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Summary

The Met Office uses the NAME dispersion model to solve stochastic differential

equations (SDEs) for predicting the transport and spread of atmospheric pollutants.

Time stepping methods for this SDE dominate the computation time. In particular

the slow convergence of the Monte Carlo Method imposes limitations on the accuracy

with which predictions can be made on operational timescales.

We review the theory of both the Standard and Multi Level Monte Carlo Methods,

and in particular the complexity theorems discussed in [9] in a more general context.

We then argue how it can potentially give rise to significant gains for this problem in

atmospheric dispersion modelling.

To verify these theoretical arguments numerically, we consider two model problems;

a simplified problem which corresponds to homogeneous turbulence and is used by the

Met Office for long term predictions, as well as a full non-linear model problem close

to that used by the Met Office for atmospheric dispersion modelling.

For both model problems we performed numerical tests in which we observed sig-

nificant speed-up as a result of the implementation of the Multi Level Monte Carlo

Method. The numerically observed convergence rates are also confirmed by a full the-

oretical analysis for the simplified model problem.

Several open questions, such as the correct treatment of reflective boundary condi-

tions and the Multi Level coarsening factor, are also addressed. We present interesting

preliminary numerical results which will be useful for extending the method to more

realistic scenarios and hopefully allow it to be used in an operational setting in the

future.
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Chapter 1

Introduction

1.1 Motivation

Predicting the spread of airborne pollutants is important in a variety of applications;

in particular it allows for the informed formulation of emergency responses to events

such as industrial fires, volcanic eruptions or even nuclear disasters. Consequently, it

is vital that these predictions can be made quickly and accurately in order for efficient

and effective responses to be implemented.

The eruption of Eyjafjallajkull, in Iceland in 2010 [1][2][3], resulted in an exten-

sive ash cloud that caused major disruption for European air travel. The facility to

model the dispersion of such airborne pollutants was crucial to managing the situation

effectively and thus, in this case, to minimising the cost to airlines as well as the dis-

ruption to passengers. As such, being able to model atmospheric dispersion quickly

and accurately has substantial economic, as well as wider, social benefits.

The Fukushima Daiichi nuclear disaster in 2011 is another case in point for the

necessity of such models. The meltdown of the nuclear reactors resulted in airborne

radioactive material which posed an immediate threat to the local population as well as

those further afield. The fast and accurate prediction of the dispersion of this material

was thus of prime concern in order to take action in the interest of public safety.

1.2 Background of Problem

The Met Office’s current atmospheric dispersion model, NAME (Numerical Atmo-

spheric Modelling Environment) [4][5][6] was created in response to the Chernobyl

disaster in 1986 [7][8], to ensure that in the event of such an incident occurring again,

relevant data can be provided and all necessary precautions can be taken.

4



NAME uses random walk techniques to model turbulence in the atmosphere, namely

Monte Carlo simulation; however Monte Carlo methods introduce stochastic errors.

These stochastic errors are proportional to the inverse square root of the number of

model particles, thus in order to minimise this error we must take a large number

of these sample particles. As a result obtaining an approximation with significant

accuracy is expensive and, in particular, slow to run.

In the above mentioned applications, for example, time constraints are such that

the Met Office must often use simplified physics/models or compromise on accuracy

in order to be able to model the dispersion within the required, generally short, time

period.

Recent applications of Multi Level Monte Carlo Methods (MLMC) in the context

of computational finance and the resultant reduction in computation times are given

in [9]. We endeavour to recreate these gains in the context of atmospheric dispersion

modelling, with the aim to enable the Met Office to use more complex, realistic param-

eters and work to a higher degree of accuracy whilst retaining the low computational

cost required to obtain predictions on operational timescales.

1.3 Model Problem

In the case of atmospheric dispersion modelling it is the turbulent dispersion that

we wish to model by random walk techniques and resolved large scale flow is treated

deterministically. To do this NAME tracks thousands of independent model particles

through the atmosphere to obtain approximate statistics of the dispersion.

In d-dimensions, at time t, we take a typical particle with trajectory X(t) ∈ Rd,
mean velocity field v(X(t), t) ∈ Rd and the deviation of the velocity from the mean

due to turbulence given by U(t) ∈ Rd. The time evolution of U(t) and X(t) can be

described by the stochastic differential equations (SDEs) below,

dU(t) = a(U(t),X(t), t)dt+ b(X(t), t)dW(t),

dX(t) =
[
v(X(t), t) + U(X(t), t)

]
dt,

(1.1)

here W(t) is a d-dimensional Wiener process, both X(t) and U(t) are d-dimensional

random processes and a(U(t),X(t), t) ∈ Rd and b(X(t), t) ∈ Rd×d are problem depen-

dent, possibly non-linear functions which may or may not depend on X(t) and U(t),

[11][12].

When the coefficients a and b are complicated (i.e. non-constant), the SDE cannot

be easily solved and instead we turn to numerical methods to approximate the solution.
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Such methods involve computing an approximate solution to our problem at discrete

time points, using the solution at previous time steps to approximate the solution at

the next time step, so-called time-stepping methods.

There are a variety of different time-stepping methods, for example Forward Euler,

Symplectic Euler, Crank-Nicolson and the Leapfrog Method, each of which has its own

convergence and stability properties as well as cost per time step. For this project we

use both the Forward Euler and the Symplectic Euler method, with time step size h.

The Symplectic Euler method is a modification of the Forward Euler method and is

used for solving Hamiltonian systems of equations; we note, however, that our system

of equations in (1.1) has a form close to that of a Hamiltonian system and so we

apply the Symplectic Euler method in an extended way to this problem, [10]. Indeed

for our general model the Symplectic Euler method, which is the method currently

implemented in NAME, is given by,

Un+1 = Un + a(Un,Xn, tn)h+ b(Xn, tn)∆Wn,

Xn+1 = Xn +
[
v(Xn, tn) + Un+1

]
h,

(1.2)

where tn = nh is the time at our n-th time step, with T = Mh the final time, at

which we are interested in the solution of the SDE and M the number of time steps.

Here Un ≈ U(tn) is our approximation of U at the n-th time step and similarly

Xn ≈ X(tn) is our approximation of X at the n-th time step and, finally, ∆Wn is a

d-vector comprised of independent normally distributed random variables with mean

0 and variance h, which correspond to the increments in each of the d directions for

the n-th step in the random walk. We note that NAME also supports non-Gaussian

turbulence, but for this project we focus only on Gaussian turbulence.

For the Forward Euler Method we compute Xn+1 using the values for Xn and

Un computed at the previous time step, however for the Symplectic Euler, we instead

compute Xn+1, using the newly computed Un+1 and Xn computed at the previous time

step. The two methods can be compared directly, in the context of their implementation

in the algorithm, in the following table.

Forward Euler Symplectic Euler

Loop over M time steps Loop over M time steps

Un+1 = Un + a(Un,Xn, tn)h+ b(Xn, tn)∆Wn, Un+1 = Un + a(Un,Xn, tn)h+ b(Xn, tn)∆Wn,

Xn+1 = Xn +
[
v(Xn, tn) + Un

]
h. Xn+1 = Xn +

[
v(Xn, tn) + Un+1

]
h.

End loop End loop
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The Forward and Symplectic Euler methods have the same cost and for small time

step sizes they differ little from each other, however the Symplectic Euler is better

at preserving the underlying Hamiltonian dynamics. For our initial tests we used the

Forward Euler Method and later we implemented the Symplectic Euler method, in line

with that used in the Met Office’s model NAME.

Once we have computed our Euler approximation to the solution, we are generally

interested in some functional of this solution, say Q(U(T ),X(T )), we call this our

quantity of interest (QoI). In particular, for the Met Office’s purposes, this is usually

the probability of a particle being in a particular subsection of the domain at end

time T . Our Euler approximation of this quantity of interest, QM , will then be the

functional evaluated with our approximate solution of the SDE, i.e. Q(UM ,XM ).

1.4 Aims

The aim of this thesis is to show that the gains seen in terms of computational complex-

ity in [9] can be replicated in the context of atmospheric dispersion modelling. Thus we

hope to demonstrate that the application of Multi Level Monte Carlo Methods to this

problem has the potential to allow the Met Office to use more complex, realistic param-

eters and work to a higher degree of accuracy whilst retaining the low computational

cost required to obtain predictions on operational timescales.

1.5 Achievements

We have identified that for a simplified 1-dimensional model problem the application

of Multi Level Monte Carlo gives significant gains over the Standard Method which

is currently used by the Met Office. We have also shown that gains are possible for

a more realistic test case, opening up a number of interesting research questions that

follow on from this thesis.

In particular we have written original code in MATLAB for both a simplified and

a more realistic test case, allowing us to directly compare the results of the Standard

and Multi Level Monte Carlo methods for these two model problems.

The simplified problem corresponds to that which is used by the Met Office to make

predictions on longer time scales; studying this simpler problem allowed us to complete

a full theoretical analysis, to which we could then compare our numerical results. From

this theoretical analysis we were able to identify the potential for improvement from

the implementation of the Multi Level Method; in particular it enabled us to apply the

theory described in [9] to calculate the computational cost of the Multi Level Method
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for this simplified problem and compare it to that of the Standard Method.

When our quantity of interest was chosen to be the probability of a particle being

in a particular “box” at a certain time T , for the simplified model problem, we were

able to prove that the computational cost of the Multi Level Method is O(ε−2(log ε)2)

compared to O(ε−3) for the Standard, where ε is a specified error tolerance. We were

also able to verify these results numerically using the MATLAB code we had written.

Further to this, studying a different quantity of interest, the mean particle position,

we saw that the method proved to perform even better, giving an order of magnitude

improvement over the Standard, with the Multi Level Method’s computational cost, in

this case, being O(ε−2).

In addition to this we also showed numerically that similar gains are possible for a

more realistic model, in which case it was not feasible to prove this analytically. Finally,

we modified the realistic model in order to represent as closely as possible the behaviour

of real life airborne pollutant particles in line with that used at the Met Office. To do

this we reflected any particles that reached the ground in order to prevent them going

beneath the ground. This reflection, however, gave way to some unusual results and

the Multi Level Method appeared not to be as successful in this case. These unusual

results raise several interesting questions, the investigation of which would constitute

the next steps in the continuing research of this topic.

It is important to note that the error tolerances considered here are those which are

based on practical use and as such are relatively large compared to those generally small

error tolerances considered in mathematical papers. In fact for this problem, had we

considered smaller error tolerances the results would likely have been very impressive,

however for this project the aim has been to achieve improvements for accuracies in line

with those that the Met Office require for the practical prediction of the dispersion of

airborne pollutants; with this in mind the results in this thesis are in fact very positive.

In conclusion, this thesis shows that the Multi Level Monte Carlo method has good

potential to provide improved performance over the Standard in this application to

atmospheric dispersion modelling, with further work required to identify the exact

magnitude of these improvements as well as the optimal parameter choices.

1.6 Structure

This thesis begins by giving a background of Monte Carlo Methods and their application

to atmospheric dispersion modelling. We study the statistical errors associated with

this method and the limitations controlling these errors imposes on its operational use.

From this we establish the need for an improvement to the Standard Monte Carlo
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Method, in particular for predicting the spread of airborne pollutants.

We go on to study the Multi Level Monte Carlo Method, the resultant statistical

errors and how an optimal method can be used to control these errors. We conclude the

chapter by contrasting computational complexity theorems for both the Standard and

Multi Level Monte Carlo Methods, identifying the potential for significant improvement

over the Standard Method, provided certain conditions are satisfied.

To see how well the Multi Level Method performs we first look at a simplified,

yet relevant, 1-dimensional model problem, which describes homogeneous turbulence.

The main purpose of this simplified model is to allow us to use tools of mathematical

analysis which would prove difficult, if not impossible for a more complicated case. The

analysis allows us to look at how the well the Multi Level Method performs for this

model problem which we then compare to numerical results.

For this simplified problem we perform numerical tests studying different quantities

of interest, varying the time spans over which we run the model as well as using different

accuracy tolerances and output cells in which we are interested in the concentration of

particles, with a view to understanding how the performance of the method changes as

we vary these parameters.

Having established the potential for improvement over the Standard Method for the

simplified case, we then look at a more realistic test case. We carefully study the SDE

to be solved and address the problems that arise as a result of the more complicated,

non-linear model as well as the stability constraints imposed by the time-stepping

method.

We then go on to introduce reflection of the particles at the boundary layers to better

mimic the behaviour of real life airborne pollutant particles. We look at numerical tests

carried out for both the full model without reflection at the boundaries and that with

reflection at the boundaries. From these we are able to draw conclusions about the

significance of the gains made by applying Multi Level Monte Carlo Methods to this

problem in atmospheric dispersion modelling.

Finally we identify the next steps in the full implementation of this method, in-

cluding further testing and improvements to the way in which the method is currently

applied.
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Chapter 2

Monte Carlo

In this section we discuss the Standard Monte Carlo Method, in particular its ap-

plication to atmospheric dispersion modelling in line with its implementation in the

Met Office’s current model NAME. We study the statistical error introduced by this

method of approximation as well as its computational complexity and the limitations

these impose on the widespread use of the method.

We then move on to give a background of the Multi Level Monte Carlo Method,

detailing the method itself and the reasons behind the gains we see as a result of its

implementation. Using the theorem proved in [9], we study again the computational

complexity, allowing us to identify the cases in which we expect to see significant

improvements in terms of cost from the application of Multi Level Monte Carlo.

2.1 Standard Monte Carlo

2.1.1 Background

Although statistical sampling, the predecessor of the Monte Carlo Method, has been

around for centuries, the samples were previously carried out by means of painstaking

“by-hand” samples. Thus it was the advent of modern computing power which gave

way for the idea to be applied to a much broader range of problems, allowing it to

become what is still a very powerful tool in modern science.

The birth of Monte Carlo methods is widely attributed to the paper by Metropolis

and Ulam in 1949, [13][14][15], in which they used statistical sampling methods to

evaluate integro-differential equations for various physical problems, and in which they

named this process the Monte Carlo Method. This paper is considered the main driving

force in paving the way for the growth of this now widely used method.

Historically Statistical Sampling or Monte Carlo Methods are known for their use
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in evaluating integrals of non-smooth functions, which pose problems for traditional

quadrature methods of numerical integration. One of the key advantages of using

Monte Carlo methods, however, is that the cost of the method, unlike other quadra-

ture methods, does not grow exponentially with dimension, meaning the method is

particularly competitive for higher dimensional problems.

2.1.2 Method

The general idea of Monte Carlo methods is that we have some quantity of interest, that

we cannot compute explicitly and thus for which we require an approximation. We write

our quantity of interest as the expected value of some random variable. To approximate

this quantity numerically we take a number of samples of this random variable and

compute the mean. The law of large numbers then says that for a sufficiently large

number of samples this mean will approximate the expected value [15][16]. To illustrate

this we consider the following example.

Say we wish to compute the volume of Ω, where Ω is the d-dimension sphere defined

by,

Ω := {x ∈ Rd : ‖x‖ ≤ 1
2}.

Then we define our quantity of interest as the expected value of the indicator

function on Ω, i.e.

Q(x) = χΩ(x) :=

1 if x ∈ Ω

0 otherwise.

We consider a sample of N , uniformly distributed random variables, xi ∈
[
− 1

2 ,
1
2

]d
,

whose probability density function (pdf) is given by,

p(x) =

1 if x ∈
[
− 1

2 ,
1
2

]d
0 otherwise.

By the definition of the expected value of a random variable we have,

E[Q(x)] =

∫
Rd

p(x)Q(x) dx =

∫[
− 1

2
, 1
2

]d Q(x) dx =

∫
Ω

dx = V (Ω).

Then as we noted above, the law of large numbers says that for a sufficiently large

number of samples, N , we can approximate the expected value by the mean, i.e.
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Q :=
1

N

N∑
i=1

Q(xi) ≈ E[Q] =

∫
Ω

dx = V (Ω).

Thus Q gives us an approximation of the volume of the sphere, Ω.

For d = 1 and for a sufficiently smooth function, this method would be easily

outperformed by any standard quadrature method, however, for higher dimensional

problems, the cost of standard (tensor-product) quadrature methods grows exponen-

tially with dimension whereas the cost of Monte Carlo methods remain almost entirely

unchanged [15].

This independence of dimension gives the competitive edge to Monte Carlo methods

as well as their ability to cope with non-smooth and discontinuous functions, for which

Gaussian quadrature will not work, and as a result Monte Carlo methods are favoured

for a vast range of applications.

For the application to atmospheric dispersion modelling our random variable will

be our Euler approximation, QM , to the quantity of interest Q, recalling that M is

number of Euler time steps. So we have,

E[Q] ≈ E[QM ] ≈ 1

N

N∑
i=1

Q
(i)
M , (2.1)

where Q
(i)
M are independent samples of QM and so we have that the expected value of

the quantity of interest, Q, is approximately equal to the expected value of the Euler

approximation of the quantity of interest, QM , which can be estimated by the mean of

N samples of the random variable QM , for sufficiently large N .

We are replacing the expected value with a finite number of samples and as such

we introduce an error, to which we refer as the sampling error. This sampling error

thus depends on the number of samples we take, so, in order to reduce this sampling

error, we must take more samples.

According to the Central Limit Theorem the relative error of Monte Carlo methods

scales with 1/
√
N , [15], thus the number of samples required to reduce the sampling

error by a factor of N is of order N2. In other words, in order to make our approxi-

mation 10 times more accurate we must take 100 times more samples. This relatively

slow convergence results in the high computational cost associated with the method

and, although computing power continues to improve, Monte Carlo methods are still

prohibitively expensive particularly for those problems with high computational costs

per sample.

The independence of dimension, however, remains a crucial motivating factor for
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the continued use of these methods, since they allow for complex high dimensional

problems to be modelled with costs similar to those of 1 or 2 dimensional problems.

It is for these reasons that research into modifications of Monte Carlo methods,

such as the Multi Level Monte Carlo Metho, is currently thriving with ambitions to

create methods which allow for more accurate predictions to be made on ever shorter

operational timescales.

2.1.3 Estimator

As discussed in Section 1.3 we solve our SDE using the Forward or Symplectic Euler

method, with M time steps of size h, giving us one of our Monte Carlo samples, which

we denote by,

Q
(i)
M = Q

(
U

(i)
M ,X

(i)
M

)
.

We then repeat this process for i = 1, . . . , N , with N being the number of Monte Carlo

samples. Taking the mean of the N samples gives us an estimator for our quantity of

interest which, in the Met Office’s case, would be the probability of a particle landing

in a specified cell of the output grid at time T .

More precisely, we define the Monte Carlo estimator, Q̂M,N , of our quantity of

interest, Q, to be,

Q̂M,N :=
1

N

N∑
i=1

Q
(i)
M , (2.2)

where Q
(i)
M = Q(U

(i)
M ,X

(i)
M ) is the ith sample of the Euler approximation of QM from

N independent samples, where M refers to the number of time steps in the Euler

discretisation with time step size h.

2.1.4 Mean Square Error

Both the Euler and Monte Carlo methods introduce errors, the Monte Carlo method

introduces a sampling error resulting from replacing the expected value with a finite

number of samples, as discussed in Section 2.1.2 and the Euler method introduces an

error resulting from evaluating the SDE only at discrete time points, to which we refer

as the discretisation error or bias error.

