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Course Structure

This short course is based on a compact course I gave in July at the
Heidelberg Graduate School for Mathematical and
Computational Methods for the Sciences (HGS MathComp)

It will consist of four 90 minute lectures.

Lectures 2-4 will be followed by short exercise classes.

On request, I can also schedule an additional 45 minute lecture in
applying the described methods in biological network analysis.

Programming exercises will be in Matlab (but they also run all on
Octave which is open source).
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Part 1 – What are the Challenges in UQ?

What is uncertainty quantification (UQ) about?

What is uncertainty?

How can uncertainty be described?

How can the effects of uncertainty be treated and quantified?

A case study – radioactive waste disposal.

Methods for solving the resulting mathematical problems.

What are the challenges?
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What is Uncertainty Quantification (UQ)?
What is ‘uncertain’?

uncertain: not able to be relied on; not known or definite.

Oxford Collegiate Dictionary

uncertain: not exactly known or decided; not definite or
fixed; not known beyond doubt; not constant

Merriam Webster Online Dictionary

uncertain: not able to be accurately known or predicted;
not precisely determined, established, or decided; liable to
variation; changeable

Collins Online Dictionary
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What is Uncertainty Quantification (UQ)?
A poetic description

There are known knowns;
there are things we know we know.

We also know there are known unknowns;
that is to say, we know there are some things we do not
know.

But there are also unknown unknowns the ones we dont
know we dont know. U. S. Secretary of Defence, Donald Rumsfeld

DoD News Briefing; Feb. 12, 2002
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What is Uncertainty Quantification (UQ)?
Uncertainty in Modern Life

Many aspects of modern life involve uncertainty:

Social systems: military, finance, insurance industry, elections

Environmental systems: weather, climate, seismic, subsurface
geophysics

Engineering systems: automobiles, aircraft, bridges, structures

Biological systems: health and medicine, pharmaceuticals,
gene expression, cancer research

Physical systems: quantum physics, radioactive decay
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What is Uncertainty Quantification (UQ)?
Uncertainty in Modern Life

Source: National Hurricane Center, USA

Predicted storm path with uncertainty cones.
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What is Uncertainty Quantification (UQ)?
Uncertainty in Modern Life

Source: Brodman & Karoly, 2013

Global-mean temperature change for a business-as-usual emission

scenario, relative to pre-industrial. Black line: median, shaded regions

67% (dark), 90% (medium) and 95% (light) confidence intervals.

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 9 / 54



What is Uncertainty Quantification (UQ)?
Uncertainty in Modern Life

Source: K. A. Cliffe, 2012

Sample paths of groundwater-borne contaminant particles emanating from

an underground radioactive waste disposal site.
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What is Uncertainty Quantification (UQ)?
Examples

Radioactive decay

Radium-226: half-life of 1602 years

Decays into Radon gas (Radon-222) by emitting alpha particles.

Over a period of 1602 years, half the radium atoms in a given
sample will decay.

But we cannot say which half!

This kind of uncertainty seems to be ‘built in’ to the physical world.
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What is Uncertainty Quantification (UQ)?
Examples

Rolling dice

Cube, 6 faces, numbered 1–6

One or more thrown onto a table.

For “fair dice”, expect to see the numbers 1–6 appear equally
often, provided the dice are thrown sufficiently many times.

How does this differ from radioactive decay?

Is this uncertainty also built in to the physical world, or are we just
not able to calculate what will happen when the dice are thrown?
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What is Uncertainty Quantification (UQ)?
Examples

Screening/testing for disease

Incidence of disease among general population: 0.01 %

Test has true positive rate (sensitivity) of 99.9 %.

Same test has true negative rate (specificity) of 99.99 %.

What is the chance that someone who tests positive actually has
the disease?

Answer (using relative/conditional probabilities, Bayes’ formula):

P(diseas|pos) =
P(pos|diseas) · P(diseas)

P(pos|diseas) · P(diseas) + P(pos|no diseas) · P(no diseas)

=
0.999 · 0.0001

0.999 · 0.0001 + (1− 0.9999) · (1− 0.0001)
≈ 0.4998
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What is Uncertainty Quantification (UQ)?
Examples

Alternative answer (using natural frequencies):

Think of random sample 10,000 people.
Of these, on average 1 will have the disease, 9,999 will not.
Person who has the disease will almost certainly test positive.
on average 1 of the 9,999 healthy people will test (falsely) pos.
Thus, (roughly) only one out of every two positive patients
actually has the disease.

