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1 Introduction

Coarse space correction is essential to achieve algorithmic scalability in do-
main decomposition methods. Our goal here is to build a robust coarse space
for Schwarz–type preconditioners for elliptic problems with highly heteroge-
neous coefficients when the discontinuities are not just across but also along
subdomain interfaces, where classical results break down [3, 6, 15, 9].

In previous work, [7], we proposed the construction of a coarse subspace
based on the low-frequency modes associated with the Dirichlet-to-Neumann
(DtN) map on each subdomain. A rigorous analysis was recently provided
in [2]. Similar ideas to build stable coarse spaces, based on the solution of
local eigenvalue problems on entire subdomains, can be found in [4], and
even traced back to similar ideas for algebraic multigrid methods in [1]. How-
ever, we will argue below that the DtN coarse space presented here is better
designed to deal with coefficient variations that are strictly interior to the
subdomain, being as robust as, but leading to a smaller dimension than the
coarse space analysed in [4].

The robustness result that we obtain, generalizes the classical estimates
for overlapping Schwarz methods to the case where the coarse space is richer
than just the constant mode per domain [8], or other classical coarse spaces
(cf. [15]). The analysis is inspired by that in [4, 13] and crucially uses the
framework of weighted Poincaré inequalities, introduced in [12, 10] and suc-
cessfully applied also to other methods in [11, 14].
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2 Two-level Schwarz method with DtN coarse space

We consider the variational formulation of a second order, elliptic boundary
value problem with Dirichlet boundary conditions: Find u∗ ∈ H1

0 (Ω), for a
given domain Ω ⊂ R

d (d = 2 or 3) and a source term f ∈ L2(Ω), such that

a(u∗, v) ≡

∫

Ω

α(x) ∇u∗ · ∇v =

∫

Ω

fv ≡ (f, v) , ∀v ∈ H1
0 (Ω), (1)

and the diffusion coefficient α = α(x) is a positive piecewise constant function
that may have large variations within Ω.

We consider a discretization of the variational problem (1) with contin-
uous, piecewise linear finite elements (FE). For a shape regular, simplicial
triangulation Th of Ω, the standard space of continuous and piecewise linear
functions (w.r.t Th) is then denoted by Vh. The subspace of functions from
Vh that vanish on the boundary of Ω is denoted by Vh,0. The discrete FE
problem that we want to solve is: Find uh ∈ Vh,0 such that

a(uh, vh) = (f, vh), ∀vh ∈ Vh,0. (2)

Given the usual nodal basis {φi}n
i=1 for Vh,0 consisting of “hat” functions

with n := dim(Vh,0), (2) can be compactly written as

Au = f , with Aij := a(φj , φi) and fi = (f, φi), i, j = 1, . . . , n, (3)

where u and f are respectively the vector of coefficients corresponding to the
unknown FE function uh in (2) and to the r.h.s function f .

Two-level Schwarz type methods for (2) are now constructed by choosing
an overlapping decomposition {Ωj}J

j=1 of Ω with a subordinate partition of

unity {χj}J
j=1, as well as a suitable coarse subspace VH ⊂ Vh,0. In practice

the overlapping subdomains Ωj can be constructed automatically given the
system matrix A by using a graph partitioner, such as METIS, and adding
on a number of layers of fine grid elements to the resulting nonoverlapping
subdomains. A suitable partition of unity can be constructed from the geo-
metric information of the fine grid. For more details see e.g. [15] or [2]. We
assume that each point x ∈ Ω is contained in at most N0 subdomains Ωj .

