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Abstract

Photonic crystal fibres are novel optical devices that can be designed to guide light of a particular
frequency. This requires two phenomena to occur. First, the frequency of light must be in a gap
of the spectrum of the fibre’s cladding (usually a periodic arrangement of air holes), so that the
cladding acts as a barrier to that frequency of light. Second, the perturbation or defect in the
middle of the fibre must allow a localised or trapped mode to exist in a spectral gap of the cladding
so that light may propagate inside the defect. In this paper the performance of planewave expansion
methods for computing such spectral gaps and trapped eigenmodes in photonic crystal fibres is
carefully analysed. The occurrence of discontinuous coefficients in the governing equation means
that exponential convergence is impossible due to the limited regularity of the eigenfunctions.
However, we show through a numerical convergence study and rigorous analysis on a simplified
problem that the planewave expansion method is at least as good as standard finite element schemes
on uniform meshes in both error convergence and computational efficiency. More importantly,
we also consider the performance of two commonly used variants of the planewave expansion
method: (a) coupling the planewave expansion method with a regularisation technique where the
discontinuous coefficients in the governing equation are approximated by smooth functions, and (b)
approximating the Fourier coefficients of the discontinuous coefficients in the governing equation.
There is no evidence that regularisation improves the planewave expansion method, but with the
correct choice of parameters both variants can be used efficiently without adding significant errors.
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1. Introduction

Photonic crystal fibres (PCFs) are a novel generation of optical fibre and physicists are actively
trying to discover and exploit their unique properties. The cross-section of a fibre typically has
a periodic structure with a central defect or compact perturbation. Since they are difficult and
expensive to manufacture the task of mathematically modelling the behaviour of light in them is
very important. In this paper we consider the problem of computing spectral band gaps (that arise
from the periodicity) and guided modes (that occur due to the compact perturbation) in PCFs
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using the planewave expansion method. This method is a popular choice for this type of problem,
[7, 6, 17, 16, 18].

The propagation of light is governed by Maxwell’s equations. A common approach to solve
Maxwell’s equations in PCFs is to look only for time-harmonic solutions and to exploit symme-
tries, in particular translational invariance, to simplify the equations to spectral problems with
Schrödinger-type operators.

To compute spectral band gaps only the unperturbed periodic structure in the cladding of the
fibre needs to be considered. By applying the Floquet-Bloch tranform a family of modified problems
on a bounded domain are obtained, with periodic boundary conditions, essential for planewave
expansion. The spectrum of the original problem is then obtained by taking the union of the
spectra of the family of transformed problems (c.f. [9]). To compute a trapped mode via planewave
expansion is more difficult. First, the perturbed coefficient needs to be extended periodically to
a larger period cell (the so-called supercell method), then the Floquet-Bloch transform can be
applied again as above. The trapped mode appears as a narrow band in the essential spectrum of
the supercell problem.

Especially in solid state physics, planewave expansion for Schrödinger-type operators is ex-
tremely powerful and popular because of its exponential convergence. However, this relies heavily
on the smoothness of the potential in those applications and on the resulting high regularity of
the eigenfunctions. In the PCF case, the potential and other coefficient functions are not smooth.
They are discontinuous at the interface of materials (e.g. between glass and air), which in turn
reduces the convergence rate of the planewave expansion method.

In this paper we analyse the convergence of planewave expansion methods for PCF problems.
This is achieved through a numerical convergence study and rigorous analysis on a simplified model
problem, the Schrödinger operator. We show that the error of the planewave expansion method
is comparable to that of standard finite element schemes on uniform meshes, and that it depends
entirely on the regularity of the eigenfunctions. Moreover, we show that the planewave expansion
method can be implemented with the same computational efficiency as the standard finite element
method, by using iterative eigensolvers and a simple and optimal preconditioner. Furthermore,
we also consider two variants: (a) coupling the planewave expansion method with a regularisation
technique where the discontinuous coefficients are approximated by smooth coefficients (see [11, 7,
16]), and (b) approximating the Fourier coefficients of the discontinuous coefficients in the governing
equation via a sampling technique (see e.g. [7, 17, 16, 18, 15]). Variant (b) is usually necessary in
practice, because explicit formulae for the Fourier coefficients of the discontinuous coefficients are
only available for simple geometries.

A mathematical analysis of the convergence properties of the planewave expansion method for
a simplified version of the problem can be found in [14] (including the case of regularisation, but
without sampling). Beyond this recent paper there has been relatively little analysis for problems
with discontinuous coefficients despite the popularity of the method. There is no analysis of the
planewave expansion method with sampling in the literature. Other papers that have analysed
various aspects of the planewave expansion method include [21] and [4]. A mathematical paper
that performs an analysis for a simplified 1D problem is [12]. Further details of the results presented
here can be found in [14] and [13].

The rest of this paper is organised as follows. In §2 we formulate the problem by applying
symmetries and the Floquet-Bloch transform. In §3 we give a brief description of the planewave
expansion method and how it is implemented, as well as describing the variants: (a) the planewave
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expansion method with regularisation, and (b) the planewave expansion method with sampling.
Section 4 contains a detailed numerical study of the convergence of these planewave expansion
methods. Section 5 is devoted to the mathematical analysis of the planewave expansion method
for the Schrödinger operator with (the practically essential) sampling. For completeness we include
a short review of results from [14] for the planewave expansion error and regularisation error.
Numerical results for sampling are also included here to confirm our theoretical results. Finally, in
§6 we make some concluding remarks.

2. Modelling the flow of light in PCFs

We will study source free, non-magnetic PCFs. To describe the structure of a PCF we define
its refractive index n on R

3. In this paper we only consider the case when n is piecewise constant.
Furthermore, we choose the z-axis parallel to the fibre so that the (x, y)-plane is a cross-section.
In this way a PCF is invariant with respect to z and n = n(x, y), and its cross-section can be
described as a photonic crystal with a compact perturbation, i.e. n = np+nc where np is periodic
on some Bravais lattice and nc is a compact perturbation. Note that instead of applying boundary
conditions we define n for all of R3.

For spectral band gap calculations we only need to perform calculations on the photonic crystal
with n = np, since the addition of a compact perturbation does not change the essential spectrum
of the operator (see e.g. [9]). We can define the period cell Ω ⊂ R

2 to be the Wigner-Seitz primitive
cell of the underlying Bravais lattice (for definitions, see [1]).