In [Gigerenzer, 1996] medical practitioners were given the following
information regarding mammography screenings for breast cancer:

incidence: 1 %; sensitivity: 80 %; specificity: 90 %.

When asked to quantify probability of a patient actually having breast
cancer given a positive screening result (7.5%), 95 out of 100
physicians estimated this probability to lie above 75%.
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What is Uncertainty Quantification (UQ)?
Examples

274

The probability that a patient has breast cancer is
1% (the physician’s prior probability).

If the patient has breast cancer, the probability
that the radiologist will correctly diagnose it is 80%

(hit rate or sensitivity).
If the patient has a benign lesion (no breast can-

cer), the probability that the radiologist will incor-
rectly diagnose it as cancer is 10% (false-positive rate).

Question: What is the probability that a patient
with a positive mammography actually has breast
cancer?

Eddy reported that 95 of 100 physicians estimated
the probability of breast cancer after positive mam-
mography to be about 75%. If one inserts the num-
bers into Bayes’ theorem, however, one gets a value
of 7.5%, that is, an estimate one order of magnitude
smaller. Casscells and colleagues9 have reported
similar results with physicians, staff, and students at
the Harvard Medical School. Is there something sys-
tematically wrong with physicians’ statistical train-
ing, with their intuitions, or both?

Physicians are no exception in having difficulties
with probabilities. Numerous undergraduates sitting
through tests in psychological laboratories found
themselves similarly helpless and were diagnosed as
suffering from &dquo;cognitive illusions.&dquo; From these

studies, many have concluded that the human mind
lacks something important: &dquo;People do not appear
to follow the calculus of chance or the statistical the-

ory of prediction&dquo; 10 p 237; &dquo;It appears that people lack
the correct programs for many important judgmen-
tal tasks&dquo; 11; or more bluntly, &dquo;Tversky and Kahne-
man argue, correctly I think, that our minds are not
built (for whatever reason) to work with the rules of

probability.&dquo; 12 p 469 If these conclusions are correct,
then the problem is not so much in training, but in
our minds: there seems to be little hope for physi-
cians, and for their patients as well.

MENTAL COMPUTATIONS DEPEND ON

INFORMATION FORMATS

These conclusions, however, are premature. Let
us be clear why. A discrepancy between human
judgment and the outcome of Bayes’ rule is ob-

served, from which the conclusion is drawn that
there is no cognitive algorithm similar to Bayes’ rule
in people’s minds (but only dubious heuristics such
as &dquo;representativeness&dquo;). However, any claim against
the existence of an algorithm, Bayesian or otherwise,
is impossible to evaluate unless one specifies the in-
formation format for which the algorithm is de-

signed to operate. For instance, numbers can be
represented in various formats: Arabic, Roman, and
binary systems, among others. My pocket calculator
has an algorithm for multiplication that is designed
for Arabic numbers as the input format. If I enter

FIGURE 1. Bayesian computations are simpler when information
is represented in a frequency format (right) than when it is rep-
resented in a probability format (left) p(H) = prior probability
of hypothesis. H (breast cancer), p(D ~ H) = probability of data D
(positive test) given H, and p(D ) - H) = probability of D given - H
(no breast cancer).

binary numbers instead, garbage comes out. The
observation that the output of my pocket calculator
deviates from the normative rule (here: multiplica-
tion), however, does not entail the conclusion that it
has no algorithm for multiplication. Similarly, the
algorithmic operations acquired by humans are de-
signed for particular formats. Consider for a mo-
ment division in Roman numerals.
The format of information is a feature of the de-

cision maker’s environment. Let us apply this ar-
gument to medical diagnosis, such as Eddy’s mam-
mography problem. Assume that through the evo-
lutionary process of adapting to risky environments,
some capacity or cognitive algorithm for statistical
inference has evolved. For what information format
would such an algorithm be designed? Certainly not
probabilities and percentages-as in the above

mammography problem-because these are rela-
tively new (a few hundred years old) formats for
learning and communicating risk.313 So if not prob-
abilities and percentages, for what information for-
mat were these cognitive algorithms designed? I

argue that they evolved to deal with absolute fre-
quencies, because information was experienced
during most of the existence of Homo sapiens in
terms of discrete cases, for example, three out of 20
cases rather than 15%.