The discretisation error will depend on the size of the time step, h; indeed the root

mean square error (RMSE) is known to be O(h) as given in [17]. Thus taking a large

leap forward in time will naturally give an inaccurate solution of the SDE at the next

time point, and these errors will propagate with each step forward in time. Taking
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small time steps will give a more accurate solution, but this means we must compute

the updates of the system of equations in (1.2) for a large number of points, M = T/h,

resulting in a high computational cost. Our problem becomes that of ensuring that we

obtain a solution which is sufficiently accurate whilst the number of time steps remains

such that the computation time is feasible to be repeated for each of the generally large

number of Monte Carlo samples.

In general, for applications of the method we would like to obtain an approximation

which is accurate to some specified tolerance, which we denote by ε. With this in mind,

we study the mean square error (MSE). We define the expected mean square error as the

expected value of the square of the difference between our estimator and the expected

value of the quantity of interest, i.e.

E
[(
Q̂M,N − E[Q]

)2]
, (2.3)

where Q̂M,N is our approximation to E[Q], as described in equation (2.2).

To obtain an approximation which is accurate to our tolerance ε, we require that

the mean square error is bounded by ε2.

The formula for the mean square error given in (2.3) can be expanded to demon-

strate the contribution from the sampling error and that from the discretisation error,

see Appendix A.1. Thus we have that our mean square error is, [21],

E
[(
Q̂M,N − E[Q]

)2]
= N−1V[QM ]︸ ︷︷ ︸

sampling error

+
(
E[QM −Q]

)2

︸ ︷︷ ︸
discretisation error

. (2.4)

We need to control both of these sources in order to satisfy the desired bound of ε2

on the mean square error. To do so it is sufficient, although possibly not optimal, to

require that each term is bounded by ε2/2.

We note that the discretisation error is dependent on the time step size h only,

whereas the sampling error depends also on the number of Monte Carlo samples.

2.1.5 Complexity Theorem

The following complexity theorem, proved in [22], allows us to examine, based on the

properties of our model problem, how expensive the Standard Monte Carlo algorithm

is, and will allow for us to compare this against the cost of the Multi Level algorithm.

Theorem 2.1.1. Assuming that,

(a) |E[QM −Q]| = O(hα) - Discretisation Error
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(b) Cost(Q
(i)
M ) = O(h−γ) - Cost per sample

Then there exists time step h and number of samples N such that the total cost to

obtain mean square error,

E
[(
Q̂M,N − E[Q]

)2]
≤ ε2,

is,

Cost(Q̂M,N ) = # of Samples × Cost per Sample

= O(ε−2−γ/α).

(2.5)

Proof. The result is obtained by choosing N−1 = O(ε2) and h = O(ε1/α). Indeed, the

requirement that N−1 = O(ε2) results from splitting the error between the sampling

and discretisation error and requiring that the sampling error be less than ε2/2. The

sampling error was shown to be N−1V[QM ], see Section 2.1.4, so we require,

N−1V[QM ] ≤ 1
2ε

2

=⇒ N ≥ 2V[QM ]ε−2

=⇒ N = O(ε−2), since V[QM ] is independent

of the number of samples.

Similarly the requirement that h = O(ε1/α) results from the bound on the discreti-

sation error term, i.e. requiring that,(
E[QM −Q]

)2
≤ 1

2
ε2

Condition (a) gives E[QM −Q] = O(hα), so the bound on the discretisation error can

be written as,

O(hα) = E[QM −Q] ≤ 1√
2
ε

=⇒ hα .
1

D
√

2
ε, for some constant D

=⇒ h = O(ε1/α), since
1

D
√

2
is constant.
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The complexity theorem illustrates that for any time stepping method, even those

with a good rate of convergence for the discretisation error or a low cost per sample,

we are limited by the high cost of the Monte Carlo method resulting from the large

number of samples required, meaning that the cost will always be greater than O(ε−2).

For both the Forward and Symplectic Euler Methods, for example, we have that

the cost per sample is proportional to the number of time steps i.e. O(M) = O(h−1),

so γ = 1 in the complexity theorem, meaning that our cost is of order O(ε−2−1/α).

In order to see how expensive the method will be it is important that we establish

the rate of convergence of the discretisation error. If, for example, the discretisation

error is O(h), this would mean that the cost of the Standard Monte Carlo would be

O(ε−3).

In this case, for the Standard Method, in order to gain one decimal place of accuracy,

the cost becomes 1000 times more expensive. Thus we see just how quickly the Standard

Monte Carlo method becomes prohibitively expensive, hence we look to the Multi Level

Monte Carlo Method with the aim to attain the same mean square error but with a

reduced computational cost.

2.2 Multi Level Monte Carlo

2.2.1 Background

The idea behind Multi Level Monte Carlo is that we obtain approximations on a number

of different “levels”, each of which is computed using a finer time step size than the

previous level. The idea being that we get the accuracy of the finest time step, but

focus the bulk of the computations on the coarser, cheaper levels by only computing a

small number of samples on the finer, more expensive levels.

We achieve this by exploiting the linearity of the expectation value, which allows

us to compute a large number of samples with a coarse time step, h0, which are cheap

to compute, for example h0 = T or h0 = T/2 (recalling that T is the end time at which

we wish to solve the SDE). This gives a “rough” estimate for our quantity of interest.

Then we look at corrections with respect to successively smaller time steps, we call

these the “levels” in line with the more general notation in Giles’ paper [9].

On each level, we look at the difference between estimates on that level and that

on the previous level, i.e. the difference between the estimate with the finer time step

and that with the coarser time step, where the coarser time step is a factor of s, larger

than the previous level, i.e, h`−1 = sh`, for s ∈ N\{1}. The index ` refers to the level,

` = 0, . . . L, where hL is our finest time step. This difference is effectively the correction

of the error made by using the larger Euler time step to an error corresponding to the
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smaller time step, and thus by computing successive corrections we obtain a final

estimate which has bias corresponding to a discretisation with the smallest time step

hL.

The advantage over Standard Monte Carlo with the same time step size hL lies with

the fact that we compute fewer samples on the finer levels and thus incur a smaller

computational cost on these more expensive levels. The method for determining how

many samples are required depends on the variance of these differences and the gains

result from the smaller variance of the differences on the finer levels; consequently the

success of the method is dependent on the rate of decay of this variance with respect

to h.

2.2.2 Method

More concisely, we have the levels ` = 0, . . . L, and {h` : ` = 0, . . . , L} a decreasing

sequence, where h0 represents the coarsest time step and hL the finest. We also assume

h`−1 = sh` for s ∈ N\{1}. We take the number of points in the Euler discretisation to

be M` = T/h` (assuming for simplicity that T/h` is an integer for all `).

We define Y` = QM`
−QM`−1

as the difference between the estimate of our quantity

of interest, Q, with time step h` and that with the larger time step h`−1 computed

on the same Brownian path. Then the linearity of the expected value allows us to

formulate the following, [21]:

E[QML
] = E[QM0 ]− E[QM0 ] + E[QM1 ]− E[QM1 ] + . . .

· · ·+ E[QML−1
]− E[QML−1

] + E[QML
]

= E[QM0 ] +

L∑
`=1

E[QM`
−QM`−1

]

=
L∑
`=0

E[Y`],

(2.6)

where Y0 = QM0 . In particular each of the Y` = QM`
− QM`−1

terms is estimated

independently, with the same Brownian increments used on one level of the algorithm

to compute both QM`
and QM`−1

. It is important to note that the linearity of the

expected values means that estimating these Y`’s independently does not change the

total expectation value.
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To clarify how on one level of the algorithm the same Brownian increments are

used for estimating both QM`
and QM`−1

, we consider a 1-dimensional example. We

have a Wiener process which for our time-stepping method in 1-dimension is given by

a vector, ∆W`, of normally distributed random variables with mean 0 and variance h`.

The elements of the vector ∆W` are the increments in the random walk and correspond

to the finer time step, h`.

Since we know that, given two independent normally distributed random variables,

X ∼ N(µX , σ
2
X), Y ∼ N(µY , σ

2
Y ),

their sum X + Y is also a normal random variable, whose distribution is given by,

X + Y ∼ N(µX + µY , σ
2
X + σ2

Y ).

Then to obtain the Brownian increment corresponding to the coarser time step, h`−1,

we simply take the sum of the two Brownian increments on the finer level. These will

simply be ∆W `
j ∼ N(0, h`) and ∆W `

j+1 ∼ N(0, h`) and thus the increment for the

coarser level, ∆W `−1
j , can be written as,

∆W `−1
j = ∆W `

2j−1 + ∆W `
2j for j = 1, . . . ,M`−1,

so ∆W `−1
j ∼ N(0, 2h`) = N(0, h`−1).

The Multi Level method allows us to obtain an estimate with accuracy equivalent to

that of the Standard Monte Carlo with time step hL by calculating the corrections on

the levels up to level L, rather than by direct calculation, without invoking additional

error terms.

Although intuitively this computation of the differences would seem to incur greater

costs, we gain by observing that we require fewer samples on these correction levels in

order to reduce the sampling error.

2.2.3 Estimator

Our Multi Level Monte Carlo estimator, Q̂
(ML)
ML,{N`}, whose finest level is hL = T/ML,

is simply the sum of the estimators on each level, given by,

Q̂
(ML)
ML,{N`} :=

L∑
`=0

Ŷ`,N`
, (2.7)

with Ŷ`,N`
an estimator for E[Y`], defined as,
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Ŷ`,N`
=

1

N`

N∑̀
i=1

Y
(i)
` ,

with Y0 = QM0 and Y` = QM`
−QM`−1

, for each ` = 1, . . . , L, where each Y` is estimated

independently with N` samples on each level.

2.2.4 Mean Square Error

For the Multi Level Monte Carlo we again have contributions to the error from both

the sampling error and from the discretisation error. To quantify this we look at the

expected mean square error of the Multi Level estimator, Q̂
(ML)
ML,{N`}, which is defined

as,

E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
. (2.8)

As with the Standard MSE we can expand this, see Appendix A.2, to illustrate the

two sources of error,

E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
= V

[
Q̂

(ML)
ML,{N`}

]
︸ ︷︷ ︸
sampling error

+
(
E[QML

−Q]
)2

︸ ︷︷ ︸
discretisation error

.
(2.9)

Our approximations, Ŷ`,N`
, to the expected value E[Y`] are estimated independently,

using different random numbers for each of the estimators Ŷ`,N`
, ` = 0, . . . , L, this

independence allows us to write the variance of the Multi Level estimator as,

V
[
Q̂

(ML)
ML,{N`}

]
=

L∑
`=0

V[Ŷ`,N`
] =

L∑
`=0

N−1
` V[Y`], (2.10)

i.e. the sum of the of the variances of differences on each level scaled by the number

of samples on that level, thus we can write the mean square error of the Multi Level

estimator as,

E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
=

L∑
`=0

N−1
` V[Y`]︸ ︷︷ ︸

sampling error

+
(
E[QML

−Q]
)2

︸ ︷︷ ︸
discretisation error

.
(2.11)

As with the one level method this gives a contribution from the sampling error and

that from the discretisation error. The contribution of the discretisation error remains

unchanged from the Standard Monte Carlo, and the contribution is that from the finest
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level of the Multi Level method. What changes, therefore, is the sampling error of the

estimator Q̂
(ML)
ML,{N`}. Since on each level we use independent random numbers, the

sampling error is given by the sum of the sampling error on each level, i.e. the sum of

the variance of the differences on each level scaled by the number of samples on each

level.

Since the sampling error is dependent on the variance, V[Y`], of the differences, Y`,

the decay rate of this variance is crucial to the success of the Multi Level method. As

with the Standard Monte Carlo we split the the error between the discretisation error

and the sampling error, requiring that each be bounded by ε2/2 and again we note that

this may not be the optimal split.

So we need each of the terms in the sum
∑L

`=0N
−1
` V[Y`] to be small enough such

that that sum is bounded by ε2/2. As such we require that the variance of the differ-

ences, Y`, tends to zero as we decrease the size of our time step so that fewer samples

are required on the finer, more expensive levels in order to bound the sampling error

term. In other words we require,

V[Y`] = V[QM`
−QM`−1

]→ 0 as h` → 0.

In addition we require that V[Y`] < V[QM`
], i.e. the variance of the difference is less

than the variance of the quantity itself. If, instead, we had V[Y`] > V[QM`
] then

naturally the Standard Monte Carlo would be the cheaper method.

As a result the rate at which this variance decays is vital to how much we can gain

from the application of Multi Level Monte Carlo. In particular the rate of decay will

determine how the computational cost is distributed across the different levels, with

the cost either being focussed on the coarser level, in which case we see the most gain,

or the cost will be spread evenly across all levels, or finally, in the case of the slowest

convergence of the variance of the differences, the cost will be concentrated on the finer

more expensive levels, in which case we will see the least gain over the Standard Monte

Carlo.

From [9] we have a formula for the optimal number of samples, N`, required on

each level such that the cost is minimised for a constant sampling error,

N` =

⌈
2ε−2

√
V

(0)
` h`

( L∑
`=0

√
V

(0)
` /h`

)⌉
(2.12)

here V
(0)
` ≈ V[Y`] is an estimator of the variance of the differences, Y` = QM`

−QM`−1
,

computed with an initial number of samples N
(0)
` , on each level `, using the formula,

20



V
(0)
` =

1

N
(0)
`

(N
(0)∑̀

i=1

(
Y

(i)
`

)2
)
−
(
E

(0)
`

)2
(2.13)

with,

E
(0)
` =

1

N
(0)
`

N
(0)∑̀

i=1

(
Y

(i)
`

)
(2.14)

where E
(0)
` = E[Y`] is the observed expected value of Y` and N

(0)
` is arbitrary but chosen

sufficiently large such that V
(0)
` is a good approximation of the variance, V[Y`].

An optimal algorithm which incorporates the computation of these initial samples

into the calculation of the final solution is given in [9] and discussed further in Section

3.5.1.

2.2.5 Complexity Theorem

The following is the complexity theorem, proved in [9], given for the specific application

to atmospheric dispersion modelling. The theorem gives us conditions on the numerical

regime for which the Multi Level algorithm gives an improvement over the Standard

Monte Carlo.

Theorem 2.2.1. Let Q : R2 → R denote a functional of U(T ) and X(T ) where U and

X are the solutions of the SDE,

dU = a(U,X, t)dt+ b(X, t)dW (t)

dX = [v + U ]dt

(2.15)

for a given Brownian path W (t), where v is the mean velocity field. Let QM`
denote

the corresponding approximation using a numerical discretisation with timestep h` =

M−`T .

If there exist independent estimators Ŷ` based on N` Monte Carlo samples, and

positive constants α ≥ 1
2 , β, such that

(i) E[QM`
−Q] = O(hα` )

(ii) E[Y`] =

E[QM0 ] ` = 0

E[QM`
−QM`−1

] ` > 0

(iii) V[Y`] = O(N−1
` hβ` )
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(iv) C`, the computational complexity (or cost) of Ŷ`, is such that C` = O(N`h
−1
` ),

then for any ε < e−1, there are values L and N` for which the multi level estimator

Q̂
(ML)
ML

=
L∑
`=0

Ŷ`

has a MSE with bound

MSE ≡ E
[(
Q̂

(ML)
ML

− E[Q]
)2]

< ε2

with a computational complexity (or cost) C with bound,

C =


O(ε−2), β > 1

O(ε−2(log ε)2), β = 1

O(ε−2−(1−β)/α), 0 < β < 1

For β > 1 we see the most gain in computational cost for the Multi Level Method

over the standard; in this case the bulk of the computational cost is focussed on the

coarser levels. If instead we have that β = 1, then the cost is distributed evenly across

all levels and we still see gains over the Standard method although these are likely to

be less significant than for β > 1. Finally for 0 < β < 1, the slow convergence of

the variance of the differences means that the computational cost is focussed on the

finest, most expensive levels as the slower decay rate of the variance will in general

mean a larger variance on the finer levels which will require more samples to reduce

the sampling error. How much we gain, in this case, from the implementation of Multi

Level Monte Carlo, will depend on the value of α.

The complexity theorem outlines good potential for improvement over the Stan-

dard Monte Carlo. We consider again the example studied for the Standard Monte

Carlo complexity theorem in Section 2.1.5, wherein we assumed that the time stepping

method had discretisation error which converged with O(h), i.e. α = 1. In this case

we had that the computational complexity for Standard Method was O(ε−3).

In contrast, for the Multi Level algorithm, assuming we had a problem for which

the variance converged with O(h), i.e. β = 1 in the complexity theorem, we would see

that the cost would be O(ε−2(log ε)2), which already demonstrates an improvement

over the Standard.

However if we were to consider a problem in which the variance converged with

O(h2), we could see this cost improved to O(ε−2). In this case we have β = 2 in the

complexity theorem, and as such to gain one decimal place of accuracy, the cost of the
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method is only 100 times more expensive, compared to 1000 times more expensive for

the Standard Monte Carlo.

It is therefore crucial for our application to atmospheric dispersion modelling that

we study these rates of convergence in order to identify the magnitude of the potential

improvements in terms of computational cost, however this indicates that even if our

variance decays linearly there is potential for a significant improvement over the Stan-

dard Monte Carlo Method. The decay rates of the variance are studied in Section 3.5

for a simplified problem and Section 4.5 for a realistic model problem.
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Chapter 3

Simplified Problem

3.1 Simplified Model

To establish whether the gains seen in [9], in the context of mathematical finance, have

the potential to be replicated in the application to atmospheric dispersion modelling,

we first look at a simplified, but nevertheless relevant, 1-dimensional model problem.

The simplified model we study describes homogeneous turbulence and is used by the

Met Office to make predictions on longer timescales, since its reduced computational

cost allows for longer term model problems to be run on operational timescales.

Another source of motivation for first studying this simplified problem is that it

allows us to apply various tools of mathematical analysis to the problem which would

otherwise prove challenging to apply to a full model with non-linear coefficients.

Our simplified model problem is given by,

dU(t) = −U(t)

τ
dt+

√
2σ2

U

τ
dW (t)

dX(t) = U(t)dt,

(3.1)

with σ2
U and τ both constants, where σ2

U corresponds to the velocity variance and τ is

the time scale over which the velocity decorrelates, in other words, the autocorrelation

of the velocity of the particles between time t and t+ δt decays with exp(− δt
τ ) [18].

In this model we have set v(X, t) = 0, so our mean velocity is zero, i.e. there is no

mean wind acting on our particle, simply the turbulence. Since we have a 1-dimensional

model, X(t) is simply the vertical height of the particle above the ground at time t and

U(t) is the vertical deviation of the velocity from the mean at time t.

The Forward Euler discretisation for this simplified model is given by,
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Un+1 = (1− h

τ
)Un +

√
2σ2

Uh

τ
∆Wn

Xn+1 = Xn + Unh,

(3.2)

again Un ≈ U(tn) is our Euler approximation to U at the n-th time step, Xn ≈ X(tn)

the approximation of X at the n-th time step and ∆Wn ∼ N(0, 1) are independent and

give the increments in the random walk.

3.2 Quantity of Interest

As we have previously discussed, our quantity of interest is generally the expected

value of some functional of the solution of the SDE. In the application to atmospheric

dispersion modelling the Met Office produces concentration fields in order to illustrate

the spread of a pollutant. The concentration fields are produced by approximating the

probability of a particle being in a particular subsection or “box” in the atmosphere at

some time T .

Figure 3-1: Buncefield NAME Concentration Field Plot, Copyright Met Office, used

with permission, [23]

Figure 3-1 shows an example of a typical concentration field, where the varying
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colours correspond to the differing concentration of particles of the atmospheric pollu-

tant. In particular here the plot shows the predicted spread of smoke resulting from

the series of explosions that occurred at the Buncefield site in Hertfordshire on 11

December 2005.

