
Taught Course Centre Short Course

“Computational Methods for Uncertainty Quantification”

Robert Scheichl, University of Bath

Model Solutions for Exercise Sheet 1

1. (a) It follows from the Berry-Esseen Inequality that

Φ(x)− ρ

2σ3
√
N
≤ P{S∗N ≤ x} ≤ Φ(x) +

ρ

2σ3
√
N

and consequently

P{|S∗N | ≤ x} = P{S∗N ≤ x} − P{S∗N ≤ −x} ≤ Φ(x) +
ρ

2σ3
√
N
− Φ(−x) +

ρ

2σ3
√
N

= Φ(x)− Φ(−x)︸ ︷︷ ︸
=:γx

+
ρ

σ3
√
N

(1)

Similarly, we can show P{|S∗N | ≤ x} ≥ γx −
ρ

σ3
√
N

. Since S∗N = SN−Nµ√
Nσ

this implies

γx −
ρ

σ3
√
N
≤ P

(
µ ∈

[
SN
N
− σx√

N
,
SN
N

+
σx√
N

])
≤ γx +

ρ

σ3
√
N
.

As an example, choosing x = 1.96 we get φ(x) = 0.95 and so

0.95− ρ

σ3
√
N
≤ P

(
µ ∈

[
SN
N
− 1.96σ√

N
,
SN
N

+
1.96σ√
N

])
≤ 0.95 +

ρ

σ3
√
N
. (2)

(b) In the Buffon needle problem, we have

µ = p, σ2 = p(1− p), ρ = p(1− p)(1− 2p+ 2p2).

and in Lazzarini’s experiment N = 3408 and p = 2`
πd = 5

3π . Therefore, from (??) (neglecting
the correction ρ

σ3
√
N

for finite N), we get an (asymptotic) 95% confidence interval for p of[
1808

3408
− 1.96σ√

3408
,
1808

3408
− 1.96σ√

3408

]
= [0.51376, 0.54727]

or equivalently, multiplying by the number of throws, the (asymptotic) 95% confidence interval
for the number of intersections S3408 in 3408 throws is [1751, 1865]. Strictly speaking, since
ρ

σ3
√
N

= 0.0172, the probability that S3408 is in that interval is bigger than 93.3% and smaller

than 96.7%.

Also, using the exact value for p = 5
3π , we see from (??) that the probability that

|S∗N | =

∣∣∣∣∣ SN −Np√
Np(1− p)

∣∣∣∣∣ =

√
N

p(1− p)

∣∣∣∣SNN − p
∣∣∣∣

is less than x =
√

3408
p(1−p)

∣∣1808
3408 − p

∣∣ = 5.27 · 10−6 is less than γx + ρ

σ3
√
3408

= 4.2 · 10−6 +

0.01722564 = 0.01723. So the probability that Lazzarini’s machine would produce exactly
1808 intersections in 3408 throws is less than 1.7%.

2. Recalling from Slide 9 in Lecture 2 that E
[
Q̂M

]
− E [QM] = 0 we get

E
[(
E [Q]− Q̂M

)2]
= E

[(
E [Q]− E [QM]︸ ︷︷ ︸

=E[Q−QM]

+ E
[
Q̂M

]
− Q̂M

)2]

= E

[
(E [Q−QM])2 +

(
E
[
Q̂M

]
− Q̂M

)2
+ 2E [Q−QM]

(
E
[
Q̂M

]
− Q̂M

)]
Using linearity of the expected value and the fact that most of the terms under the expected value
are not actually random, we can simplify this to

E
[(
E [Q]− Q̂M

)2]
= (E [Q−QM])2 + Var[Q̂M] + 2E [Q−QM]

(
E
[
Q̂M

]
− E

[
Q̂M

])
︸ ︷︷ ︸

=0

=
(
E [Q−QM]

)2
+

Var[QM]

N
.

3. (a) Expanding the definition of the variance we get

Var
[1
2

(Q̂M,N + ̂̃QM,N)
]

= E

[(
1

2
(Q̂M,N + ̂̃QM,N)− 1

2
(E [Q] + E [Q])

)2
]

=
1

4
E
[
(Q̂M,N − E [Q])2 + (̂̃QM,N − E [Q])2 + 2(Q̂M,N − E [Q])(̂̃QM,N − E [Q])

]
=

1

4

(
Var

[
Q̂M,N

]
+ Var

[̂̃QM,N

]
+ 2Cov

(
Q̂M,N ,

̂̃QM,N

))
Using the definition of the sample variances and sample covariances of {Q(k)

M } and {Q̃(k)
M } from

lectures and expanding we get

s2Q :=
1

N − 1

N∑
k=1

(Q
(k)
M − Q̂M,N)2 =

1

N − 1

 N∑
k=1

(
Q

(k)
M

)2
− 1

N

(
N∑
k=1

Q
(k)
M

)2

s2
Q̃

:=
1

N − 1

N∑
k=1

(Q̃
(k)
M −

̂̃
QM,N)2 =

1

N − 1

 N∑
k=1

(
Q̃

(k)
M

)2
− 1

N

(
N∑
k=1

Q̃
(k)
M

)2

c
Q,Q̃

:=
1

N − 1

N∑
k=1

(Q
(k)
M − Q̂M,N)(Q̃

(k)
M −

̂̃QM,N)

=
1

N − 1

(
N∑
k=1

Q
(k)
M Q̃

(k)
M −

1

N

(
N∑
k=1

Q
(k)
M

)(
N∑
k=1

Q̃
(k)
M

))

Hence, we can estimate

Var
[1
2

(Q̂M,N + ̂̃QM,N)
]

by
s2Q + s2

Q̃
+ 2c

Q,Q̃

4N
.