 at Universitaetsbibliothek on April 8, 2014mdm.sagepub.comDownloaded from 

We see how crucial it is for
its transparent communication
how uncertainty is described.

Source: Gigerenzer, 1996
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What is Uncertainty Quantification (UQ)?
Examples

Modeling biological systems

From one view, biology is just very complicated physics and
chemistry.

But even the simplest biological systems are far too complicated
to be understood from basic principles at the moment.

Models are constructed that attempt to capture the essential
features of what is happening, but often there are competing
models and they may all fail in some way or other to predict the
observed phenomena.

In short, we dont really know what the model is!

How does this situation differ from the previous two?
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What is Uncertainty Quantification (UQ)?
Examples

Unknown unknowns

Obviously can’t give a current example.

Good example is the state of Physics at end of 19th century.

There is nothing new to be discovered in physics now. All
that remains is more and more precise measurement.

Lord Kelvin, 1900

Quantum mechanics and relativity theory were unknown
unknowns.

It is easy to underestimate uncertainty.
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What is Uncertainty Quantification (UQ)?
Political Implications

Questions:1

1 How do we account for all the uncertainties in the complex
models and analyses that inform decision makers?

2 How can those uncertainties be communicated simply but
quantitatively to decision makers?

3 How should decision makers use those uncertainties when
combining scientific evidence with more socio-economic
considerations?

4 How can decisions be communicated so that the proper
acknowledgment of uncertainty is transparent?

1posed on entry at the 2006 UK EPSRC Ideas Factory on the topic
Scientific Uncertainty and Decision Making for Regulatory and Risk
Assessment Purposes.
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What is Uncertainty Quantification (UQ)?
Communicating the results

Climate change

The weight of evidence makes it clear that climate change is a real
and present danger. The Exeter conference was told that whatever
policies are adopted from this point on, the Earths temperature will
rise by 0.6F within the next 30 years. Yet those who think climate
change just means Indian summers in Manchester should be told that
the chances of the Gulf stream - the Atlantic thermohaline circulation
that keeps Britain warm - shutting down are now thought to be
greater than 50%.

The Guardian, 2005

Most of the observed increase in globally-averaged temperatures since
the mid-20th century is very likely due to the observed increase in
anthropogenic GHG concentrations. It is likely there has been
significant anthropogenic warming over the past 50 years averaged
over each continent (except Antarctica).

IPCC Fourth Assessment
Summary for Policymakers.

What do these statements mean?
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What is Uncertainty Quantification (UQ)?
UQ and the scientific computing paradigm

Physical Phenomenon Mathematical Model

Numerical ApproximationComputer Implementation

Prediction
Insight
Optimization
Control
Decision
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What is Uncertainty Quantification (UQ)?
UQ and the scientific computing paradigm

Physical Phenomenon

Data
Quantities of Interest

Mathematical Model

DEs
Parameters

Solution

Numerical Approximation

Discretization
Solvers

Computer Implementation

Software

Prediction
Insight
Optimization
Control
Decision
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What is Uncertainty Quantification (UQ)?
UQ and the scientific computing paradigm

Physical Phenomenon

Uncertain Data
Lack of Knowledge

Variability

Mathematical Model

SDEs
Random Fields

Numerical Approximation

?

Computer Implementation

?

Prediction
Insight
Optimization
Control
Decision
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What is Uncertainty Quantification (UQ)?
UQ and the scientific computing paradigm

Physical Phenomenon

Uncertain Data
Lack of Knowledge

Variability

Mathematical Model

SDEs
Random Fields

Numerical Approximation

?

Computer Implementation

?

