Computational Methods in Uncertainty Quantification

Robert Scheichl

Department of Mathematical Sciences University of Bath

Taught Course Centre Short Course
Department of Mathematical Sciences, University of Bath Nov 19 - Dec 102015

PART 4

Lecture 4

Bayesian Inverse Problems - Conditioning on Data

- Inverse Problems
- Least Squares Minimisation and Regularisation
- Bayes' Rule and Bayesian Interpretation of Inverse Problems
- Metropolis-Hastings Markov Chain Monte Carlo
- Links to what I have told you so far
- Multilevel Metropolis-Hastings Algorithm
- Some other areas of interest:
- Data Assimilation and Filtering
- Rare Event Estimation

Inverse Problems

What is an Inverse Problem?

Inverse problems are concerned with finding an unknown (or uncertain) parameter vector (or field) x from a set of typically noisy and incomplete measurements

$$
y=H(x)+\eta
$$

where η describes the noise process and $H(\cdot)$ is the forward operator which typically encodes a physical cause-to-consequence mapping. Typically it has a unique solution and depends continuously on data.

Inverse Problems

What is an Inverse Problem?

Inverse problems are concerned with finding an unknown (or uncertain) parameter vector (or field) x from a set of typically noisy and incomplete measurements

$$
y=H(x)+\eta
$$

where η describes the noise process and $H(\cdot)$ is the forward operator which typically encodes a physical cause-to-consequence mapping. Typically it has a unique solution and depends continuously on data.

The inverse map " H^{-1} " (from y to x) on the other hand is typically (a) unbounded, (b) has multiple or (c) no solutions.
(An ill-posed or ill-conditioned problem in the classical setting; Hadamard 1923.)

Inverse Problems

Examples

- Deblurring a noisy image
y : image; H : blurring operator
- Seismic
y : reflected wave image; H : wave propagation
- Computer tomography
y : radial x-ray attenuation; H : line integral of absorption
- Weather forecasting
y : satellite data, sparse indirect measurem.; H: atmospheric flow
- Oil reservoir simulation
y : well pressure/flow rates, H : subsurface flow
- Predator-prey model
y : state of $u_{2}(T)$; H: dynamical system

Inverse Problems

Linear Inverse Problems - Least Squares

Let us consider the linear forward operator $H(x)=A x$ from \mathbb{R}^{m} to \mathbb{R}^{n} with $A \in \mathbb{R}^{m \times n}$ ($n>m$, full rank) and assume that $\eta \sim \mathrm{N}\left(0, \alpha^{2} I\right)$.

Least squares minimisation would seek the "best" solution \hat{u} by minimising the residual norm (or the sum of squares)

$$
\operatorname{argmin}_{x \in \mathbb{R}^{m}}\|y-A x\|^{2}
$$

Inverse Problems

Linear Inverse Problems - Least Squares

Let us consider the linear forward operator $H(x)=A x$ from \mathbb{R}^{m} to \mathbb{R}^{n} with $A \in \mathbb{R}^{m \times n}$ ($n>m$, full rank) and assume that $\eta \sim \mathrm{N}\left(0, \alpha^{2} I\right)$.

Least squares minimisation would seek the "best" solution \hat{u} by minimising the residual norm (or the sum of squares)

$$
\operatorname{argmin}_{x \in \mathbb{R}^{m}}\|y-A x\|^{2}
$$

In the linear case this actually leads to a unique map

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} y
$$

which also minimises the mean-square error $\mathbf{E}\left[\|\hat{x}-x\|^{2}\right]$ and the covariance matrix $\mathbf{E}\left[(\hat{x}-x)(\hat{x}-x)^{T}\right]$ and satisfies

$$
\mathbf{E}[\hat{x}]=x \quad \text { and } \quad \mathbf{E}\left[(\hat{x}-x)(\hat{x}-x)^{T}\right]=\alpha^{2}\left(A^{T} A\right)^{-1}
$$

Inverse Problems

Singular Value Decomposition and Error Amplification

Let $A=U \Sigma V^{\top}$ be the singular value decomposition of A with $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ and $U=\left[u_{1}, \ldots, u_{m}\right], V=\left[v_{1}, \ldots, v_{n}\right]$ unitary. Then we can show (Exercise) that

$$
\hat{x}=\sum_{k=1}^{m} \frac{u_{k}^{T} y}{\sigma_{k}} v_{k}=x+\sum_{k=1}^{m} \frac{u_{k}^{T} \eta}{\sigma_{k}} v_{k}
$$

In typical physical systems $\sigma_{k} \ll 1$, for $k \gg 1$, and so the "high frequency" error components $u_{k}^{T} \eta$ get amplified with $1 / \sigma_{k}$.