As well as running tests for the simplified model with our quantity of interest the

probability of a particle landing in a particular “box”, we began by using the mean

particle position, X(T ). These tests serve as an interesting comparison and may give

scope for further improvements on the method by adapting the functional we use.

3.2.1 Indicator Function

A simple way to approximate the probability of a particle being in a particular “box”,

which, in 1-dimension, we refer to as the interval [a, b], is to evaluate the indicator

function of the final position for each of our Monte Carlo samples. Then for a sufficiently

large number of samples, N , the average will approximate the probability of a particle

landing in that interval. The indicator function on [a, b] is defined as,

χ
(i)
a,b =

1 if X
(i)
M (T ) ∈ [a, b]

0 otherwise.

This gives 1 if the i-th particle, i.e. the i-th sample of XM , is inside our specified

interval at time T and 0 otherwise. This is the functional that the Met Office currently

use in NAME.

So the estimator for the quantity of interest, i.e. the probability, is of the form,

Q̂[a,b] =
1

N

N∑
i=1

χ
(i)
a,b, (3.3)

which gives us an approximation to the probability of a particle being in [a, b] at time

T .

The Multi Level complexity theorem relies on having a bound on the variance of

the differences, Y` = QM`
−QM`−1

, i.e. we require V[QM`
−QM`−1

] = O(hβ) for some

β. In order to attain this bound on the variance it is sufficient to require Lipschitz

continuity of QM`
(X(T )), which does not hold for the indicator function, as defined

above, since it is not continuous and therefore not Lipschitz continuous. However for

this simplified problem this bound can be obtained without Lipschitz continuity.

A continuous indicator function would however be beneficial and in particular could

give faster variance reduction and as such preliminary results for a “smoothed” indicator

function are given in Section 3.6
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3.3 Analytic Results

As discussed previously, one of the advantages of studying this simplified, linear, 1-

dimensional problem, is that it allows us to apply analytical tools which would prove

more difficult or outright impossible for a more complicated test case. This analysis

allows us to derive information about the distribution of our quantity of interest, thus

enabling us to describe how well the method will perform for this model problem which

we can then verify with numerical tests.

We first derive formulas for the expected value and variance of the solution XM .

Since in the linear case XM is Gaussian, it is possible to deduce the entire probability

density function from this, which allows us to compute information about the expected

value and variance of some functional of our solution, in particular the indicator func-

tion. This will also enable us to prove the order of the discretisation error and so give

us α in the complexity theorem.

We begin by recalling that the Euler Method for this simplified problem is given

by,

Un+1 = (1− h

τ
)Un +

√
2σ2

Uh

τ
∆Wn+1,

Xn+1 = Xn + Unh.

(3.4)

We can prove by induction, see Appendix A.4, that the solution to the Euler scheme

can be written as,

UM = (U0 + σ∗U∆W0)
(

1− h

τ

)M
+

√
2σ2

Uh

τ

M∑
k=1

(
1− h

τ

)M−k
∆Wk

XM = X0 + h

M−1∑
n=0

Un,

(3.5)

here the U0 +σ∗U∆W0 term gives the initial velocity, with σ∗U∆W0 included in line with

the results given in [18]. Expanding the sum for XM thus gives,
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XM = X0 + U0h

M−1∑
n=0

(
1− h

τ

)n
︸ ︷︷ ︸

Deterministic Part

+

+

(
σ∗Uh

M−1∑
n=0

(
1− h

τ

)n)
∆W0 + h

√
2σ2

Uh

τ

M−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk︸ ︷︷ ︸

Stochastic Part

.

(3.6)

Here we are assuming that our velocity at time t = 0 already has some turbulent

component, σ∗U∆W0, so our initial velocity will be U0 + σ∗U∆W0. For the analytical

results that follow we have assumed, that σ∗U = σU , to be consistent with the results in

[18], however in our numerical tests we have taken σ∗U = 0, so the particles simply have

initial velocity U0. In future work it would be interesting to repeat this derivation for

σ∗U = 0 and indeed to repeat the numerical tests with σ∗U 6= 0.

We see from equation (3.6) that XM is a sum of normally distributed random

variables, thus XM is also a normally distributed random variable, with mean given by

the sum of the means and variance the sum of the variances. As a result we are able

to obtain approximations to both E[XM ] and V[XM ] which we can compute to any

required order of accuracy in h
τ . For our analysis, however, we generally only require

first order accuracy.

This gives us sufficient information about the distribution of XM to be able to

determine the probability density function (pdf) of XM and as a result we are able

to compute the expected value and variance of some functional of XM , again to the

required order of accuracy in h
τ , in particular we look at the indicator function on [a, b],

χa,b(XM ).

We begin by looking at the expected value of XM , which we do so by expanding

the sums and taking various Taylor expansions of our quantities, see Appendix A.5,

from this we deduce that the expected value can be written as,

E[XM ] = µ0 +
h

τ
.δµ+O

((h
τ

)2
)

(3.7)

where, constants µ0 and δµ are given by,
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µ0 = X0 + U0τ

(
1− exp

[
−T
τ

])

δµ = U0T
2 exp

[
−T
τ

]
Similarly for the variance, expanding the sums and taking Taylor expansions gives,

V[XM ] = σ2
0 + δσ2.

h

τ
+O

((h
τ

)2
)

(3.8)

where constants σ2
0 and δσ2 are given by,

σ2
0 = 2σ2

Uτ
2

(
T
τ − 1 + exp

[
−T
τ

])

δσ2 = σ2
Uτ

2

(
1
2 −

T
τ exp

[
−T
τ

]
− 1

2 exp
[
−2T
τ

])
Since we know that XM is the sum of normally distributed random variables and

thus itself a normally distributed random variable we know information about its prob-

ability density function. A normally distributed random variable, Y ∼ N(µ, σ2) has a

pdf given by,

P (Y ) =
1√

2πσ2
exp

(
− (Y − µ)2

2σ2

)
From formulas (3.7) and (3.8) we have the mean, µ, and variance, σ2, which we can

now substitute into the form for the pdf of a normally distributed random variable in

order to attain the distribution of our random variable XM . So the pdf of XM will be

given by,

P (XM ) =
1√

2π(σ2
0 + δσ2.hτ )

exp

(
−

(XM − µ0 − h
τ .δµ)2

2(σ2
0 + δσ2.hτ )

)

Substituting in the formulas for µ0, δµ, σ0 and δσ2 as described above and Taylor-

expanding in h/τ , see Appendix A.6, allows us to write the pdf as,

P (XM ) =
1√

2πσ2
0

exp

(
− (XM − µ0)2

2σ2
0

)
.

(
1 + (q0 + q1XM + q2X

2
M )

h

τ

)
+O

((h
τ

)2
)

(3.9)
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where the constants qi, i = 0, 1, 2 are given by,

q0 =
2µ0δµ

2σ2
0

− µ2
0

2σ2
0

.
δσ2

σ2
0

= − 1
σ2
0
(−µ0δµ+ µ2

0
δσ2

2σ2
0
)

q1 = −δµ
σ2

0

+
µ0δσ

2

σ4
0

= − 1
σ2
0

(
δµ− µ0

δσ2

σ2
0

)

q2 = −δσ
2

2σ4
0

The expected value, E[Y ], of a random variable, Y , is defined as the integral with

the density P (Y ) over the probability space, Ω, i.e.

E[Y ] :=

∫
Ω
P (Y )Y dY.

To this end, some functional, f , of a random variable, has expected value given by,

E
[
f(Y )

]
=

∫
Ω
P (Y )f(Y ) dY.

So, returning to our approximation XM , to the solution of the SDE (3.1), if we

consider some functional of the solution, for example the indicator function, χa,b : R→
R, then the expected value of this functional evaluated on our solution will be given

by,

E
[
χa,b(XM )

]
=

∫
Ω
P (XM )χa,b(XM ) dXM .

where P (XM ) is as described in equation (3.9).

Writing out the pdf explicitly gives us the following form for the expected value,

E
[
χa,b(XM )

]
= I0(µ0, σ0; a, b) +

(
2∑

k=0

qkIk(µ0, σ0; a, b)

)
.
h

τ
+O

((h
τ

)2
)

(3.10)

where the integrals Ii(µ0, σ0; a, b), i = 0, 1, 2, with respect to some random variable Y ,

over the interval [a, b] are defined as,
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I0(µ0, σ0; a, b) ≡
∫ b

a
N(µ0, σ

2
0;Y )dY

I1(µ0, σ0; a, b) ≡
∫ b

a
N(µ0, σ

2
0;Y ).Y dY

I2(µ0, σ0; a, b) ≡
∫ b

a
N(µ0, σ

2
0;Y ).Y 2 dY

(3.11)

formulas for which are given in the Appendix in Section A.6 alongside the full workings.

Thus we have shown that for our random variable, XM , we are able to compute

the expected value and variance of XM to some specified order in h
τ and that from this

we are able to compute the probability density function, P (XM ). Finally with this pdf

we are then able to deduce a formula for the expected value of some functional of XM .

We would also like to be able to have a formula for the variance of this functional of

XM .

By the definition and a few simple calculations, see Appendix A.6, the variance can

be written as,

V
[
χa,b(XM )

]
= E[χa,b(XM )]

(
1− E[χa,b(XM )]

)
.

We now have a formula for the expected value and the variance of our quantity of

interest χa,b(XM ). These results allow us to deduce the value of α in the complexity

theorem for this simplified problem with the functional χa,b(XM ), in other words we

can derive the rate at which the discretisation error decays with respect to the time

step size h, which we will later verify numerically.

The discretisation error for our functional is defined as,

E
[
χa.b(XM )− χa,b(X(T ))

]
,

so by the definition of the expected value this is,

E
[
χa.b(XM )− χa,b(X(T ))

]
= E

[
χa.b(XM )

]
− E

[
χa,b(X(T ))

]
=

∫
P (XM )χa.b(XM ) dXM−

−
∫
Ph=0(X(T ))χa,b(X(T )) dX(T ),
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where Ph=0(X(T )) is simply the probability density function P (XM ) as defined in

equation (3.9) in the continuum limit as h→ 0. So we can use the formula for E[χa,b]

from equation (3.10) which in the continuum limit for X(T ) will be given by,

E
[
χa,b(X(T ))

]
= I0(µ0, σ0; a, b). (3.12)

Substituting in the values for E
[
χa.b(XM )

]
and E

[
χa,b(X(T ))

]
gives,

E
[
χa.b(XM )− χa,b(X(T ))

]
= I0(µ0, σ0; a, b) +

(
2∑

k=0

qkIk(µ0, σ0; a, b)

)
.
h

τ

−I0(µ0, σ0; a, b)

=

(
2∑

k=0

qkIk(µ0, σ0; a, b)

)
.
h

τ
+O

((h
τ

)2
)

So the zero-th order terms cancel, leaving us with terms of order h
τ , so our discretisation

error is,

E
[
χa.b(XM )− χa,b(X(T ))

]
= O

(h
τ

)
. (3.13)

Thus we have shown that for our quantity of interest the indicator function χa.b,

α = 1 in the complexity theorem. Although the above analytical derivation is for

σ∗U = σU , the same result, as far as the dependence on h
τ is concerned, holds for general

σ∗U .

Further to this it can also be proved, [24], that for our quantity of interest χa,b,

the indicator function on [a, b], the variance of the differences on consecutive levels,

i.e. V[χa,b(XM`
) − χa,b(XM`−1

)] is of order h and thus that β = 1 in the complexity

theorem. The proof of this result is not given in this thesis however numerical results

in Section 3.5 support this conclusion.

Since we now know both α and β, and we also know that the cost per sample is

O(h−1), i.e. γ = 1, we may now apply the complexity theorem for this problem and

see that for the Standard Monte Carlo the cost is O(ε−3), whereas for the Multi Level

we are in the case where the cost is O(ε−2(log ε)2) and the cost is spread evenly across

all levels. These results are verified numerically in Section 3.5.

Further to this, [24], although analytical results are not presented in this thesis, we

have proved that, when our quantity of interest is instead the mean particle position,

β = 2 due to the first order rate of strong convergence, [17]. In which case the Multi
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Level Method performs even better, with the cost of O(ε−2), compared to O(ε−3) for

the Standard. Numerical results that support this conclusion are presented in Section

3.5.

3.4 Stability Analysis

We have now established that there is potential for significant gains from the application

of Multi Level Monte Carlo to this problem, however in order to ensure that our

approximations behave well we must also take steps to ensure that the method is

stable.

It is well known that for numerical methods we are concerned not only with the

accuracy of the method, but also with the stability, with the combination of the two

guaranteeing the convergence of the method. The stability of the method depends on

the time step size that we take, so in this section we look to obtain an upper bound on

our time step size h, such that the method remains stable.

In the case of the Standard Monte Carlo Method generally we require a small time

step size in order to attain the prescribed accuracy, this small time step size is often

sufficient to guarantee stability also; however in the Multi Level method we must be

more careful.

For the Multi Level method we are interested in computing solutions with coarser

time steps in order to exploit their cheapness and are thus not concerned with the

accuracy of the results on these coarser levels as this is refined on the finer levels. We

do however require that the method is stable on all levels, so that the only error sources

are those bias and sampling errors over which we have control.

If the method is unstable the variance of the differences Y` = QM`
−QM`−1

diverges

and as such we will require a large number of samples in order to reduce the sampling

error, meaning that the Multi Level method will no longer be competitive. Therefore

we must ensure that our coarsest time step remains within the stability region for our

numerical method.

For our simplified problem, given in (3.1), we must therefore consider the stability

of the Euler Method; however we have not yet carried out this stability analysis for the

full SDE. Instead, for the moment, we consider only the stability of the deterministic

part, in other words the ODE given by,

dU

dt
= −U

τ
(3.14)

under the assumption that the stochastic term makes a minimal, in fact possibly sta-

bilising, contribution to the method’s stability. The stability analysis for the full SDE
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would be an interesting topic for future work in this application.

The solution of the ODE given in (3.14) is easily shown to be,

U(t) = U0 exp
(
− t

τ

)
,

where U0 = U(0). We observe that the solution decays exponentially and thus our

numerical solution must also, i.e.

Un(tn)→ 0 as tn →∞. (3.15)

The Forward Euler Method for this ODE is given by,

Un+1 = Un −
h

τ
Un

=
(

1− h

τ

)
Un,

and by induction we can prove that Un can be written as,

Un =
(

1− h

τ

)n
U0. (3.16)

The condition on our numerical solution given in equation (3.15) can equivalently

be written as Un → 0 as n → ∞, which using our formula for Un in equation (3.16)

implies,

Un =
(

1− h

τ

)n
U0 → 0 as n→∞ ⇐⇒

∣∣∣1− h

τ

∣∣∣ < 1

⇐⇒ h

τ
< 2 since h

τ always positive

=⇒ h < 2τ,

so, given τ , we now have a condition on our time step size which ensures that our

method is stable, [25][26].

For the numerical tests on the simplified case we took τ to be 1, and our time

step size was always less than 2τ = 2, consequently we always remained inside the

stability region for the method and having verified by numerical tests that the additional

stochastic term induces no further instability in the method, this very lax constraint on

the coarsest time step posed no real restrictions to the application of Multi Level Monte

Carlo. So for the simplified problem our choice of time step size, h, was concerned only
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with the accuracy of the method; however in the realistic, full model problem the

parameter τ varies with X and in Section 4.3 we examine the function τ(X) and the

stability constraint this imposes on the coarsest time step for the Multi Level in order

to ensure that the method is stable on each level.

3.5 Numerics

In this section we start by outlining the algorithm for both the Standard and the Multi

Level Monte Carlo Methods. We then look at the results for the simplified problem,

as studied in Section 3.1, examining the performance of the Multi Level Monte Carlo

method for various parameter choices.

3.5.1 Algorithm for Standard Monte Carlo

Here we give a general overview of the form of the algorithm used. At present the

algorithm is not as efficient as it could be, but can be easily optimised, see [9], in order

to improve efficiency for operational use. These changes were not implemented at this

stage for the sake of easy debugging and manipulation.

The Standard Monte Carlo algorithm used to produce the results in the following

sections consists of four main stages,

1. Initial Run

2. Set-up Phase

3. Calculation Phase

4. Data Processing Phase

Initial Run

In an operational environment the initial run would be built into the algorithm,

however currently the initial run is computed manually. This stage allows us to deter-

mine a reasonable approximation to the expected value and variance of our particular

quantity of interest for several different time step sizes. We then use these quantities to

determine the time step size required to bound the bias term and compute the number

of Monte Carlo samples necessary to bound the sampling error.

For this problem we are interested in computing the probability of a particle landing

in a specified interval at time T . It is possible that this quantity will be small, for

example at the edge of a plume, where there are naturally fewer particles, so the

35



probability of a particle being there at time T is low. If our required accuracy is larger

than this quantity our numerical solution will naturally be inaccurate and so we instead

look at the relative error. As such we require that our mean square error bound, as

detailed in Section 2.1.4, is scaled by the size of our quantity of interest, i.e. by |E[Q]|
(our initial run gives us an approximate value for E[Q]). Thus our mean square error

bound becomes,

E
[(
Q̂ML,N − E[Q]

)2]
≤
(
ε|E[Q]|

)2

As before we split the error between the discretisation error and the sampling error

and so choose our time step size hL such that the discretisation error is bounded by

ε|E[Q]|, i.e.

E[QML
−Q] ≤ ε|E[Q]|√

2

Similarly we choose the number of samples, N , such that it is bounded by
(
ε|E[Q]|

)2
/2,

i.e. we choose N such that,

N ≥ 2V[Q]

(ε|E[Q]|)2

Set-up Phase

The Set-up Phase then simply consists of initialising variables for use in the main

part of the program.

Calculation Phase

The Calculation Phase is where the majority of the work takes places, for each

of the N Monte Carlo samples the Euler loop computes an approximation to X and

U , evaluating our functional at the final time step for each Monte Carlo sample and

storing them.

Data Processing Phase

The final Data Processing Stage uses the stored data to compute our final Monte

Carlo approximation to the quantity of interest, i.e.

Q̂ML,N =
1

N

N∑
i=1

Q
(i)
ML
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3.5.2 Algorithm for Multi Level Monte Carlo

The Multi Level Monte Carlo algorithm is similar in structure to that of the Standard

Monte Carlo, with one additional stage,

1. Initial Run

2. Set-up Phase

3. Pre-Calculation Phase

4. Calculation Phase

5. Data Processing Phase

Initial Run

The initial run here is as described for the Standard Monte Carlo algorithm and it

is only necessary to do this once in order to obtain relevant data for both the Standard

and Multi Level Monte Carlo algorithms. For the Multi Level it provides the finest

level for the method, the coarsest level is determined by the stability constraints as

described in Section 3.4 and again this constraint could also be incorporated into the

main program in an operational environment. The number of samples for the Standard

Monte Carlo serves as a rough guide for the number of samples required for the Pre-

Calculation Phase in which we determine, by the formula in [9], equation (2.12), how

many samples are required on each level.

Set-up Phase

The Set-up Phase then simply consists of initialising variables for use in the main

part of the program, for both the Pre-Calculation and Calculation Phases.

