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1. (a) It follows from the Berry-Esseen Inequality that
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Similarly, we can show P{|S∗N | ≤ x} ≥ γx −
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As an example, choosing x = 1.96 we get φ(x) = 0.95 and so
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(b) In the Buffon needle problem, we have

µ = p, σ2 = p(1− p), ρ = p(1− p)(1− 2p+ 2p2).

and in Lazzarini’s experiment N = 3408 and p = 2`
πd = 5

3π . Therefore, from (??) (neglecting
the correction ρ

σ3
√
N

for finite N), we get an (asymptotic) 95% confidence interval for p of[
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,
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]
= [0.51376, 0.54727]

or equivalently, multiplying by the number of throws, the (asymptotic) 95% confidence interval
for the number of intersections S3408 in 3408 throws is [1751, 1865]. Strictly speaking, since
ρ

σ3
√
N

= 0.0172, the probability that S3408 is in that interval is bigger than 93.3% and smaller

than 96.7%.

Also, using the exact value for p = 5
3π , we see from (??) that the probability that
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∣∣ = 5.27 · 10−6 is less than γx + ρ
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= 4.2 · 10−6 +

0.01722564 = 0.01723. So the probability that Lazzarini’s machine would produce exactly
1808 intersections in 3408 throws is less than 1.7%.



2. Recalling from Slide 9 in Lecture 2 that E
[
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]
− E [QM ] = 0 we get
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Using linearity of the expected value and the fact that most of the terms under the expected value
are not actually random, we can simplify this to
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3. (a) Expanding the definition of the variance we get
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Using the definition of the sample variances and sample covariances of {Q(k)
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lectures and expanding we get
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Hence, we can estimate
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Within the iteration over the samples in the code we only have to keep track of the sums
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(b) See my model code.



(c) See my model code. In my model code the variance is reduced by almost a factor 5, but this
reduction does not get bigger for smaller tolerances TOL.

4. (a) Let us define the following cost functional (including the constraint on the variance via a
Lagrange multiplier):

L(N0, . . . , NL, λ) =
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)
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The first order optimality conditions are to set to zero all the first-order partial derivatives of
L with respect to its arguments. This leads to
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Equations (??) imply
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√
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, ` = 0, . . . , L, (5)

as claimed in the notes. To find the constant
√
λ (i.e. the square root of the Lagrange

multiplier), we substitute into (??) and get
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(b) See either the paper https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf or my
paper http://www.maths.bath.ac.uk/~masrs/cgst_mlmc_cvs2010.pdf for proofs of this
theorem that essentially use the argument in (a).

5. (a) See my model code.

I did not implement the fully adaptive algorithm in the lecture notes. Instead I pass N0, the
number of samples on the coarsest level, as an argument and then derive N` from (??). By
taking the ratio N`/N0 we do not need to know (or estimate) the constant

√
λ. Instead, with

the choice s = 2, we get
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where I have used that M` = 2`M0 and C(Q(k)
` ) = 8M`, since in each step of the Euler method

my code carries out 8 floating point operations. This implies that C(Y (k)
` ) = 8(M` +M`−1) =

12M`, for ` > 0. The total number of floating point operations is

C(Q̂ML
L,{N`}) = 8M0N0 + 12

L∑
`=1

M`N` .

Here is a plot of cost against tolerance with the 3 codes (standard MC, anithetic MC, MLMC):



As predicted, the cost for standard and antithetic MC grows like TOL−3 and the cost for
MLMC grows like TOL−2. The actual cost depends on the choice of coarsest grid.

(b) To estimate α, I use my MLMC code with only two levels, i.e. L = 1 and s = M1/M0 and N
both sufficiently large, so that essentially the finer calculation is exact and the sampling error
is negligible. In the following figure (left) we see a log-log plot of |Ŷ1| ≈ |E [QM1 −QM0 ] | ≈
|E [Q−QM0 ] |. Clearly the error decays like M−10 .

To estimate γ (above figure, right), I simply measured the CPU-time (with tic and toc in
Matlab) averaged over N samples. We see that γ ≈ 1 for M sufficiently large.

Finally, in the last figure below, we see a plot of Var[Ŷ`] and Var[Q̂M`
] for a range of values

of `. We see that the numerically observed rate β ≈ 2. To prove this, use the bound on the
Euler discretisation error on Slide 18 from Lecture 2:
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(c) For example, you could combine antithetic sampling and MLMC, or use a quasi-Monte Carlo
method (see Wednesday).