To compute a trapped mode, on the other hand, we must include the perturbation. Since
n = np + nc is not periodic and the planewave expansion method requires periodicity, we resort
to the so-called supercell method and replace n = np + nc with n = nsuper

p . We choose a new
Bravais lattice with sufficiently large Wigner-Seitz primitive cell Ω ⊂ R

2 (the supercell) such that
nsuper
p = np + nc in Ω and nsuper

p is periodic on the new Bravais lattice (i.e. the perturbation is
repeated periodically in nsuper

p ).
The accuracy of the supercell approximation has been studied for a simplified problem in [20],

but for the more general problem that we consider here a rigorous analysis is still lacking. In [20]
it is shown that (for their simplified problem) the error in the essential spectrum of the perturbed
periodic problem decays quadratically with the inverse of the distance between perturbations in
nsuper
p , while the error for isolated eigenvalues decays exponentially. See [13, p. 28] for a plot that

confirms these convergence rates for the 1D version of the Schrödinger operator that we consider
later. Further discussion can be found in [9] and the references therein.

Now that we have defined a piecewise constant, periodic function n = n(x, y) with period cell
Ω ⊂ R

2, we can exploit symmetries to simplify Maxwell’s equations and obtain a Schrödinger–type
spectral problem. Eliminating the electric field from time-harmonic Maxwell’s equations we obtain

∇× ( 1
n2∇×H) = k2H, (1)

∇ ·H = 0, (2)

on R
3 where H is the magnetic field, k is the wave number and n is the refractive index as defined

above. In this paper we consider the problem of findingH given k and n. Note that this corresponds
to fixing the frequency of light. The invariance of n in the z-direction is exploited to simplify (1)
and (2) by expanding H in the form

H(x, y, z) = h(x, y)eiβz = (ht(x, y) + hz(x, y)ẑ)e
iβz, (3)
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for constant β and ht = (hx, hy, 0).
1 Substituting this into (1) and (2) and using the identity

∇( 1
n2 ) = − 1

n2∇(log n2) we discover (after some vector calculus; details in [13]) that it is sufficient
to solve the following eigenproblem on R

2 for eigenfunctions ht(x, y) and eigenvalues β2:

(∇2
t + k2n2)ht − (∇t × ht)× (∇t log n

2) = β2ht, (4)

where ∇t = ( ∂
∂x ,

∂
∂y , 0). Note that for β 6= 0, hz is uniquely determined by ht and β using (2),

i.e. hz = i
β∇t · ht. Also, (4) must be considered in the distributional sense because in the case of

PCFs the term ∇t log n
2 is not a classical function. It is the gradient of a discontinuous, piecewise

constant function.
To transform the problem from one that is posed on R

2 to a family of modified problems on
a bounded domain we exploit the periodicity of n and apply the Floquet-Bloch transform (cf. [1],
[6], [9]). For each so-called quasi-momentum ξ ∈ B × {0} (where B is the 1st Brillouin zone of the
Bravais lattice for n, i.e. the closure of the Wigner-Seitz primitive cell of the reciprocal lattice, see
[1]) we may write ht as

ht(x, y) = eiξ·xut(x, y),

where ut = (ux, uy, 0) is periodic on the same Bravais lattice as n. Thus, the eigenproblem (4),
posed on all of R2, is transformed into a family of eigenproblems

(∇t + iξ)2ut + k2n2ut − ((∇t + iξ)× ut)× (∇t log n
2) = β2ut, for all ξ ∈ B × {0}, (5)

on the bounded domain Ω ⊂ R
2 subject to periodic boundary conditions. Solving this family of

eigenproblems is the main focus of this paper.
Some authors (e.g. [9],[20]) make the additional assumption that β = 0 and solve (4) for

the eigenvalue k2. In this case (4) splits into two scalar equations that are referred to as the
TE (transverse electric) and TM (transverse magnetic) mode problems. We do not make this
assumption in our paper.

3. Planewave expansion methods

Let us briefly recall the standard (plain vanilla) planewave expansion method and apply it to
(5). Note however, that this method is not practical for most applications because it assumes
explicit forumlae for the Fourier coefficients of n2 and log n2. Instead, it is usually necessary to
approximate these Fourier coefficients. This is easily and cheaply achieved via the sampling method
presented below.

3.1. Planewave expansion method (plain vanilla)

Suppose that n is periodic on a Bravais lattice with primitive lattice vectors a1 and a2, i.e.
n(x+ k1a1+ k2a2) = n(x) for all x ∈ R

2, k1, k2 ∈ Z. Let b1 and b2 be primitive lattice vectors for
the reciprocal lattice and define

G := {g ∈ R
2 : g = k1b1 + k2b2,k ∈ Z

2}.

1Throughout this paper we use subscript t notation to denote the transverse part of a vector, not the time
derivative.
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For G ∈ N define

Z
2
G := {k ∈ Z

2 : |k| ≤ G},

GG := {g ∈ R
2 : g = k1b1 + k2b2,k ∈ Z

2
G},

SG := span{eig·x : g ∈ GG}.

Let N := dimSG. To apply the planewave expansion method to (5) we search for approximations
to the eigenfunction ut = (u1, u2, 0), such that u1, u2 ∈ SG. For j = 1, 2 we may write

uj(x) =
∑

g∈GG

[uj ]ge
ig·x, x ∈ R

2,

where [uj ]g are the degrees of freedom.2 Similarly, we expand the coefficient functions in (5) in
terms of planewaves, i.e.

n2(x) =
∑

k∈G

[n2]ke
ik·x and ∇t log n

2(x) =
∑

k∈G

ik[log n2]ke
ik·x,

and substitute these (together with the expansion of ut) into (5):
∑

g∈GG

(ig + iξ)2[ut]ge
ig·x +

∑

g∈GG

∑

k∈G

k2[n2]k[ut]ge
i(g+k)·x

−
∑

g∈GG

∑

k∈G

((ig + iξ)× [ut]g)× (ik)[log n2]ke
i(g+k)·x = β2

∑

g∈GG

[ut]ge
ig·x,

where [ut]g = ([u1]g, [u2]g, 0). Finally, by comparing coefficients, we obtain the following system
of 2N equations

∑

g∈GG

(
A11 A12

A21 A22

)(
[u1]g
[u2]g

)
= β2

(
[u1]g′

[u2]g′

)
∀g′ ∈ GG, (6)

where the Aij are given by

A11(g
′,g) = −|ξ + g|2δg,g′ + k2[n2]g′−g +(g′2 − g2)(ξ2 + g2)[log n

2]g′−g,

A12(g
′,g) = −(g′2 − g2)(ξ1 + g1)[log n

2]g′−g,

A21(g
′,g) = −(g′1 − g1)(ξ2 + g2)[log n

2]g′−g,

A22(g
′,g) = −|ξ + g|2δg,g′ + k2[n2]g′−g +(g′1 − g1)(ξ1 + g1)[log n

2]g′−g.