The crucial ingredient to obtain robust two-level methods for problems
with heterogeneous coefficients is the choice of coarse space VH ⊂ Vh,0. Let
us assume for the moment that we have such a space VH and a restriction
operator R0 from Vh,0 to VH and define restriction operators Rj from func-
tions in Vh,0 to functions in Vh,0(Ωj), or from vectors in R

n to vectors in
R

dim Vh,0(Ωj), by setting (Rju)(xi) = u(xi) for every grid point xi ∈ Ωj . The
two-level overlapping additive Schwarz preconditioner for (3) is then simply

M−1
AS,2 =

∑J

j=0
RT

j A−1
j Rj where Aj := RjART

j , j = 0, . . . , J. (4)
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In the classical algorithm VH consists simply of FEs on a coarser triangu-
lation TH of Ω and RH is the canonical restriction from Vh,0 to VH , leading
to a fully scalable iterative method with respect to mesh/problem size (pro-
vided the overlap size is proportional to the coarse mesh size H). However,
unfortunately this preconditioner is not robust to strong variations in the
coefficient α. We will now present a new, completely local approach to con-
struct a robust coarse space, as well as an associated restriction operator
using eigenvectors of local Dirichlet-to-Neumann maps, proposed in [7].

We start by constructing suitable local functions on each subdomain Ωj

that will then be used to construct a basis for VH . To this end, let us fix j ∈
{1, . . . , J} and first consider at the continuous level the Dirichlet-to-Neumann
map DtNj on the boundary of Ωj . Let Γj := ∂Ωj and let vΓ : Γj → R be a
given function, such that vΓ |∂Ω = 0 if Γj ∩ ∂Ω 6= ∅. We define

DtNj(vΓ ) := α
∂v

∂νj

∣

∣

∣

∣

Γj

,

where νj is the unit outward normal to Ωj on Γj , and v satisfies

−div(α∇v) = 0 in Ωj , v = vΓ on Γ . (5)

The function v is the α–harmonic extension of the boundary data vΓ to the
interior of Ωj .

To construct the (local) coarse basis functions, we now find the low fre-
quency modes of the Dirichlet-to-Neumann operator DtNj with respect to
the weighted L2–norm on Γj , i.e. the smallest eigenvalues of

DtNj(v
(j)
Γ ) = λ(j) αv

(j)
Γ . (6)

Then we extend each of these modes v
(j)
Γ α–harmonically to the whole domain

and let v(j) be its extension. This is equivalent to the Steklov eigenvalue
problem of looking for the pair (v(j), λ(j)) which satisfies:

−div(α∇v(j)) = 0 in Ωj and α
∂v(j)

∂νj

= λαv(j) on Γj . (7)

The variational formulation of (7) is to find (v(j), λ(j)) ∈ H1(Ωj) × R such
that

∫

Ωj

α∇v(j) · ∇w = λ(j)

∫

Γj

trjα v(j) w , ∀w ∈ H1(Ωj), (8)

where trjα(x) := limy∈Ωj→x α(y). To discretize this generalized eigenvalue
problem, we consider for all v, w ∈ H1(Ωj) the bilinear forms

aj(v, w) :=

∫

Ωj

α∇v · ∇w and mj(v, w) :=

∫

Γj

trjαvw
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and restrict (8) to the FE space Vh(Ωj). The coefficient matrices associated
with the variational forms aj and mj are

A
(j)
kl :=

∫

Ωj

α∇φk · ∇φl and M
(j)
kl :=

∫

Γj

trjαφk φl,

where φk and φl are any two nodal basis functions for Vh(Ωj) associated with
vertices of Th contained in Ωj . Then the FE approximation to (8) in matrix
notation is

A(j)v(j) = λ(j)M (j)v(j) (9)

where v(j) ∈ R
nj , nj := dimVh(Ωj), denotes the degrees of freedom of the

FE approximation to v(j) in Vh(Ωj).

