall our notation convention, if v ∈ R3 with v = (v1, v2, v3) then vt := (v1, v2, 0),

vz := (0, 0, v3) and vz := v3.

Theorem 6.7. Let k ∈ Q = [−π, π]3 and suppose that (λ,w) is an eigenpair of Problem

6.3. Then there exists an m ∈ Z such that

ŵ(x, y;m) =

∫ 1/2

−1/2
w(x, y, z) e−i2πmz dz 6= 0 (6.19)

and (β2, ŵt) is an eigenpair of (6.4) with ξ = kt, β = kz + 2πm and γ(x) = λn2(x).

Proof. Let k ∈ Q and suppose (λ,w) is an eigenpair of Problem 6.3. Then (as in

(6.18)) (λ,w) satisfies

(∇+ ik)× ( 1
n2 (∇+ ik)×w) = λw

(∇+ ik) ·w = 0
(6.20)

in (D′
p(R

3))3, i.e. in the periodic distributional sense. For the rest of this proof we

simplify our notation and just write D′
p(R

d) to mean (D′
p(R

d))3. Since w is a periodic
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distribution with respect to z we can expand it in terms of its Fourier Series to get

w(x, y, z) =
∑

r∈Z

ŵ(x, y; r) ei2πrz in D′
p(R

3)

where

ŵ(x, y; r) =

∫ 1/2

−1/2
w(x, y, z) e−i2πrz dz.

Substituting this expansion of w into (6.20) we get

∑

r∈Z

(∇+ ik)× ( 1
n2 (∇+ ik)× (ŵ(x, y; r) ei2πrz)) = λ

∑

r∈Z

ŵ(x, y; r) ei2πrz

∑

r∈Z

(∇+ ik) · (ŵ(x, y; r) ei2πrz) = 0 in D′
p(R

3).

Using the product rule we then get

∑

r∈Z

[
(∇t + ik + i2πrẑ)× ( 1

n2 (∇t + ik + i2πrẑ)×ŵ(x, y; r))
]
ei2πrz

= λ
∑

r∈Z

ŵ(x, y; r) ei2πrz

∑

r∈Z

[
(∇t + ik + i2πrẑ) · ŵ(x, y; r)

]
ei2πrz = 0 in D′

p(R
3).

(6.21)

Since w 6= 0 there exists an m ∈ Z such that ŵ(x, y;m) 6= 0. By matching the Fourier

coefficients (for r = m) in (6.21) we obtain

(∇t + ik + i2πmẑ)× ( 1
n2 (∇t + ik + i2πmẑ)× ŵ(x, y;m)) = λŵ(x, y;m)

(∇t + ik + i2πmẑ) · ŵ(x, y;m) = 0 in (D′
p(R

2))3.

Now set ξ = kt and β = kz + 2πm (and let ŵ = ŵ(x, y;m)) to get

(∇t + iξ + iβẑ)× ( 1
n2 (∇t + iξ + iβẑ)× ŵ) = λŵ

(∇t + iξ + iβẑ) · ŵ = 0 in (D′
p(R

2))3.

Now split the first equation into transverse and z components to get (after cancelling

terms that are zero)

(∇t + iξ)× ( 1
n2 (∇t + iξ)× ŵt) + iβẑ× ( 1

n2 (∇t + iξ)× ŵz)

+iβẑ× ( 1
n2 iβẑ× ŵt) = λŵt (6.22)

(∇t + iξ)× ( 1
n2 (∇t + iξ)× ŵz) + (∇t + iξ)× ( 1

n2 iβẑ× ŵt) = λŵz

(∇t + iξ) · ŵt + iβŵz = 0 in (D′
p(R

2))3.
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Now use the following identities

iβẑ× ( 1
n2 (∇t + iξ)× ŵz) = 1

n2 (∇t + iξ)(iβŵz)

iβẑ× ( 1
n2 iβẑ× ŵt) = 1

n2β
2ŵt

to simplify (6.22) to get

(∇t + iξ)× ( 1
n2 (∇t + iξ)× ŵt) + 1

n2 (∇t + iξ)(iβŵz) + 1
n2β

2ŵt = λŵt (6.23)

(∇t + iξ)× ( 1
n2 (∇t + iξ)× ŵz) + (∇t + iξ)× ( 1

n2 iβẑ× ŵt) = λŵz

(∇t + iξ) · ŵt + iβŵz = 0 in (D′
p(R

2))3

Now substitute iβŵz = −(∇t + iξ) · ŵt into (6.23) and expand the first term using the

product rule to get

1
n2 (∇t + iξ)× ((∇t + iξ)× ŵt) +∇t( 1

n2 )× ((∇t + iξ)× ŵt)

− 1
n2 (∇t + iξ)((∇t + iξ) · ŵt) + 1

n2β
2ŵt = λŵt in (D′

p(R
2))3.

(6.24)

Now use the identity

(∇t + iξ)× ((∇t + iξ)× ŵt)− (∇t + iξ)((∇t + iξ) · ŵt) = −(∇+ iξ)2ŵt

to simplify (6.24) to get

− 1
n2 (∇t + iξ)2ŵt +∇t( 1

n2 )× ((∇t + iξ)× ŵt) + 1
n2β

2ŵt = λŵt in (D′
p(R

2))3.

Multiplying by −n2 and rearranging terms we get

(∇t + iξ)2ŵt + λn2ŵt − (n2∇t( 1
n2 ))× ((∇t + iξ)× ŵt)+ = β2ŵt in (D′

p(R
2))3.

With −n2∇t( 1
n2 ) = ∇t(logn2) we have that (β2, ŵt) is an eigenpair of (6.4) (in the

distributional sense) with ξ = kt, β = kz + 2πm and γ(x) = λn2(x).

If we consider the converse argument then it is possible to show that if (β2,u)

is an eigenpair of (6.4) for some ξ ∈ B and β2 ≥ 0 (in the distributional sense)

where γ = λn2 then there exists an m ∈ Z such that kz = β − 2πm ∈ [−π, π] and

(λ,w) is an eigenpair of (6.20) (also in the distributional sense) where k = (ξ1, ξ2, kz)

and w(x, y, z) = ŵ(x, y) ei2πmz, with ŵ := (u1, u2,
i
β (∇t + iξ) · u). Unfortunately,

the converse arguement then fails because a distributional solution to (6.20) is not

necessarily a solution to Problem 6.3 since it lacks regularity.

