Taught Course Centre Short Course

"Computational Methods for Uncertainty Quantification"
Robert Scheichl, University of Bath
Model Solutions for Exercise Sheet 1

1. (a) It follows from the Berry-Esseen Inequality that

$$
\Phi(x)-\frac{\rho}{2 \sigma^{3} \sqrt{N}} \leq \mathbf{P}\left\{S_{N}^{*} \leq x\right\} \leq \Phi(x)+\frac{\rho}{2 \sigma^{3} \sqrt{N}}
$$

and consequently

$$
\begin{align*}
\mathbf{P}\left\{\left|S_{N}^{*}\right| \leq x\right\}=\mathbf{P}\left\{S_{N}^{*} \leq x\right\}-\mathbf{P}\left\{S_{N}^{*} \leq-x\right\} & \leq \Phi(x)+\frac{\rho}{2 \sigma^{3} \sqrt{N}}-\Phi(-x)+\frac{\rho}{2 \sigma^{3} \sqrt{N}} \\
& =\underbrace{\Phi(x)-\Phi(-x)}_{=: \gamma_{x}}+\frac{\rho}{\sigma^{3} \sqrt{N}} \tag{1}
\end{align*}
$$

Similarly, we can show $\mathbf{P}\left\{\left|S_{N}^{*}\right| \leq x\right\} \geq \gamma_{x}-\frac{\rho}{\sigma^{3} \sqrt{N}}$. Since $S_{N}^{*}=\frac{S_{N}-N \mu}{\sqrt{N} \sigma}$ this implies

$$
\gamma_{x}-\frac{\rho}{\sigma^{3} \sqrt{N}} \leq \mathbf{P}\left(\mu \in\left[\frac{S_{N}}{N}-\frac{\sigma x}{\sqrt{N}}, \frac{S_{N}}{N}+\frac{\sigma x}{\sqrt{N}}\right]\right) \leq \gamma_{x}+\frac{\rho}{\sigma^{3} \sqrt{N}} .
$$

As an example, choosing $x=1.96$ we get $\phi(x)=0.95$ and so

$$
\begin{equation*}
0.95-\frac{\rho}{\sigma^{3} \sqrt{N}} \leq \mathbf{P}\left(\mu \in\left[\frac{S_{N}}{N}-\frac{1.96 \sigma}{\sqrt{N}}, \frac{S_{N}}{N}+\frac{1.96 \sigma}{\sqrt{N}}\right]\right) \leq 0.95+\frac{\rho}{\sigma^{3} \sqrt{N}} . \tag{2}
\end{equation*}
$$

(b) In the Buffon needle problem, we have

$$
\mu=p, \sigma^{2}=p(1-p), \rho=p(1-p)\left(1-2 p+2 p^{2}\right) .
$$

and in Lazzarini's experiment $N=3408$ and $p=\frac{2 \ell}{\pi d}=\frac{5}{3 \pi}$. Therefore, from (??) (neglecting the correction $\frac{\rho}{\sigma^{3} \sqrt{N}}$ for finite N), we get an (asymptotic) 95% confidence interval for p of

$$
\left[\frac{1808}{3408}-\frac{1.96 \sigma}{\sqrt{3408}}, \frac{1808}{3408}-\frac{1.96 \sigma}{\sqrt{3408}}\right]=[0.51376,0.54727]
$$

or equivalently, multiplying by the number of throws, the (asymptotic) 95% confidence interval for the number of intersections S_{3408} in 3408 throws is [1751,1865]. Strictly speaking, since $\frac{\rho}{\sigma^{3} \sqrt{N}}=0.0172$, the probability that S_{3408} is in that interval is bigger than 93.3% and smaller than 96.7%.
Also, using the exact value for $p=\frac{5}{3 \pi}$, we see from (??) that the probability that

$$
\left|S_{N}^{*}\right|=\left|\frac{S_{N}-N p}{\sqrt{N p(1-p)}}\right|=\sqrt{\frac{N}{p(1-p)}}\left|\frac{S_{N}}{N}-p\right|
$$

is less than $x=\sqrt{\frac{3408}{p(1-p)}}\left|\frac{1808}{3408}-p\right|=5.27 \cdot 10^{-6}$ is less than $\gamma_{x}+\frac{\rho}{\sigma^{3} \sqrt{3408}}=4.2 \cdot 10^{-6}+$ $0.01722564=0.01723$. So the probability that Lazzarini's machine would produce exactly 1808 intersections in 3408 throws is less than 1.7%.
2. Recalling from Slide 9 in Lecture 2 that $\mathbf{E}\left[\widehat{Q}_{M}\right]-\mathbf{E}\left[Q_{M}\right]=0$ we get