Let the nj eigenpairs (λ
(j)
ℓ ,vℓ)

nj

ℓ=1 corresponding to (9) be numbered in

increasing order of λ
(j)
ℓ . Since M

(j)
kl 6= 0 only if φk and φl are associated with

the nΓ vertices of Th that lie on Γj , it is easy to see that at most nΓ of the

eigenvalues λ
(j)
ℓ are finite. Moreover, the smallest eigenvalue λ

(j)
1 = 0 with

constant eigenvector and the set of eigenvectors {vℓ}
nj

ℓ=1 can be chosen so
that they are A(j)–orthonormal. The local coarse space is now defined as the

span of the FE functions v
(j)
ℓ ∈ Vh(Ωj), ℓ ≤ mj ≤ nΓ , corresponding to the

first mj eigenpairs of (9). For each subdomain Ωj , we choose the value of mj

such that λ
(j)
ℓ < diam(Ωj)

−1, for all ℓ ≤ mj, and λ
(j)
mj+1 ≥ diam(Ωj)

−1. We
will see in the analysis in the next section why this is a sensible choice.

Using the partition of unity {χj}J
j=1, we now combine the local basis func-

tions constructed in the previous section to obtain a conforming coarse space
VH ⊂ Vh,0 on all of Ω. The new coarse space is defined as

VH := span
{

Ih

(

χjv
(j)
ℓ

)

: 1 ≤ j ≤ J and 1 ≤ ℓ ≤ mj

}

, (10)

where Ih is the standard nodal interpolant onto Vh,0(Ω). The dimension of

VH is
∑J

j=1 mj . By construction each of the functions Ih

(

χjv
(j)
ℓ

)

∈ Vh0
, so

that as required VH ⊂ Vh,0. The transfer operator R0 from Vh0
to VH is

defined in a canonical way by setting RT
0 uH(xi) = uH(xi), for all uH ∈ VH

and for all vertices xi of Th.
We will see in the next section that under some mild assumptions on the

variability of α this choice of coarse space leads to a scalable and coefficient-
robust domain decomposition method with supporting theory.

3 Conditioning analysis

To analyse this method let us first define the boundary layer Ω◦
j for each Ωj

that is overlapped by neighbouring domains, i.e.
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Ω◦
j := {x ∈ Ωj : χj(x) < 1}.

We assume that this layer is uniformly of width ≥ δj , in the sense that it
can be subdivided into shape regular regions of diameter δj , and that the
triangulation Th resolves it. This also guarantees that it is possible to find a
partition of unity such that |χj | = O(1) and |∇χj | = O(δ−1

j ).
We now state the key assumption on the coefficient distribution α(x).

Assumption 1 We assume that, for each j = 1, . . . , J , there exists a set

Xj ⊂ Γj (not necessarily connected) such that (i) maxx,y∈Xk

α(x)
α(y) = O(1)

and (ii) there exists a path Py from each y ∈ Ωj to Xj , such that α(x) is an
increasing function along Py (from y to Xj).

Lemma 1 (weighted Poincaré inequality [10]). Let Assumption 1 hold.

∫

Ω◦

j

α|v − vXj |2 ≤ CP δj

∫

Ω◦

j

α|∇v|2, for all v ∈ Vh(Ωj),

where vXj := 1
|Xj |

∫

Xj
v.

Remark 1. Note that Assumption 1 is related to the classical notion of quasi-
monotonicity coined in [3]. It ensures that the constant CP in the Poincaré-
type inequality in Lemma 1, as well as all the other (hidden) constants below
are independent of the values of the coefficient function α(x). The constants
may however depend logarithmically or linearly on δj/h. This depends on
the geometry and shape of the paths Py and on the size and shape of the set
Xj . For more details see [2] and [12, 10].

The following proposition is the central result in our analysis. It proves
the stability and a weak approximation property for a local projection onto
the span of the first mj eigenvectors.

Proposition 1. Let Assumption 1 hold, and for any u ∈ Vh(Ωj), define the

projection Πju :=
∑mj

ℓ=1 aj(v
(j)
ℓ , u) v

(j)
ℓ . Then

|Πju|a,Ωj
≤ |u|a,Ωj

and (11)

‖u − Πju‖0,α,Ω◦

j
.

√

cj(mj) δj |u|a,Ωj
. (12)

where cj(mj) := C2
P +

(

δjλ
(j)
mj+1

)−1
.

Proof. Theorem 3.2 in [2].

As usual (cf. [15]), the following condition number bound can then be
obtained via abstract Schwarz theory by constructing a stable splitting.