Nevertheless, using Theorem 6.6 and Theorem 6.7 together ensures the existence

of eigenpairs of (6.4) (in the distributional sense) and that these eigenpairs correspond
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to eigenpairs of Problem 6.3. For the rest of this chapter we restrict our attention to

eigenpairs of (6.4) that are also eigenpairs of Problem 6.3.

Lemma 6.8. Let ξ ∈ B and let (β2,u) be an eigenpair of (6.4) with γ = λn2 such

that (λ,w) is a corresponding eigenpair of Problem 6.3 (i.e there exists an eigenpair of

Problem 6.3 such that Theorem 6.7 implies that (β2,u) is an eigenpair of (6.4)). Then

u(x, y, z) = w̃t(x, y, z) e−i2πmz where w̃ is an eigenfunction of Problem 6.3 (possibly

different from w) and m ∈ Z is defined in Theorem 6.7. Moreover, u = (u1, u2, 0) ∈
(L2

p)
3 and (∇t + iξ)× u ∈ (L2

p)
3.

Proof. Since (β2,u) corresponds to an eigenpair of Problem 6.3 there exists an eigenpair

of Problem 6.3 (λ,w) for some m ∈ Z such that k = (ξ1, ξ2, β − 2πm), and u(x, y) =

ŵt(x, y;m) where ŵ is defined in (6.24).

Using similar steps to the proof of Theorem 6.7, but in reverse, we can show that

(λ, w̃) where w̃(x, y, z) = ŵ(x, y;m) ei2πmz is an eigenpair (in the distributional sense)

of (6.20). We can also show that w̃ possesses sufficient regularity so that (λ, w̃) is an

eigenfunction of Problem 6.3. For this we need to show that w̃ ∈ Fk, i.e. we need to

show that w̃ ∈ (L2
p)

3, ∇× w̃ ∈ (L2
p)

3 and (∇ + k) · w̃ = 0 (this follows directly from

(6.20) using a density argument). By writing w̃ as

w̃(x) =
∑

g∈Z3

g3=m

[w]g ei2πg·x

it then follows directly from the definition of the Hs
p norm and the linearity of ∇× that

‖w̃‖(Hs
p)3 ≤ ‖w‖(Hs

p)3 and ‖∇×w̃‖(Hs
p)3 ≤ ‖∇×w‖(Hs

p)3 for all s ∈ R. Thus, with s = 0

we have shown that w̃ ∈ Fk and it then follows from (6.20) by a density argument that

(λ, w̃) is an eigenfunction of Problem 6.3.

By the correspondence between w and u defined in Theorem 6.7 (and a slight abuse

of notation)

u(x, y) = ŵt(x, y;m) = w̃t(x, y, z) e−i2πmz

Since u(x, y, z) = w̃t(x, y, z) e−i2πmz and w̃ ∈ (L2
p)

3 it follows that u ∈ (L2
p)

3.

Moreover, since w̃ ∈ Fk we have

(L2
p)

3 ∋ (∇+ik)×w̃ =




∂ ew3
∂y − ∂ ew2

∂z
∂ ew1
∂z − ∂ ew3

∂x
∂ ew2
∂x − ∂ ew1

∂y


+ik×w̃ =




∂ ew3
∂y − i2πm ew2

i2πm ew1 − ∂ ew3
∂x

∂ ew2
∂x − ∂ ew1

∂y


+i



ξ2w̃3 − kzw̃2

kzw̃1 − ξ1w̃3

ξ1w̃2 − ξ2w̃1




which implies that ∂ ew3
∂x ∈ L2

p and ∂ ew3
∂y ∈ L2

p. We also have ∂ ew3
∂z = i2πmw̃3 ∈ L2

p and so

it follows that w̃3 ∈ H1
p . Moreover, using the above expressions we can show that

‖w̃3‖H1
p

. ‖w̃‖Sk
. (6.25)
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Therefore,

‖(∇t + iξ)× u‖(L2
p)3 = ‖ e−i2πmz(∇t + ikt)× w̃t‖(L2

p)3

= ‖(∇t + ikt)× w̃t‖(L2
p)3

= ‖(∇+ ik)× w̃ − (∇t + ikt)× w̃z − (∇z + ikz)× w̃t‖(L2
p)3

≤ ‖(∇+ ik)× w̃‖(L2
p)3 + ‖(∇t + ikt)× w̃z‖(L2

p)3

+ ‖(∇z + ikz)× w̃t‖(L2
p)3

. ‖w̃‖Sk
+ ‖w̃3‖H1

p
+ ‖w̃t‖(L2

p)3

. ‖w̃‖Sk

and (∇t + iξ)× u ∈ (L2
p)

3.

We now prove another result about the regularity of eigenfunctions of (6.4) (that

correspond to eigenfunctions of Problem 6.3).

Theorem 6.9. Let ξ ∈ B and let (β2,u) be an eigenpair of (6.4) with γ = λn2 such

that (λ,w) is a corresponding eigenpair of Problem 6.3 (i.e there exists an eigenpair of

Problem 6.3 such that Theorem 6.7 implies that (β2,u) is an eigenpair of (6.4)). Then

there exists s ∈ R with s ≥ 0 such that u ∈ (H1+s
p )3 (recall that u3 = 0).

Proof. Rewrite (6.4) as a 2D elliptic boundary value problem: Find u = (u1, u2, 0) ∈
(H1

p )
3 such that

Lu = f on R2 (6.26)

where

L := −(∇+ iξ)2 = −∇2 − 2iξ · ∇+ |ξ|2

f := −β2u− γu− (∇tη)× ((∇t + iξ)× u).

Notice that L is elliptic (definition in Section 3.5.5) and has constant coefficients.

Also notice that we can separate (6.26) into the components Lu1 = f1 and Lu2 = f2

(Lu3 = f3 is meaningless because u3 = f3 = 0).

If we can show that f ∈ (H−1+s
p )3 for some s ≥ 0 then we can prove the result using

Theorem 3.2 on page 125 of [52] which says: For r ∈ Z, if L is 2nd-order and elliptic

with infinitely differentiable coefficients and Lu ∈ Hr−2(Ω̃), then u ∈ Hr
loc(Ω̃). Note

Remark 3.2 on page 127 of [52] which says that Theorem 3.2 applies for r ∈ R.

We can apply this theorem to both Lu1 = f1 and Lu2 = f2 by choosing Ω̃ so that

Ω̃ is bounded and Ω ⊂⊂ Ω̃.

It remains to show that f ∈ (H−1+s
p )3 for some s ≥ 0. Since u ∈ (L2

p)
3 (Lemma

6.8), we also have

−β2u− γu ∈ (L2
p)

3. (6.27)
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Now let us consider the third term in f .