Pre-Calculation Phase

The Pre-Calculation Phase runs the Multi Level method for each level, `, for an

initial number of samples, N
(0)
` , which is chosen arbitrarily but sufficiently large such

that we obtain a good approximation to the variance V
(0)
` and from this we compute

the required number of samples on each level for the main Calculation Phase, using

Mike Giles formula (2.12). Since we are now using the relative error, however, the

formula becomes,

N` =

⌈
2(ε|E[Q]|)−2

√
V

(0)
` h`

( L∑
`=0

√
V

(0)
` /h`

)⌉
(3.17)
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In this particular implementation of the method, all the samples taken in this Pre-

Calculation Phase are then discarded, thus this phase contributes greatly to the run

time of the algorithm. In an optimised code, however, these samples would not be

discarded. Instead the algorithm would be run for an initial number of samples, N
(0)
` ,

from which we would compute an approximation to the variance on each level, V
(0)
` ,

allowing us to compute the required number of samples on each level, N
(1)
` , using the

formula in (3.17).

Then for those levels, `, where N
(1)
` > N

(0)
` , we retain the information obtained

from the initial N
(0)
` samples and compute additional samples such that we then have

N
(1)
` samples. Then we use the new variance, V

(1)
` , of the N

(1)
` samples, to compute

N
(2)
` using the formula in (3.17), testing again whether N

(2)
` > N

(1)
` and repeating this

process until we have computed sufficient samples on all levels.

Calculation Phase

The main stage is again the Calculation Phase in which the Euler loop is run for

N` samples on each level, approximating the quantity of interest by computing an

initial approximation on the coarsest level and refining it by the “corrections” on the

subsequent finer levels, these are the Y`’s as described in Section 2.2.2.

Data Processing Phase

The final Data Processing Phase computes the sum of the approximations on each

level to give the Multi Level approximation to the quantity of interest.

Q̂
(ML)
ML,{N`} =

L∑
`=0

Ŷ`,N`

3.5.3 Quantity of Interest: Mean Particle Position

To begin with we examine the simplified but relevant one dimensional model with

constant coefficients, as described in Section 3.1, with σ = 1/
√

2, τ = 1 and initial

conditions X0 = 0, U0 = 1. Our initial tests take the quantity of interest as X, at

time T . Physically the expected value of X is the average particle position and hence

provides an idea of how far the cloud has travelled within the time T .

We assume that σU = u∗/
√

2 with u∗ the friction velocity. We measure X in units

of H = 1km, u in units of u∗ = 0.2ms−1 and T in units of τ , under the assumption that

u∗τ = H (i.e. the decorrelation length is of the order of the height of the atmosphere).

The value T = 1 corresponds to approximately 1.4 hours. Then the simplified equation
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for which we give numerical results is,

dU = −Udt+ dW

dX = Udt.

(3.18)

In order to establish the potential gains that Multi Level Monte Carlo may bring

over the Standard Monte Carlo it is crucial to determine the convergence rates of the

expected value of differences, i.e. E[Qh` −Qh`−1
] and most importantly of the variance

of the difference, V[Qh`−Qh`−1
], which will enable us to apply the complexity theorems

in both the case of the Standard and Multi Level Methods.
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Figure 3-2: Expected Value and Variance for QoI =X, T = 1, ε = 0.01

Figure 3-2 shows, on the left, the expected value of the differences in the Multi

Level method (in red), i.e. E[QM`
− QM`−1

], as well as the expected value, E[QM`
],

for the Standard Monte Carlo (in blue) computed for each time step used in the Multi

Level Method. On the right we have plots of the variance of the differences, in the

Multi Level method (in red) i.e. V[QM`
−QM`−1

], as well as the variance, V[QM`
], for

the Standard Method (in blue) computed for each time step used in the Multi Level

Method.

We see that the expected value convergences with O(h), corresponding to α = 1

in the Standard and Multi Level Complexity theorems. In addition we see that the

convergence rate of the variance of the differences is O(h2), so that we have β = 2 in the

Complexity theorem; this has also been proven analytically, [24], however the proof is

not included in this thesis. We can conclude from this theorem that the computational

complexity for the Multi Level Method is O(ε−2) compared to O(ε−3) for Standard

Monte Carlo (since the cost per sample of the Euler method is O(h−1), which implies

γ = 1, in the Standard Monte Carlo complexity theorem).
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Figure 3-3: Theoretical Cost of Multi Level MC vs Standard MC for QoI =X, T = 1,

Where Unit of Cost is the Cost per Particle per Time Step

In figure 3-3 we look at the cost of Multi Level Monte Carlo versus that of the

Standard Method with our quantity of interest again the mean particle position, X, at

time T = 1. Both of these plots use theoretical cost computations which are based on

the total number of time steps, computed using the N`’s obtained from the formula in

(3.17), the unit of cost being the cost per particle per time step.

For the Multi Level Method we assume that the cost of computing the difference

E[QM`
− QM`−1

] is 1.5 times that of computing E[QM`
] since the quantity computed

with the coarser time step will have half as many Euler time steps as the finer (with

steps incremented in powers of 2).

Figure 3-3(a) plots the theoretical cost for both the Standard (blue) and Multi

Level (red) Monte Carlo methods, for accuracies ε = 10−2, 10−3 and 5× 10−4. We see

that even for ε = 10−2 that the Multi Level Method beats the Standard Method by a

significant amount.

Figure 3-3(b) plots ε2×Cost for both the Standard and Multi Level Monte Carlo,

verifying the conclusion we drew from the Complexity theorem, that the Multi Level

has computational cost of O(ε−2). In addition we see that, since ε2×Cost is clearly not

constant in the Standard case, the computational complexity is of order higher than

ε−2, namely O(ε−3).
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Figure 3-4: Number of Samples computed with formula (2.12) and Cost on each level

of Multi Level MC for varying ε, T = 1

Figure 3-4(a) plots the number of samples required on each level of the Multi Level

algorithm for several different accuracy tolerances, ε. We see that the fast convergence

rate of the variance of the differences means that on the finest, most expensive levels

only around 100 samples are required for ε = 10−2 and less than 1000 samples for

ε = 5 × 10−4, compared to the Standard Method which requires approximately 8000

samples for ε = 10−2 and more than 3,000,000 samples for ε = 5×10−4. So in this case

the savings on the finest level clearly outweighs the burden of the additional coarse

levels, making Multi Level very competitive with the quantity of interest being the

mean particle position.

We also note from figure 3-4(b) how the cost is distributed on each level, we see that

the cost here is clearly focussed on the coarser levels, which we recall from the com-

plexity theorem is consistent with being in the case where β = 2 and the computational

complexity is O(ε−2).

The following table demonstrates how significant a speed-up we can achieve over the

Standard Monte Carlo for this simplified model problem with our quantity of interest

the mean particle position, X.

ε Standard MC Cost Multi Level MC Cost Speed-up

10−2 2.70E+5 7.06E+4 3.82

10−3 4.32E+8 9.08E+6 47.52

5× 10−4 3.45E+9 3.72E+7 92.85

Table 3.1: Speed-up of Multi Level MC over Standard MC, for QoI = X, T = 1

Table 3.1 shows the theoretical cost of both the Standard and Multi Level methods,

where the cost is in units of the cost per sample per time step. We see that even for
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accuracy ε = 10−2, we observe a speed-up of nearly 4, and for ε = 5× 10−4 we have a

speed-up of nearly 100.

This section shows that with the quantity of interest the mean particle position at

time T , the results look very promising with the Multi Level clearly outperforming the

Standard even for our largest accuracy tolerance. The success in this case is largely

down to the fast rate at which the variance of the difference converges, we now look to

see how this changes when we vary the quantity of interest.

3.5.4 Quantity of Interest: Concentration

In this section we again look at the simplified, one dimensional model problem with

constant coefficients, σ = 1/
√

2, τ = 1 and initial conditions X0 = 0, U0 = 1. However

this time we look at the probability of a particle landing in a particular interval, [a, b],

at time T . For this case we look at varying both the end time T as well as the interval

in which we are interested, [a, b] for varying accuracy tolerances, ε.

It is important to note here, that since some of the probabilities and thus our

quantities of interest can be small, and in particular of the order of ε, in order to

obtain good approximations to the solutions of these problems the results use bounds

based on the relative error, as discussed in Section 3.5.1.

Figure 3-5: Plot Showing Trajectories of 250 Independent Particles

Figure 3-5 shows the spread of the plume for simplified model over time, the black

lines indicate the points at which we chose to stop our model, T = 1, 3, 5 and the red
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boxes show the position of the boxes in which we approximate the concentration of

particles.

Varying ε

In this section we look at results for a fixed end time T = 1, and a fixed interval

[a, b] = [0.46, 0.63], which lies roughly in the centre of the plume, so particles will have

a generally higher probability of landing in this interval.
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(a) ε = 10−3
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(b) ε = 5 × 10−4

Figure 3-6: Expected Value for varying ε, with T = 1, QoI = χa,b, [a, b] = [0.46, 0.63]

Figure 3-6 shows the expected value of the differences in Multi Level method (in

red), i.e. E[QM`
− QM`−1

], as well as the expected value, E[QM`
] for the Standard

Monte Carlo (in blue) computed for each time step used in the Multi Level Method.

The left hand plot is computed for accuracy tolerance ε = 10−3 and the right hand for

ε = 5×10−4. The coarsest level due to stability constraints is h0 = 2−3, we see that for

the more accurate approximation, ε = 5× 10−4 we need an additional level compared

to that for ε = 10−3, in order to bound the bias error. So the finest level for ε = 10−3

is hL = 2−8 and for ε = 5 × 10−4 it is hL = 2−9. As with the quantity of interest the

mean particle position, X, the convergence rate of the expected value of the differences

is O(h) and so we are again in the case where α = 1 in the complexity theorems.
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(b) ε = 5 × 10−4

Figure 3-7: Variance Plots for varying ε, with T = 1, QoI = χa,b, [a, b] = [0.46, 0.63]

Figure 3-7 shows the variance of the differences in Multi Level method (in red),

i.e. V[QM`
− QM`−1

], as well as the expected value, V[QM`
] for the Standard Monte

Carlo (in blue) computed for each time step used in the Multi Level Method. Crucially

we note that for the probability as our quantity of interest the convergence rate of

the variance of the differences is no longer quadratic, instead the variance is O(h).

Therefore β = 1 in the complexity theorem, which agrees with the analytical results

discussed above so the complexity of the method is, in this case, O(ε−2(log ε)2) and

the cost is distributed evenly across all levels.
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Figure 3-8: Cost of Standard MC vs Multi Level MC, with T = 1, QoI = χa,b, [a, b] =

[0.46, 0.63]

Figure 3-8(a) plots the theoretical cost for both the Standard and Multi Level Monte

Carlo methods, for accuracies ε = 10−2, 10−3 and 5 × 10−4, again based on the total

number of time steps, using the N`’s obtained by the formula in equation (3.17), with

the cost measured in units of the cost per sample per time step.

We see here that for ε = 10−2 and ε = 10−3 the Standard Method beats the Multi

Level. To see why, we refer back to the results for the mean particle position in figure
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3-2 and we recall that the decay rate of the variance is fast; indeed much faster than

that of the probability, in figure 3-7. As such, when our quantity of interest is the mean

particle position, on the finest level of the Multi Level Method the variance is small,

of order 10−6 whereas for the probability, the variance on the finest level of the Multi

Level is of order 10−3. Consequently, for the probability, we require more samples

on the finer, more expensive levels in order to bound the larger variance term in the

sampling error; thus increasing the cost of the Multi Level Method for this problem

compared to that for the mean particle position.

Figure 3-8(b) plots ε2(log ε)−2×Cost for both the Standard and Multi Level Monte

Carlo, here however it is not so clear that the cost is as we would expect from the

complexity theorem, i.e. O(ε−2(log ε)2). This may be due to an anomalous result for

ε = 10−2, for which the Multi Level Method limited to 2 levels, since it did not require

a particularly fine time step to achieve the specified accuracy.

If, instead, we look at only the data for tolerances ε = 10−3 and ε = 5×10−4, which

both consist of more than 2 levels, we see that ε2(log ε)−2×Cost is roughly constant for

the Multi Level, but clearly not constant for the Standard. We may conclude, therefore,

that for the Standard Method the computational complexity is not O(ε2(log ε)−2), and

in fact is O(ε−3), as we would expect from the Standard complexity theorem. For the

Multi Level we have shown that the computational complexity is O(ε−2(log ε)2) again

as expected from the Multi Level complexity theorem.
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Figure 3-9: Number of Samples computed with formula (2.12) and Cost on Each level

of Multi Level MC for varying ε, T = 1

Figure 3-9(a) shows how the number of samples, computed with the formula (2.12)

decreases with the levels, we see that compared to the plot for the QoI = X in figure

3-4(a) the number of samples on each level decays at a slower rate, due the slower rate

of converge of the variance of the differences. Indeed in figure 3-9(b) we see that the

cost is spread evenly across all levels, again consistent with the case of the complexity
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theorem where β = 1, so we see still see a gain by the implementation of Multi Level

Monte Carlo.

ε Standard MC Cost Multi Level MC Cost Speed-up

10−2 1.67E+6 3.32E+6 0.50

10−3 2.68E+9 2.82E+9 0.95

5× 10−4 2.14E+10 1.57E+10 1.36

Table 3.2: Speed-up of Multi Level MC over Standard MC, with T = 1, QoI = χa,b,

[a, b] = [0.46, 0.63]

Table 3.2 shows the theoretical cost of both the Standard and Multi Level methods,

again computed using the number of samples and the number of time steps per sample.

We see that for accuracy ε = 10−2, the Standard Method outperforms the Multi Level,

for ε = 10−3 the cost for both methods is roughly the same however for ε = 5 × 10−4

we see the Multi Level outperform the Standard.

It is worth noting that although these initial results do not give quite as significant

speed-up for the Multi Level method as we would have hoped at this stage, there are a

number of factors that require further testing, not only the optimal size of the interval

over which we evaluate our indicator function, but in particular the use of time step

sizes of the form h` = 2−` was arbitrary and as such changing this will likely give

us better results. Taking a larger time step increment will require fewer levels in the

Multi Level algorithm and thus reduce the cost. The effect of altering the time step

increment is studied for the full model, see Section 4.5, with encouraging results.

The following two sections look at varying the end time and interval and we study

how these affect how competitive the Multi Level method is compared to the Standard.
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Varying End Time T
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(b) T = 3
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(c) T = 5

Figure 3-10: Expected Value for varying T , with ε = 10−3, QoI = χa,b, [a, b] =

[0.46, 0.63]

Figure 3-10 shows the expected value of the differences, as well as the expected value

for the Standard Monte Carlo on each level for T = 1, 3, 5. The coarsest level due to

stability constraints is h0 = 2−3, we see that for the shortest time span T = 1, we

require the most levels, with hL = 2−8 and for the longer time spans we require fewer

levels, with hL = 2−6 in both cases. For each T we see again that the convergence rate

of the expected value of the differences is O(h) and so we are again in the case where

α = 1 in the complexity theorems.

We also note that for the longer time spans the expected value of the quantity

becomes smaller, as the plume becomes more spread out, see figure 3-5. In addition to

this we see that the expected value of the differences is also smaller.
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(c) T = 5

Figure 3-11: Variance Plots for varying T , with ε = 10−3, QoI = χa,b, [a, b] = [0.46, 0.63]

Figure 3-11 shows the variance of the differences in the Multi Level estimator, as

well as the variance for the Standard Monte Carlo. Again we note that the convergence

rate of the variance of the difference is linear for the quantity interest χa,b for each time

T = 1, 3, 5. So again we have β = 1 in the complexity theorem and the complexity of

the Multi Level Monte Carlo is O(ε−2(log ε)2).
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We note also that the variance becomes smaller as we increase T . As time progresses

the plume spreads out, so it becomes wider but our interval [a, b] does not and so a

smaller fraction of particles will land in our interval, resulting in a decreasing mean.

Therefore the reduction in the variance that we see may be as a result of the decreasing

mean.
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Figure 3-12: Cost as a function of ε for all T = 1, 3, 5, QoI = χa,b, [a, b] = [0.46, 0.63]

Figure 3-12 shows the cost as a function of ε for the Standard and Multi Level

methods for each T . Here due to time constraints we only have the results for ε =

5× 10−4 for T = 1, however the plot still gives a good indication as to when the Multi

Level becomes competitive. We see as before that for T = 1 the Multi Level only

begins to perform in line with the Standard for ε = 10−3 and only giving a marginal

improvement for ε = 5× 10−4.

We see that for the T = 3 and T = 5 that the cost for the Multi Level is still

considerably higher than the Standard and is possible that the Standard would still

outperform the Multi Level for ε = 5 × 10−4. So taking longer time spans, for this

simplified problem the Multi Level method is never better than the Standard Method

for any tolerances of practical interest. This may be due to the requirement of relatively

few levels and a reasonably high variance of the differences for these levels. A more

detailed investigation into this would be an interesting topic for further work.
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T h0 hL Standard MC Cost Multi Level MC Cost Speed-up

1 2−3 2−8 2.68E+9 2.82E+9 0.95

3 2−3 2−6 7.16E+9 1.25E+10 0.57

5 2−3 2−6 1.78E+10 3.10E+10 0.57

Table 3.3: Speed-up of Multi Level MC over Standard MC for ε = 10−3, QoI = χa,b,

[a, b] = [0.46, 0.63], for varying end times, T

Table 3.3 shows the theoretical cost of both the Standard and Multi Level methods

for accuracy ε = 10−3, again computed using the number of samples and the number of

time steps per sample. We see that for T = 1 the Standard and Multi Level Methods

are roughly equivalent, but in the case of T = 3, 5, the Standard is around twice as fast

as the Multi Level.

With these slightly discouraging results we look next at a different intervals [a, b]

to see whether results for the Multi Level Method improve when we look at intervals

in which fewer particles are likely to land.

Varying Interval [a, b]
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(a) a, b = 0.46, 0.63
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(b) a, b = 0.30, 0.46
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(c) a, b = 0, 0.17

Figure 3-13: Expected Value for Varying Interval [a, b], with ε = 10−3, T = 1

Figure 3-13 shows the expected value of the differences, as well as the expected value

for the Standard Monte Carlo on each level for three different intervals [a, b], the first

two of which being reasonably central in the plume, and the final one being slightly

nearer the edge, in addition we note that the second two intervals are also smaller than

the first, see figure 3-5.

The coarsest level due to stability constraints is h0 = 2−3, we see that for the two

central intervals we require the six levels, with hL = 2−8 and for the final interval we

require another two levels, so hL = 2−10.
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For each interval we see that the convergence rate of the expected value of the

differences is O(h) and so we are again in the case where α = 1 in the complexity

theorems.
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(b) a, b = 0.30, 0.46
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(c) a, b = 0, 0.17

Figure 3-14: Variance Plots for Varying Interval [a, b], with ε = 10−3, T = 1

Figure 3-14 shows the variance of the differences in the Multi Level estimator, as

well as the variance for the Standard Monte Carlo. Again we note that the convergence

rate of the variance of the difference is linear for the quantity interest χa,b for each of

the intervals. So we have β = 1 in the complexity theorem and the complexity of the

Multi Level Monte Carlo is O(ε−2(log ε)2).
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Figure 3-15: Cost as a function of ε for all Intervals, with T = 1

Figure 3-15 shows the cost as a function of ε for the Standard and Multi Level
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methods for each interval. Here due to time constraints we only have have the results

for ε = 5×10−4 for [a, b] = [0.46, 0.63], however the plot still gives a good intuition as to

when the Multi Level becomes competitive. We see as before that for [a, b] = [0.46, 0.63]

the Multi Level only begins to perform in line with the Standard for ε = 10−3 and

only giving a marginal improvement for ε = 5 × 10−4, we see similar results for the

neighbouring interval [a, b] = [0.3, 0.46]. However for the interval [a, b] = [0, 0.17] that

the Multi Level outperforms the Standard much sooner, for ε ≈ 5× 10−3, which gives

an indication that improvements could be seen in the prediction of rarer events, and

more accurate predictions could be made for the movement of the edges of plumes.