Within the iteration over the samples in the code we only have to keep track of the sums

N∑
k=1

Q
(k)
M ,

N∑
k=1

Q̃
(k)
M ,

N∑
k=1

(
Q

(k)
M

)2
,

N∑
k=1

(
Q̃

(k)
M

)2
and

N∑
k=1

Q
(k)
M Q̃

(k)
M .

(b) See my model code.

(c) See my model code. In my model code the variance is reduced by almost a factor 5, but this
reduction does not get bigger for smaller tolerances TOL.

4. (a) Let us define the following cost functional (including the constraint on the variance via a
Lagrange multiplier):

L(N0, . . . , NL, λ) =

L∑
`=0

C`N` + λ

(
L∑
`=0

Var[Y`]

N`
− TOL2

2

)
.

The first order optimality conditions are to set to zero all the first-order partial derivatives of
L with respect to its arguments. This leads to

0 =
∂L
λ

=

L∑
`=0

Var[Y`]

N`
− TOL2

2
(3)

0 =
∂L
N`

= C` − λ
Var[Y`]

N2
`

, ` = 0, . . . , L (4)

Equations (??) imply

N` =
√
λ

√
Var[Y`]

C`
, ` = 0, . . . , L, (5)

as claimed in the notes. To find the constant
√
λ (i.e. the square root of the Lagrange

multiplier), we substitute into (??) and get

L∑
`=0

Var[Y`]

√
C`

λVar[Y`]
=

TOL2

2
⇒

√
λ =

2

TOL2

L∑
`=0

√
C`Var[Y`].

(b) See either the paper https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf or my
paper http://www.maths.bath.ac.uk/~masrs/cgst_mlmc_cvs2010.pdf for proofs of this
theorem that essentially use the argument in (a).

5. (a) See my model code.

I did not implement the fully adaptive algorithm in the lecture notes. Instead I pass N0, the
number of samples on the coarsest level, as an argument and then derive N` from (??). By
taking the ratio N`/N0 we do not need to know (or estimate) the constant

√
λ. Instead, with

the choice s = 2, we get

N` = N0

√
Var[Y`]C0
Var[Y0]C`

=
2

3
N02

−`/2

√
Var[Y`]

Var[Y0]

where I have used that M` = 2`M0 and C(Q(k)
`) = 8M`, since in each step of the Euler method

my code carries out 8 floating point operations. This implies that C(Y (k)
`) = 8(M` +M`−1) =

12M`, for ` > 0. The total number of floating point operations is

C(Q̂ML
L,{N`}) = 8M0N0 + 12

L∑
`=1

M`N` .

Here is a plot of cost against tolerance with the 3 codes (standard MC, anithetic MC, MLMC):

As predicted, the cost for standard and antithetic MC grows like TOL−3 and the cost for
MLMC grows like TOL−2. The actual cost depends on the choice of coarsest grid.

(b) To estimate α, I use my MLMC code with only two levels, i.e. L = 1 and s = M1/M0 and N
both sufficiently large, so that essentially the finer calculation is exact and the sampling error
is negligible. In the following figure (left) we see a log-log plot of |Ŷ1| ≈ |E [QM1 −QM0] | ≈
|E [Q−QM0] |. Clearly the error decays like M−10 .

To estimate γ (above figure, right), I simply measured the CPU-time (with tic and toc in
Matlab) averaged over N samples. We see that γ ≈ 1 for M sufficiently large.

Finally, in the last figure below, we see a plot of Var[Ŷ`] and Var[Q̂M`
] for a range of values

of `. We see that the numerically observed rate β ≈ 2. To prove this, use the bound on the
Euler discretisation error on Slide 18 from Lecture 2:

Var[Ŷ`] =
1

N`
Var[QM`

−QM`−1
]

≤ 1

N`
E
[(
QM`

−QM`−1

)2]
≤ 2

N`

(
E
[(
Q−QM`−1

)2]
+ E

[(
Q−QM`

)2])
≤ 2

N`

(
KLM−2`−1 +KLM−2`

)
≤ 2KL(1 + s2)︸ ︷︷ ︸

constant

N−1` M−2` .

(c) For example, you could combine antithetic sampling and MLMC, or use a quasi-Monte Carlo
method (see Wednesday).