(∇tη)× ((∇t + iξ)× u) =

=
(

1
n2∇tn2

)
× ((∇t + iξ)× u)

=
(
∇tn2

)
×
(

1
n2 (∇t + iξ)× u

)

= ∇t ×
(
n2
(

1
n2 (∇t + iξ)× u

))
− n2∇t ×

(
1
n2 (∇t + iξ)× u

)

= ∇t × ((∇t + iξ)× u)︸ ︷︷ ︸
I1

−n2∇t ×
(

1
n2 (∇t + iξ)× u

)
︸ ︷︷ ︸

I2

.

(6.28)

We will now show that I1 ∈ (Hp(curl))
∗ (the dual of Hp(curl)) and I2 ∈ (L2

p)
3.

Let v ∈ Hp(curl). Then (with ν denoting the outward pointing normal on ∂Ω),

∫

Ω
I1 · v dx =

∫

Ω
(∇t × ((∇t + iξ)× u)) · v dx

=

∫

Ω
(∇× ((∇t + iξ)× u)) · v dx since u = u(x, y)

=

∫

Ω
(∇t + iξ)× u · ∇ × v dx +

∫

∂Ω
ν × ((∇t + iξ)× u) · v dx

=

∫

Ω
(∇t + iξ)× u · ∇ × v dx since u,v periodic

≤ ‖(∇t + iξ)× u‖(L2
p)3‖∇ × v‖(L2

p)3 by Cauchy-Schwarz

≤ ‖(∇t + iξ)× u‖(L2
p)3‖v‖Hp(curl)

Therefore, it follows from Lemma 6.8 that I1 ∈ (Hp(curl))
∗.

Now consider I2. It follows from Lemma 6.8 that u(x, y, z) = w̃t(x, y, z) e−i2πmz

where w̃(x, y, z) := ŵ(x, y;m) ei2πmz (ŵ defined in (6.24)) is an eigenfunction of Prob-

lem 6.3 and m ∈ Z.

In the following argument let us define functions f (1), f (2) and f (3) by

f (1) := 1
n2 (∇+ ik)× w̃

f (2) := (∇+ ik)× f (1)

f (3) := ∇× f (1).

Since w̃ ∈ Fk, it follows that f (1) ∈ (L2
P )3. Theorem 6.6 implies that f (2) ∈ Fk. It then

follows that f (3) = f (2) − ik× f (1) ∈ (L2
p)

3.
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Using the relationship between u and wt and our definitions of f (i), we get

‖∇t × ( 1
n2 (∇t + iξ)× u)‖(L2

p)3 =

= ‖ e−i2πmz∇t × ( 1
n2 (∇t + ikt)× w̃t)‖(L2

p)3 since u = w̃t e
i2πmz

= ‖∇t × ( 1
n2 (∇t + ikt)× w̃t)‖(L2

p)3

= ‖f (3)
t −∇z × ( 1

n2 (∇t + ikt)× w̃z)‖(L2
p)3 by expanding f (3), other terms 0

≤ ‖f (3)‖(L2
p)3 + ‖∇z × ( 1

n2 (∇t + ikt)× w̃z)‖(L2
p)3

. ‖f (3)‖(L2
p)3 + ‖w̃3‖H1

p
since w̃3 = ŵ3(x, y) ei2πmz

. ‖f (3)‖(L2
p)3 + ‖w‖Sk

by (6.25)

<∞ since f (3) ∈ (L2
p)

3 (Theorem 6.6).

Therefore, I2 ∈ (L2
p)

3.

It now follows from (6.27), (6.28), I1 ∈ (Hp(curl))
∗ and I2 ∈ (L2

p)
3 that f ∈

(Hp(curl))
∗.

Finally, Lemma 6.4 implies that

(Hp(curl))
∗ ( ((H1

p )
3)∗ = (H−1

p )3.

Therefore, f ∈ (H1+s
p )3 for some s ≥ 0.

In the preceding theorem we would really like to get u ∈ (H1+s
p )3 for some s > 0.

To get this result we require that

Hp(curl)
∗ ⊂ (H−1+ǫ

p ) (6.29)

for some ǫ > 0. Unfortunately, we do not know of a proof of this result in the literature.

If such a result existed then we could use the following corollary to guarantee that

the approximation error for eigenfunctions of (6.4) that correspond to eigenfunctions

of Problem 6.3, approximated with functions in SG must converge to zero.

Corollary 6.10. Let u be an eigenfunction of (6.4) (that corresponds to an eigenfunc-

tion of Problem 6.3 in the sense of Theorem 6.7) and G ∈ N. Then there exists an

0 ≤ s ≤ 1/2 such that

inf
χ∈(SG)3

‖u− χ‖(H1
p)3 . G−s.

Proof. Choose χ = P
(S)
G u and use Theorem 3.30 and Theorem 6.9.

Another result that might be possible to prove is that if u is an eigenfunction of

(6.4) (that corresponds to an eigenfunction of Problem 6.3) then u /∈ (H
3/2
p )3 but this

requires further investigation.
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Computing Reference Solutions to Model Problems 3 and 4

G 29 − 1

N = dimA ≈ 1.5× 106

(Nf )
2 (FFT size) 224

Total Memory (Mb) ≈ 1100

CPU time (seconds) O(103)

Table 6.1: The details of computing reference solutions for Model Problems 3 and 4.

Unfortunately, for the reasons given at the beginning of the section, we have not

been able to prove the stability of the plane wave expansion method applied to (6.4),

i.e. we have not been able to bound the eigenvalue and eigenfunction errors in terms of

the approximation error. However, if we assume that this property is true and if (6.29)

is true then we could show, via a solution operator argument using Theorem 3.68, that

the eigenfunction errors are O(G−s) for some s > 0. For the eigenvalue errors, we could

also use solution operators and the theory from Theorem 3.68 to bound the errors in

terms of the approximation error. However, Problem 6.2 is not symmetric so we could

not derive a bound for the eigenvalue errors that is smaller than O(G−s).

6.4 Examples

In this section we compute approximations to the Full 2D Problem using the plane

wave expansion method by solving (6.11) as an approximation to (6.4). We observe

that the eigenvalue and eigenfunction errors decay at rates that are consistent with the

regularity results that we proved in the previous section, and the results suggest that

ǫ in Theorem 6.9 and Corollary 6.10 can be chosen arbitrarily small.

We do computations for the PCF structures of Model Problems 3 and 4 that we

defined in Subsection 4.1.7 for the Scalar 2D Problem. In particular, n(x, y) is piecewise

constant with n(x, y) = 1 in air regions and n(x, y) = 1.4 in glass regions. Figure 4-2

represents the period cell of n(x, y) for the different model problems. As in previous

chapters λ0 = 0.5.