Interval h0 hL Standard MC Cost Multi Level MC Cost Speed-up

[0.46, 0.63] 2−3 2−8 2.68E+9 2.82E+9 0.95

[0.30, 0.46] 2−3 2−8 3.48E+9 3.97E+9 0.88

[0, 0.17] 2−3 2−10 2.81E+10 1.37E+10 2.05

Table 3.4: Speed-up of Multi Level MC over Standard MC for ε = 10−3, T = 1 QoI =

χa,b, with varying interval [a, b]

Table 3.4 shows the theoretical cost of both the Standard and Multi Level methods

for accuracy ε = 10−3, again computed using the number of samples and the number

of time steps per sample. We see that for intervals [0.46, 0.63] and [0.30, 0.46] the

Standard and Multi Level Methods are roughly equivalent, with the Standard just

about outperforming the Multi Level. However with the interval [0, 0.17] the Multi

Level is around twice as fast as the Standard which could signal an encouraging result

for the prediction of rarer events or the spread of particles at the edge of a plume, say.

3.5.5 Symplectic Euler vs Forward Euler

In this section we briefly examine the difference between the Forward Euler and Sym-

pletic Euler methods.
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Figure 3-16: Trajectory Plots for Symplectic Euler and Forward Euler, for varying time

step sizes

Figure 3-16 plots a small sample of trajectories computed with the Forward Euler

method in blue and the Symplectic Euler method in red, for the same random vari-

ables, with three different time step sizes. We see that for coarser time steps the two

trajectories quite frequently diverged by a significant amount, however as we made the

time step smaller the two trajectories differ only by very small amounts.

For this simplified problem, at least for finer time steps we see no significant dif-

ference between the two methods, since there is no X dependence in the coefficients a

and b, however for the full model, where there is X dependence the differences may be

more substantial. As such for the full model tests we use the Symplectic Euler method

in line with what the Met Office currently uses in NAME. It would be interesting to

show how these methods differ for the full model, however unfortunately this is not

investigated in this thesis.
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3.6 Smoothed Indicator Function

In this section we present some preliminary results from the testing of a continuous,

“smoothed” indicator function compared to the standard discontinuous indicator func-

tion χa.b. We carry out some initial investigations into the improvements that could be

seen in terms of variance reduction as well as any additional errors which may result

from effectively smoothing the edges of our box.

The smoothed indicator function we study is as follows,

χλa,b(XM ) =
1

2

(
tanh

(
XM − a

λ

)
+ tanh

(
b−XM

λ

))
(3.19)

where λ is referred to as our smoothing parameter and controls by how much we smooth

our box.
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Figure 3-17: χλa,b(XM ), [a, b] = [0.2, 0.8], λ = 0.1

We see from figure 3-17 that this function “smoothes out” our interval [0.2, 0.8], by

a width O(λ), so the additional error incurred by approximating our interval with the

smoothed interval will depend on our smoothing parameter λ. However by choosing

intervals [a,b] we no longer use the full pdf and so already introduce an error of ∼ |b−a|,
so strictly speaking this should be considered together with the smoothing error.

In order to study the error induced by the smoothing of our interval we study the

two estimators, Q̂M,N the estimator of the probability in our actual box and Q̂λM,N , the

estimator of the probability in our smoothed box, which we define rigorously below.

Actual Interval:

E[QM ] is defined as the expected value of χa,b i.e. the probability of landing in the

actual interval [a, b]. To approximate this we have our estimator Q̂M,N ≈ E[QM ] =

E[χa,b(XM )], which we define as,
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Q̂M,N =
1

N

N∑
i=1

Q
(i)
M ,

where Q
(i)
M = χa,b(X

(i)
M ) is the functional, i.e. the standard indicator function, evalu-

ated on the i-th sample of XM , computed using Euler’s Method with M time steps.

Similarly,

Smoothed Interval:

E[QλM ] is defined as the expected value of χλa,b i.e the probability of landing in the

smoothed interval. To approximate this we have our estimator Q̂λM,N ≈ E[QλM ] =

E[χλa,b(XM )], which we define as

Q̂λM,N =
1

N

N∑
i=1

Q
λ,(i)
M

where Q
λ,(i)
M = χλa,b(X

(i)
M ) is the functional, i.e. the smoothed indicator function, eval-

uated on the i-th sample of XM , computed using Euler’s Method with M time steps.

Using this notation we can now write our mean square error for the method with

the smoothed indicator function as, see Appendix A.3,

E
[(
Q̂λM,N − E[Q]

)2]
= V[Q̂λM,N ]︸ ︷︷ ︸

sampling error

+
(
E[QM ]− E[Q]

)2

︸ ︷︷ ︸
discretisation error

+

+
(
E[QλM ]− E[QM ]

)2

︸ ︷︷ ︸
smoothing error

+ 2
(
E[QλM ]− E[QM ]

)(
E[QM ]− E[Q]

)
︸ ︷︷ ︸

Cross Term

(3.20)

We see that the smoothing of the interval introduces two new error terms, a smoothing

error term and an additional cross term involving the smoothing error and discreti-

sation error. It is thus necessary to test the effect that a smoother interval has on

the convergence rate of the variance of the differences and whether this is significant

enough to warrant the introduction of two further error terms, as well as studying how

these terms interact, particularly with respect to the time step size h as well as λ.

It is likely that for a large value of λ we may see gains in terms of variance reduction,

however taking λ too large will result in our smoothed interval no longer giving a good

representation of our actual interval, in particular, λ should be of the order of |b − a|
or smaller.

As well as considering the smoothing parameter, λ, when testing our method, we

must also identify the effect of choosing different sizes and positions of our interval.
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The density of particles in a particular part of the atmosphere may mean that our

method performs better or worse, for example in a part of the atmosphere where very

few particles land, a so-called “rare event”, we are likely to need a lot of samples to

control the variance and in turn the sampling error. In this section however we present

only a few preliminary tests for varying values of λ.
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Figure 3-18: Error (top) with respect to reference solution with λ = 10−6, N∗ =

109, h∗ = 2−10 and Variance (bottom) for various smoothing parameters λ for h =

2−1, . . . , 2−8, with N = 107

The first plot in Figure 3-18 shows how the error behaves with respect a reference

solution, which was calculated to a high accuracy with a small λ. The second plot shows

the variance for our smoothed indicator function with varying values of λ, including

λ = 0, i.e. with no smoothing.

It can be shown theoretically, [24], that at lowest order the error, E(h, λ), is of the

form,

E(h, λ) = Ch.
h

τ
+ Cλ.λ

2.

Indeed if we look at the error plot in Figure 3-18, we see that for the smallest time

step size the error is reduced by one order of magnitude when going from λ = 10−0.5 to

10−1. Unfortunately for these preliminary tests we cannot infer much from the smaller
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values of λ as these results are clearly dominated by statistical noise and as such would

require more samples in order to able to draw conclusions from them. The results for

λ = 10−0.5 and λ = 10−1, however, agree with the above formula.

In the second plot in Figure 3-18 we see that for λ ≤ 10−1.5 the variance for each of

the values of λ are quite close to each other and appear to be converging. For λ = 10−0.5

and λ = 10−1 we see significantly reduced variance, which would be an advantage for

the Multi Level method, thus requiring fewer samples to bound the sampling error;

however these values of λ are those for which the error with respect the reference

solution was significant, at around 10−2 to 10−1.

From these preliminary tests for this particular smoothed indicator function we

concluded that for λ ≤ 10−1.5 the difference between the variance and that of the

“non-smoothed” reference solution was not significant enough to result in major gains

for the Multi Level algorithm, and for those values that we would see gains, the error

introduced was too large. So for the purposes of this thesis we used only the standard,

discontinuous indicator function, however in future work it would be important to

do both further tests with this smoothed indicator function as well as exploring the

possibilities of more advanced smoothing functions.

3.7 Conclusions

In this chapter we have been able to show that the Multi Level Method has a lot of

potential in its application to atmospheric dispersion modelling, in particular when our

quantity of interest was taken to be the mean particle position we showed that by im-

plementing the Multi Level Method we can achieve an order of magnitude improvement

in terms of the computational complexity over the Standard Method.

Taking a quantity of interest which is more relevant to the application, i.e. the

probability of a particle being a particular “box” at time T , we saw that although

not as significant, improvements were still evident over the Standard Method from the

implementation of the Multi Level.

In addition we studied how various model parameters, such as box size and timescales,

interact with the Multi Level Method and how these affect the method’s performance.

A next step in continuing this project would then be to quantify these effects in order

to ensure the optimal performance of the method’s implementation should the Met

Office choose to adopt it.

It is however worth bearing in mind that the results presented here are for rea-

sonably low level of accuracy which corresponds to that required by the Met Office

on an operational level, where 10−2 and 10−3 are already considered to be small error
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tolerances. As such the gains seen by implementing Multi Level Monte Carlo here are

perhaps not as striking as those considered in mathematical papers which may show

results for much smaller tolerances. However, they still signify an improvement over the

current method and, with questions surrounding how exactly the box size, timescales

and functionals relate to the performance, further testing may indeed show that the

Multi Level Method is even better than we have seen so far.

It is also important to mention at this stage that for this simplified model problem

we have so far only considered time steps of the form h` = 2−`, in the following chapter

we consider larger time step increments, which in turn reduce the number of levels in

the Multi Level algorithm and thus improve its competitiveness with the Standard as

such the outlook for the Multi Level Method may be better than the results in this

chapter indicate.

In the next chapter we move on to look at a more complicated test; this so called

full model is very close to that which is currently used by the Met Office and as such

will enable us to better identify the potential the method has in this application to

atmospheric dispersion modelling.

57



Chapter 4

Full Model Problem

4.1 Full Model

The Met Office has supplied us with a model close to that which they use currently

in NAME to approximate the dispersion of atmospheric pollutants; again in the 1-

dimensional case at time t, we take a typical particle with trajectory X(t) ∈ R, i.e.

vertical height above ground, mean velocity v(X(t), t) ∈ R and vertical deviation of

the velocity from the mean due to turbulence U(t) ∈ R. The time evolution of U(t)

and X(t) are described by the SDEs,

dU = a(U,X, t)dt+ b(X, t)dW (t),

dX =
[
v(X, t) + U

]
dt.

(4.1)

For simplicity in our numerical tests we take the mean velocity v(X(t), t) to be zero.

For this problem we note that the first coefficient, a(U,X, t), is as in the simplified

case in equation (3.1) but with an additional contribution necessary to satisfy the well-

mixed condition which expresses the physical fact that an initially uniform distribution

of particles should not become unmixed at a later time, [11][12][18][19].

a(U,X, t) = − U

τ(X)
+

1

2

(
1 +

U2

σ2
U (X)

)dσ2
U (X)

dX︸ ︷︷ ︸
additional term

. (4.2)

The second coefficient has the same form as our simplified model problem (3.1); how-
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ever, now both σU (X) and τ(X) vary with X,

b(X, t) =

√
2σ2

U (X)

τ(X)
, (4.3)

where σU (X), the velocity variance term, and τ(X), the velocity memory term, are

given by,

σU (X) = kσu
∗
(

1− X

H

)3/4
,

τ(X) = kτ
X

σU (X)
.

(4.4)

The analytical form given in equations (4.4) describes a moderate-wind boundary

layer, [11][12], with u∗ the frictional velocity, which for our tests we take as u∗ =

0.2ms−1. H is the boundary layer depth and in our tests we take H = 1km. kτ and kσ

are dimensionless parameters which we have taken to be kτ = 0.5 and kσ = 1.3.

We observe that for particles close to the top and bottom boundary layers that

σU (X) and τ(X) have singularities, these cause a(U,X, t) and b(X, t) to grow; the

numerical solution of the SDE then rapidly becomes unstable near the boundaries,

making unfeasible jumps at each time step, no longer giving a good representation of

the behaviour of a particle in the atmosphere. It should be stressed, however, that the

formulae in (4.4) are parametrisations (obtained from fitting measurements to a simple

function) which are not necessarily physically accurate over the whole boundary layer

depth.

We must address these singularities in the coefficients a(U,X, t) and b(X, t), in order

to ensure that our model represents, as closely as possible, the real life dispersion of

atmospheric pollutants. In the next section we study these singularities and regularise

both σU (X) and τ(X) at the boundaries in order to ensure that our solutions remain

stable.
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4.2 Regularisation
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Figure 4-1: Plots showing τ and σU as a function of their vertical height

Figure 4-1 shows τ and σ as a function of the vertical height of a particle, we see that

for particles close to the ground i.e. as X → 0, that

σU (X) = kσu
∗
(

1− X

H

)3/4
→ kσu

∗, a constant

τ(X) = kτ
X

σU (X)
→ kτ

kσu∗
X → 0.

Since both a(X,U, t) and b(X,U, t) include terms proportional to 1/τ(X), both of these

terms will blow up as X → 0.

Similarly for particles near to the top boundary, i.e. as X → H,

σU (X) = kσu
∗
(

1− X

H

)3/4
→ 0.

Since the second term in the coefficient a(X,U, t) has a dependence on 1/σ2
U (X), this

term will blow up for particles near the top boundary.

In order to ensure that these terms do not blow up and thus that our method

remains stable, we regularise our parameters. In other words we take τ(X) to be

a constant when our particle comes within a distance εreg of the bottom boundary,

where εreg is a, generally small, parameter which we may choose. So at the bottom

boundary, i.e. for X < εreg, we take,

τ(X) = τ(εreg).
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Similarly, at the top boundary, i.e. X > H − εreg, we take,

σU (X) = σU (H − εreg).

σU (X) and τ(X), however, depend closely on one another, thus, if they are not

consistent, our model will not be a good approximation of the behaviour of airborne

particles in the atmosphere, in particular it would violate the well-mixed condition. As

such to ensure that we do satisfy this condition we regularise both τ(X) and σU (X) at

the top and bottom boundaries, as well as choosing appropriate constants for dσ2
U/dX.

Thus for our regularisation at the bottom boundary, i.e. for X < εreg, we take,

τ(X) = τ(εreg), σU (X) = σU (εreg).

Similarly, at the top boundary, i.e. X > H − εreg, we take,

σU (X) = σU (H − εreg), τ(X) = τ(H − εreg).

This regularisation, however, gives us an additional parameter, which will deter-

mine, to some extent, the accuracy of our solution. Taking a large regularisation

parameter, εreg, will mean that τ(X) and σU (X) will be constant for a significant part

of the particle’s path. This may affect how well our model represents true atmospheric

dispersion, although it is important to bear in mind that (4.4) is only a parametrisa-

tion. Choosing a small εreg, however, will mean that at the boundaries the coefficients

a(X,U, t) and b(X, t) will still diverge.

It is worth noting that σU (X) and τ(X) are only models and are not likely to be

accurate for X → 0 and X → H, thus it is debatable as to whether the error induced

by regularising these functions is significant or whether this can be included in the

parametrisation error already in σU (X) and τ(X). A thorough investigation of this

would be an interesting and important question for future work.

We must also consider the affect that regularising these parameters has on the

stability of the numerical method, and the restrictions that we must place on the time

step size in order to ensure that stability. This is investigated in the following section.

4.3 Stability Analysis

In order to determine the coarsest time step feasible for the Multi Level Method and

thus how many levels we can use, we must study the stability of the numerical method.

As with the simplified model in Section 3.4, for the full model we have so far only
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studied the stability of the deterministic part, in other words the ODE described by,

dU =

(
− U

τ(X)
+

1

2

(
1 +

U2

σ2
U (X)

)dσ2
U (X)

dX

)
dt.

However this ODE is still not straightforward to study, so in order to simplify our

calculations we note that the dominant term, for X → 0, is U/τ(X). We have not

yet studied the stability constraints which are determined by the divergence of the

dσ2
U (X)/dX term at the top boundary i.e. for X → H, however future work should

allow for further investigation in this area. For now we assume that the stability of

the method is determined primarily by the U/τ(X) term, thus in a similar vein to the

simplified case we analyse the stability of the ODE given by,

dU = − U

τ(X)
dt. (4.5)

In contrast to the simplified case we now have that τ(X) depends on X, so we

must ensure that the condition h < 2τ(X) holds for all X, so in particular where τ(X)

takes its minimum. We observe that τ(X) is a strictly increasing function and since

we have regularised τ(X) its minimum thus occurs at τ(εreg). As a result, the largest

time step, h0, that we can choose to ensure stability, changes for different values of

εreg. This allows for the possibility to take larger regularisation parameters, εreg, on

coarser levels of the Multi Level method whilst still ensuring that the method remains

stable on all levels. It is, however, possible that this may result in the growth of the

variance of the differences Y` = QM`
−QM`−1

and thus we would need to balance these

two considerations.

Here we present some preliminary numerical tests which verify our assumption that

the stability of the full method for approximating the solution of the SDE in equation

(4.1) can be reduced to that of the ODE in equation (4.5).
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Figure 4-2: Plots showing stability of trajectory for ODE in equation (4.5), coupled

with dX = Udt. Varying time step size h = 2−1, . . . , 2−8, T = 1, for fixed εreg = 0.01.

Figure 4-2 plots for each different time step size h` = 2−`, ` = 1, . . . , 8, the trajectory

of particles released at X0 = 0.001, 0.00015, . . . , 0.01, with initial velocity U0 = 0.1,

from release up until time T = 1. We can see from these plots that with εreg = 0.01

our method is clearly unstable for h ≥ 2−4.

By using the formula for τ(X), we can write,

τ(εreg) =
Kτ

Kσu∗
εreg(1− εreg)−3/4,

then with the parameters as given in Section 4.1 we have,

τ(εreg) ≈ 1.92εreg (1− εreg)−3/4︸ ︷︷ ︸
≈ 1, for small εreg

≈ 2εreg

so we would expect to see instability for time step sizes h > 2τ(εreg) ≈ 2×2εreg = 4εreg.

For our plots we have taken εreg = 0.01, this analysis implies we would see instability

for h > 4 × 0.01 = 0.04. Indeed, as we noted before, we see on our plots that for

h = 2−4 = 0.0625 > 0.04 the method is clearly unstable. However for h = 2−5 =

0.03125 < 0.04 we see that our method is stable (although the initial kink implies it
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may be inaccurate).
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Figure 4-3: Plots showing stability of trajectory for SDE in equation (4.1) with v = 0.

Varying h = 2−1, . . . , 2−8, T = 1, for fixed εreg = 0.01

Figure 4-3 shows again for each different time step size h` = 2−`, ` = 1, . . . , 8, the

trajectories for particles released at X0 = 0.001, 0.00015, . . . , 0.01 with initial velocity

U0 = 0.1, from release up until time T = 1, with εreg = 0.01, but this time for the full

SDE as in equation (4.5), with mean velocity, v = 0.

We see from this plot, for the particles released at the bottom of the boundary layer

that indeed it appears as if the stability of the SDE corresponds to that of the ODE,

with the instability for time step size h = 2−4 less prominent as for the ODE although

we note one particle’s trajectory clearly diverges in this plot. Again we see that for

time steps of size larger than h = 2−4 that the method appears to be stable.