$$
\begin{aligned}
\mathbf{E}\left[\left(\mathbf{E}[Q]-\widehat{Q}_{M}\right)^{2}\right] & =\mathbf{E}[(\underbrace{\mathbf{E}[Q]-\mathbf{E}\left[Q_{M}\right]}_{=\mathbf{E}\left[Q-Q_{M}\right]}+\mathbf{E}\left[\widehat{Q}_{M}\right]-\widehat{Q}_{M})^{2}] \\
& =\mathbf{E}\left[\left(\mathbf{E}\left[Q-Q_{M}\right]\right)^{2}+\left(\mathbf{E}\left[\widehat{Q}_{M}\right]-\widehat{Q}_{M}\right)^{2}+2 \mathbf{E}\left[Q-Q_{M}\right]\left(\mathbf{E}\left[\widehat{Q}_{M}\right]-\widehat{Q}_{M}\right)\right]
\end{aligned}
$$

Using linearity of the expected value and the fact that most of the terms under the expected value are not actually random, we can simplify this to

$$
\begin{aligned}
\mathbf{E}\left[\left(\mathbf{E}[Q]-\widehat{Q}_{M}\right)^{2}\right] & =\left(\mathbf{E}\left[Q-Q_{M}\right]\right)^{2}+\mathbf{V a r}\left[\widehat{Q}_{M}\right]+2 \mathbf{E}\left[Q-Q_{M}\right] \underbrace{\left(\mathbf{E}\left[\widehat{Q}_{M}\right]-\mathbf{E}\left[\widehat{Q}_{M}\right]\right)}_{=0} \\
& =\left(\mathbf{E}\left[Q-Q_{M}\right]\right)^{2}+\frac{\operatorname{Var}\left[Q_{M}\right]}{N} .
\end{aligned}
$$

3. (a) Expanding the definition of the variance we get

$$
\begin{aligned}
& \operatorname{Var}\left[\frac{1}{2}\left(\widehat{Q}_{M, N}+\widehat{\tilde{Q}}_{M, N}\right)\right]=\mathbf{E}\left[\left(\frac{1}{2}\left(\widehat{Q}_{M, N}+\widehat{\tilde{Q}}_{M, N}\right)-\frac{1}{2}(\mathbf{E}[Q]+\mathbf{E}[Q])\right)^{2}\right] \\
& =\frac{1}{4} \mathbf{E}\left[\left(\widehat{Q}_{M, N}-\mathbf{E}[Q]\right)^{2}+\left(\widehat{\tilde{Q}}_{M, N}-\mathbf{E}[Q]\right)^{2}+2\left(\widehat{Q}_{M, N}-\mathbf{E}[Q]\right)\left(\widehat{\tilde{Q}}_{M, N}-\mathbf{E}[Q]\right)\right] \\
& \quad=\frac{1}{4}\left(\operatorname{Var}\left[\widehat{Q}_{M, N}\right]+\operatorname{Var}\left[\widehat{\tilde{Q}}_{M, N}\right]+2 \operatorname{Cov}\left(\widehat{Q}_{M, N}, \widehat{\tilde{Q}}_{M, N}\right)\right)
\end{aligned}
$$

Using the definition of the sample variances and sample covariances of $\left\{Q_{M}^{(k)}\right\}$ and $\left\{\widetilde{Q}_{M}^{(k)}\right\}$ from lectures and expanding we get