This system of equations can be written as a 2N × 2N matrix eigenproblem

Av = λv, (7)

where λ = β2 is the eigenvalue and the Fourier coefficients [u1]g and [u2]g make up the eigenvector
v. In practice we choose an ordering so that A has block form

A =

[
A11 A12

A21 A22

]

2Our convention is to express the index–g Fourier coefficient in the planewave expansion of a function v by [v]g.
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and each N × N submatrix Aij has entries that correspond to the coefficients Aij above. The
ordering within each submatrix is in ascending order of magnitude of the moduli of g and g′,
i.e. we define a bijection i : GG → {m ∈ N : m ≤ N} such that i(g) < i(g′) if |g| < |g′|. Then
(Aij)i(g′),i(g) = Aij(g

′,g) for all g,g′ ∈ GG.
The matrix eigenproblem (7) is solved using a Krylov subspace iteration method, because only

a few eigenvalues of A are of physical interest. We use the implicitly restarted Arnoldi method that
is implemented in the ARPACK software package [10] applied to (σI −A)−1 for a suitably chosen
shift σ. At each iteration the action of (σI − A)−1 is required, or equivalently, we must solve a
linear system with (σI −A). We use preconditioned GMRES [8] with a block preconditioner

P = σI −

[
P11 P12

P21 P22

]

with N ×N submatrices Pij chosen to be of the form

P11 =

[
B11 0
0 D11

]
, P12 =

[
B12 0
0 0

]
, P21 =

[
B21 0
0 0

]
, P22 =

[
B22 0
0 D22

]
.

In particular, if the blocks Bij are chosen to be the NB ×NB principal parts of Aij , for i, j = 1, 2
and 1 ≤ NB ≤ N , and the blocks Dii are the diagonals of the remaining (N − NB) columns and
rows of Aii, i.e.

(Bij)kℓ = (Aij)kℓ for i, j = 1, 2 and k, ℓ = 1, . . . , NB ,

(Dii)kk = (Aii)kk for i = 1, 2 and k = 1, . . . , (N −NB),

then the preconditioner P is optimal in practice, in the sense that in all our experiments the number
of iterations required by the GMRES method does not depend on the size of N . See [14] for a
rigorous proof of the optimality of the preconditioner P in the context of the Schrödinger operator
considered later.

Importantly, apart from the application of the preconditioner, the implicitly restarted Arnoldi
method with GMRES solver only requires matrix vector products with A, which for the planewave
expansion method are available in O(G2 logG) operations using the Fast Fourier Transform (2
FFTs and 4 inverse FFTs). For more details see [13] and [15]. Thus, the total computational cost
of solving (7) is O(G2 logG) (or equivalently O(N logN)).

3.2. Planewave expansion method with regularisation

A method that has been suggested for improving the convergence rate of the planewave ex-
pansion method is to replace the discontinuous coefficient function n(x) with an effective smooth
coefficient function ñ(x) (e.g. see [7], [16], [11] and [15]).

Although this can indeed improve the convergence rate of the planewave expansion method
(with respect to G or N), the modified method is converging to the solution of the regularised
problem and the total error includes an additional error due to regularisation, which needs to also
be taken into account. We will quantify the total error below and try to answer the question
whether regularisation is beneficial or not.

In this paper we focus on the type of regularisation used in [16] and [15], although we expect
similar results to hold for other techniques. Suppose f is a piecewise constant function that is
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periodic on a Bravais lattice (e.g. f = n2 or f = log n2). Then a smooth approximation to f may
be given by

f̃(x) := (G∆ ∗ f)(x) =

∫

R2

G∆(x− y)f(y)dy,

where G∆ is the normalised Gaussian,

G∆(x) :=
1

2π∆2
exp

(
|x|2

2∆2

)
.

The standard deviation of the Gaussian ∆ > 0 is the smoothing parameter. As ∆ → 0, f̃ → f
in the distributional sense. If f is a distribution (e.g. f = ∇ log n2) then we define f̃ in a similar
way, except we use the distributional notion of convolution. Other types of regularisation might
involve taking G∆ to be some other function (e.g. a sinc function).

Gaussian smoothing has the very convenient property that

[f̃ ]g = [f ]g exp

(
−
|g|2∆2

2

)
, for all g ∈ G.

Using this formula we easily obtain the matrix eigenproblem for the regularised problem by replac-
ing [n2]g and [log n2]g in the definition of (7) with [n2]g exp(−|g|2∆2/2) and [log n2]g exp(−|g|2∆2/2),
respectively. Thus, the computational cost for planewave expansion with smoothing is the same
as that of the plain vanilla version.

3.3. Planewave expansion method with sampling

The planewave expansion method, with and without regularisation, requires knowledge of the
Fourier coefficients of n2 and log n2. In the definition of (7) we require [n2]g and [log n2]g for all
g ∈ G2G. However, except in special cases, explicit formulae are usually not available and it is
essential in practice to approximate these Fourier coefficients. This adds an additional error to
the calculations. We are interested in the relative size of this additional error and in how the
corresponding parameters should be chosen in an optimal way.

A simple and commonly used method to approximate the Fourier coefficients of a periodic
function f is to take an FFT of the nodal values of f on a uniform grid in the spatial domain (as
opposed to the frequency domain). We call this method sampling (see e.g. [7, 17, 16, 18, 15]). The
advantage of this method is that all of the Fourier coefficients of f are computed cheaply using a
single FFT. This allows us to oversample by taking the grid spacing of the corresponding FFT grid
significantly finer than that of the FFT grids used in solving (7), without a too large computational
penalty.

To define (and analyse) the sampling method it is useful to define, for M ∈ N,

Y
2
M := {k ∈ Z

2 : −M
2 ≤ ki <

M
2 },

BM := {x ∈ R
2 : x = 1

M (k1a1 + k2a2),k ∈ Y
2
M},

HM := {g ∈ R
2 : g = k1b1 + k2b2,k ∈ Y

2
M},

TM := span{eig·x : g ∈ HM}.

The set Y
2
M is a square grid in R

2, BM is a uniform grid (not necessarily square) in Ω with grid
spacing M−1, HM are the corresponding indices for the Fourier coefficients in reciprocal space, and
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TM is a finite dimensional subspace of planewaves (similar to SG). We also define (see e.g. [19]),
for any f ∈ L2

p ∩C0(R2), the trigonometric projection operator QM : L2
p ∩C0(R2) → TM by

(QMf)(x) := f(x) ∀x ∈ BM . (8)

Here, L2
p is the space of periodic functions (with respect to the underlying Bravais lattice) that are

square integrable on any compact subset of R2. C0(R2) denotes as usual the space of continuous
functions on R

2. If f 6∈ C0(R2), but only piecewise continuous (e.g. in the case of n2 and log n2),
then the nodes x ∈ BM may fall on an interface. Therefore, we extend the definition of QM to
QM : L2

p → TM by specifying that

QMf(x) := lim sup
ǫ→0

1
|B(x,ǫ)|

∫

B(x,ǫ)
f(y)dy ∀x ∈ BM .