Similar preliminary tests were also carried out for different values of εreg, as well as

for the full model with reflection and for particles released at the top boundary layer

where it is the dσ2
U (X)/dX term that dominates. For these tests the method appeared

to agree with the stability constraints imposed by the simplified ODE in equation (4.5).

The complete stability analysis of the SDE would, however, be an interesting topic for

further work.

Further to this it is well known that implicit numerical methods give way to much

less restrictive stability constraints and thus it is likely that we would see improvements
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in our method, allowing coarser levels to be used in the Multi Level algorithm, as a

result of implementing an implicit method for the deterministic part of the SDE. The

use of implicit methods for the stochastic component, however, is not a trivial subject

and is beyond the scope of this thesis.

The improved stability properties and often unconditional stability associated with

implicit methods however comes at a cost; implementing an implicit method for even

just the deterministic part of the SDE can be very expensive compared to an explicit

method, such as Forward Euler.

As such this topic would be interesting to investigate further once the current

method is established to work well and it is determined that the benefit of using a

coarser time step in the Multi Level algorithm outweighs the cost of the implementation

of a more complicated implicit method for either the deterministic part, or eventually

the full SDE.

4.4 Reflection at Boundaries

For our model as described in the previous section, there are no restrictions on where

a particle can travel; in a practical sense this means that we currently allow particles

to go beneath the ground and come back up, which simply isn’t physical. Thus in

order to ensure that the model correctly represents the behaviour of real particles in

the atmosphere we must include conditions which restrict the particle’s trajectory to

only those physically feasible paths.

Currently the Met Office implements a combination of reflective and absorbing

boundary conditions, where the absorption represents the deposition of pollutants on

the ground. For simplicity we do not consider absorption in this thesis; however we do

look at reflecting particles at both the top and bottom boundaries.

As well as reflecting those particles that “hit” the ground, we also reflect particles

at the top of the atmosphere (an alternative treatment would be to allow them to

also propagate in the free troposphere and re-enter the boundary layer, but we do not

consider this here for simplicity).

In line with the Met Office’s current method reflection is treated as follows; for a

particle which hits the ground, the particle position, X, is replaced by X = −X and

the velocity is reversed, U = −U .
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Figure 4-4: Illustration of Reflection at Boundary X = 0

This method of reflection at the boundary is illustrated in figure 4-4. We see that

X is reflected geometrically about the ground X = 0 and, since U has memory, we

reflect this also, as if we don’t change the sign of U , the particle would then repeatedly

hit the boundary. In addition, since we have regularised τ(X) near the boundary,

particles hit the ground more often than they should, and so if U is not reflected the

resultant concentration of particles near the ground will be too high indicating that

the well-mixed condition, [11][12], is no longer satisfied.

4.5 Numerics

4.5.1 Without Reflection at Boundaries

We examine the full model, for the 1-dimensional case, as described in Section 4.1 with

our quantity of interest restricted to the probability of a particle landing in an interval

[a, b] at time T , since this is what the Met Office requires as output of the program. For

our tests we took the initial conditions to be U0 = 0.1, and X0 = 0.05 corresponding to

the release of a particle from a chimney, say, at 50m above ground level, with velocity

0.2ms−1.

Figure 4-5 shows the path of 50 model particles and their spread over time, until

T = 1. Here the red blocks indicate the intervals in which we look for the probability

of a particle landing at time T .

66



0 0.2 0.4 0.6 0.8 1-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time

Pa
rti

cl
e 

Po
si

tio
n

Figure 4-5: Full Model Trajectory Plot for 50 Independent Particles Released at X0 =

0.05

For the following tests we implement the algorithm with regularisation at the bound-

aries, first without reflection, so, in a physical sense, particles are allowed to go beneath

the ground and come back up again. The model with reflection is then studied in Sec-

tion 4.5.2, allowing us to identify the effect that reflecting particles at the boundary

may have on the efficiency of the method and the gains observed for the Multi Level

Method.
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Figure 4-6: Expected Value and Variance for [a, b] = [0.1055, 0.1555], ε = 10−3, T = 1

On the lefthand side Figure 4-6 shows the expected value of differences in the Multi

Level Method (in red), i.e. E[QM`
−QM`−1

], as well as the expected value, E[QM`
], for
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the Standard Method (in blue) computed for each time step used in the Multi Level

Method. On the right we have the variance of the differences in the Multi Level Method

(in red), i.e. V[QM`
−QM`−1

], as well as the variance V[QM`
] for the Standard Method

(in blue) computed for each time step used in the Multi Level Method.

As for the simplified model, we again have that the expected value for the Multi

Level Method converges with O(h), corresponding to α = 1 in the Standard and

Multi Level complexity theorems. In addition we see that the convergence rate of the

variance of the differences is linear, so β = 1 in the complexity theorem. We note that

our quantity of interest here is the probability, so our functional is again the indicator

function and as such our linear convergence rate of the variance is consistent with that

for the simplified model problem.

As a result we are able to conclude from the complexity theorem, that the computa-

tional complexity for the Multi Level Method is O(ε−2(log ε)2) compared to O(ε−3) for

the Standard (since the cost per sample of the Euler Method is O(h−1), which implies

γ = 1, in the Standard Monte Carlo complexity theorem).
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Figure 4-7: Cost of Standard MC vs Multi Level MC, with T = 1, QoI = χa,b, [a, b] =

[0.1055, 0.1555]

In Figure 4-7 we look at the cost of the Multi Level Monte Carlo Method versus

that of the Standard Method with our quantity of interest being the probability of a

particle being in the interval [a, b] at time T = 1. As with the simplified model problem

these plots use theoretical cost computations which are based on the total number of

time steps, computed using the N`’s obtained from the formula in (2.12) (as for the

simplified model this is scaled using the relative error, so we actually use the formula

in equation (3.17)) and the unit of cost is the cost per sample per time step.

Again we assume that for the Multi Level Monte Carlo the cost of computing the

difference E[QM`
− QM`−1

] is 1.5 times that of computing E[QM`
] since the quantity

computed with the coarser time step will have half as many Euler time steps as the
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finer (with steps incremented in powers of 2).

Figure 4-7(a) plots the theoretical cost for both the Standard (blue) and the Multi

Level Methods (red), for accuracy tolerances ε = 10−1, 10−2 and 10−3. We note that

there are two sets of data for the Multi Level Method, the first, illustrated by the

continuous line has the maximum number of levels with the coarsest level being that

which is determined by the stability constraints associated with the method. The

second, which is represented by the dashed line is that which has a smaller coarsest

level, so our Multi Level Method requires fewer levels in this case. We see from these

plots that there is a slight reduction in cost as a result of taking a smaller coarsest

level, these comparisons are however examined in more detail in Table 4.1.

What we see from Figure 4-7(a), however, is that the Standard Method outperforms

the Multi Level for accuracy tolerances of ε = 10−1 and 10−2, it is worth noting however

that due to the longer run time of these problems the plots here only consider accuracy

tolerances up to 10−3, rather than the tolerances of 5 × 10−4 which we studied for

the simplified model. We also observe that the Multi Level Method outperforms the

Standard from accuracy tolerances of around 5 × 10−3 and clearly outperforms it for

ε = 10−3.

In Figure 4-7(b) we plot ε2(log ε)−2× Cost for both the Standard (blue) and Multi

Level Method (red). From this plot we verify the conclusion that we drew from

the complexity theorem, that the Multi Level Monte Carlo has computational cost

of O(ε−2(log ε)2), since for the Multi Level Method we see that ε2(log ε)−2× Cost is

roughly constant, with a different constant for the method with fewer levels. In addi-

tion we see that, since ε2(log ε)−2× Cost is clearly not constant in the Standard case,

the computational complexity is of order higher than O(ε−2(log ε)2), namely O(ε−3),

as expected.
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Figure 4-8: Number of Samples, computed with formula (2.12) and Cost on Each level

of Multi Level MC for varying ε, T = 1
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Figure 4-8 looks at the number of samples on each level of the Multi Level as well

as the Cost on each level. Again we note that the dashed lines correspond to the Multi

Level Method whose coarsest level is chosen to be smaller than the largest time step

size determined by the stability constraints.

In Figure 4-8(a) we see how the number of samples decays with on each level of the

Multi Level Algorithm for several different accuracy tolerances, ε. We see that again

the linear decay rate of the variance means that the number of samples required on

each level decays relatively slowly.

In addition to this it is important to note that, for the Multi Level Method when

we used a smaller coarsest time step size and thus had fewer levels, the number of

samples required on each level with time step size h` is similar to that for the same

time step size when the method was implemented with more levels. In Figure 4-8 level

1 corresponds to the coarsest level which differs for the two different implementations

of the Multi Level Method, which is misleading in this graph, it would have been better

to plot against the time step size in this case rather than against the level.

From Figure 4-8(b) we note how the cost is distributed on each level, we see here

that the cost is clearly distributed evenly across all levels which is consistent with being

in the case where β = 1 in the complexity theorem.

ε h0 hL No. Levels Speed-up

10−1 2−5 2−7 3 0.29

10−1 2−6 2−7 2 0.56

10−2 2−5 2−9 5 0.47

10−2 2−6 2−9 4 0.68

10−2 2−7 2−9 3 0.90

10−3 2−6 2−12 7 2.03

10−3 2−7 2−12 6 2.40

Table 4.1: Speed-up of Multi Level MC over Standard MC for Differing Coarsest Levels,

QoI = χa,b, [a, b] = [0.1055, 0.1555], Without Reflection

Table 4.1 helps to demonstrate how the number of levels and indeed the coarsest

level that we take for the Multi Level Method influences how competitive it will be

against the Standard Method. We see clearly that for these very large accuracy toler-

ances of 10−1 and 10−2 (where we mean large in a mathematical sense, for practical

application these are actually quite relevant tolerances) the Standard performs much

better than the Multi Level, but we see an improvement of nearly double in the speed-
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up for accuracy of 10−1 by simply removing one level, which allows us to go from a

speed-up of 0.29 to 0.56. Similarly for the tolerance 10−2 by removing two levels our

speed-up is again doubled from 0.47 to 0.90. We also see improvements for the toler-

ance 10−3 by going from 7 levels to 6, as such it would be important to do additional

tests for this tolerance with fewer levels in order to be able to establish a link between

the number of levels and the speed-up for the Multi Level Method over the Standard.

Until this point in the thesis we have always considered time steps of the form h` =

2−`, however this choice was somewhat arbitrary and as such in order to ensure that

this choice does not limit the success of the Multi Level Method we briefly look at the

affect that choosing a different larger time step size increment has on the performance

of the method.

For the next tests we simply looked at time steps of the form h` = 2−` and h` = 4−`

since for this case we could directly compare their performance, in particular by using

the same finest level, so that the solution is computed to precisely the same accuracy.

We also ran some preliminary tests for h` = 6−`, which seemed to show even better

performance, however here for simplicity we only study the time step increments which

allow for direct comparison and thus the results for h` = 6−` are not included in this

thesis. Further, more thorough tests for different time step increments would, however,

be an important consideration for further work.
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Figure 4-9: Expected Value for Varying Increments, with ε = 10−3, T = 1

Figure 4-9(a) shows the expected value of differences in the Multi Level Method

(in red), i.e. E[QM`
−QM`−1

], as well as the expected value, E[QM`
], for the Standard

Method (in blue) computed for each time step used in the Multi Level Method which

is of the form h` = 2−`. On the right Figure 4-9(b) shows the same expected values

but for time steps of the form h` = 4−`. From these plots we see clearly that the Multi

Level Method requires fewer levels but the expected value in both cases decays linearly,

so that we still have α = 1 in the complexity theorem.
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Figure 4-10: Variance Plots for Varying Increment, with ε = 10−3, T = 1

Similarly Figure 4-10(a) shows the variance of differences in the Multi Level Method

(in red), i.e. V[QM`
−QM`−1

], as well as the variance, E[QM`
], for the Standard Method

(in blue) computed for each time step used in the Multi Level Method which is of the

form h` = 2−`. On the right, Figure 4-10(b) shows the same variances but for time

steps of the form h` = 4−`. From these plots we see clearly that in both cases the

variance decays linearly, consistent with β = 1 in the complexity theorem.

What we are most interested in when testing the different time step size increments

is the affect this has on the cost of the method and in particular its speed-up over the

Standard Method.

ε h0 hL Speed-up

10−2 2−7 2−10 1.18

10−2 4−3 4−5 1.39

10−3 2−7 2−12 2.40

10−3 4−3 4−6 3.11

Table 4.2: Speed-up of Multi Level MC over Standard MC for Differing Time Step

Increments, QoI = χa,b, [a, b] = [0.1055, 0.1555], various ε, with T = 1

Table 4.2 compares directly the speed-up of the method for accuracy tolerances

ε = 10−2 and 10−3, with the finest time step size the same for the increments in powers

of 2 and of 4. We see for both tolerances that we obtain an improvement by using time

steps of the form h` = 4−` and for ε = 10−3 the difference is a speed-up of 2.40 versus

that of 3.11, which is quite a significant speed-up. As such it would be important

to test these improvements more thoroughly as well as looking at other increments,

in particular 6 or even 8, whilst these are still practically relevant for the accuracy
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tolerances that we wish to achieve.

For the simplified problem we noted that performance of the Multi Level Method

improved when we considered an interval in which particles were less likely to land.

To briefly examine whether this remains the case when we move to the full, non-linear

model we looked at the interval [a, b] = [0.28, 0.45] and compared this to our more

central interval [a, b] = [0.1055.0.1555].

ε Interval h0 hL Speed-up

10−1 [0.1055, 0.1555] 2−6 2−7 0.56

10−1 [0.28, 0.45] 2−6 2−7 0.89

10−2 [0.1055, 0.1555] 2−7 2−9 0.90

10−2 [0.28, 0.45] 2−7 2−10 2.26

10−3 [0.1055, 0.1555] 2−7 2−12 2.40

10−3 [0.28, 0.45] 2−7 2−13 8.84

Table 4.3: Speed-up of Multi Level MC over Standard MC for various ε, with T = 1

QoI = χa,b, with varying interval [a, b], Without Reflection

Table 4.3 compares the speed-up for the two different intervals for different accuracy

tolerances, ε. We see that where the Multi Level Method seems to perform fairly

poorly for [a, b] = [0.1055.0.1555], not giving an improvement over the Standard, say

for ε = 10−2, then for [a, b] = [0.28, 0.45] the Multi Level actually gives a speed-up of

over 2. The fact that the probability of a particle landing in [a, b] = [0.28, 0.45] at time

T = 1 is smaller than for the other interval may be the reason behind this improvement

and as such this should again be studied more carefully in order to give an accurate

picture of the potential improvements that the implementation of Multi Level Monte

Carlo has to offer this application to atmospheric dispersion modelling.

With what are generally optimistic results for the full model problem and gains

evident over the Standard Method for reasonable levels of accuracy our next stage of

testing is to implement reflection of particles that go beneath the ground in line with

the method used by the Met Office.
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4.5.2 With Reflection at Boundaries
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Figure 4-11: Full Model with Reflection Trajectory Plot for 50 Independent Particles

Released at X0 = 0.05

In this section we examine the full model, for the 1-dimensional case with reflection

implemented as discussed in Section 4.4. Our quantity of interest is again the prob-

ability of a particle landing in an interval, [a, b] at time T and our initial conditions

are U0 = 0.1 and X0 = 0.05 again corresponding to the release of a particle from a

chimney, say, at 50m above ground level, with velocity 0.2ms−1. For this problem we

have taken εreg, our regularisation parameter to be εreg = 0.01, and thus our coarsest

time step size is restricted to h0 = 2−5.

Figure 4-11 shows the path of 50 model particles and their spread over time, until

T = 1, where the particles are reflected about X = 0. Here the red blocks indicate

the intervals in which we look at the probability of a particle landing at time T . The

following are some initial results for tests with the reflection added to our full model.
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Figure 4-12: Expected Value and Variance for [a, b] = [0.1055, 0.1555], ε = 10−3, T = 1

Figure 4-12(a) shows the expected value of differences in the Multi Level Method

with reflection (in red), i.e. E[QM`
−QM`−1

], as well as the expected value, E[QM`
], for

the Standard Method with reflection (in blue) computed for each time step used in the

Multi Level Method. We see that as before the expected value converges with O(h),

corresponding to α = 1 in the Standard and Multi Level complexity theorems.

Figure 4-12(b) shows the variance of differences in the Multi Level Method with

reflection (in red), i.e. V[QM`
−QM`−1

], as well as the variance, E[QM`
], for the Standard

Method with reflection (in blue) computed for each time step used in the Multi Level

Method. What we notice here, however, is that the variance of the differences for the

Multi Level Method no longer converges linearly and the rate is in fact slower than

linear. This result somewhat restricts the success of the Multi Level Method in this

case. We have carried out various tests of the code that we have written for this

problem in order to ensure that these rates are not the result of a bug. It is thus

crucial for the next steps in the continuing research of this topic to do further checks

and try to establish the reasons for the slow decay rate of the variances, noting that the

convergence of numerical approximations for SDEs with reflective boundary conditions

has been investigated before, [27], [28].

In particular, the regularisation near the boundaries and indeed the regularisation

parameter, εreg, may affect the model. In particular it may cause more particles to

approach the ground and thus result in more particles being reflected than is physically

likely. These are all possibilities that would require thorough study before we can make

any conclusions about the potential for the full model with reflection.

75



10-4 10-3 10-2

10-4

10-3

10-2

10-1

100

Time Step Size, hl

 

 

V[Qh
l
 - Qh

l-1
]

V[Qh
l
]

Linear Decay

Figure 4-13: Variance for Model with Constant Profile, with T = 1, QoI = χa,b,

[a, b] = [0.1055, 0.1555]

Figure 4-13 shows the variance for the full model with a constant profile, i.e. we set

both τ(X) and σU (X) constant for all X. For this problem, by setting a counter, we

observe that a smaller proportion of particles are reflected than for the full non-linear

model. We note that convergence of the differences appears to be linear, although we

note that for the finest time step we observe a slight slow down in this rate. Further

tests would be vital for establishing whether this behaviour relates to the number of

particles that are reflected, or perhaps the number of times a particle is reflected, in

which case it may be that we need to more carefully choose our model parameters in

particular εreg such that fewer particles require reflection at the boundary or indeed

that we need a different method for reflecting or computing the velocity and trajectory

of reflected particles.
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Figure 4-14: Cost of Standard MC vs Multi Level MC, with T = 1, QoI = χa,b,

[a, b] = [0.1055, 0.1555]
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Plotting the cost of the Standard Method versus that of the Multi Level Method

illustrates how the slow decay rate affects the performance of the Multi Level Method,

comparing this to the cost plot without reflection in Figure 4-7(a) we see that instead

of the Multi Level outperforming the standard for accuracy tolerance ε = 5× 10−3 we

now see that it is only just performing in line with the Standard Method for ε = 10−3.

ε Interval Speed-up Without Reflection Speed-up With Reflection

10−1 [0.1055, 0.1555] 0.56 0.53

10−1 [0.28, 0.45] 0.89 0.87

10−2 [0.1055, 0.1555] 0.90 0.71

10−2 [0.28, 0.45] 2.26 2.11

10−3 [0.1055, 0.1555] 2.40 1.05

10−3 [0.28, 0.45] 8.84

Table 4.4: Speed-up of Multi Level MC over Standard MC for Method Without Re-

flection and With Reflection for varying intervals

Finally Table 4.4 gives a clear comparison of how the model with reflection performs

in terms of speed-up compared to that without reflections. The table shows that

for larger accuracy tolerances the affect of the reflection is not so evident, whereas

for accuracy tolerance of 10−3 the speed-up from Multi Level over Standard is more

than halved when the reflection is implemented. This may be as a result of the large

number of reflected particles, which when counted a significant and perhaps not realistic

proportion of particles were reflected at the boundary. As such further testing of

this is a crucial next step in establishing the realistic benefits that could result from

the implementation of the Multi Level Monte Carlo Method in this application to

atmospheric dispersion modelling.