Inverse Problems

Singular Value Decomposition and Error Amplification

Let $A=U \Sigma V^{T}$ be the singular value decomposition of A with $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ and $U=\left[u_{1}, \ldots, u_{m}\right], V=\left[v_{1}, \ldots, v_{n}\right]$ unitary. Then we can show (Exercise) that

$$
\hat{x}=\sum_{k=1}^{m} \frac{u_{k}^{T} y}{\sigma_{k}} v_{k}=x+\sum_{k=1}^{m} \frac{u_{k}^{T} \eta}{\sigma_{k}} v_{k}
$$

In typical physical systems $\sigma_{k} \ll 1$, for $k \gg 1$, and so the "high frequency" error components $u_{k}^{T} \eta$ get amplified with $1 / \sigma_{k}$.

In addition, if $n<m$ or if A is not full rank, then $A^{T} A$ is not invertible and so \hat{x} is not unique (what is the physically best choice?)

Inverse Problems

Tikhonov Regularisation

A technique that guarantees uniqueness of the least squares minimiser (in the linear case) and prevents amplification of high frequency errors is regularisation, i.e solving instead

$$
\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \alpha^{-2}\|y-A x\|^{2}+\delta\left\|x-x_{0}\right\|^{2}
$$

δ is called the regularisation parameter and controls how much we trust the data or how much we trust the a priori knowledge about x.

Inverse Problems

Tikhonov Regularisation

A technique that guarantees uniqueness of the least squares minimiser (in the linear case) and prevents amplification of high frequency errors is regularisation, i.e solving instead

$$
\underset{x \in \mathbb{R}^{m}}{\operatorname{argmin}} \alpha^{-2}\|y-A x\|^{2}+\delta\left\|x-x_{0}\right\|^{2}
$$

δ is called the regularisation parameter and controls how much we trust the data or how much we trust the a priori knowledge about x.

In general, with $\eta \sim \mathrm{N}(0, Q)$ and $H: X \rightarrow \mathbb{R}^{n}$ we solve

$$
\underset{x \in X}{\operatorname{argmin}}\|y-H(x)\|_{Q^{-1}}^{2}+\left\|x-x_{0}\right\|_{R^{-1}}^{2}
$$

Inverse Problems

Bayesian interpretation

The (physical) model gives us $\pi(y \mid x)$, the conditional probability of observing y given x. However, to do UQ, to predict, to control, or to optimise we often are realy interested in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y.

Inverse Problems

Bayesian interpretation

The (physical) model gives us $\pi(y \mid x)$, the conditional probability of observing y given x. However, to do UQ, to predict, to control, or to optimise we often are realy interested in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y.

A simple consequence of $\mathbf{P}(A, B)=\mathbf{P}(A \mid B) \mathbf{P}(B)=\mathbf{P}(B \mid A) \mathbf{P}(A)$ in probability is Bayes' rule

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(B \mid A) \mathbf{P}(A)}{\mathbf{P}(B)}
$$

Inverse Problems

Bayesian interpretation

In terms of probability densities Bayes' rule states

$$
\pi(x \mid y)=\frac{\pi(y \mid x) \pi(x)}{\pi(y)}
$$

- $\pi(x)$ is the prior density represents what we know/believe about x prior to observing y
- $\pi(x \mid y)$ is the posterior density represents what we know about x after observing y
- $\pi(y \mid x)$ is the likelihood represents (physical) model; how likely to observe y given x
- $\pi(y)$ is the marginal of $\pi(x, y)$ over all possible x
(a scaling factor that can be determined by normalisation)

Inverse Problems

Link between Bayes' Rule and Tikhonov Regularisation

Hence, the Bayesian interpretation of the least squares solution \hat{x}, is to find the maximum likelihood estimate.

Inverse Problems

Link between Bayes' Rule and Tikhonov Regularisation

Hence, the Bayesian interpretation of the least squares solution \hat{x}, is to find the maximum likelihood estimate.

The Bayesian interpretation of the regularisation term is that the prior distribution $\pi(x)$ for x is $\mathrm{N}\left(x_{0}, R\right)$.

Inverse Problems

Link between Bayes' Rule and Tikhonov Regularisation

Hence, the Bayesian interpretation of the least squares solution \hat{x}, is to find the maximum likelihood estimate.