Prediction
Insight
Optimization
Control
Decision

Quantified
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What is Uncertainty Quantification (UQ)?
Validation and Verification (V & V)

What confidence can be assigned to a computer prediction of
complex phenomena?

Validation: Determination of whether a mathematical model
adequately represents physical/engineering phenomenon under study.

“Are we solving the right problem?”

Is this even possible? (cf. Carl Popper)

Verification: Determination of whether an algorithm and/or
computer code correctly implements given mathematical model.

“Are we solving the problem correctly?”

code verification (software engineering)
solution verification (a posteriori error estimation)
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What is Uncertainty Quantification (UQ)?
Aleatoric and Epistemic Uncertainty

Aleatoric Uncertainty: Uncertainty due to true intrinsic variability;
cannot be reduced by additional experimentation, improvement of
measuring devices, better model, etc.

Examples: rolling a die

wind stress on a structure

production variations

Epistemic Uncertainty: Uncertainty due to lack of knowledge or
incomplete information.

Examples: turbulence modeling assumptions

surrogate chemical kinetics

probability distribution of a random quantity

Note: This distinction is not always meaningful or even possible.
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What is Uncertainty Quantification (UQ)?
The “Fruit Fly” of UQ

The most popular model problem in the UQ community is the
steady-state diffusion problem with uncertain coefficient function:

−∇·(a∇u) = f on domain D ⊂ Rd .

(an elliptic partial differential equation)

Typically, rather than the PDE solution u (pressure, temperature,
concentration, ...) we are interested in a functional Q of the solution.
Such a functional is known as a quantity of interest (QoI).

Examples:

Q(u) = u(x0), Q(u) =
1

|D0|

∫
D0

u(x) dx.

In what way might uncertainty in the coefficient a be addressed?
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What is Uncertainty Quantification (UQ)?
Worst case analysis

Introduce an ε-ball around a given function a0 (in a suitable norm).

Examples:

S :=


{a ∈ C 0(D) : ‖a − a0‖∞ ≤ ε},
{a ∈ C 1(D) : ‖∇(a − a0)‖∞ ≤ ε},
{a constantin D : |a − a0| ≤ ε}.

Worst case analysis: determine uncertainty interval

I = [inf
a∈S

Q(u(a)), sup
a∈S

Q(u(a))].

The uncertainty range of Q is then the length of I .

This is a generalisation of interval analysis.

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 24 / 54



What is Uncertainty Quantification (UQ)?
Probabilistic model

But: In general, some coefficients a ∈ S are more likely than others.

Probabilistic approach:

Introduce probability measure on S .

Q(u(·)) as a (measurable) mapping from S to the output set
{Q(u(a)) : a ∈ S} induces a probability measure for the QoI.
(“uncertainty propagation”)

Big issue: choice of distribution, too much subjective
information?

Some classical guidelines: Laplace’s principle of insufficient
reason, maximum entropy, etc.

Choosing distribution based on data is point of departure for
Bayesian inference (genuine “uncertainty quantification”).
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What is Uncertainty Quantification (UQ)?
Other models

Evidence theory (generalisation of probabilistic model)

Fuzzy sets (deterministic approach introduced by [Zadeh, 1965])

Possibility theory

Scenario analysis

. . .

For the remainder we will focus on the probabilistic approach.
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Stochastic Modelling

Many reasons for stochastic modelling (not all strictly UQ):
lack of data (e.g. data assimilation for weather prediction)
data uncertainty (e.g. uncertainty quantification in subsurface flow)
parameter identification (e.g. Bayesian inference in engineering)
unresolvable scales (e.g. atmospheric dispersion modelling)
high dimensionality (e.g. stochastic simulation in systems biology)

Input: best knowledge about system (PDE), statistics of input
parameters, measured ouput data with error statistics,. . .

Output: statistics of QoIs or of entire state space
often very sparse (or no) output data → need a good physical model!