In the sampling method we approximate n2 and log n2 with QMn2 and QM log n2, respectively,
for a suitably chosen, large M . In practice this means replacing [n2]g and [log n2]g in the def-
inition of (7) with [QMn2]g and [QM log n2]g, respectively. This is very easy to do in practice
and requires only one application of FFT for each function, e.g. computing {[QMn2]g : g ∈ HM}
from {(QMn2)(x) = n2(x) : x ∈ BM} requires only O(M2 logM) operations. Using quadrature to
individually approximate each of the Fourier coefficients [n2]g and [log n2]g would be much more
computationally intensive.

For the overall accuracy of the method it is important to choose M appropriately. It is tempting
to use the same size of Fourier grid as in the matrix-vector multiplication with A in the implemen-
tation of the iterative eigensolver for (7). However, our analysis and numerical simulations below
show that the error contribution from sampling is relatively large and it is better to oversample
by taking M significantly larger than 2G. Since only two FFTs (one for n2 and one for log n2)
with this larger grid are necessary this is no huge penalty in practice, but asymptotically speaking
planewave expansion with sampling requires O(M2 logM +G2 logG) operations.

4. Numerical Convergence Study

Unfortunately, a theoretical convergence analysis for the full PCF problem (5) is beyond
any currently available approaches, and so we have not yet managed to extend our theory for
Schrödinger operators in [14] to (5). However, the numerical experiments in this section suggest
a very similar behaviour of the planewave expansion method for this much harder problem. The
convergence rate is again directly linked to the regularity of the eigenfunctions, although a clear
convergence rate is much harder to discern here.

4.1. Setup for numerics

To study the performance of the planewave expansion method for (5) we will use two model
examples. They correspond to photonic crystal structures where the background medium is glass
(n = 1.4) with square air holes (n = 1). In Example 1 we are interested in computing spectral
gaps for photonic crystals without defect, i.e. n = np. For this we choose Ω = (−1

2 ,
1
2)

2, let n be
a simple step function with 3:1 glass to air ratio and k = 16π2. This corresponds to light with
wavelength 1/2 (relative to the width of the period cell Ω). B is [−π, π]2. Example 2 is reminiscent
of the problem of finding a localised mode in a spectral gap of Example 1 where the compact

8



Figure 1: Plot of n(x, y) in Ω for Examples 1 (left) and 2 (right). The scale of n in Example 2 is such that a period
cell from Example 1 is the same size as a cell in the cladding of n in Example 2. The black regions are glass (n = 1.4)
and the white regions correspond to air (n = 1).

perturbation consists of one period cell in the periodic structure being replaced by air. We choose
a 5 × 5 supercell so that Ω = (−5

2 ,
5
2)

2 and B = [−π
5 ,

π
5 ]

2. Therefore, in the supercell problem
between each defect there are 4 period cells of the photonic crystal from Example 1. See Figure 1
for a plot of n for these two examples. In our experiments the reference solutions for Examples 1
and 2 were computed with G = 29−1. This corresponds to a matrix eigenproblem (7) of dimension
2N ≈ 2× 106 (since N ≈ πG2) and FFTs of size Nf = (4G+4)× (4G+4) = 211 × 211. Note that
for efficiency purposes G is chosen such that the size Nf of the FFT grid is a power of 2.

To measure eigenfunction error, let us define the gap between two subspaces X,Y of a Hilbert
space H with norm ‖ · ‖H to be

δH(X,Y ) := sup
x∈X,‖x‖H=1

dist(x, Y ).

Here, and throughout this paper, the eigenfunction error is the gap between two subspaces spanned
by the corresponding eigenfunctions where H is H1

p , the space of periodic functions that lie in the
Sobolev space H1 on any compact subset of R2. The H1

p norm measures the sum of the errors in
the function value and its derivative over a period cell.

4.2. Planewave expansion method (plain vanilla)

Figure 2 suggests that the planewave expansion method applied to (5) has an eigenfunction
error measured in the H1

p norm that is (in general) of O(G−1/2) while the eigenvalue error is
O(G−1). This agrees with the theory in [14] about the relationship between regularity of the
exact eigenfunctions and convergence rate. Although we do not have a rigorous proof (this is the
subject of our current research), we expect (5) to have eigenfunctions with regularity that are
one Sobolev–order lower than that of the eigenfunctions of the problem studied in [14] (see also
Section 5), leading to a convergence rate for the planewave expansion method that is also one order
slower. Consequently, due to the doubling of the convergence rate for the eigenvalue in symmetric
eigenproblems, the eigenvalue error is two orders slower. The fact that the eigenvalues of (5) are
real and the eigenvalue error decays at twice the rate of the eigenfunction error suggests that (5)
is equivalent to a symmetric eigenproblem. This observation may be useful for future theoretical
analyses. Moreover, for the eigenfunction error in (5) measured in the L2

p–norm (5) we would
expect to see O(G−1).
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Figure 2: Planewave epansion method (plain vanilla) applied to (5) for Example 1 (left) and Example 2 (right).
Plotting the relative eigenvalue error (eval) and the eigenfunction error in H1

p (efun) versus G (first 6 eigenpairs in
Ex. 1 with ξ = (0, 0) and ξ = (π, π); 21st-30th eigenpair in Ex. 2 with ξ = (0, 0) and ξ = (π

5
, π
5
)).
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Figure 3: Planewave expansion method with regularisation applied to (5) for Examples 1 (left) and 2 (right). Plotting
the relative eigenvalue error (eval) and the eigenfunction error in H1

p (efun) for the 1st eigenpair versus ∆ (using
G = 28 − 1, ξ = (π, π) in Example 1 and ξ = (π

5
, π
5
) in Example 2).

4.3. Planewave expansion method with regularisation

Let us now consider the regularised planewave expansion method for (5). The error now consists
of two contributions, the regularisation error and the approximation error. Figure 3 suggests that
for fixed G, while the regularisation error dominates, the eigenfunction error measured in the H1

p

norm is O(∆) and the eigenvalue error is O(∆2). For ∆ sufficiently small the approximation error
dominates and so the overall error does not decrease any longer. To minimise the error and to try
and recover (or improve on) the error of the plain vanilla version, we plot in Figure 4 the errors
for various choices of ∆ = Gr, r ≤ −1/2, and compare them to ∆ = 0 (i.e. plain vanilla, no
regularisation). We see that none of the choices for the smoothing parameter ∆ beats the un-
regularised method for (5). Even though initially, for values of r < −1/2, the faster convergence
rate of the regularisation error would seem to suggest a faster convergence rate also for the total
error in the eigenvalue case, due to the approximation error, asymptotically the total error never
converges faster than that of the plain vanilla method. Thus, there is no evidence that regularisation
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and ∆ = Gr for r = −
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Figure 5: Planewave expansion method with sampling applied to (5) for Examples 1 (left) and 2 (right). Plotting
the relative eigenvalue error (eval) and the H1

p eigenfunction error (efun) for the 1st eigenpair versus M (using
G = 28 − 1, ξ = (π, π) in Example 1 and ξ = (π

5
, π
5
) in Example 2).

improves the planewave expansion method.