The Bayesian interpretation of the regularisation term is that the prior distribution $\pi(x)$ for x is $\mathrm{N}\left(x_{0}, R\right)$.

The solution of the regularised least squares problem is called the maximum a posteriori (MAP) estimator. In the simple linear case above, it is

$$
\hat{x}^{\mathrm{MAP}}=\left(A^{T} A+\delta \alpha^{2} I\right)^{-1}\left(A^{T} y+\delta \alpha^{2} x_{0}\right)
$$

Inverse Problems

Link between Bayes' Rule and Tikhonov Regularisation

Hence, the Bayesian interpretation of the least squares solution \hat{x}, is to find the maximum likelihood estimate.

The Bayesian interpretation of the regularisation term is that the prior distribution $\pi(x)$ for x is $\mathrm{N}\left(x_{0}, R\right)$.

The solution of the regularised least squares problem is called the maximum a posteriori (MAP) estimator. In the simple linear case above, it is

$$
\hat{x}^{\mathrm{MAP}}=\left(A^{T} A+\delta \alpha^{2} I\right)^{-1}\left(A^{T} y+\delta \alpha^{2} x_{0}\right)
$$

However, in the Bayesian setting, the full posterior contains more information than the MAP estimator alone, e.g. the posterior covariance matrix $P^{-1}=\left(A^{T} Q^{-1} A+R^{-1}\right)^{-1}$ reveals those components of x that are relatively more or less certain.

Metropolis-Hastings Markov Chain Monte Carlo

Can we do better than just finding the MAP estimator \& the posterior covariance matrix?

Metropolis-Hastings Markov Chain Monte Carlo

Can we do better than just finding the MAP estimator \& the posterior covariance matrix?

YES. We can sample from the posterior distribution using ...

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^{0} \in X$.
- At state n generate proposal $x^{\prime} \in X$ from distribution $q\left(x^{\prime} \mid x^{n}\right)$ e.g. via a random walk: $x^{\prime} \sim \mathrm{N}\left(x^{n}, \varepsilon^{2} \mathrm{I}\right)$
- Accept x^{\prime} as a sample with probability

$$
\boldsymbol{\alpha}\left(x^{\prime} \mid x^{n}\right)=\min \left(1, \frac{\pi\left(x^{\prime} \mid y\right) q\left(x^{n} \mid y\right)}{\pi\left(x^{n} \mid x^{\prime}\right) q\left(x^{\prime} \mid x^{n}\right)}\right)
$$

i.e. $x^{n+1}=x^{\prime}$ with probability $\alpha\left(x^{\prime} \mid x^{n}\right)$; otherwise $x^{n+1}=x^{n}$.

Metropolis-Hastings Markov Chain Monte Carlo

Theorem (Metropolis et al. 1953, Hastings 1970)

Let $\pi(x \mid y)$ be a given probability distribution. The Markov chain simulated by the Metropolis-Hastings algorithm is reversible with respect to $\pi(x \mid y)$. If it is also irreducible and aperiodic, then it defines an ergodic Markov chain with unique equilibrium distribution $\pi(x \mid y)$ (for any initial state x^{0}).

The samples $f\left(x^{n}\right)$ of some output function ("statistic") $f(\cdot)$ can be used for inference as usual (even though not i.i.d.):

$$
\mathbb{E}_{\pi(x \mid y)}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x^{n}\right):=\widehat{f}^{\mathrm{MetH}}
$$

Bayesian Uncertainty Quantification

Links to what I have told you so far

- What does this all have to do with UQ and with what I have told you about so far?

Bayesian Uncertainty Quantification

Links to what I have told you so far

- What does this all have to do with UQ and with what I have told you about so far?
- Bayesian statisticians often think of data as the "reality" and use the "prior" only to smooth the problem. We find sentences like
- "It is better to use an uniformative prior."
- "Let the data speak."
- ...

Bayesian Uncertainty Quantification

Links to what I have told you so far

- What does this all have to do with UQ and with what I have told you about so far?
- Bayesian statisticians often think of data as the "reality" and use the "prior" only to smooth the problem. We find sentences like
- "It is better to use an uniformative prior."
- "Let the data speak."
- ...
- Bayesian Uncertainty Quantification (in the sense that I am using it) is different in that
- we believe in our physical model, the prior, and even require certain consistency between components
- we usually have extremly limited output data ($n \mathrm{v}$. small) and want to infer information about an ∞-dimensional parameter x.