Data assimilation in NWP: data misfit, rainfall at some location
Radioactive waste disposal: flow at repository, ’breakthrough’ time
Oil reservoir simulation: production rate
Atmospheric dispersion: amount of ash over Heathrow
Aeronautical engineering: certification of carbon fibre composite wing
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Stochastic Modelling
Examples – PDEs with random coefficients

Navier–Stokes (e.g. flow around wing, weather forecasting):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + µ∇2v + f in Ω

subject to IC v(x , 0) = v0(x) + BCs
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Stochastic Modelling
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Navier–Stokes (e.g. flow around wing, weather forecasting):

ρ(ω)

(
∂v

∂t
+ v · ∇v

)
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Stochastic Modelling
Examples – PDEs with random coefficients

Structural Mechanics (e.g. composites, tires or bone):

∇ ·
(

C :
1

2

[
∇u +∇uT

])
+ F = 0 in Ω

subject to BCs
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Stochastic Modelling
Examples – PDEs with random coefficients

Structural Mechanics (e.g. composites, tires or bone):

∇ ·
(

C (x , ω) :
1

2

[
∇u +∇uT

])
+ F(x , ω) = 0 in Ω(ω)

subject to BCs

fibre defects

contact on rough surface
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Stochastic Modelling
Examples – PDEs with random coefficients

Neutron Transport:

Oil Reservoir Simulation:

optimal well placement

Tsunami Simulation:

[Behrens et al]

Mantel Convection:

[Gmeiner et al]
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Stochastic Modelling
Examples – Stochastic Differential Equations (SDEs)

Atmospheric Dispersion (e.g. volcanic ash, radionuclides, . . . )

Given large-scale atmospheric flow ~v(~x , t), model turbulent dispersion
of particles by a system of SDEs:

d ~U = a(~U, ~X , t)dt + b(~X , t)d ~W (t)

d ~X =
(
~v(~X , t) + ~U(~X , t)

)
dt

~U(t) . . . turbulent correction; ~X (t) . . . particle position; ~W (t) . . . Brownian motion
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Stochastic Modelling
Examples – Stochastic Reaction Networks and Imaging

Gene Regulatory Networks
(direct stochastic simulation)

Source: Shannon et al, 2003

Potential extra talk by Kit Yates!

Geostatistics
(and other imaging applications)

Source: Corbel, Wellmann, 2015
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A Case Study: Radioactive Waste Disposal

An area where UQ has played a central role in the past 25 years
is the assessment of strategies and sites for the long-term
storage of radioactive waste.

Uncertainties arise from technological complexity as well as the
long time scales to be considered.

Many leading industrial countries (USA, UK, Germany) have
scrapped previous plans for national long-term disposal sites and
are re-evaluating their strategies.

Consider a basic UQ problem which occurs in site assessment.
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A Case Study: Radioactive Waste Disposal
Background

Radioactive waste is produced mainly by nuclear power plants
(Other sources: medical, weapons, non-nuclear industries)

Exposure to high radiation levels seriously harmful to humans
and animals; long-term exposure to low-level radiation can cause
cancer and other long-term health problems.

Classification of waste “level”:
high (HLW): highly radioactive, produces heat, small amount
intermediate (ILW): still very radioactive, no heat produced
low (LLW): low radioactivity; packaging material, protective
clothing, soil, concrete that has been exposed to radioactivity

Quantities in storage (excl. LLW; source: http://newmdb.iaea.org)

Germany: 120,000 m3 (2007)

France: 90,000 m3 (2007)

UK: 350,000 m3 (2007)

USA: 540,000 m3 (2008)
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A Case Study: Radioactive Waste Disposal
Management Options

Since this problem has received serious consideration (≈ 1970s), several
options have been discussed

Surface storage: current universal solution, not long-term, risky.

Disposal at sea: banned by international treaty (London Convention)

Disposal in space: too dangerous, prohibitive cost (but permanent)

Transmutation: not yet proven, would mitigate but not solve problem

Deep geological disposal: favoured by nearly all countries with a
radioactive waste disposal programme
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A Case Study: Radioactive Waste Disposal
Deep Geological Disposal

Storage in containers in tunnels, several hundred meters deep, in
stable geological formations.

Issue: retrievable or not?

No human intervention required after final closure of repository.

Several barriers: chemical, physical, geological.

Substantial engineering challenge
(containment must be assured for at least 10,000 years).

Main escape route for radionuclides: groundwater pathway.