$$
\begin{gathered}
s_{Q}^{2}:=\frac{1}{N-1} \sum_{k=1}^{N}\left(Q_{M}^{(k)}-\widehat{Q}_{M, N}\right)^{2}=\frac{1}{N-1}\left(\sum_{k=1}^{N}\left(Q_{M}^{(k)}\right)^{2}-\frac{1}{N}\left(\sum_{k=1}^{N} Q_{M}^{(k)}\right)^{2}\right) \\
s_{\widetilde{Q}}^{2}:=\frac{1}{N-1} \sum_{k=1}^{N}\left(\widetilde{Q}_{M}^{(k)}-\widehat{\widetilde{Q}}_{M, N}\right)^{2}=\frac{1}{N-1}\left(\sum_{k=1}^{N}\left(\widetilde{Q}_{M}^{(k)}\right)^{2}-\frac{1}{N}\left(\sum_{k=1}^{N} \widetilde{Q}_{M}^{(k)}\right)^{2}\right) \\
c_{Q, \widetilde{Q}}:=\frac{1}{N-1} \sum_{k=1}^{N}\left(Q_{M}^{(k)}-\widehat{Q}_{M, N}\right)\left(\tilde{Q}_{M}^{(k)}-\widehat{\widetilde{Q}}_{M, N}\right) \\
=\frac{1}{N-1}\left(\sum_{k=1}^{N} Q_{M}^{(k)} \widetilde{Q}_{M}^{(k)}-\frac{1}{N}\left(\sum_{k=1}^{N} Q_{M}^{(k)}\right)\left(\sum_{k=1}^{N} \widetilde{Q}_{M}^{(k)}\right)\right)
\end{gathered}
$$

Hence, we can estimate

$$
\operatorname{Var}\left[\frac{1}{2}\left(\widehat{Q}_{M, N}+\widehat{\tilde{Q}}_{M, N}\right)\right] \quad \text { by } \quad \frac{s_{Q}^{2}+s_{\widetilde{Q}}^{2}+2 c_{Q, \widetilde{Q}}}{4 N}
$$

Within the iteration over the samples in the code we only have to keep track of the sums

$$
\sum_{k=1}^{N} Q_{M}^{(k)}, \quad \sum_{k=1}^{N} \widetilde{Q}_{M}^{(k)}, \quad \sum_{k=1}^{N}\left(Q_{M}^{(k)}\right)^{2}, \quad \sum_{k=1}^{N}\left(\widetilde{Q}_{M}^{(k)}\right)^{2} \text { and } \quad \sum_{k=1}^{N} Q_{M}^{(k)} \widetilde{Q}_{M}^{(k)}
$$

(b) See my model code.
(c) See my model code. In my model code the variance is reduced by almost a factor 5 , but this reduction does not get bigger for smaller tolerances TOL.
4. (a) Let us define the following cost functional (including the constraint on the variance via a Lagrange multiplier):

$$
\mathcal{L}\left(N_{0}, \ldots, N_{L}, \lambda\right)=\sum_{\ell=0}^{L} \mathcal{C}_{\ell} N_{\ell}+\lambda\left(\sum_{\ell=0}^{L} \frac{\operatorname{Var}\left[Y_{\ell}\right]}{N_{\ell}}-\frac{\mathrm{TOL}^{2}}{2}\right) .
$$

The first order optimality conditions are to set to zero all the first-order partial derivatives of \mathcal{L} with respect to its arguments. This leads to

$$
\begin{align*}
& 0=\frac{\partial \mathcal{L}}{\lambda}=\sum_{\ell=0}^{L} \frac{\operatorname{Var}\left[Y_{\ell}\right]}{N_{\ell}}-\frac{\mathrm{TOL}^{2}}{2} \tag{3}\\
& 0=\frac{\partial \mathcal{L}}{N_{\ell}}=\mathcal{C}_{\ell}-\lambda \frac{\operatorname{Var}\left[Y_{\ell}\right]}{N_{\ell}^{2}}, \quad \ell=0, \ldots, L \tag{4}
\end{align*}
$$

Equations (??) imply

$$
\begin{equation*}
N_{\ell}=\sqrt{\lambda} \sqrt{\frac{\operatorname{Var}\left[Y_{\ell}\right]}{\mathcal{C}_{\ell}}}, \quad \ell=0, \ldots, L \tag{5}
\end{equation*}
$$

as claimed in the notes. To find the constant $\sqrt{\lambda}$ (i.e. the square root of the Lagrange multiplier), we substitute into (??) and get

$$
\sum_{\ell=0}^{L} \operatorname{Var}\left[Y_{\ell}\right] \sqrt{\frac{\mathcal{C}_{\ell}}{\lambda \operatorname{Var}\left[Y_{\ell}\right]}}=\frac{\mathrm{TOL}^{2}}{2} \Rightarrow \sqrt{\lambda}=\frac{2}{\mathrm{TOL}^{2}} \sum_{\ell=0}^{L} \sqrt{\mathcal{C}_{\ell} \operatorname{Var}\left[Y_{\ell}\right]}
$$

(b) See either the paper https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf or my paper http://www.maths.bath.ac.uk/~masrs/cgst_mlmc_cvs2010.pdf for proofs of this theorem that essentially use the argument in (a).
5. (a) See my model code.