Bayesian Uncertainty Quantification

Links to what I have told you so far

- In context of what I said so far, we essentially want to "condition" our uncertain models on information about input data (prior) and output data (likelihood).

Bayesian Uncertainty Quantification

Links to what I have told you so far

- In context of what I said so far, we essentially want to "condition" our uncertain models on information about input data (prior) and output data (likelihood).
- In the context of large-scale problems with high-dimensional input spaces, MCMC is even less tractable than standard MC.

Bayesian Uncertainty Quantification

Links to what I have told you so far

- In context of what I said so far, we essentially want to "condition" our uncertain models on information about input data (prior) and output data (likelihood).
- In the context of large-scale problems with high-dimensional input spaces, MCMC is even less tractable than standard MC.
- Again we have to distinguish whether we are interested
- only in statistics about some Quantity of Interest (quadrature w.r.t. the posterior or
- in the whole posterior distribution of the inputs (and the state)

Bayesian Uncertainty Quantification

Links to what I have told you so far

- In context of what I said so far, we essentially want to "condition" our uncertain models on information about input data (prior) and output data (likelihood).
- In the context of large-scale problems with high-dimensional input spaces, MCMC is even less tractable than standard MC.
- Again we have to distinguish whether we are interested
- only in statistics about some Quantity of Interest (quadrature w.r.t. the posterior or
- in the whole posterior distribution of the inputs (and the state)
- Often people resort to "surrogates"/"emulators" to make it computationally tractable (can use stochastic collocation)

Bayesian Uncertainty Quantification

Links to what I have told you so far

- In context of what I said so far, we essentially want to "condition" our uncertain models on information about input data (prior) and output data (likelihood).
- In the context of large-scale problems with high-dimensional input spaces, MCMC is even less tractable than standard MC.
- Again we have to distinguish whether we are interested
- only in statistics about some Quantity of Interest (quadrature w.r.t. the posterior or
- in the whole posterior distribution of the inputs (and the state)
- Often people resort to "surrogates"/"emulators" to make it computationally tractable (can use stochastic collocation)
- Can be put in ∞-dim'l setting (important for dimension independence)

Bayesian Uncertainty Quantification

Example 1: Predator-Prey Problem

In the predator-prey model, a typical variation on the problem studied so far that leads to a Bayesian UQ problem is:

Bayesian Uncertainty Quantification

Example 1: Predator-Prey Problem

In the predator-prey model, a typical variation on the problem studied so far that leads to a Bayesian UQ problem is:
(1) Prior: $\mathbf{u}_{0} \sim \overline{\mathbf{u}}_{0}+\mathrm{U}(-\epsilon, \epsilon)$
(2) Data: $u_{2}^{\text {obs }}$ at time T with measurement error $\eta \sim \mathrm{N}\left(0, \alpha^{2}\right) \Rightarrow$ likelihood model (w. bias)

$$
\pi_{M}\left(u_{2}^{\mathrm{obs}} \mid \mathbf{u}_{0}\right) \approx \exp \left(\frac{-\left|u_{2}^{\mathrm{obs}}-u_{M, 2}\left(\mathbf{u}_{0}\right)\right|}{\alpha^{2}}\right)
$$

(3) Posterior: $\pi_{M}\left(\mathbf{u}_{0} \mid u_{2}^{\text {obs }}\right) \approx \pi_{M}\left(u_{2}^{\text {obs }} \mid \mathbf{u}_{0}\right) \underbrace{\pi\left(\mathbf{u}_{0}\right)}_{=\text {const }}$

Bayesian Uncertainty Quantification

Example 1: Predator-Prey Problem

In the predator-prey model, a typical variation on the problem studied so far that leads to a Bayesian UQ problem is:
(1) Prior: $\mathbf{u}_{0} \sim \overline{\mathbf{u}}_{0}+\mathrm{U}(-\epsilon, \epsilon)$
(2) Data: $u_{2}^{\text {obs }}$ at time T with measurement error $\eta \sim \mathrm{N}\left(0, \alpha^{2}\right) \Rightarrow$ likelihood model (w. bias)

$$
\pi_{M}\left(u_{2}^{\mathrm{obs}} \mid \mathbf{u}_{0}\right) \approx \exp \left(\frac{-\left|u_{2}^{\mathrm{obs}}-u_{M, 2}\left(\mathbf{u}_{0}\right)\right|}{\alpha^{2}}\right)
$$