Assessing safety of potential sites of utmost importance
long timescales → modelling essential!

Key aspect: How to quantify uncertainties in the models?
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A Case Study: Radioactive Waste Disposal
WIPP – Waste Isolation Pilot Plant

US DOE repository for radioactive
waste situated near Carlsbad, NM.

Fully operational since 1999.

Extensive site characterisation
and performance assessment since
1976, also in course of compliance
certification and recertification by
US EPA (every 5 years).

Lots of publicly available data.

http://www.wipp.energy.gov
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A Case Study: Radioactive Waste Disposal
WIPP Geology

Repository located at 655m
depth in bedded evaporites
(primarily halite, a salt).

Most transmissive rock layer
in the region is the Culebra
Dolomite.

In the event of an accidental
breach, Culebra would be the
principal pathway for
transport of radionuclides
away from the repository.
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A Case Study: Radioactive Waste Disposal
WIPP UQ Scenario

One scenario at WIPP is a release of
radionuclides by means of a borehole
drilled into the repository.

Radionuclides are released into the
Culebra Dolomite and then
transported by groundwater.

Travel time from release point in the
repository to the boundary of the
region is an important quantity.

To a good approximation the flow is
two-dimensional.
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A Case Study: Radioactive Waste Disposal
Groundwater Flow Model – Darcy’s Law

Stationary Darcy flow q = −K∇p q : Darcy flux

K : hydraulic conductivity

p : hydraulic head

mass conservation ∇·u = 0 u : pore velocity

q = φu φ : porosity

transmissivity k = Kb b : aquifer thickness

particle transport ẋ(t) = −k(x)

bφ
∇p(x) x : particle position

x(0) = x0 x0 : release location

Quantity of interest: log10 of particle travel time to reach boundary
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A Case Study: Radioactive Waste Disposal
UQ Problem – PDE with Random Coefficient

Primal form of Darcy equations (our “fruit fly”):

−∇·[k(x)∇p(x)] = 0, x ∈ D, p = p0 along ∂D.

Model k as a random field (RF) k = k(x, ω), ω ∈ Ω, with respect to
underlying probability space (Ω,A ,P).

Modeling Assumptions (standard in 2D hydrogeology):

T has finite mean and covariance

k(x) = E [k(x, ·)] , x ∈ D,

Covk(x, y) = E
[(

k(x, ·)− k(x)
) (

k(y, ·)− k(y)
)]
, x, y ∈ D.

k is lognormal, i.e., Z (x, ω) := log k(x, ω) is a Gaussian RF.

CovZ is stationary and isotropic, i.e., CovZ (x, y) = c(‖x− y‖2)
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A Case Study: Radioactive Waste Disposal
Matérn Family of Covariance Kernels

c(x, y) = cθ(r) =
σ2

2ν−1 Γ(ν)

(
2
√
ν r

λ

)ν
Kν

(
2
√
ν r

λ

)
, r = ‖x− y‖2

Kν : modified Bessel function of order ν

Parameters θ = (σ2, λ, ν) σ2 : variance

λ : correlation length

ν : smoothness parameter

Special cases:

ν = 1
2 : c(r) = σ2 exp(−

√
2r/λ) exponential covariance

ν = 1 : c(r) = σ2
(

2r
λ

)
K1

(
2r
λ

)
Bessel covariance

ν →∞ : c(r) = σ2 exp(−r 2/λ2) Gaussian covariance
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A Case Study: Radioactive Waste Disposal
Matérn Covariance Functions
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Smoothness: Realisations Z (·, ω) ∈ C η(D) (Hölder), for any η < ν.
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A Case Study: Radioactive Waste Disposal
Sampling from Z – Karhunen-Loève expansion

Since c(x, y) is symmetric, positive semidefinite, continuous, the
covariance operator

C : L2(D)→ L2(D), (Cu)(x) =

∫
D

u(y)c(x, y) dy

is selfadjoint, compact, nonnegative. Hence, its eigenvalues {µm}m∈N
form a non-increasing sequence accumulating at most at 0.