4.6 Conclusions

In this chapter we have identified that the Multi Level Method could provide an im-

provement over the Standard for the full model problem, but that its application to

this problem in atmospheric dispersion modelling requires significant further work. Of

great importance is the study of the impact that reflecting particles at the boundary

has on the variance of the differences in the Multi Level Method and what changes can

be made to the model or method in order to overcome this.

Overall, however, we have been able to show that for a model close to that which

is currently used by the Met Office to model the dispersion of atmospheric pollutants,
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we can achieve reasonable improvements in terms of the computational cost by the

implementation of Multi Level Monte Carlo. In particular we have seen improvements

for accuracy tolerances which are considered to be relatively large in mathematical

terms, but are the practical tolerances required by the Met Office to ensure sufficiently

accurate predictions. As such this is seen as a positive step towards improving the

predictions in this application to atmospheric dispersion modelling.
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Chapter 5

Further Work

In this thesis for both the simplified model problem as well as the full model problem

we have shown that there is potential to gain in terms of computational cost as well as

to allow the Met Office to model the dispersion of airborne pollutants more accurately,

using more precise physics. That being said there are still a number of questions which

this thesis has not yet answered and as such it poses a variety of interesting research

problems. These include but are not limited to the following;

Reflection at Boundaries: After implementing the reflective boundary conditions

in our full model we noted that this reflection adversely affected the decay rate

of the variance of the differences for the Multi Level Method, as such it would

be a priority in the continuation of this project to ensure that the reason for this

increased variance is properly investigated so that we can establish what measures

can be taken in order to prevent this or control the way in which it influences

the success of the method. In particular a study of the literature in which this

problem has already been investigated, such as [27] and [28], would provide an

obvious starting point.

Regularisation Parameter: Another interesting question that arises from this thesis

is that of how varying the regularisation parameter, εreg, with each level would

affect the performance of the Multi Level Method. The choice of this parameter

influences the stability constraint on the size of the time step we can take such

that the method remains stable. So taking a smaller value of εreg will impose a

tighter restriction on the size of the time step that will ensure we remain in the

stability region of the method.

In the tests we have carried out so far, we have taken one value of εreg and chosen

our coarsest time step in the Multi Level algorithm such that we ensure stability
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on all levels, however an adaptive algorithm would allow us to choose our time

steps for the method and then from this calculate the εreg we can take on each

level such that the method remains stable.

To investigate this we would need to study how the error behaves with εreg and

whether this adaptive method would allow us to gain by the use of smaller values

of εreg; indeed whether this gives improved accuracy, or whether in fact our

functions still diverge for a small regularisation parameter.

Different Time Step Increments: For the full model we looked briefly at how the

size of the time step increment influences the performance. As such it would

be important to further test the potential improvements seen by varying the

time step size increment. In particular we note that in [9] it is discussed that

increments of 7 give optimal results, thus testing these and other increments

would be another option for further developments of the Multi Level Method in

this context.

Further Smoothed Indicator Function Investigation: In Section 3.6 we carried

out some preliminary tests for a smoothed indicator function, it would be useful

to perform additional tests with this function or investigate a more advanced

“smoothed” indicator function which may allow for further variance reduction or

a reduced smoothing error and thus an improved performance.

Further Parameter Tests: Our numerical tests gave an interesting insight into how

some of the model parameters influence the performance of our method. It would

be important from an operational viewpoint to quantify these affects. In partic-

ular both the position and size of the box in which we estimate the probability of

a particle landing are important to how well the Multi Level Method performs,

as such quantifying this affect would be crucial improving the competitiveness of

the method.

Longer Time Spans: For long time spans where the plume becomes wider relative to

the interval [a, b] a smaller fraction of particles land will land in our interval than

for a shorter time span. Quantifying this behaviour could be useful for allowing

longer scale models to run with increased accuracy.

Full Stability Analysis: For the full model we completed the theoretical stability

analysis only for the ODE in equation (4.5). We carried out some preliminary

numerical stability tests for the full model, however, to ensure that we are not in

fact introducing any instability into our method, it would be beneficial to further
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study the full problem; including the theoretical stability of the method at the

top of the boundary layer resulting from the divergence of ∂σ2
U (X)/∂X.

Implicit Method for SDE: We also discussed that the stability constraints imposed

by these numerical methods could be eliminated by implementing an implicit

method for solving the SDE; this would be an interesting, although non-trivial

problem to study.

Splitting Domain: When considering the probability of a particle landing in a box

at time T , our quantity of interest was often small, as a result we therefore used

the relative error to ensure that our approximations were sufficiently accurate. In

studying this it was noted that the boxes in which we approximate the probability

could be chosen in such a way that across the plume each of the different sized

boxes will have approximately the same probability of a particle landing in it at

time T . Thus our relative error will be the same across all boxes. This would be

an interesting topic of investigation both for the Standard as well as the Multi

Level Method.

Implementing Full Algorithm in NAME: Ultimately our aim is to provide an op-

erational algorithm which we could implement in NAME, as such it would be

important to integrate all steps of the method in order to give the best efficiency.

This would, in particular, involve implementing the method as described in [9]

and discussed in Section 3.5.2. In addition to this, it would be interesting to in-

vestigate the possibility of using the same samples on different levels of the Multi

Level Method in order to reduce the cost from generating new samples, however

this would involve some careful programming and analysis.

We have observed that there is great potential for the application of the Multi

Level Monte Carlo Method, to enable better predictions on similar or even improved

operational timescales for this problem in atmospheric dispersion modelling. Indeed

with so many open questions emerging from this thesis there is a wealth of interesting

options for the continuation of this project and ultimately we have a solid starting

point in the argument for the implementation of Multi Level Monte Carlo in the Met

Office’s atmospheric model, NAME.
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Appendix A

Appendix

A.1 Standard Monte Carlo Mean Square Error

The expected mean square error of our Standard Monte Carlo estimator, Q̂M,N , is

defined as,

E
[(
Q̂M,N − E[Q]

)2]
.

By adding a zero, i.e. E[Q̂M,N ]− E[Q̂M,N ], our mean square error becomes,

E
[(
Q̂M,N − E[Q]

)2]
= E

[(
Q̂M,N − E[Q̂M,N ] + E[Q̂M,N ]− E[Q]

)2]
.

Now treating the first and second two terms separately and computing the square gives,

E
[(
Q̂M,N−E[Q̂M,N ]

)2
+2
(
Q̂M,N−E[Q̂M,N ]

)(
E[Q̂M,N ]−E[Q]

)
+
(
E[Q̂M,N ]−E[Q]

)2]
.

The linearity of the expected value allows us to write this as,

E
[(
Q̂M,N − E[Q̂M,N ]

)2]
+ E

[(
E[Q̂M,N ]− E[Q]

)2]
+

+2E
[(
Q̂M,N − E[Q̂M,N ]

)(
E[Q̂M,N ]− E[Q]

)]
,

= E
[(
Q̂M,N − E[Q̂M,N ]

)2]
+
(
E[Q̂M,N ]− E[Q]

)2
+

+2
(
E[Q̂M,N ]− E[Q̂M,N ]︸ ︷︷ ︸

=0

)(
E[Q̂M,N ]− E[Q]

)
.

Here we are again using the linearity of expectation as well as the fact that E[E[Y ]] =
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E[Y ] for some random variable Y .

Thus the mean square error can be written as,

E
[(
Q̂M,N − E[Q]

)2]
= E

[
(Q̂M,N − E[Q̂M,N ])2

]
+
(
E[Q̂M,N ]− E[Q]

)2

= V[Q̂M,N ] +
(
E[Q̂M,N −Q]

)2
,

(A.1)

where the first term in the last line follows by definition of the variance for some random

variable, Y , i.e. V[Y ] = E[(Y − E[Y ])2].

Finally we observe that the expected value of our estimator Q̂M,N is equal to that

of our Euler approximation QM

E[Q̂M,N ] = E
[ 1

N

N∑
i=1

Q
(i)
M

]
=

1

N

N∑
i=1

E[Q
(i)
M ] =

1

N

N∑
i=1

E[QM ] = E[QM ], (A.2)

and that the variance of our Monte Carlo estimator Q̂M,N is the variance of QM , scaled

by 1/N , since,

V[Q̂M,N ] = V
[ 1

N

N∑
i=1

Q
(i)
M

]
=

1

N2

N∑
i=1

V[Q
(i)
M ] =

1

N2

N∑
i=1

V[QM ] =
1

N
V[QM ]. (A.3)

By combining the results in equations (A.5), (A.2) and (A.3) we can now write our

mean square error as,

E
[(
Q̂M,N − E[Q]

)2]
= N−1V[QM ]︸ ︷︷ ︸

sampling error

+
(
E[QM −Q]

)2

︸ ︷︷ ︸
discretisation error

, (A.4)

giving a contribution from both the sampling error, and the discretisation error.

A.2 Multi Level Monte Carlo Mean Square Error

The expected mean square error of our Multi Level Monte Carlo estimator, Q̂
(ML)
ML,{N`},

is defined as,

E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
.

By adding a zero, i.e. E
[
Q̂

(ML)
ML,{N`}

]
−E
[
Q̂

(ML)
ML,{N`}

]
, our mean square error becomes,
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E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
= E

[(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

]
+ E

[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)2]
.

Now treating the first and second two terms separately and computing the square gives,

E
[(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

])2
+ 2
(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

])(
E
[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)
+
(
E[Q̂M,N ]− E[Q]

)2]
.

The linearity of the expected value allows us to write this as,

E
[(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

])2]
+ E

[(
E
[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)2]
+

+2E
[(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

])(
E
[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)]
,

= E
[(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

])2]
+
(
E
[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)2
+

+2
(
E
[
Q̂

(ML)
ML,{N`}

]
− E

[
Q̂

(ML)
ML,{N`}

]
︸ ︷︷ ︸

=0

)(
E
[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)
.

Here we are again using the linearity of expectation as well as the fact that E[E[Y ]] =

E[Y ] for some random variable Y .

Thus the mean square error can be written as,

E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
= E

[(
Q̂

(ML)
ML,{N`} − E

[
Q̂

(ML)
ML,{N`}

])2]
+
(
E
[
Q̂

(ML)
ML,{N`}

]
− E[Q]

)2

= V
[
Q̂

(ML)
ML,{N`}

]
+
(
E
[
Q̂

(ML)
ML,{N`} −Q

])2
,

(A.5)

where the first term in the last line follows by definition of the variance for some random

variable, Y , i.e. V[Y ] = E[(Y − E[Y ])2].

We observe that the expected value of our estimator, Q̂
(ML)
ML,{N`}, is equal to that

of our Euler approximation on the finest level, QML
, since by the definition of our

estimator we have,
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E
[
Q̂

(ML)
ML,{N`}

]
= E

[
L∑
`=0

Ŷ`,{N`}

]
=

L∑
`=0

E
[
Ŷ`,{N`}

]
=

L∑
`=0

1

N`

N∑̀
i=1

E[Y
(i)
` ]

=

L∑
`=0

1

N`

N∑̀
i=1

E[Y`] =

L∑
`=0

1

N`
N`E[Y`] =

L∑
`=0

E[Y`].

(A.6)

Finally
∑L

`=0 E[Y`] = E[QML
] from equation (2.6) so we have that,

E
[
Q̂

(ML)
ML,{N`}

]
= E[QML

], (A.7)

i.e. that the discretisation error of the Multi Level method is that corresponding the

finest time step hL, with no contributions from any other levels.

Also by the definition of our estimator and properties of the variance we observe

that,

V
[
Q̂

(ML)
ML,{N`}

]
= V

[
L∑
`=0

Ŷ`,{N`}

]
=

L∑
`=0

V
[
Ŷ`,{N`}

]
=

L∑
`=0

1

N2
`

N∑̀
i=1

V[Y
(i)
` ]

=
L∑
`=0

1

N2
`

N∑̀
i=1

V[Y`] =
L∑
`=0

1

N2
`

N`E[Y`] =
L∑
`=0

1

N`
V[Y`].

(A.8)

Substituting the results in equations (A.7) and (A.8) gives our final formula for the

Multi Level MSE,

E
[(
Q̂

(ML)
ML,{N`} − E[Q]

)2]
=

L∑
`=0

1

N`
V[Y`]︸ ︷︷ ︸

Sampling Error

+
(
E[QML

−Q]
)2

︸ ︷︷ ︸
Discretisation Error

. (A.9)

A.3 Smoothed indicator Mean Square Error

The expected mean square error of our Smoothed Monte Carlo estimator, Q̂λM,N , is

defined as,

E
[(
Q̂λM,N − E[Q]

)2]
.

Adding two zeros, E[Q̂λM,N ] − E[Q̂λM,N ] and E[Q̂M,N ] − E[Q̂M,N ], our mean square
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error becomes,

E
[(
Q̂λM,N − E[Q̂λM,N ] + E[Q̂λM,N ]− E[Q̂M,N ] + E[Q̂M,N ]− E[Q]

)2
]
.

Treating the
(
Q̂λM,N −E[Q̂λM,N ]

)
,
(
E[Q̂λM,N ]−E[Q̂M,N ]

)
and

(
E[Q̂M,N ]−E[Q]

)
terms

separately and computing the square, our mean square error becomes,

E
[(
Q̂λM,N − E[Q̂λM,N ]

)2
+
(
E[Q̂λM,N ]− E[Q̂M,N ]

)2
+
(
E[Q̂M,N ]− E[Q]

)2
+

+2
(
Q̂λM,N − E[Q̂λM,N ]

)(
E[Q̂λM,N ]− E[Q̂M,N ]

)
+

+2
(
Q̂λM,N − E[Q̂λM,N ]

)(
E[Q̂M,N ]− E[Q]

)
+

+2
(
E[Q̂λM,N ]− E[Q̂M,N ]

)(
E[Q̂M,N ]− E[Q]

)]
.

The linearity of the expected value and the fact that E[E[Y ]] = E[Y ] for some

random variable Y , allows us to write this as,

= E
[(
Q̂λM,N − E[Q̂λM,N ]

)2
]

+ E
[(

E[Q̂λM,N ]− E[Q̂M,N ]
)2
]

+ E
[(

E[Q̂M,N ]− E[Q]
)2
]
+

+2
(
E[Q̂λM,N ]− E[Q̂λM,N ]︸ ︷︷ ︸

= 0

)(
E[Q̂λM,N ]− E[Q̂M,N ]

)
+

+2
(
E[Q̂λM,N ]− E[Q̂λM,N︸ ︷︷ ︸

= 0

]
)(

E[Q̂M,N ]− E[Q]
)

+

+2
(
E[Q̂λM,N ]− E[Q̂M,N ]

)(
E[Q̂M,N ]− E[Q]

)
.
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Thus the mean square error can be written as,

E
[(
Q̂λM,N − E[Q]

)2]
= E

[(
Q̂λM,N − E[Q̂λM,N ]

)2
]

+
(
E[Q̂λM,N ]− E[Q̂M,N ]

)2
+

+
(
E[Q̂M,N ]− E[Q]

)2
+

+2
(
E[Q̂λM,N ]− E[Q̂M,N ]

)(
E[Q̂M,N ]− E[Q]

)
= V[Q̂λM,N ]︸ ︷︷ ︸

sampling error

+
(
E[QM ]− E[Q]

)2

︸ ︷︷ ︸
discretisation error

+

+
(
E[QλM ]− E[QM ]

)2

︸ ︷︷ ︸
smoothing error

+ 2
(
E[QλM ]− E[QM ]

)(
E[QM ]− E[Q]

)
︸ ︷︷ ︸

Cross Term

,

(A.10)

which gives a contribution from the sampling error and discretisation error as well as

the smoothing error and a cross term involving the smoothing error as well as the

discretisation error.

A.4 Euler Induction

For our simplified model the Euler method is given by,

Un+1 =
(

1− h

τ

)
Un +

√
2σ2

Uh

τ
∆Wn+1

Xn+1 = Xn + Unh.

(A.11)

We prove by induction that UM and XM can be written as follows,

UM = (U0 + σ∗U∆W0)
(

1− h

τ

)M
+

√
2σ2

Uh

τ

M∑
k=1

(
1− h

τ

)M−k
∆Wk (A.12)
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XM = X0 + U0h

M−1∑
n=0

(
1− h

τ

)n
︸ ︷︷ ︸

Deterministic Part

+

+

(
σ∗Uh

M−1∑
n=0

(
1− h

τ

)n)
∆W0 + h

√
2σ2

Uh

τ

M−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk︸ ︷︷ ︸

Stochastic Part

.

(A.13)

First we show that our formula holds for the base case, the formula for Euler’s method

gives,

U1 = (U0 + σ∗U∆W0)
(

1− h

τ

)
+

√
2σ2

Uh

τ
∆W1, (A.14)

where we are assuming that the particles start with some additional turbulent compo-

nent, σ∗U∆W0, to their initial velocity U0, to be consistent with the results in [18].

Comparing this to the U1 computed with our formula for UM , which is given by,

U1 = (U0 + σ∗U∆W0)
(

1− h

τ

)1
+

√
2σ2

Uh

τ

1∑
k=1

(
1− h

τ

)1−k
∆Wk

= (U0 + σ∗U∆W0)
(

1− h

τ

)
+

√
2σ2

Uh

τ
∆W1,

(A.15)

we see that our formulas for U1 in equations (A.14) and (A.15) agree and thus our

inductive hypothesis holds for M = 1.

Now we assume that our formula for U holds for M and show that it holds for

M + 1. By Euler’s formula,

UM+1 =
(

1− h

τ

)
UM +

√
2σ2

Uh

τ
∆WM+1

=
(

1− h

τ

)[
(U0 + σ∗U∆W0)

(
1− h

τ

)M
+

√
2σ2

Uh

τ

M∑
k=1

(
1− h

τ

)M−k
∆Wk

]
+

+

√
2σ2

Uh

τ
∆WM+1,

by substituting in the formula for UM .
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Rearranging gives,

UM+1 = (U0 + σ∗U∆W0)
(

1− h

τ

)M+1
+

√
2σ2

Uh

τ

M∑
k=1

(
1− h

τ

)M−k
∆Wk+

+

√
2σ2

Uh

τ

(
1− h

τ

)0
∆WM+1

= (U0 + σ∗U∆W0)
(

1− h

τ

)M+1
+

√
2σ2

Uh

τ

M+1∑
k=1

(
1− h

τ

)M+1−k
∆Wk,

so UM+1 is of the form of (A.13) and thus we have shown that if the formula holds for

M , it holds for M + 1 and thus by the principle of mathematical induction our formula

holds for all M ≥ 1.

Now we must also prove that the formula for XM holds for all M , so for the base

case, the formula for Euler’s method gives,

X1 = X0 + (U0 + σ∗U∆W0)h (A.16)

where we are again assuming that the particles start with some additional turbulent

component, σ∗U∆W0, to their initial velocity U0.