(3 Posterior: $\pi_{M}\left(\mathbf{u}_{0} \mid u_{2}^{\text {obs }}\right) \approx \pi_{M}\left(u_{2}^{\text {obs }} \mid \mathbf{u}_{0}\right) \underbrace{\pi\left(\mathbf{u}_{0}\right)}_{=\text {const }}$
(1) Statistic: $\mathbf{E}_{\pi\left(u_{2}^{\text {(oss }} \mid \mathbf{u}_{0}\right)}\left[\mathscr{G}_{M}\left(\mathbf{u}_{0}\right)\right]$ (expected value under the posterior)

Depending on size of α^{2} this leads to a vastly reduced uncertainty in expected value of $u_{1}(T)$. Can be computed w. Metropolis-Hastings MCMC.

Data for Radioactive Waste Example (WIPP) Prior and Likelihood Model [Ernst et al, 2014]

$$
\log k \approx \sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}^{\text {cond }}(x) Z_{j}(\omega) \text { with i.i.d. } Z_{j} \sim N(0,1)
$$

KL modes ($j=1,2,9,16$) conditioned on 38 permeability observations (low-rank change to covariance operator)

Data for Radioactive Waste Example (WIPP) Prior and Likelihood Model [Ernst et al, 2014]

$$
\log k \approx \sum_{j=1}^{s} \sqrt{\mu_{j}} \phi_{j}^{\text {cond }}(x) Z_{j}(\omega) \text { with i.i.d. } Z_{j} \sim N(0,1)
$$

KL modes ($j=1,2,9,16$) conditioned on 38 permeability observations (low-rank change to covariance operator)

Prior model: $\pi_{0}^{S}(\mathbf{Z})$ is the multivariate Gaussian density.

Data for Radioactive Waste Example (WIPP)

Prior and Likelihood Model [Ernst et al, 2014]

- $\mathbf{y}^{\text {obs }}$ are pressure measurements.
- $F_{h}(\mathbf{Z})$ is the model response.

Data for Radioactive Waste Example (WIPP)

 Prior and Likelihood Model [Ernst et al, 2014]

- $\mathrm{y}^{\text {obs }}$ are pressure measurements.
- $F_{h}(Z)$ is the model response.

Likelihood model: assuming Gaussian errors with covariance $\Sigma^{\text {obs }}$

$$
\pi^{h, s}\left(\mathbf{y}^{\mathrm{obs}} \mid \mathbf{Z}\right) \approx \exp \left(-\left\|\mathbf{y}^{\mathrm{obs}}-F_{h}(\mathbf{Z})\right\|_{\Sigma^{\mathrm{obs}}}^{2}\right)
$$

Data for Radioactive Waste Example (WIPP)

 Prior and Likelihood Model [Ernst et al, 2014]

- $\mathrm{y}^{\text {obs }}$ are pressure measurements.
- $F_{h}(Z)$ is the model response.

Likelihood model: assuming Gaussian errors with covariance $\Sigma^{\text {obs }}$

$$
\pi^{h, \mathrm{~s}}\left(\mathbf{y}^{\mathrm{obs}} \mid \mathbf{Z}\right) \approx \exp \left(-\left\|\boldsymbol{y}^{\mathrm{obs}}-F_{h}(\mathbf{Z})\right\|_{\Sigma^{\mathrm{obs}}}^{2}\right)
$$

Bayes' rule: $\quad \pi^{h, s}\left(\mathbf{Z} \mid \mathbf{y}_{\text {obs }}\right) \approx \pi^{h, s}\left(\mathbf{y}^{\text {obs }} \mid \mathbf{Z}\right) \pi_{0}^{s}(\mathbf{Z})$

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

- Choose \mathbf{Z}_{s}^{0}.
- At state n generate proposal \mathbf{Z}_{s}^{\prime} from distribution $q^{\text {trans }}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ (e.g. preconditioned Crank-Nicholson random walk [Cotter et al, 2012])
- Accept \mathbf{Z}_{s}^{\prime} as a sample with probability

$$
\boldsymbol{\alpha}^{h, s}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)=\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right) q^{\text {trans }}\left(\mathbf{Z}_{s}^{n} \mid \mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right) q^{\text {trans }}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)}\right)
$$

i.e. $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{\prime}$ with probability $\alpha^{h, s}$; otherwise $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{n}$.