Karhunen-Loève expansion (converges in L2
P(Ω; L∞(D))):

Z (x , ω) = Z (x) +
∞∑

m=1

√
µm φm(x) Ym(ω)

where {φm}m∈N are normalised eigenfunctions and Ym ∼ N(0, 1) i.i.d.
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A Case Study: Radioactive Waste Disposal
WIPP Data
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WIPP site boundary

transmissivity measurements at
38 test wells

use head measurements to
obtain boundary data via
statistical interpolation
(kriging)

constant layer thickness b = 8m

constant porosity φ = 0.16

SANDIA Nat. Labs reports
[Caufman et al., 1990]

[La Venue et al., 1990]
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A Case Study: Radioactive Waste Disposal
Probabilistic Model of Transmissivity

Calibrate statistical model to the transmissivity data:

e.g. [Ernst et al., 2014]

1 Estimate parameters σ, λ and ν via restricted maximum
likelihood estimation (REML).

2 Condition resulting covariance structure of Z = log k on
transmissivity measurements. (Low-rank modification of
covariance operator.)

3 Approximate Z by truncated Karhunen-Loève expansion, i.e use
only the leading s terms.
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A Case Study: Radioactive Waste Disposal
WIPP KL modes conditioned on 38 transmissivity observations

unconditioned, m = 1, 2, 9, 16

conditioned, m = 1, 2, 9, 16
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Computational Challenges
Simulating PDEs with Highly Heterogeneous Random Coefficients

−∇· (k(x, ω)∇p(x, ω)) = f (x, ω), x ∈ D ⊂ Rd , ω ∈ Ω (prob. space)

Sampling from random field log k(x, ω) (correlated Gaussian):

truncated Karhunen-Loève expansion of log k (see above)

matrix factorisation, e.g. circulant embedding (FFT)

via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Quadrature – (the central problem!):

Monte Carlo, Quasi-Monte Carlo

stochastic Galerkin/collocation (+ sparse grids)

Solve large number of multiscale deterministic PDEs:

Efficient discretisation & FE error analysis (mesh size h)

Multigrid Methods, AMG, DD Methods (robustness?)
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Computational Challenges
Why is it computationally so challenging?

Low regularity (global): k ∈ C η, η < ν < 1 =⇒ fine mesh h� 1

Large σ2 & exponential =⇒ high contrast kmax/kmin > 106

Small λ =⇒ multiscale + high stochast. dimension s > 100
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log t

ECDF of log travel time 
 20 000 MC samples

 

 

M = 30

M = 100

M = 500

M = 1000

Source: Ernst et al, 2014 (s = M)
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Computational Challenges
Standard Monte Carlo Quadrature

Y(ω) ∈ Rs Model(h)−→ P(ω) ∈ RMh
Output−→ Qh,s(ω) ∈ R

random input state vector quantity of interest

Here: Y multivariate Gaussian for KL expansion; P numerical
solution of PDE; Qh,s a (non)linear functional of P

Real QoI Q(ω) inaccessible (exact PDE), but we can assume

E[Qh,s ]
h→0, s→∞−→ E[Q] and |E[Qh,s − Q]| = O(hα) +O(s−α

′
)

Standard Monte Carlo estimator for E[Q]: More next week!

Q̂MC :=
1

N

N∑
i=1

Q
(i)
h,s

where {Q(i)
h,s}

N
i=1 are i.i.d. samples computed with Model(h)

Cost per sample is O(Mγ
h ) (optimal: γ = 1)
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Computational Challenges
Standard Monte Carlo Quadrature

Convergence of plain vanilla MC (mean square error):

E
[(

Q̂MC − E[Q]
)2]︸ ︷︷ ︸

=: MSE

= V[Q̂MC] +
(
E[Q̂MC]− E[Q]

)2

=
V[Qh,s ]

N︸ ︷︷ ︸
sampling error

+
(
E[Qh,s − Q]

)2

︸ ︷︷ ︸
model error (“bias”)

Typical: α = 1 ⇒ MSE = O(N−1) + O(h2) ≤ TOL2,

and so h ∼ TOL and N ∼ TOL−2.

Using optimal PDE solver: Cost = O(Nh−d) = O(TOL−(d+2))

(e.g. for TOL = 10−3: h ∼ 10−3, N ∼ 106 and Cost = O(1012) in 2D!!)