To examine the convergence properties of the plane wave expansion method for

these two model problems we have solved (6.11) for varying G and we have calculated

the errors of the method by comparing the eigenvalues and eigenfunctions against a

reference solution. For both model problems the reference solution is the solution to

(6.11) with G = 29 − 1 and we have calculated the H1
p norm of the error of normalised

eigenfunctions and the relative error of eigenvalues. Table 6.1 contains some details

from the computation of the reference solutions.

In Figures 6-1 and 6-2 we see that the eigenfunctions converge at least withO(G−1/2)

and that the eigenvalues converge with O(G−1). The fact that we observe faster con-
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Chapter 6. FULL 2D PROBLEM

vergence for Model Problem 4 than we do for Model Problem 3 (for the eigenfunctions)

is surprising because Model Problem 4 is a more complicated problem. One possible

reason for this is that for Model Problem 4 we have not yet entered a truly asymptotic

regime for the size of G that we have chosen. Unfortunately, we have reached the

limits of how large we can practicably choose G for computations so we were not able

to investigate this further.

The observed decay rate for the eigenfunction errors, O(G−1/2), is the same rate

that the approximation error decays at in Corollary 6.10 when we choose s = 1/2. This

suggests that not only is the plane wave expansion method stable for eigenfunctions

(i.e. we can bound the error in terms of the approximation error for plane waves), but

the regularity result in Theorem 6.9 should be true for all 0 ≤ s ≤ 1/2.

The observed decay rate for the eigenvalue errors, O(G−1), is twice as fast as the

eigenfunction error, and confirms the conclusion that the plane wave expansion method

is stable. Moreover, it also suggests that there is a certain degree of symmetry to the

plane wave expansion method for this problem (even though (6.11) is a non-symmetric

eigenproblem) since the eigenvalue errors decay at twice the rate of the eigenfunction

errors. Recall that in Chapter 4 we saw this behaviour for cases when the continuous

and discrete problems were symmetric.
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Model Problem 3

eval, ξ = (0, 0)

efun, ξ = (0, 0)

eval, ξ = (π, π)

efun, ξ = (π, π)

Figure 6-1: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the first 6 eigenpairs of Model Problem 3 (solved for
both ξ = (0, 0) and ξ = (π, π)).
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Model Problem 4

eval, ξ = (0, 0)

efun, ξ = (0, 0)

eval, ξ = ( π
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, π
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)

efun, ξ = ( π
5
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)

Figure 6-2: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. G for the 21st-30th eigenpairs of Model Problem 4 (solved for
both ξ = (0, 0) and ξ = (π5 ,

π
5 )).
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6.5 Other Examples: Smoothing and Sampling

In our final section of this chapter we briefly consider smoothing and sampling with

the plane wave expansion method for the Full 2D Problem. We would like to know

whether or not the conclusions we made about these methods for the other problems

extend to the Full 2D Problem. In particular, we would like to know if smoothing is

of any benefit to the plane wave expansion method and how fine we should choose our

sampling grid to recover the accuracy of the standard plane wave expansion method

(that is implemented with exact Fourier coefficients).

We have already applied smoothing and sampling in Sections 4.3, 4.4 and 5.5 for

the other problems and the methods are no different here. To implement the smooth-

ing method we solve (6.11) with [γ]g and [η]g in the definition of A replaced with

ei2π
2|g|2∆2

[γ]g and ei2π
2|g|2∆2

[η]g respectively, where ∆ is the parameter that deter-

mines the amount of smoothing.

To implement the sampling method we solve (6.11) with [γ]g and [η]g in the defini-

tion of A replaced with [QM γ]g and [QM η]g respectively, where QM is the Interpolation

Projection defined in Subsection 3.2.5 and M ∈ N is the inverse of the grid spacing for

the sampling grid.

In all of our plots in this section we have calculated the relative eigenvalue error

and H1
p norm of the error of normalised eigenfunctions, and in all of the plots the

reference solution is the solution to (6.11) with G = 29 − 1, no smoothing and exact

Fourier coefficients. See Table 6.1 for some of the details for computing these reference

solutions. When we apply the sampling method there will be an additional memory

requirement of an M ×M complex double matrix. The largest M that we compute

with is M = 213 and this corresponds to an additional 1Gb of memory.

First, let us discuss the smoothing method results. In Figures 6-3 and 6-4 we

have plotted the errors for fixed G = 28 − 1 and varying amounts of smoothing, i.e.

varying ∆. In both plots we clearly see that the eigenfunctions decay with O(∆)

while the eigenvalues decay with O(∆2). These results suggest that, to ensure that

the smoothing error is less than or equal to the plane wave expansion method error

(O(G−1/2) for eigenfunctions and O(G−1) for eigenvalues) in the asymptotic limit, we

should choose ∆ . G−1/2.

In Figures 6-5 and 6-6 we have experimented with choosing ∆ = Gr for different

constants r. In Figure 6-5 we see that all of our choices of r have recovered at least

O(G−1/2) convergence for the eigenfunction error. In Figure 6-6 we also see that all of

our choices of r have recovered O(G−1) convergence for the eigenvalue error, however,

choosing ∆ = G−1/2 gives larger errors despite obtaining O(G−1) convergence. We

also see that choosing ∆ = G−1 and ∆ = G−3/2 initially gives O(G−2) and O(G−3)

convergence before “leveling off” to O(G−1) convergence once the errors have decayed

to the levels of the method without smoothing. This final observation can also be
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justified given the error dependence on ∆ that we observed in Figures 6-3 and 6-4.

The results from Figures 6-5 and 6-6 both support our initial suggestion that we

should choose ∆ . G−1/2 to recover the convergence rates for the plane wave expansion

method without smoothing. We also see that the errors with smoothing are consistently

larger than or equal to the method without smoothing.

Now let us discuss the sampling method results. In Figures 6-7 and 6-8 we have

plotted the errors for fixed G = 28 − 1 and varying sampling grid size, i.e. varying M .

In both plots we see that the eigenvalue and eigenfunction errors decay with O(M−1),

however, this decay rate is more pronounced for Model Problem 3. Note that we have

only been able to plot results for particularly large M values because the method is

unstable for smaller values of M . Also note that the eigenfunction errors in both of

these figures stagnate for large M because the accuracy of the reference solutions is

reached.