4.4. Planewave expansion method with sampling

In Figure 5, it is hard to discern a clear convergence rate for the errors due to sampling the
coefficients in (5). Aliasing effects lead to seemingly faster convergence over some ranges of M while
they lead to slower convergence over other ranges (especially in Example 2). Only the eigenvalue
error in Example 1 shows a clear convergence rate of O(M−1), but all of the other errors seem to
converge roughly with O(M−1). However, the numerical experiments do not conclusively exclude
the possibility that the eigenfunction error converges more slowly. The picture for the simplified
model problem studied in Section 5 seems clearer. There, both the eigenvalue and eigenfunction
error converge with O(M−1) (cf. Figure 8). In Figures 6 and 7 we experiment with choosing
M = O(Gr) for different values of r ∈ R. To recover an eigenvalue error of O(G−1) observed in
the plain vanilla version of planewave expansion, it is clear that we should choose at least r ≥ 1.
Moreover, the results in Figures 6 and 7 show that the eigenvalue errors for exact Fourier coefficients
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on the left; eigenvalue on the right) for the 1st eigenpair versus G with exact Fourier coefficients and with M = O(Gr)
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Figure 7: Planewave expansion method with sampling applied to (5) for Example 2. Plotting the error (eigenfunction
on the left; eigenvalue on the right) for the 1st eigenpair versus G with exact Fourier coefficients and with M = O(Gr)
for different choices of r (ξ = (π

5
, π
5
)).

can be recovered only with some oversampling, i.e. r > 1. For the eigenfunction error a choice of
r = 1 seems sufficient, confirming that sampling seems to be an efficient method to approximate
the Fourier coefficients of n2 and log n2 in the case of PCF modelling. The situation is similar when
smoothing and sampling are combined and we will address this further for the simplified model
problem in the next section.

5. Analysis of a Model Problem

Since we were not able to theoretically analyse the accuracy of planewave expansion methods
applied to the full PCF problem, we restrict our attention to the Schrödinger operator in this
section. This is necessary because even to determine the regularity of eigenfunctions of (5) is a
difficult problem (which is the subject of our current research). The analysis in this section should
thus be seen as an important step towards fully understanding planewave expansion methods
applied to PCF problems.
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The simplified problem which we will now consider is

(∇t + iξ)2u+ k2n2u = β2u, for all ξ ∈ B × {0}, (9)

on Ω ⊂ R
2, again subject to periodic boundary conditions. The only difference to (5) is that the

term ((∇t + iξ) × ht) × (∇t log n
2) has been dropped. In fact, when the contrast between the

maximum and minimum values of n is small, it is physically justified to ignore this term (cf. [3]).
The plain vanilla version of the planewave expansion method described in Section 3 for (5) can

be applied in a very similar way to (9). Following the derivation of (6), approximate solutions
β2 ∈ R and u ∈ SG for (9) can be found by solving the linear system

∑

g∈GG

(
−|g + ξ|2δg′,g + k2[n2]g′−g

)
[u]g = β2[u]g′ ∀g′ ∈ GG, ∀ξ ∈ B × {0}. (10)

Regularisation and/or sampling are then applied in the same way as for the full PCF problem
(5). More details can be found in [14] and [13].

5.1. Review of existing theory

The plain vanilla planewave expansion method and the planewave expansion method with
regularisation for (9) have been analysed in detail in [14], and we now briefly review some of the
results. For simplicity we consider only piecewise constant functions n with polygonal interfaces
with a finite number of corners that are periodic on square Bravais lattices. It is possible to consider
also more general interfaces, but then the details are more complicated (cf. [14]). To extend the
results to more general lattices, it suffices to map back to the square lattice first.

Let us define periodic Sobolev spaces. Let Hs
p be the usual periodic Sobolev space with index

s ∈ R and norm

‖u‖2Hs
p
:=

∑

g∈G

|g|2s⋆ |[u]g|
2 where |g|⋆ :=

{
1, if g = 0,
|g|, if g 6= 0.

Then L2
p ≡ H0

p and the usual L2(Ω)-norm is equivalent to the H0
p -norm. The assumptions we just

made on n imply that n2 ∈ Hs
p for all s < 1/2 (see [14] for details).

For the analysis it is useful to study (9) in shifted weak form, i.e. find λ ∈ R and u ∈ H1
p such

that
a(u, v) = λb(u, v) for all v ∈ H1

p , (11)

where

a(u, v) :=

∫

Ω
(∇t + iξ)u · (∇t + iξ)v + (σ − k2n2)uv dxdy and b(u, v) :=

∫

Ω
uv dxdy.

The shift constant σ is chosen so that σ > k2n2+2|ξ|2 for all x ∈ Ω and ξ ∈ B×{0}. This ensures
that a(·, ·) is coercive in H1

p and we identify λ with σ − β2.
It is a simple exercise to show that (10) is equivalent to a spectral Galerkin method applied to

(11), i.e. find λG ∈ R and uG ∈ SG such that

a(uG, vG) = λGb(uG, vG) for all vG ∈ SG. (12)

The error in solving (12) instead of (11) is the same as the error in applying the planewave expansion
method to (9). It is (12) that is analysed in [14]. The main result that was proved in [14] is as
follows. It applies standard theory in e.g. [2].
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Theorem 1. Let λ be an eigenvalue of (11) with multiplicity m and corresponding m-dimensional
eigenspace E. Then for G sufficiently large and ǫ > 0 arbitrarily small, there exist m eigenval-
ues λ1, λ2, . . . , λm of (12) (counted according to their multiplicity) with corresponding eigenspaces
E1, . . . , Em ⊂ SG such that 3

δH1
p

(
E,

⊕m
j=1Ej

)
.ǫ G

−3/2+ǫ, δL2
p

(
E,

⊕m
j=1Ej

)
.ǫ G

−5/2+ǫ and |λ− λj | .ǫ G
−3+ǫ

for j = 1, . . . ,m.

This result shows that the eigenvalue error is almost O(G−3) while the eigenfunction error
(measured in the H1

p–norm) is almost O(G−3/2). This result was clearly supported by numerical
experiments in [14] (cf. [14, Fig. 2]). The key step in the proof of the above theorem was to show
that the operator T : L2

p → H1
p , defined for any f ∈ L2

p by

a(Tf, v) = b(f, v), for all v ∈ H1
p , (13)

is a smoothing operator with

‖Tf‖
H

5/2−ǫ
p

.ǫ ‖f‖H1
p

for any ǫ > 0. (14)

Using the fact that (λ, u) is an eigenpair of (11) if and only if (λ−1, u) is an eigenpair of T , it is a

simple corollary of (14) that all eigenfunctions of (11) are in H
5/2−ǫ
p for all ǫ > 0. The proof merely

exploits this regularity to obtain the convergence rates for the eigenfunctions in H1
p . A functional

analysis trick (see e.g. [2]) doubles this convergence rate for the eigenvalues, and a simple duality
argument leads to the L2

p bound.