I did not implement the fully adaptive algorithm in the lecture notes. Instead I pass N_{0}, the number of samples on the coarsest level, as an argument and then derive N_{ℓ} from (??). By taking the ratio N_{ℓ} / N_{0} we do not need to know (or estimate) the constant $\sqrt{\lambda}$. Instead, with the choice $s=2$, we get

$$
N_{\ell}=N_{0} \sqrt{\frac{\operatorname{Var}\left[Y_{\ell}\right] \mathcal{C}_{0}}{\operatorname{Var}\left[Y_{0}\right] \mathcal{C}_{\ell}}}=\frac{2}{3} N_{0} 2^{-\ell / 2} \sqrt{\frac{\operatorname{Var}\left[Y_{\ell}\right]}{\operatorname{Var}\left[Y_{0}\right]}}
$$

where I have used that $M_{\ell}=2^{\ell} M_{0}$ and $\mathcal{C}\left(Q_{\ell}^{(k)}\right)=8 M_{\ell}$, since in each step of the Euler method my code carries out 8 floating point operations. This implies that $\mathcal{C}\left(Y_{\ell}^{(k)}\right)=8\left(M_{\ell}+M_{\ell-1}\right)=$ $12 M_{\ell}$, for $\ell>0$. The total number of floating point operations is

$$
\mathcal{C}\left(\widehat{Q}_{L,\left\{N_{\ell}\right\}}^{\mathrm{ML}}\right)=8 M_{0} N_{0}+12 \sum_{\ell=1}^{L} M_{\ell} N_{\ell} .
$$

Here is a plot of cost against tolerance with the 3 codes (standard MC, anithetic MC, MLMC):

As predicted, the cost for standard and antithetic MC grows like TOL^{-3} and the cost for MLMC grows like TOL ${ }^{-2}$. The actual cost depends on the choice of coarsest grid.
(b) To estimate α, I use my MLMC code with only two levels, i.e. $L=1$ and $s=M_{1} / M_{0}$ and N both sufficiently large, so that essentially the finer calculation is exact and the sampling error is negligible. In the following figure (left) we see a log-log plot of $\left|\widehat{Y}_{1}\right| \approx\left|\mathbf{E}\left[Q_{M_{1}}-Q_{M_{0}}\right]\right| \approx$ $\left|\mathbf{E}\left[Q-Q_{M_{0}}\right]\right|$. Clearly the error decays like M_{0}^{-1}.

To estimate γ (above figure, right), I simply measured the CPU-time (with tic and toc in Matlab) averaged over N samples. We see that $\gamma \approx 1$ for M sufficiently large.
Finally, in the last figure below, we see a plot of $\operatorname{Var}\left[\widehat{Y}_{\ell}\right]$ and $\operatorname{Var}\left[\widehat{Q}_{M_{\ell}}\right]$ for a range of values of ℓ. We see that the numerically observed rate $\beta \approx 2$. To prove this, use the bound on the Euler discretisation error on Slide 18 from Lecture 2:

$$
\begin{aligned}
\operatorname{Var}\left[\widehat{Y}_{\ell}\right] & =\frac{1}{N_{\ell}} \operatorname{Var}\left[Q_{M_{\ell}}-Q_{M_{\ell-1}}\right] \\
& \leq \frac{1}{N_{\ell}} \mathbf{E}\left[\left(Q_{M_{\ell}}-Q_{M_{\ell-1}}\right)^{2}\right] \\
& \leq \frac{2}{N_{\ell}}\left(\mathbf{E}\left[\left(Q-Q_{M_{\ell-1}}\right)^{2}\right]+\mathbf{E}\left[\left(Q-Q_{M_{\ell}}\right)^{2}\right]\right) \\
& \leq \frac{2}{N_{\ell}}\left(K L M_{\ell-1}^{-2}+K L M_{\ell}^{-2}\right) \leq \underbrace{2 K L\left(1+s^{2}\right)}_{\text {constant }} N_{\ell}^{-1} M_{\ell}^{-2} .
\end{aligned}
$$

(c) For example, you could combine antithetic sampling and MLMC, or use a quasi-Monte Carlo method (see Wednesday).