The fact that we observe errors that decay with O(M−1) suggests that we should

choose M & N
1/2
f (recall that Nf = 4G+ 1) to recover O(G−1/2) convergence for the

eigenfunctions and M & Nf to recover O(G−1) convergence for the eigenvalues.

In Figures 6-9 and 6-10 we have experimented with choosing M = N r
f for different

constants r. Although it is not very pronounced and we have been restricted by com-

putational limitations, these figures are consistent with our conclusion that we should

choose M & Nf to recover O(G−1) convergence in the eigenfunctions and eigenval-

ues. However, we also see that choosing larger M (M = N
3/2
f or M = N2

f ) gives

eigenfunction errors that are the same size as when exact Fourier coefficients are used.

Unfortunately, we have not been able to plot enough points for the eigenvalue errors

in Figure 6-10 to determine their convergence rates. Note that in Figures 6-9 and 6-10

our plots have again been limited in our choices of M since the method fails for M too

small and is unfeasible for M large.

If we compare the Full 2D Problem (with sampling) with the Scalar 2D Problem

(with sampling, see Section 4.4) then we see that the errors of both problems converge

with O(M−1). It appears that convergence with M is independent of the regularity of

the solution for these problems. Since convergence (with exact Fourier coefficients) is

slower for the Full 2D Problem, we conclude that the sampling method is less harmful

for the Full 2D Problem and it is easier to recover the optimal convergence rate.
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Smoothing: Model Problem 3

eval, ξ = (0, 0)

efun, ξ = (0, 0)

eval, ξ = (π, π)

efun, ξ = (π, π)

Figure 6-3: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the 1st 5 eigenpairs of the plane wave expansion method
with smoothing (G fixed) applied to Model Problem 3 for ξ = (0, 0) and ξ = (π, π).
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Smoothing: Model Problem 4

eval, ξ = (0, 0)

efun, ξ = (0, 0)

eval, ξ = ( π
5

, π
5

)

efun, ξ = ( π
5

, π
5

)

Figure 6-4: Plot of the relative eigenvalue error (eval) and the H1
p norm of the eigen-

function error (efun) vs. ∆ for the 21st-30th eigenpairs of the plane wave expansion
method with smoothing (G fixed) applied to Model Problem 4 for ξ = (0, 0) and
ξ = (π5 ,

π
5 ).
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Smoothing: Eigenfunctions of Model Problems 3 and 4

Model 3 ∆ = 0

Model 4 ∆ = 0

Model 3 ∆ = G−1/2

Model 4 ∆ = G−1/2

Model 3 ∆ = G−1

Model 4 ∆ = G−1

Model 3 ∆ = G−3/2

Model 4 ∆ = G−3/2

Figure 6-5: Plot of the H1
p norm of the error for the 1st eigenfunction vs. G for the

plane wave expansion method with smoothing applied to Model Problems 3 and 4 for
ξ = (0, 0), and ξ = (π, π) (for Model Problem 3) or ξ = (π5 ,

π
5 ) (for Model Problem 4).
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Smoothing: Eigenvalues of Model Problems 3 and 4

Model 3 ∆ = 0

Model 4 ∆ = 0

Model 3 ∆ = G−1/2

Model 4 ∆ = G−1/2

Model 3 ∆ = G−1

Model 4 ∆ = G−1

Model 3 ∆ = G−3/2

Model 4 ∆ = G−3/2

Figure 6-6: Plot of the relative error of the 1st eigenvalue vs. G for the plane wave
expansion method with smoothing applied to Model Problems 3 and 4 for ξ = (0, 0),
and ξ = (π, π) (for Model Problem 3) or ξ = (π5 ,

π
5 ) (for Model Problem 4).
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Sampling: Model Problem 3

Model 3 eval ξ = [0, 0]

Model 3 efun ξ = [0, 0]

Model 3 eval ξ = [π, π]

Model 3 efun ξ = [π, π]

Figure 6-7: Plot of the relative eigenvalue error (eval) and the H1
p eigenfunction error

(efun) vs. M for the 1st 5 eigenpairs of plane wave expansion method with sampling
(fixed G = 28 − 1) applied to Model Problem 3 for ξ = (0, 0), and ξ = (π, π).
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Sampling: Model Problem 4

Model 4 eval ξ = [0, 0]

Model 4 efun ξ = [0, 0]

Model 4 eval ξ = [ π
5

, π
5

]

Model 4 efun ξ = [ π
5

, π
5

]

Figure 6-8: Plot of the relative eigenvalue error (eval) and the H1
p eigenfunction er-

ror (efun) vs. M for the 21st-30th eigenpairs of plane wave expansion method with
sampling (fixed G = 28− 1) applied to Model Problem 4 for ξ = (0, 0), and ξ = (π5 ,

π
5 ).
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Sampling: Eigenfunctions of Model Problems 3 and 4

Model 3 std. method

Model 4 std. method

Model 3 M = Nf

Model 4 M = Nf

Model 3 M = N
3/2

f
Model 4 M = N

3/2

f
Model 3 M = N2

f

Model 4 M = N2

f

Figure 6-9: Plot of the H1
p norm of the error for the 1st eigenfunction vs. G for the

plane wave expansion method with sampling applied to Model Problems 3 and 4 for
ξ = (0, 0), and ξ = (π, π) (for Model Problem 3) or ξ = (π5 ,

π
5 ) (for Model Problem 4).
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Sampling: Eigenvalues of Model Problems 3 and 4

Model 3 std. method

Model 4 std. method

Model 3 M = Nf

Model 4 M = Nf

Model 3 M = N
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f
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Figure 6-10: Plot of the relative error of the 1st eigenvalue vs. G for the plane wave
expansion method with sampling applied to Model Problems 3 and 4 for ξ = (0, 0),
and ξ = (π, π) (for Model Problem 3) or ξ = (π5 ,

π
5 ) (for Model Problem 4).
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CHAPTER 7

CONCLUSIONS

In this chapter we briefly review the knowledge that we have gained on the plane

wave expansion method, and its variations, and we put the success of the plane wave

expansion method for the problems that we have studied into a wider perspective by

making a comparison with the finite element method.

7.1 Review of the Plane Wave Expansion Method

In this thesis we have shown that the plane wave expansion method can be implemented

efficiently for 4 different eigenvalue problems that come from photonic crystal fibres.