We now compare this with our formula for XM , which gives,

X1 = X0 + U0h

1−1∑
n=0

(
1− h

τ

)n
+

(
σ∗Uh

1−1∑
n=0

(
1− h

τ

)n)
∆W0+

+h

√
2σ2

Uh

τ

1−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk

= X0 + U0h
(

1− h

τ

)0

︸ ︷︷ ︸
=1

+

(
σ∗Uh

(
1− h

τ

)0

︸ ︷︷ ︸
=1

)
∆W0+

+h

√
2σ2

Uh

τ

1−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk︸ ︷︷ ︸

=0

(A.17)
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X1 = X0 + (U0 + σ∗U∆W0)h, (A.18)

by evaluating the sums, so our formulas in (A.16) and (A.18) agree and thus our

inductive hypothesis holds for M = 1.

Now we assume that our formula for X holds for M and show that it holds for

M + 1. By Euler’s formula,

XM+1 = XM + UMh

= XM + h

[
U0 + σ∗U∆W0)

(
1− h

τ

)M
+

√
2σ2

Uh

τ

M∑
k=1

(
1− h

τ

)M−k
∆Wk

]
,

by substituting in our formula for UM , which we have proved to be true. Now we

substitute in our formula XM which we are assuming to be true.

XM+1 = X0 + U0h
M−1∑
n=0

(
1− h

τ

)n
+

(
σ∗Uh

M−1∑
n=0

(
1− h

τ

)n)
∆W0

+h

√
2σ2

Uh

τ

M−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk.

+h

[
U0 + σ∗U∆W0)

(
1− h

τ

)M
+

√
2σ2

Uh

τ

M∑
k=1

(
1− h

τ

)M−k
∆Wk

]
.

Rearranging and grouping terms gives,

XM+1 = X0 + U0h

(M+1)−1∑
n=0

(
1− h

τ

)n
+

(
σ∗Uh

(M+1)−1∑
n=0

(
1− h

τ

)n)
∆W0

+h

√
2σ2

Uh

τ

(M+1)−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk.

(A.19)

so XM+1 is of the form of (A.13) thus we have shown that if the formula holds for M

it holds for M + 1 and thus by the principle of mathematical induction our formula for

X holds for all M ≥ 1.
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A.5 Expected Value and Variance Calculations

Here we derive for the simplified problem the explicit formulas for the expected value,

E[XM ] and the variance, V[XM ].

If we have, ∆W0, . . . ,∆WM , normally distributed random variables with mean 0

and variance 1. Then defining SM as the sum,

SM = ā+
M−1∑
n=0

an∆Wn,

we have that SM is distributed according to a Gaussian with mean E[SM ] = ā and

variance σ2
U = V[SM ] =

∑M−1
n=0 a2

n.

We have the following formula for XM ,

XM = X0 + U0h
M−1∑
n=0

(
1− h

τ

)n
+

(
σ∗Uh

M−1∑
n=0

(
1− h

τ

)n)
∆W0+

+h

√
2σ2

Uh

τ

M−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk,

(A.20)

which is of the form of SM , as such we use the above the result to compute the expected

value and variance of XM . So,

E[XM ] = X0 + U0h

M−1∑
n=0

(
1− h

τ

)n
since E[∆Wi] = 0 ∀i

= X0 + U0h
1− (1− h

τ )M

1− (1− h
τ )

using
M−1∑
n=0

yn =
1− yM

1− y

= X0 + U0τ
[
1−

(
1− h

τ

)M]
≡ µh,

(A.21)

where µh := µ0 +
h

τ
.δµ+O

((h
τ

)2)
.

We obtain the form of µ0 and δµ by the following. Since h = T/M , in the limit as

h→ 0 we have, (
1− h

τ

)M
=
(

1− T

Mτ

)M
→ exp

(
− T

τ

)
.

We also know that,
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log
(

1− h

τ

)M
= M log

(
1− h

τ

)
= M

(
− h

τ
− 1

2

(h
τ

)2
+ . . .

)
, (A.22)

by Taylor expansion of log(z), which gives, log(z) = (z − 1)− (z−1)2

2 + . . .

Taking the exponential of both sides gives,

(
1− h

τ

)M
= exp

(
− Mh

τ
− M

2

(h
τ

)2
+ . . .

)
= exp

(
− T

τ
− 1

2
.
T

τ
.
h

τ
+ . . .

)
,

where the last equation follows since Mh = T .

Using the elementary property of exponentials that exp(z + y) = exp(z) exp(y), we

can write,(
1− h

τ

)M
= exp

(
− T

τ
− 1

2
.
T

τ
.
h

τ
+ . . .

)
= exp

[−T
τ

]
exp

(
− T

2τ
.
h

τ
+ . . .

)

= exp
[−T
τ

](
1− T

2τ
.
h

τ
+ . . .

)
using exp(z) =

∞∑
n=0

zn

n!
.

(A.23)

Substituting this into our formula for E[XM ], we have,

E[XM ] = X0 + U0τ
[
1−

(
1− h

τ

)M]

= X0 + U0τ

[
1− exp

[−T
τ

](
1− T

2τ
.
h

τ
+ . . .

)]
,

and rearranging terms gives,

E[XM ] = X0 + U0τ

[
1− exp

[−T
τ

]]
+ U0τ

[
exp

[−T
τ

] T
2τ
.
h

τ
+ . . .

]

= X0 + U0τ

[
1− exp

[−T
τ

]]
+
U0T

2
exp

[−T
τ

]h
τ

+ . . .

So we have µ0 = X0 + U0τ
[
1− exp

[
−T
τ

]]
and δµ = U0T

2 exp
[
−T
τ

]
.

To compute the variance of XM , V[XM ], we begin by rearranging and simplifying

the double sum in the stochastic term in equation (A.24), so we have,
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h

√
2σ2

Uh

τ

M−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk = h

√
2σ2

Uh

τ

M−1∑
k=1

M−1∑
n=k

(
1− h

τ

)n−k
∆Wk

= h

√
2σ2

Uh

τ

M−1∑
k=1

(
1− h

τ

)−k
∆Wk

M−1∑
n=k

(
1− h

τ

)n

= h

√
2σ2

Uh

τ

M−1∑
k=1

τ

h

[(
1− h

τ

)k
−
(

1− h

τ

)M]
∆Wk,

where the last line follows by writing the sum from k to M−1 as the difference between

the sum from 1 to M − 1 and the sum from 1 to k − 1, i.e.

M−1∑
n=k

yn =

M−1∑
n=1

yn −
k−1∑
n=1

yn =
1− yM

1− y
− 1− yk

1− y
=
yk − yM

1− y
.

Thus the stochastic term above can be written as,

h

√
2σ2

Uh

τ

M−1∑
k=1

τ

h

[(
1− h

τ

)k
−
(

1− h

τ

)M]
∆Wk =

√
2σ2

Uτh
M−1∑
k=1

[
1−

(
1− h

τ

)M−k]
∆Wk

=
√

2σ2
Uτh

M−1∑
k=1

[
1−

(
1− h

τ

)k]
∆W̃k,

where ∆W̃k = ∆WM−k and the last line simply represents a change the order in which

the sum is computed.

Now we can use the result discussed at the beginning of this section, that for a

random variable with the form of SM = ā +
∑M−1

n=0 an∆Wn, the variance is given by,

V[SM ] =
∑M−1

n=0 a2
n.

We recall that XM is given by,

XM = X0 + U0h

M−1∑
n=0

(
1− h

τ

)n
+

(
σ∗Uh

M−1∑
n=0

(
1− h

τ

)n)
∆W0+

+h

√
2σ2

Uh

τ

M−1∑
n=0

n∑
k=1

(
1− h

τ

)n−k
∆Wk,

(A.24)
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and consider here, however, the special case σ∗U = σU . The derivation for σ∗U 6= σU is

similar, but for simplicity is not treated in this thesis. With the above form for XM and

using the fact that, for any random variable Y and constant a we have V[aY ] = a2V[Y ],

we have,

V[XM ] = h2σ2
U

(
M−1∑
n=0

(
1− h

τ

)n)2

V[∆W0] + 2σ2
Uτh

M−1∑
k=1

[
1−

(
1− h

τ

)k]2

V[∆W̃k].

Recalling that V[∆Wk] = 1 ∀k, we have,

V[XM ] = h2σ2
U

(
M−1∑
n=0

(
1− h

τ

)n)2

+ 2σ2
Uτh

M−1∑
k=1

[
1−

(
1− h

τ

)k]2

.

Now, using the fact that,

M−1∑
n=0

yn =
1− yM

1− y
, and expanding the square in the second

term, we have,

V[XM ] = h2σ2
U

(
1− (1− h

τ )M

1− (1− h
τ )

)2

+ 2σ2
Uτh

(
(M − 1)− 2

M−1∑
k=1

(h
τ

)k
+
M−1∑
k=1

(h
τ

)2k
)

= h2σ2
U

τ2

h2

(
1−

(
1− h

τ

)M)2

+

+2σ2
Uτh

(
(M − 1)− 2

M−1∑
k=0

(h
τ

)k
− 2 +

M−1∑
k=0

(h
τ

)2k
+ 1

)
,

where the second line follows by adding in a zero-th term to the sum and subtracting

it again outside of the sum.

Again we use,

M−1∑
n=0

yn =
1− yM

1− y
, in the second term, to give,

V[XM ] = σ2
Uτ

2

(
1−

(
1− h

τ

)M)2

+

+2σ2
Uτh

(
M − 2

τ

h

[
1−

(
1− h

τ

)M]
+

1− (1− h
τ )2M

1− (1− h
τ )2

)
.
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Expanding the denominator in,
1− (1− h

τ )2M

1− (1− h
τ )2

, gives,

1− (1− h
τ )2M

1− (1− h
τ )2

=
1− (1− h

τ )2M

1− 1 + 2hτ −
h
τ

2 =
1− (1− h

τ )2M

2hτ −
h
τ

2

=
τ

2h
.
1− (1− h

τ )2M

1− h
2τ

≈ τ

2h
(1 +

h

2τ
)(1− (1− h

τ
)2M ),

where the final approximation follows from the fact that
1

1− y
=
∞∑
n=0

yn which implies

that
1

1− h
2τ

= 1 +
h

2τ
+ . . .

Putting this back into our derivation for V[XM ], and expanding the square of the

first term, we now have,

V[XM ] = σ2
Uτ

2

(
1−

(
1− h

τ

)M)2

+

+2σ2
Uτh

(
M − 2

τ

h

[
1−

(
1− h

τ

)M]
+

1− (1− h
τ )2M

1− (1− h
τ )2

)

= 2σ2
Uτ

2

(
T

τ
− 2

[
1−

(
1− h

τ

)M]
+

1

2

(
1 +

h

2τ

)(
1−

(
1− h

τ

)2M)

+
1

2
−
(

1− h

τ

)M
+

1

2

(
1− h

τ

)2M
)

which after some simplification becomes,

V[XM ] = 2σ2
Uτ

2

(
T

τ
− 1 +

(
1− h

τ

)M
− h

4τ

(
1− h

τ

)2M
+

h

4τ

)

Recalling from equation (A.23) that we can write(
1− h

τ

)M
= exp

[−T
τ

](
1− T

2τ
.
h

τ
+ . . .

)
and also (

1− h

τ

)2M
= exp

[−2T

τ

](
1− 2T

2τ
.
h

τ
+ . . .

)
.
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finally we have,

V[XM ] = 2σ2
Uτ

2

(
T

τ
− 1 + exp

[−T
τ

](
1− T

2τ
.
h

τ
+ . . .

)
−

−1

4
.
h

τ
exp

[−2T

τ

](
1− 2T

2τ
.
h

τ
+ . . .

)
+

1

4
.
h

τ

)
,

which we rearrange to give,

V[XM ] = 2σ2
Uτ

2

(
T

τ
− 1 + exp

[−T
τ

])
+

+σ2
Uτ

2

(
1

2
− T

τ
exp

[−T
τ

]
− 1

2
exp

[−2T

τ

])h
τ

+ . . .

= σ2
0 + δσ2.hτ ,

so we have

σ2
0 = 2σ2

Uτ
2

(
T

τ
− 1 + exp

[−T
τ

])
and

δσ2 = σ2
Uτ

2

(
1

2
− T

τ
exp

[−T
τ

]
− 1

2
exp

[−2T

τ

])

Thus we have a formula for the expected value for XM , E[XM ] = µh := µ0 +
h

τ
.δµ

and the variance, V[XM ] = σ2
0 + δσ2.

h

τ
accurate to O

(h
τ

)
.

A.6 Probability Density Function Calculations

For a normally distributed random variable e.g. Y ∼ N(µ, σ2) the probability distri-

bution function is given by,

P (Y ) =
1√

2πσ2
exp

(
− (Y − µ)2

2σ2

)
.

Using the mean, µ and variance, σ for XM as calculated above, our probability density

function, up to corrections of O
(
(hτ )2

)
, is thus,

99



P (Y ) =
1√

2π(σ2
0 + δσ2.hτ )

exp

(
−

(XM − µ0 − h
τ .δµ)2

2(σ2
0 + δσ2.hτ )

)
.

We can write the fraction,
1√

2π(σ2
0 + δσ2.hτ )

, as

1√
2πσ2

0(1 + δσ2

σ2
0
.hτ )

=
1√

2πσ2
0

(1 +
δσ2

σ2
0

.
h

τ
)−1/2 =

1√
2πσ2

0

(1− δσ2

2σ2
0

.
h

τ
+ . . . )

by Taylor expanding the (1 +
δσ2

σ2
0

.
h

τ
)−1/2 term.

Then expanding the numerator in the exponential term gives,

(XM − µ0 −
h

τ
.δµ)2 = (XM − µ0)2 − 2(XM − µ0)δµ.

h

τ
+O

((h
τ

)2)
(A.25)

Similarly by Taylor expansion, we can write the denominator in the exponential

term as,
1

2(σ2
0 + δσ2.hτ )

=
1

2σ2
0(1 + δσ2

σ2
0
.hτ )

=
1

2σ2
0

(1− δσ2

σ2
0

.
h

τ
+ . . . ). (A.26)

So combining the results in (A.25) and (A.26) the exponential term in the pdf

becomes,

exp

(
−

(XM − µ0 − h
τ .δµ)2

2(σ2
0 + δσ2.hτ )

)
= exp

(
− (XM − µ0)2

2σ2
0

+
2(XM − µ0)

2σ2
0

δµ.
h

τ
+

+
(XM − µ0)2

2σ2
0

.
δσ2

σ2
0

.
h

τ
+ . . .

)

which, by using the elementary property of the exponential function, exp(z + y) =

exp(z) exp(y), and the fact that exp(z) =

∞∑
n=0

zn

n!
, allows us to write this as,

exp

(
− (XM − µ0)2

2σ2
0

)(
1−

(
2(XM − µ0)

2σ2
0

δµ+
(XM − µ0)2

2σ2
0

.
δσ2

σ2
0

)
h

τ
+ . . .

)

Thus we can write the pdf of XM as,
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P (XM ) =
1√

2πσ2
0

(1− δσ2

2σ2
0

.
h

τ
+ . . . ) exp

(
− (XM − µ0)2

2σ2
0

)
×

×

(
1−

(
2(XM − µ0)

2σ2
0

δµ+
(XM − µ0)2

2σ2
0

.
δσ2

σ2
0

)
h

τ
+ . . .

)

=
1√

2πσ2
0

exp

(
− (XM − µ0)2

2σ2
0

)
×

×

(
1−
(

2(XM − µ0)

2σ2
0

δµ+
(XM − µ0)2

2σ2
0

.
δσ2

σ2
0

)
︸ ︷︷ ︸

=: q(XM )

h

τ
+ . . .

)

(A.27)

where q(XM ) is a polynomial in XM , defined by q(XM ) = q0 + q1XM + q2X
2
M , with

q0 = −2µ0δµ

2σ2
0

− µ2
0

2σ2
0

.
δσ2

σ2
0

= − 1

σ2
0

(−µ0δµ+ µ2
0

δσ2

2σ2
0

)

q1 = −δµ
σ2

0

+
µ0δσ

2

σ4
0

= − 1

σ2
0

(
δµ− µ0

δσ2

σ2
0

)

q2 = −δσ
2

2σ4
0

Thus the pdf can be written more concisely as,

P (XM ) =
1√

2πσ2
0

exp

(
− (XM − µ0)2

2σ2
0

)
.

(
1 + (q0 + q1XM + q2X

2
M )

h

τ

)
+O

((h
τ

)2
)

The expected value of a random variable, Y , is defined as the integral over the

probability space, Ω, i.e.

E[Y ] :=

∫
Ω
P (Y )Y dY

Similarly for some functional, f , of a random variable, Y , the expected value is given

by,

E[f(Y )] :=

∫
Ω
P (Y )f(Y ) dY
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Thus in order to compute the expected value of some functional of XM , we need

to be able to evaluate the integral of the pdf, P (XM ). To simplify this we have the

following, so called master integrals,

∫ b

a
N(µ0, σ

2
0;XM ) dXM =

√
π

2
σ0

(
erf
(µ0 − a√

2σ0

)
−erf

(µ0 − b√
2σ0

))

≡ I0(µ0, σ0; a, b)

(A.28)

∫ b

a
N(µ0, σ

2
0;XM )XM dXM = σ2

0

(
exp

[(a− µ0)2

2σ0

]
− exp

[(b− µ0)2

2σ0

])
+

+

√
π

2
µ0σ0

(
erf
(µ0 − b√

2σ0

)
−erf

(µ0 − a√
2σ0

))

≡ I1(µ0, σ0; a, b)

(A.29)

∫ b

a
N(µ0, σ

2
0;XM )X2

M dXM =
σ0

2

[
√

2π(µ2
0 + σ2

0)

(
erf
(µ0 − a√

2σ0

)
−erf

(µ0 − b√
2σ0

))
−

−2σ0

(
(b+ µ0) exp

[
− (b− µ0)2

2σ0

]
−

−(a+ µ0) exp
[
− (a− µ0)2

2σ0

] )]
≡ I2(µ0, σ0; a, b)

(A.30)

Using these master integrals to compute the expected value of our functional of the

random variable, XM , gives us the following,

E[χa.b(XM )] = I0(µ0, σ0; a, b) +

(
2∑

k=0

qkIk(µ0, σ0; a, b)

)
.
h

τ
(A.31)

where χa.b(XM ) is in particular the indicator function on the interval [a, b], i.e.
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χa,b(XM ) =

1 if XM ∈ [a, b]

0 otherwise

So we now have a formula for the expected value of χa,b(XM ), from this we are able

to compute the variance of our functional also. First we write the expected value as,

E[χa,b(XM )] =

∫
P (XM )χa,b(XM ) dXM =: A (A.32)

By definition, the variance of χa,b(XM ) is,

V[χa,b] = E

[(
χa,b − E[χa,b]

)2
]

which by the definition of the expected value can be written as,

V[χa,b(XM )] =

∫
P (XM )

(
χa,b(XM )−A

)2
dXM

expanding the square gives,

V[χa,b(XM )] =

∫
P (XM )

(
χ2
a,b(XM )− 2Aχa,b(XM ) +A2

)
dXM

=

∫
P (XM )χ2

a,b(XM ) dXM − 2A

∫
P (XM )χa,b(XM ) dXM︸ ︷︷ ︸

=A

+

+A2

∫
P (XM ) dXM︸ ︷︷ ︸

=1

where we have

∫
P (XM ) dXM︸ ︷︷ ︸

=1

, by the definition of the probability density function.

Since the the indicator function takes values only of either 0 or 1, the square of the

indicator function is the indicator function itself and thus the variance of the functional

of the solution is given by,

V[χa,b(XM )] = A− 2A2 +A2 = A(1−A) = E[χa,b]
(

1− E[χa,b]
)
.
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