Quickly becomes prohibitively expensive !
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Computational Challenges
Numerical Experiment with standard Monte Carlo

D = (0, 1)2, unconditioned KL expansion, Q = ‖ − k ∂p
∂x1
‖L1(D)

using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

Numerically observed FE-error: ≈ O(h3/4) =⇒ α ≈ 3/4.

Numerically observed cost/sample: ≈ O(h−2) =⇒ γ ≈ 1.

Total cost to get RMSE O(TOL): ≈ O(TOL−14/3)
to get error reduction by a factor 2 → cost grows by a factor 25!

Case 1: σ2 = 1, λ = 0.3, ν = 0.5

TOL h−1 Nh Cost
0.01 129 1.4× 104 21min

0.002 1025 3.5× 105 30days

Case 2: σ2 = 3, λ = 0.1, ν = 0.5

TOL h−1 Nh Cost
0.01 513 8.5× 103 4h

0.002 Prohibitively large!!
(actual numbers & CPU times on a cluster of 2GHz Intel T7300 processors)
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Computational Challenges
Alternatives – The Curse of Dimensionality

Stochastic Galerkin/collocation methods More in Week 3!

cost grows v. fast with dimension s & polynomial order q

(faster than exponential) → #stochastic DOF NSC = O
(

(s+q)!
s!q!

)
lower # with sparse grids (Smolyak) but still fast growth with s!

Anisotropic sparse grids or adaptive best N-term approximation
can be dimension independent w. suffic. smoothness (ν � 1)!

Monte Carlo type methods

convergence of plain vanilla Monte Carlo is always dimension
independent (even for rough problems)!

BUT (as we have seen) order of convergence too slow: O(N−1/2)!

Quasi-MC also dimension independent and (almost) O(N−1)!

But requires also (some) smoothness ! More in Week 3!
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BUT (as we have seen) order of convergence too slow: O(N−1/2)!

Quasi-MC also dimension independent and (almost) O(N−1)!

But requires also (some) smoothness ! More in Week 3!
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Computational Challenges
Nonlinear Parameter Dependence (e.g. lognormal coefficients)

Monte Carlo methods do not rely on KL-type expansion
(can use circulant embedding or sparse pseudodifferential operators)

Stochastic Galerkin matrix is block dense due to nonlinear
parameter dependence → even applying matrix is expensive!
(can transform to convection-diffusion problem, but requires more

smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])

best N-term theory by [Cohen, Schwab et al] does not apply!

Monte Carlo methods do not suffer from Curse of Dimensionality, they
are “non-intrusive” and nonlinear parameter dependence is no problem,

but the plain vanilla version is too slow!

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 54 / 54



Computational Challenges
Nonlinear Parameter Dependence (e.g. lognormal coefficients)

Monte Carlo methods do not rely on KL-type expansion
(can use circulant embedding or sparse pseudodifferential operators)

Stochastic Galerkin matrix is block dense due to nonlinear
parameter dependence → even applying matrix is expensive!
(can transform to convection-diffusion problem, but requires more

smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])

best N-term theory by [Cohen, Schwab et al] does not apply!

Monte Carlo methods do not suffer from Curse of Dimensionality, they
are “non-intrusive” and nonlinear parameter dependence is no problem,

but the plain vanilla version is too slow!

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 54 / 54



Computational Challenges
Nonlinear Parameter Dependence (e.g. lognormal coefficients)

Monte Carlo methods do not rely on KL-type expansion
(can use circulant embedding or sparse pseudodifferential operators)

Stochastic Galerkin matrix is block dense due to nonlinear
parameter dependence → even applying matrix is expensive!
(can transform to convection-diffusion problem, but requires more

smoothness and is not conservative [Elman, Ullmann, Ernst, 2010])

best N-term theory by [Cohen, Schwab et al] does not apply!

Monte Carlo methods do not suffer from Curse of Dimensionality, they
are “non-intrusive” and nonlinear parameter dependence is no problem,

but the plain vanilla version is too slow!
Alternatives?

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 54 / 54