Remark 2. In (5) the discontinuous coefficient appears in a higher derivative term than in (9).

We expect this to reduce the regularity of the eigenfunctions of (5) to H
3/2−ǫ
p , thus also reducing

the convergence rate in the eigenfunctions for the planewave expansion method by one order. Even
though we have been unable (so far) to extend our analysis to the (un-simplified) PCF problem
(5), we have observed this reduced convergence rate in our numerical experiments in Section 4.2.

The following theorem, taken again from [14], bounds the total error due to planewave expansion
and regularisation in the case of (9). Again, we assume that n2 is piecewise constant with polygonal
interfaces with a finite number of corners.

Theorem 3. Let λ be an eigenvalue of (11) with multiplicity m and corresponding m-dimensional
eigenspace E. Then for sufficiently large G and sufficiently small ∆ > 0 there exist m eigenvalues
λ1, . . . , λm of (12) (with n2 replaced by ñ2) counted according to multiplicity and corresponding
eigenspaces E1, . . . , Em such that for any s > 0 we have

δH1
p

(
E,

⊕m
j=1Ej

)
.s ∆3/2 +∆−sG−3/2−s, and

|λ− λj | .s ∆3/2 +∆−2sG−3−2s, for j = 1, . . . ,m.

3The notation C . D here and below means that C/D is bounded uniformly with respect to any parameters. If
we write C .x D, then the bound may depend on the parameter x.
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The proof of this result, which is given in [14], is in two parts and relies on the same theory
as above. First the error from regularisation is bounded using Strang’s 2nd Lemma [5, Theorem
4.1.1] in a non-standard way. An important part of this step is to show that

‖n2 − ñ2‖H−1
p

. ∆3/2. (15)

This is then used to show that the eigenfunction and eigenvalue error due to regularisation are
O(∆3/2). Note that the error in the eigenvalue due to regularisation is not the square of the
respective eigenfunction error. This fact is confirmed by the numerical experiments in [14] (see [14,
Fig. 8.1]). However, the experiments also suggest that the eigenvalue error due to regularisation is
O(∆2), implying that Theorem 3 is not completely sharp for the eigenvalue error.

The planewave expansion error for the regularised problem uses the improved regularity, i.e. if
u is an eigenfunction of (11) (with n2 replaced by ñ2) then

‖u‖Hs
p
.s C(∆)‖u‖H1

p
where C(∆) :=

{ 1, if s < 5
2 ,

(1 + log(∆−1))1/2, if s = 5
2 ,

∆−s+5/2, if s > 5
2 ,

for any s ∈ R. This leads to an eigenfunction error that is O(∆−sG−3/2−s) and an eigenvalue error
that is O(∆−2sG−3−2s) for s > 0. Choosing s large improves these errors with respect to G but
there is a penalty that depends on the size of the regularisation parameter. The final result in the
theorem is obtained by using the triangle inequality.

As explained in [14], by taking ∆ = O(Gr), for some r ∈ R, we can try to balance the two
error terms to obtain the optimal choice of regularisation parameter. There is no choice for r
that leads to a practical or observable improvement of the convergence with respect to that of the
un-regularised, plain vanilla planewave expansion method for (9). The numerical simulations in
[14] (see [14, Fig. 8.2]) confirm that regularisation never improves the accuracy of the planewave
expansion method for (9). For other types of regularisation we expect similar results.

Although the convergence rates in the case of the un-simplified PCF eigenproblem (5) are lower
(as mentioned already), the numerical experiments in Section 4.3 still lead to the same conclusions
about regularisation. No choice of regularisation parameter appears to improve the accuracy of
the planewave expansion method with respect to the un-regularised plain vanilla method.

5.2. Analysis of the sampling method

The main new theoretical result of this paper is to extend the analysis for (9) in [14] to the
planewave expansion method with sampling, as described in Section 3.3. There are two error
contributions: the error due to planewave expansion and the sampling error. The analysis is rather
technical, so we provide a succession of lemmas that build towards the main result, Theorem
7. Lemmas 4 and 5 bound the sampling error, Lemma 6 combines the sampling error with the
planewave expansion error, and finally Theorem 7 will apply the general theory of Babuska and
Osborn [2] to obtain eigenvalue and eigenfunction error bounds. As in earlier sections we assume
throughout that n2 is piecewise constant with polygonal interfaces with a finite number of corners
and that it is periodic on a square Bravais lattice.

We begin by defining the standard mollifier J ∈ C∞(R2) by

J(x) := C exp

(
1

|x|2 − 1

)
, for |x| < 1, and J(x) := 0, for |x| ≥ 1,
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where C is a constant such that
∫
R2 J(x)dx = 1. For δ > 0 we define Jδ(x) := δ−2J(δ−1x). Then

for any f ∈ L1
loc(R

2) we define f (δ) ∈ C∞(R2) by f (δ) := Jδ∗f . The following result is an important
technical lemma and can also be found in [13, Lemma 4.37].

Lemma 4. Let f be piecewise constant with polygonal interfaces with a finite number of corners.
Then for any 0 < δ < 1/2 and ǫ > 0 we have

‖f (δ)‖Hs
p
.s,ǫ

{
1 if s < 1

2 ,

δ−s+
1
2−ǫ if s ≥ 1

2 ,
and ‖f − f (δ)‖Hs

p
.s δ

−s+
1
2 if −3

2 < s < 1
2 .

Proof. It follows from the properties of convolution that [f (δ)]g = [Jδ ]g[f ]g, for all g ∈ G. Moreover,
from the definition of Jδ, it follows that

|[Jδ]g| =

∣∣∣∣
∫

Ω
Jδ(x)e

−ig·xdx

∣∣∣∣ ≤
∫

Ω
Jδ(x)dx = 1, for all g ∈ G.

Therefore, |[f (δ)]g| = |[Jδ ]g[f ]g| ≤ |[f ]g|, and so ‖f (δ)‖Hs
p
≤ ‖f‖Hs

p
.s 1 for s < 1/2.

For any t ∈ N ∪ {0} and 0 6= g ∈ G, suppose (without loss of generality) that |g1| ≥ |g2|. Then
|g| . |g1| and integration by parts gives us

|g|t|[Jδ ]g| = |g|t
∣∣∣∣
(
−1
ig1

)t
∫

Ω
(∂t

xJδ)(x)e
−ig·xdx

∣∣∣∣ . δ−2−t

∣∣∣∣∣

∫

|x|<δ
(∂t

xJ)(δ
−1x)e−ig·xdx

∣∣∣∣∣ .t δ
−t.