Theorem 2. Let Assumption 1 be satisfied. Then the condition number of
the two-level Schwarz algorithm with the coarse space VH based on local DtN
maps and defined in (10) can be bounded by
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κ(M−1
AS,2A) .

J
max
j=1

{cj(mj)} . C2
P +

J
max
j=1

(

δjλ
(j)
mj+1

)−1

.

The hidden constant is independent of h, δj, diam(Ωj), and α.

Proof. This is Theorem 3.5 in [2]. The stable splitting for a function u ∈ Vh,0

is constructed using the projections Πj , j = 1, . . . , J , in Proposition 1 to
define the coarse quasi-interpolant

u0 := Ih

( J
∑

j=1

χjΠju|Ωj

)

∈ VH . (13)

If we now choose uj := Ih(χj(u − Πju)) ∈ Vh,0(Ωj), then

u =

J
∑

j=0

uj and

J
∑

j=0

∫

Ω

α|∇uj |
2 .

J
max
j=1

{cj(mj)}

∫

Ω

α|∇u|2

For details see [2].

Remark 2. Note that by choosing the number mj of modes per subdomain

such that λ
(j)
mj+1 ≥ diam(Ωj)

−1, as stated in Section 2, we have

κ(M−1
AS,1A) .

(

C2
P +

J
max
j=1

diam(Ωj)

δj

)

.

Hence, provided the constant CP is uniformly bounded, independently of
any jumps in the coefficients, we retrieve the classical estimate for the two-
level additive Schwarz method independently of any variations of coefficients
across or along subdomain boundaries.

4 Numerical results

We choose Ω = (0, 1)2 and discretize (1) on regular grid with m×m elements.
We apply a homogeneous Dirichlet boundary condition u = 0 on the left hand
side boundary and homoegenous Neumann boundary conditions ∂u

∂ν
= 0 on

the remainder. We use the METIS partitioner to split the domain into 16
irregular subdomains as shown in Figure 1. Then we construct the overlapping
partition using Freefem++ [5] by extending each subdomain by one layer of
elements on all or the boundary.

As the coarse space we use the DtN coarse space described in Section 2

with mj chosen such that λ
(j)
mj < diam(Ωj)

−1 ≤ λ
(j)
mj+1, for all j = 1, . . . , 16

(labelled D2N below). We compare this preconditioner with the one-level ad-
ditive Schwarz method (labelled NONE below) and the two-level method with
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partition of unity coarse space, i.e. choosing mj = 1, for all j = 1, . . . , 16
(labelled POU below). To confirm in some sense the optimality of our choice
for mj , we also include results with the DtN coarse space choosing mj +1 and
max{1, mj − 1} basis functions per subdomain (labelled D2N+ and D2N-, re-
spectively). We use the preconditioners within a conjugate gradient iteration
and terminate when the residual has been reduced by a factor 10−6.

In the first test case, we choose m = 80 and α to be a realization of a log-
normal distribution with exponential covariance function (variance σ2 = 4
and correlation length λ = 4/m) and mean(log α) = 3 (cf. Figure ??).

In Figure 3 we plot ‖u − ū‖∞ (where ū is the solution of (3) obtained via
a direct solver) against the iteration count. We compare three methods:

AS : the one level preconditioner M−1
AS,1 =

∑J

j=1 RT
j A−1

j Rj .
AS + ZNICO : the two level preconditioner defined by (4) with a coarse grid
which consists simply of constant functions on each subdomain weighted
by a partition of unity.
AS + ZD2N : the two level preconditioner defined by (4) with the new
coarse grid we have introduced.

The AS and AS + ZNICO methods require roughly the same number of
iterations (89 versus 92 iterations) whereas the new AS + ZD2N stands out
reducing the number of iterations to 38. Finally, in Figure 4 we show that the
criterion for the number mj of eigenmodes that we select in each subdomain
is somewhat optimal since adding one has hardly any impact on performance
while removing one has strong negative impact.
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