We have observed and proved (or at least made significant progress towards proving)

that the convergence of the plane wave expansion method depends directly on the reg-

ularity of each problem, which is limited because the coefficients of each problem are

discontinuous. The limited regularity implies that the convergence of the method is not

exponential (or superalgebraic). We have also shown that an attempt to recover super-

algebraic convergence by smoothing the coefficients (the smoothing method) does not

work because there is an additional error from smoothing. Also, since the plane wave

expansion method requires the Fourier coefficients of the coefficients of each problem,

we have presented an efficient method for approximating these Fourier coefficients (the

sampling method) and we have shown how to recover the convergence rate of the plane

wave expansion method with exact Fourier coefficients.

To apply the plane wave expansion method we first had to impose periodic bound-

ary conditions (or periodic coefficients). For pure photonic crystals these arise naturally

but for photonic crystal fibres they were imposed artificially by applying the supercell

method. Although we have not proved any theoretical results for the error associated

with the supercell method for any of our problems, we demonstrated for a particular ex-
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ample in Figure 2-4 that the supercell method converges superalgebraically for isolated

eigenvalues. Moreover, the essential spectrum can be accurately approximated with

pure photonic crystal calculations without the supercell method. Further investigation

into the supercell method could include computing more examples to confirm that the

method converges superalgebraically (or even exponentially) for isolated eigenvalues in

our other problems (not just the 1D TE Mode Problem) and trying to adapt the theory

in [78] (where convergence of the supercell method is proven for 2D TE and TM Mode

Problems) to our problems.

Applying the plane wave expansion method to each of our problems with peri-

odic coefficients we obtained a matrix eigenproblem, which we solved using iterative

techniques, for example, Implicitly Restarted Arnoldi and preconditioned CG or GM-

RES. Following [64] we used the Fast Fourier Transform (FFT) to obtain an efficient

implementation for computing matrix-vector products with the system matrix A in

O(N logN) operations (N being the size of A) and we found that it is very easy to ob-

tain an optimal preconditioner for A. These two implementation tricks are what make

the plane wave expansion method competitive. For the 1D problems we solved matrix

eigenproblems with N ≈ 5× 105 in O(102) seconds and computed FFTs on vectors of

length 220 ≈ 106, whereas for the 2D problems we solved matrix eigenproblems where

N ≈ 3 × 106 in O(103) seconds and computed 2D FFTs on matrices with dimension

212 ≈ 4× 106.

For the error analysis we considered the problems as spectral problems, applied

the Floquet transform and obtained a variational eigenvalue problem. For all of our

problems we developed regularity theory for the variational eigenvalue problems. For

the 1D TE Mode Problem and the Scalar 2D Problem we discovered that the plane wave

expansion method is a spectral Galerkin method and we were able to apply the theory

from [6] to obtain error bounds in terms of the approximation error. We then used our

regularity results to bound the approximation error for both the 1D TE Mode Problem

and the Scalar 2D Problem, and we proved that the eigenfunction errors (measured in

the H1
p norm) decay with O(G−3/2+ǫ) for both of these problems (for all ǫ > 0). We

also proved that the eigenvalues decay at twice this rate. Using numerical examples

we demonstrated (very clearly) that these error estimates are sharp (up to algebraic

order).

For the 1D TM Mode Problem and the Full 2D Problem we could not show that

the plane wave expansion method is a spectral Galerkin method and we could not

apply the theory from [6] to complete an error analysis. Instead, we were limited to

developing regularity results and bounding the approximation error. We showed that

these problems had less regularity than the 1D TE Mode Problem and the Scalar

2D Problem and this was reflected in approximation error bounds that decayed more

slowly, e.g. O(G−1/2+ǫ) for all ǫ > 0 for the eigenfunction errors (measured in the H1
p
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norm) in the case of the 1D TM Mode Problem. (For the Full 2D Problem we only

managed to prove that the approximation error for the eigenfunctions is O(G−s) for

some s ≥ 0.) Although we did not manage to prove the stability of the plane wave

expansion method for these two problems, we did observe stability in the numerical

computations. Furthermore, we observed that the eigenvalues also converged at twice

the rate of the eigenfunctions for these problems despite the matrix eigenproblem being

non-symmetric.

It is suggested in [64] that replacing the discontinuous coefficients in each problem

with smooth coefficients will recover superalgebraic (algebraic of arbitrary order) con-

vergence for the plane wave expansion method. However, this introduces an additional

error. We analysed the method that is used in [64] for the 1D TE Mode Problem

and the Scalar 2D Problem and we proved that superalgebraic convergence to the

“smooth problem” is obtained but that the additional error cancels any improvement.

We devised an optimal strategy for balancing the smoothing error and the plane wave

expansion error and this gave us a rate of convergence that was the same as the plane

wave expansion method without smoothing. Numerical results confirmed our theory

and showed that all but one of our estimates are sharp (up to algebraic order). The

only exception is the dependence of the eigenvalue error on the amount of smoothing.

We were only able to prove that this error decays at the same rate as the correspond-

ing error in the eigenfunctions, but for some unknown reason we observe a slightly

faster convergence rate (but not twice the rate of the eigenfunctions). We conclude

that smoothing does not improve the plane wave expansion method for the 1D TE

Mode Problem and the Scalar 2D Problem. We also computed numerical examples of

smoothing for the 1D TM Mode Problem and the Full 2D Problem which agree with

this conclusion.

The plane wave expansion method requires the Fourier coefficients of the coefficient

functions to determine the entries of the matrix in the matrix eigenproblem. For 1D

problems it is easy to construct an explicit formula for these Fourier coefficients, but in

2D it can easily be the case that the geometry of the photonic crystal fibre makes this

task impossible. We examined the method that was used in [64] for approximating these

Fourier coefficients. It is based on sampling the coefficient function on a uniform grid

and then computing the FFT of the data to obtain approximate Fourier coefficients.

We found (using theory for the 1D TE Mode Problem and the Scalar 2D Problem and

numerical examples for all of the problems) that there is an additional error introduced

by the sampling method, but the convergence rate with exact Fourier coefficients can be

recovered if the sampling grid is chosen to have sufficiently small grid-spacing. For all

of the problems we devised a strategy for choosing the optimal grid-spacing in relation

to the size of the problem, and not surprisingly we found that it is easier to recover the

(slower) convergence rate of the 1D TM Mode Problem and the Full 2D Problem than
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the (faster) convergence rate of the 1D TE Mode Problem and the Scalar 2D Problem.

We also found that the plane wave expansion method with sampling is quite sensi-

tive to the grid-spacing for the 1D TM Mode Problem and the Full 2D Problem. If it is

chosen too large then the method fails. It is here that we see an opportunity for further

investigation into some form of smoothing. If smoothing was applied before sampling

then we might obtain a method that is not as sensitive to the grid-spacing. Therefore,

we would recommend trying a different method for smoothing than the one we have

considered in this thesis which acts more like a filter that is applied after sampling. For

example, a different method for smoothing that might be more promising is considered

in [40].