For any s ≥ 1/2 and t ∈ N ∪ {0} with t > s− 1/2, it follows, using the definition of ‖ · ‖Hs
p
, that

‖f (δ)‖2Hs
p

= |[f (δ)]0|
2 +

∑
06=g∈G |g|2s|[f (δ)]g|

2

.t |[f ]0|
2 + δ−2t

∑
06=g∈G |g|2s−2t|[f ]g|

2 ≤ δ−2t‖f‖2
Hs−t

p
.s,t δ

−2t.

Using interpolation between periodic Sobolev spaces we obtain the first result in Lemma 4:

‖f (δ)‖Hs
p
.s,ǫ

{
1 if s < 1

2 ,

δ−s+
1
2−ǫ if s ≥ 1

2 .

To show that ‖f − f (δ)‖Hs
p
.s δ

−s+1/2, for −3/2 < s < 1/2, note first that [f − f (δ)]0 = 0 and

|[f − f (δ)]g| ≤ |[f ]g|+ |[f (δ)]g| ≤ 2|[f ]g|, for all g ∈ G. (16)

Moreover, for any g ∈ G with |g| ≤ δ−1, we have

|[f − f (δ)]g| = |[f ]g|
∣∣∣
∫
|x|≤1 J(x)(1 − e−iδg·x)dx

∣∣∣
≤ 2|[f ]g|‖J‖∞

∫
[−1,1]2(1− cos(δg1x) cos(δg2y))dx

= 8|[f ]g|‖J‖∞

(
1− sin(δg1)

δg1

sin(δg2)
δg2

)
.

Now, using the fact that sinA
A ≥ 1− A2

6 , for A2 ≤ 42, we get

|[f − f (δ)]g| ≤
4
3 |[f ]g|‖J‖∞δ2|g|2 . δ2|g|2|[f ]g|

2 (17)
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To complete the proof we require a result from [14, Prop. 3.5] which implies that for any piecewise
constant f with polygonal interfaces and a finite number of corners,

∑

|g1|+|g2|=h

|[f ]g|
2 . h−2. (18)

Thus, it follows from (16)–(18) that for any −3/2 < s < 1/2,

‖f − f (δ)‖2Hs
p

. δ4
∑

1≤|g1|+|g2|≤δ−1 |g|2s+4|[f ]g|
2 +

∑
|g1|+|g2|>δ−1 |g|2s|[f ]g|

2

. δ4
∑⌊δ−1⌋

h=1 h2s+2 +
∑∞

h=⌈δ−1⌉ h
2s−2 .s δ

1−2s.

The following lemma is the sampling version of (15) and its proof relies on Lemma 4.

Lemma 5. ‖n2 −QMn2‖L2
p
.ǫ M

−1/2+ǫ for all ǫ > 0.

Proof. For ease of notation set f := n2. Ω may be divided into M2 square subdomains S(x, 1
2M ) :=

{y ∈ R
2 : |xi − yi| <

1
2M , i = 1, 2}, for any x ∈ BM . Recall (8) and define a periodic piecewise

constant function fM such that

fM(y) := QMf(x) ∀y ∈ S(x, 1
2M ),x ∈ BM .

Now for any δ ≤ (2M)−1, QMf(x) = fM (x) = f
(δ)
M (x) for all x ∈ BM , and so QMf = QMf

(δ)
M .

Moreover, for any v ∈ Ht
p with t > 1, ‖v−QMv‖L2

p
.t M

−t‖v‖Ht
p
(cf. [19, Theorem 8.5.3]). Hence,

we can deduce from Lemma 4 that for any ǫ > 0

‖fM −QMf‖L2
p

≤ ‖fM − f
(δ)
M ‖L2

p
+ ‖f

(δ)
M −QMf

(δ)
M ‖L2

p
.t,ǫ δ1/2 +M−tδ−t+1/2−ǫ. (19)

To bound the error between f and fM , let fmax := esssupx∈Ωf(x) and fmin := essinfx∈Ωf(x).
Since f is piecewise constant with polygonal interfaces with finitely many corners, f and fM differ
only on Ndiff = O(M) of the square subdomains S(x, 1

2M ). Hence,

‖f − fM‖2L2
p
≤ Ndiff(fmax − fmin)

2M−2 . M−1. (20)

The final result follows from (19) and (20) via the triangle inequality for δ = (2M)−1.

Recall that T : L2
p → H1

p is the solution operator corresponding to (11) defined in (13), and
define equivalently a solution operator TM,G :L2

p → SG ⊂ H1
p for the discrete eigenvalue problem

with sampling. To be precise, for any f ∈ L2
p define TM,Gf ∈ SG by

aM (TM,Gf, v) = b(f, v), for all v ∈ SG ,

where

aM (u, v) :=

∫

Ω
(∇t + iξ)u · (∇t + iξ)v + (σ − k2QMn2)uv dxdy.

The following lemma combines the sampling error and the planewave expansion error to obtain
the error between the solution operators TM,G and T . This type of result is essential for the general
theory in [2] which we aim to apply below and which is stated in terms of solution operators.

Lemma 6. ‖T − TM,G‖H1
p→H1

p
.ǫ G

−3/2+ǫ +M−1/2+ǫ, for any ǫ > 0.
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Proof. Let PG define the orthogonal projection onto SG (i.e. [PGf ]g = [f ]g for all g ∈ GG

and [PGf ]g = 0 otherwise). By standard arguments, for any v ∈ H1+s
p with s > 0, we have

‖v − PGv‖H1
p
≤ G−s‖v‖H1+s

p
(c.f. [19, Lemma 8.5.1] or [13, Lemma 3.30]), and thus by Strang’s

2nd Lemma (c.f. [5, Theorem 4.1.1]) and the fact that PG is an orthogonal projection we get

‖Tf − TM,Gf‖H1
p

. inf
v∈SG

{
‖Tf − v‖H1

p
+ sup

w∈SG

|a(v,w) − aQ(v,w)|

‖w‖H1
p

}

≤ ‖Tf − PGTf‖H1
p
+ sup

w∈SG

|a(PGTf,w)− aQ(PGTf,w)|

‖w‖H1
p

≤ G−3/2+ǫ‖Tf‖
H

5/2−ǫ
p

+ k2‖Tf‖∞‖n2 −QMn2‖H−1
p

.

Using Sobolev embedding for C0 in H
5/2−ǫ
p and for H−1

p in L2
p together with (14) this implies

‖Tf − TM,Gf‖H1
p
. (G−3/2+ǫ + ‖n2 −QMn2‖L2

p
)‖f‖H1

p

and the result follows from Lemma 5.

The following theorem follows directly from Lemma 6 and the general theory in [2]. For a
complete proof see [13].

Theorem 7. Let λ be an eigenvalue of (11) with multiplicity m and corresponding m-dimensional
eigenspace E. Then for sufficiently large G and M , and arbitrarily small ǫ > 0 there exist m
eigenvalues λ1, . . . , λm of (12) (with n2 replaced by QMn2), counted according to multiplicity, as
well as corresponding eigenspaces E1, . . . , Em such that

δH1
p

(
E,

⊕m
j=1Ej

)
.ǫ G−3/2+ǫ +M−1/2+ǫ, and

|λ− λj| .ǫ G−3+ǫ +M−1/2+ǫ, for j = 1, . . . ,m.

However, even though we proved the convergence of the sampling method rigorously, the order
of 1/2 for the sampling error does not seem to be sharp. The numerical results in Figure 8 suggest
that the sampling error in the eigenfunctions and in the eigenvalues is O(M−1) for problem (9).
We suspect that the reason for this loss of half an order in our proof is due to the inequality
‖n2−QMn2‖H−1

p
≤ ‖n2−QMn2‖L2

p
we used in the proof of Lemma 6, which is probably not sharp.

To optimise the error we consider M = O(Gr) for different values of r ∈ R. The observed
convergence rate of O(M−1) for the sampling error in the eigenfunctions suggests that r ≥ 3/2 is
necessary to recover theO(G−3/2+ǫ) convergence of the error in the eigenfunctions due to planewave
expansion. To optimise the error in the eigenvalues we should take r ≥ 3. The effect of choosing
different r on the error is tested numerically in Figure 9. It seems to confirm that a certain
amount of oversampling is necessary to recover the convergence rate of the plain vanilla version
(which uses exact Fourier coefficients). Especially for the eigenvalues, the error due to sampling is
relatively large and so M must be chosen significantly larger than G to avoid that the sampling
error dominates. This means that at least asymptotically, for r > 1, the additional FFT necessary
to sample n2 which requires O(M2 logM) = O(G2r logG) operations becomes the dominant part
in terms of CPU time and memory requirements. However, since this additional FFT is computed
only once at the start, this does not manifest itself in the CPU time for typical practical grid
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Figure 8: Planewave expansion method with sampling applied to (9) for Examples 1 (left) and 2 (right). Plotting the
eigenfunction error in H1

p (efun) and the relative eigenvalue error (eval) for 1st eigenpair versus M (using G = 28−1,
ξ = (π, π) in Example 1 and ξ = (π

5
, π
5
) in Example 2).
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Figure 9: Planewave expansion method with sampling applied to (9) for Example 2. Plotting the eigenfunction error
in H1

p (left) and the relative eigenvalue error (right) for 1st eigenpair versus G (using exact Fourier coefficients as
well as M = O(Gr) for different choices of r; ξ = (π

5
, π
5
)).

sizes. However, the additional memory requirements are usually a real limitation on the amount of
oversampling that can be employed and thus also on the overall convergence rate of the method.
In our simulations r = 2 was the maximum amount of oversampling possible due to memory
limitations.

5.3. Combining sampling and regularisation

To finish let us consider both modifications of the planewave expansion method together, i.e. reg-
ularization and sampling. For suitably chosen smoothing parameter ∆ > 0 and sampling parameter
M ∈ N, we replace n2 with n2

∆,M := G∆ ∗ (QMn2).
In the case of the Schrödinger operator (9), the analysis of this combined method is simply a

corollary of our previous results. Since exp(−|g|2∆2/2) ≤ 1 we have ‖G∆ ∗ v‖Hs
p
≤ ‖v‖Hs

p
for any

s ∈ R, and so it follows from (15) and Lemma 5 that for any ǫ > 0

‖n2 − n2
∆,M‖H−1

p
≤ ‖n2 − ñ2‖H−1

p
+ ‖G∆ ∗ (n2 −QMn2)‖H−1

p
.ǫ ∆

−1/2 +M−1/2+ǫ.

By proceeding as in the proof of Lemma 6 and Theorem 7 we obtain the following result.
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Figure 10: Planewave expansion method with regularisation and sampling applied to (9) for Example 1. Plotting
the error for the 1st eigenpair versus G with exact Fourier coefficients and with ∆ = Gr and M = O(Gs) for different
choices of r and s (left: eigenfunction error; right: eigenvalue error; ξ = (0, 0)).

Theorem 8. Let λ be an eigenvalue of (11) with multiplicity m and corresponding m-dimensional
eigenspace E. Then for sufficiently large G and M , sufficiently small ∆ > 0, and arbitrarily
small ǫ > 0 there exist m eigenvalues of (12) (with n2 replaced by n2

∆,M), counted according to
multiplicity, and corresponding eigenspaces E1, . . . , Em such that

δH1
p

(
E,

⊕m
j=1Ej

)
.ǫ G−3/2+ǫ +∆3/2 +M−1/2+ǫ, and

|λ− λj| .ǫ G−3+ǫ +∆3/2 +M−1/2+ǫ, for j = 1, . . . ,m.

In Figure 10 we report some numerical experiments for Example 1, using the planewave ex-
pansion method with regularisation and sampling for problem (9). We choose again ∆ = Gr and
M = O(Gs) for different values r, s ∈ R. We know already from above that the rate for the sam-
pling error is not sharp and that the rate for the smoothing error in the case of the eigenvalues is
not sharp either. Hence using the numerically observed rates for those errors we expect

δH1
p

(
E,

⊕m
j=1Ej

)
. G−3/2 +∆3/2 +M−1 and |λ− λj | . G−3 +∆2 +M−1.

Therefore to recover the convergence rates with exact Fourier coefficients (i.e. O(G−3/2) for eigen-
functions and O(G−3) for eigenvalues) it is sufficient to take r = −1 and s = 3/2 when considering
the eigenvector error, and r = −3/2 and s = 3 when considering the eigenvalue error. However,
the additional computational cost and memory requirements for sampling restrict us to s ≤ 2 and
our observations in Figure 10 suggest that the best choice is to take s = 3/2 for eigenfunctions and
s = 2 (largest practically possible) for eigenvalues, with little or no regularisation.

6. Conclusions

Photonic crystal fibres are a novel generation of optical devices with many potential applica-
tions. Simulating the propagation of light in PCFs is thus of great interest. Through rigorous
analysis of simplified model problems and through numerical experimentation on the original PCF
model problem we explored in this paper the potential and the limitations of planewave expan-
sion methods for PCF problems. Due to the discontinuous refractive index in PCFs, exponential
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convergence of the planewave expansion method can clearly not be expected and indeed the con-
vergence rate is in all cases limited by the regularity of the eigenfunctions that are approximated.
Especially in the case of the un-simplified full PCF model problem this limits the convergence
rate significantly. Regularisation of the coefficient functions does not mitigate this effect and the
numerical experiments in this paper clearly confirm this.

In practice, it is usually necessary to approximate the Fourier coefficients of the coefficient
functions via sampling techniques. This leads to an additional error. We showed numerically that
this error is usually dominating (especially in the eigenvalue error for a simplified Schrödinger–type
problem) unless the sampling is carried out on a significantly finer FFT grid than the planewave
expansion. Extending the theory in [14], we managed to also rigorously prove the convergence of
the sampling method for a simplified Schrödinger–type model problem.
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