7.2 Comparison with the Finite Element Method

Now that we have reviewed our knowledge of the plane wave expansion method we

would like to finish the thesis by comparing it with the finite element method. We will

now explain why it compares favourably with the finite element method on a uniform

grid.

When we apply both methods, the plane wave expansion method needs periodic

boundary conditions, while the finite element method can be applied with any boundary

conditions. This is not a disadvantage for the plane wave expansion method because

the supercell method for imposing periodicity converges exponentially for the isolated

eigenvalues and the essential spectrum can be calculated from the pure photonic crystal

(that naturally has periodic coefficients).

For implementation, both methods give us a matrix eigenvalue problem to solve

and we compare the two methods on two criteria, where there are differences: the cost

of computing matrix-vector products; and the availability of an optimal preconditioner

for solving linear systems. Matrix-vector products with the finite element method can

be computed in O(N) operations (since the system matrix is sparse) whereas the plane

wave expansion method requires O(N logN) operations. This is a small advantage for

the finite element method but the plane wave expansion method can use the simple

preconditioner that we used in this thesis whereas the finite element method will require

a more complicated multi-grid type preconditioner (unless K is large, in which case the

finite element method can use the diagonal of the system matrix as a preconditioner).

For the convergence of these two methods, they are both restricted by the limited

regularity of each of the problems that we have considered and therefore achieve similar

convergence rates. However, the finite element method will need to use elements that

have a higher order than piecewise linear elements in order to exploit the greater

regularity of the 1D TE Mode Problem and the Scalar 2D Problem (H
5/2−ǫ
p for all

ǫ > 0). For the 1D TM Mode Problem and the Full 2D Problem the finite element
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method will not need to use higher order elements because the regularity is not as high

for these problems. Note that the methods may have different absolute errors despite

converging at the same rate.

For 2D Problems, both methods can have difficulties representing complicated pho-

tonic crystal fibre structures. For the plane wave expansion method we require Fourier

coefficients and we use the sampling method to approximate these, whereas there will

be an additional error for the finite element method when the grid does not align with

the interfaces of the discontinuous coefficients.

So far we have only considered the finite element method on a uniform grid and

we see that neither method has a particular advantage over the other. Indeed, a case

could be made that the plane wave expansion method is easier to implement and that

“rough” calculations can more easily be made using it, but if we consider an adaptive

finite element method, such as the method used in [31], with its plane wave equivalent,

curvilinear coordinates, then we see that the finite element method gains an advantage.

Since the limited regularity of our problems is localised to the interface regions

an adaptive finite element method will balance the limited regularity with a smaller

grid size near the interfaces, resulting in a method that converges faster. Moreover,

the grid will be more closely aligned with the interfaces to reduce error and multi-grid

techniques can still be used to obtain an effective (if not optimal) preconditioner. The

plane wave expansion method with curvilinear coordinates, on the other hand, does

not have an optimal preconditioner since the derivative components from the operator

are no longer confined to the diagonal of the matrix. An example of an adaptive finite

element method applied to PCF problems is [31], where the 2D TE and TM Mode

Problems are solved using a posteriori error estimation to refine the mesh.

To reiterate our final comparison conclusion, the plane wave expansion method

compares favourably with the finite element method on a uniform grid but the adap-

tive finite element method has an advantage over the plane wave expansion method

with curvilinear coordinates. However, an optimal preconditioner for the plane wave

expansion method with curvilinear coordinates may be obtainable with further study.
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APPENDIX A

EXTRA PROOFS

In this appendix we present some proofs that were not given in Chapter 3.

A.1 Lemma 3.3

The following is a proof of Lemma 3.3.

Proof. Suppose that Lemma 3.3 is not true. Then there exists a sequence φn ∈ D(Rd)

such that
|〈u, φn〉|
qn(φn)

=: cn →∞ as n→∞

where

qn(φn) =
∑

|α|≤n
max
x∈K
|Dαφn(x)|.

Now put

ψn =
φn

cnqn(φn)
.

Then ψn ∈ D(Rd), suppψn ⊂ K and

qn(ψn) =
1

cn
→ 0 as n→∞. (A.1)

This implies that ψn → 0 in D(Rd) and so we have 〈u, ψn〉 → 0 as n→∞. But we also

have (by the definition of ψn and cn),

|〈u, ψn〉| =
1

cnqn(φn)
|〈u, φn〉| = 1 ∀n ∈ N.

This is a contradiction.
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A.2 Piecewise Continuous Functions

The following proof is a proof of Lemma 3.38.

Proof. We present the proof for d ≥ 2. The d = 1 proof is similar and easier. The

proof is given in two steps:

1. Show |f̂(k)| ≤ Cm,u(1 + |k′|)−m(1 + |kd|)−1 for all k ∈ Rd and for every m ∈ N.

2. Show ‖f‖2
Hs(Rd)

=
∫

Rd(1 + |k|2)s|f̂(k)|2dk <∞ for s < 1/2.

Step 1. Let k ∈ Rd and recall the notation: k′ = (k1, k2, . . . , kd−1). Let kj denote

the element of k′ with maximum absolute value and define U := | suppu| and U ′ :=

| suppu(x′, 0)|. We will need the following inequality,

|kj|m ≤ |k′|m ≤ (d− 1)m/2|kj|m ∀m > 0. (A.2)

We begin with the definition of f̂(k) and integrate by parts to get the following equal-

ities with p ∈ N ∪ {0}.

f̂(k) =

∫

Rd

e−i2πk·x f(x)dx

=

∫

xd<0
e−i2πk·x u(x)dx

=
1

(i2πkj)p

∫

xd<0
e−i2πk·xDp

ju(x)dx

=
1

(i2πkj)p
1

i2πkd

(∫

xd<0
e−i2πk·xDd∂

p
j u(x)dx−

∫

xd=0
e−i2πk

′·x′
(Dp

ju)|xd=0dx
′
)

Using these equalities and (A.2) we get the following

|f̂(k)| ≤





U‖u‖L∞(Rd)

U
(2π|kj |)p ‖Dp

ju‖L∞(Rd)

1
(2π)p+1|kj |p|kd|

(
U‖DdD

p
ju‖L∞(Rd) + U ′‖Dp

ju|xd=0‖L∞(Rd−1)

)
(A.3)

for p ∈ N ∪ {0}. Now let m ∈ N and consider (1 + |k′|)m(1 + |kd|)|f̂(k)| for different

cases of |k′| and |kd|.
Case 1: If |k′| < 1 and |kd| < 1, then

(1 + |k′|)m(1 + |kd|)|f̂(k)| ≤ 2m+1|f̂(k)|
≤ 2m+1U‖u‖L∞(Rd) by (A.3).
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Case 2: If |k′| > 1 and |kd| < 1, then

(1 + |k′|)m(1 + |kd|)|f̂(k)| ≤ 2m+1|k′|m|f̂(k)|
≤ 2m+1(d− 1)m/2|kj |m|f̂(k)| by (A.2)

≤ 2(d− 1)m/2U

πm
‖Dm

j u‖L∞(Rd) by (A.3) with p = m.

Case 3: If |k′| < 1 and |kd| > 1, then

(1 + |k′|)m(1 + |kd|)|f̂(k)| ≤ 2m+1|kd||f̂(k)|

≤ 2m

π

(
U‖Ddu‖L∞(Rd) + U ′‖u|xd=1‖L∞(Rd−1)

)
by (A.3) with p = 0.

Case 4: If |k′| > 1 and |kd| > 1, then

(1 + |k′|)m(1 + |kd|)|f̂(k)| ≤ 2m+1|k′|m|kd||f̂(k)|
≤ 2m+1(d− 1)m/2|kj|m|kd||f̂(k)| by (A.2)

≤ (d− 1)m/2

πm+1

(
U‖DdD

m
j u‖L∞ + U ′‖Dm

j u|xd=0‖L∞
)

by (A.3) with p = m.

Since u ∈ C∞
0 (Rd), the right-hand-sides of Cases 1-4 are all bounded by constants that

depend on m, u and d and we have completed Step 1.

Step 2. For any k ∈ Rd we get

1 + |k|2 = 1 + |k′|2 + |kd|2 ≤ (1 + |k′|)2(1 + |kd|)2 (A.4)

‖f‖2Hs(Rd) =

∫

Rd

(1 + |k|2)s|f̂(k)|2dk

≤ C2
m,u

∫

Rd

(1 + |k|2)s
(1 + |k′|)2m(1 + |kd|)2

dk ∀m ∈ N by Step 1

= C2
m,u

∫

Rd

(1 + |k′|)2s(1 + |kd|)2s
(1 + |k′|)2m(1 + |kd|)2

dk ∀m ∈ N by (A.4)

= C2
m,u

(∫

Rd−1

(1 + |k′|)2s−2mdk′
)

︸ ︷︷ ︸
I1

(∫

R

(1 + |kd|)2s−2dkd

)

︸ ︷︷ ︸
I2

∀m ∈ N

The term I1 is bounded by choosing m sufficiently large and the term I2 is bounded

provided 2s− 2 < −1, or equivalently, if s < 1/2. This completes the proof.
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A.3 Triangle Inequality for Gap Between Subspaces

The gap between two subspaces of a Hilbert space (Definition 3.64) obeys the triangle

inequality, Lemma 3.65. Here is the proof for Lemma 3.65.

Proof. Let X, Y and Z be three closed subspaces of a Hilbert space. The proof has

three steps.

1. Since {y ∈ Y : ‖y‖ = 1} ⊂ {y ∈ Y : ‖y‖ ≤ 1},

sup
y∈Y,‖y‖≤1

dist(y, Z) ≥ sup
y∈Y,‖y‖=1

dist(y, Z). (A.5)

Conversely, for each 0 6= y ∈ Y , with ‖y‖ ≤ 1, define ŷ = y
‖y‖ . Then

dist(ŷ, Z) = inf
z∈Z
‖ŷ − z‖ =

1

‖y‖ inf
z′∈Z
‖y − z′‖ =

1

‖y‖ dist(y, Z) ≥ dist(y, Z)

since ‖y‖ ≤ 1. Therefore

sup
y∈Y,‖y‖≤1

dist(y, Z) ≤ sup
y∈Y,‖y‖=1

dist(y, Z). (A.6)

Combining (A.5) and (A.6) we get

sup
y∈Y,‖y‖≤1

dist(y, Z) = sup
y∈Y,‖y‖=1

dist(y, Z). (A.7)

2. For x ∈ X, ‖x‖ = 1, since {y ∈ Y : ‖y‖ ≤ 1} ⊂ Y ,

inf
y∈Y,‖y‖≤1

‖x− y‖ ≥ inf
y∈Y
‖x− y‖ (A.8)

Conversely, let yx be the projection of x onto Y with respect to the inner product

on our Hilbert space, (x− yx, y) = 0 for all y ∈ Y . Then, using the definition of

yx, Cauchy-Schwarz and that ‖x‖ = 1, we get

‖yx‖2 = (yx, yx) = (x, yx) ≤ ‖x‖‖yx‖ = ‖yx‖.

Therefore ‖yx‖ ≤ 1. Also, Pythagorus gives us

‖x− y‖2 = ‖x− yx‖2 + ‖yx − y‖2 ∀y ∈ Y

which implies

‖x− y‖ ≥ ‖x− yx‖ ∀y ∈ Y.
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Therefore,

inf
y∈Y
‖x− y‖ ≥ ‖x− yx‖ ≥ inf

y′∈Y,‖y′‖≤1
‖x− y′‖ (A.9)

Combining (A.8) and (A.9) we get, for x ∈ X with ‖x‖ = 1,

inf
y∈Y,‖y‖≤1

‖x− y‖ = inf
y∈Y
‖x− y‖ (A.10)

3. Let x ∈ X with ‖x‖ = 1. Then

dist(x, Z) = inf
z∈Z
‖x− z‖

≤ ‖x− y‖+ inf
z∈Z
‖y − z‖ ∀ y ∈ Y, ‖y‖ ≤ 1

= ‖x− y‖+ dist(y, Z)

≤ ‖x− y‖+ sup
y′∈Y,‖y′‖≤1

dist(y′, Z)

= ‖x− y‖+ sup
y′∈Y,‖y′‖=1

dist(y′, Z) by (A.7)

= ‖x− y‖+ δ(Y, Z) ∀ y ∈ Y, ‖y‖ ≤ 1.

Taking the infimum over y ∈ Y with ‖y‖ ≤ 1 we get

dist(x, Z) ≤ inf
y∈Y,‖y‖≤1

‖x− y‖+ δ(Y, Z)

= inf
y∈Y
‖x− y‖+ δ(Y, Z) by (A.10)

= dist(x, Y ) + δ(Y, Z).

The result follows by taking the supremum over x ∈ X with ‖x‖ = 1.
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