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

- Choose \mathbf{Z}_{s}^{0}.
- At state n generate proposal \mathbf{Z}_{s}^{\prime} from distribution $q^{\text {trans }}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ (e.g. preconditioned Crank-Nicholson random walk [Cotter et al, 2012])
- Accept \mathbf{Z}_{s}^{\prime} as a sample with probability

$$
\boldsymbol{\alpha}^{h, s}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)=\min \left(1, \frac{\pi^{h, s}\left(\mathbf{Z}_{s}^{\prime}\right) q^{\text {trans }}\left(\mathbf{Z}_{s}^{n} \mid \mathbf{Z}_{s}^{\prime}\right)}{\pi^{h, s}\left(\mathbf{Z}_{s}^{n}\right) q^{\text {trans }}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)}\right)
$$

i.e. $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{\prime}$ with probability $\alpha^{h, s}$; otherwise $\mathbf{Z}_{s}^{n+1}=\mathbf{Z}_{s}^{n}$.

Samples \mathbf{Z}_{s}^{n} used as usual for inference (even though not i.i.d.):

$$
\mathbb{E}_{\pi^{h, s}}[Q] \approx \mathbb{E}_{\pi^{h, s}}\left[Q_{h, s}\right] \approx \frac{1}{N} \sum_{i=1}^{N} Q_{h, s}^{(n)}:=\widehat{Q}^{\mathrm{MetH}}
$$

where $Q_{h, s}^{(n)}=\mathscr{G}\left(\mathbf{X}_{h}\left(\mathbf{Z}_{s}^{(n)}\right)\right)$ is the nth sample of Q using $\operatorname{Model}(h, s)$.

Markov Chain Monte Carlo

Comments

Pros:

- Produces a Markov chain $\left\{\mathbf{Z}_{s}^{n}\right\}_{n \in \mathbb{N}}$, with $\mathbf{Z}_{s}^{n} \sim \pi^{h, s}$ as $n \rightarrow \infty$.
- Can be made dimension independent (e.g. via pCN sampler).
- Therefore often referred to as "gold standard" (Stuart et al)

Markov Chain Monte Carlo

Comments

Pros:

- Produces a Markov chain $\left\{\mathbf{Z}_{s}^{n}\right\}_{n \in \mathbb{N}}$, with $\mathbf{Z}_{s}^{n} \sim \pi^{h, s}$ as $n \rightarrow \infty$.
- Can be made dimension independent (e.g. via pCN sampler).
- Therefore often referred to as "gold standard" (Stuart et al)

Cons:

- Evaluation of $\boldsymbol{\alpha}^{h, s}=\boldsymbol{\alpha}^{h, s}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ very expensive for small h. (heterogeneous deterministic PDE: Cost/sample $\geq \mathscr{O}(M)=\mathscr{O}\left(h^{-d}\right)$)
- Acceptance rate $\alpha^{h, s}$ can be very low for large s ($<10 \%$).
- Cost $=\mathscr{O}\left(\varepsilon^{-2-\frac{\gamma}{\alpha}}\right)$, but depends on $\boldsymbol{\alpha}^{h, s} \&$ burn-in

Markov Chain Monte Carlo

Comments

Pros:

- Produces a Markov chain $\left\{\mathbf{Z}_{s}^{n}\right\}_{n \in \mathbb{N}}$, with $\mathbf{Z}_{s}^{n} \sim \pi^{h, s}$ as $n \rightarrow \infty$.
- Can be made dimension independent (e.g. via pCN sampler).
- Therefore often referred to as "gold standard" (Stuart et al)

Cons:

- Evaluation of $\boldsymbol{\alpha}^{h, s}=\boldsymbol{\alpha}^{h, s}\left(\mathbf{Z}_{s}^{\prime} \mid \mathbf{Z}_{s}^{n}\right)$ very expensive for small h. (heterogeneous deterministic PDE: Cost/sample $\geq \mathscr{O}(M)=\mathscr{O}\left(h^{-d}\right)$)
- Acceptance rate $\alpha^{h, s}$ can be very low for large s ($<10 \%$).
- Cost $=\mathscr{O}\left(\varepsilon^{-2-\frac{\gamma}{\alpha}}\right)$, but depends on $\boldsymbol{\alpha}^{h, s} \&$ burn-in

Prohibitively expensive - significantly more than plain-vanilla MC!

Multilevel Markov Chain Monte Carlo

For simplicity $s_{\ell}=s_{\ell-1}$.

What were the key ingredients of "standard" multilevel Monte Carlo?

Multilevel Markov Chain Monte Carlo

For simplicity $s_{\ell}=s_{\ell-1}$.
What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} \rightarrow 0$ as \Longrightarrow much fewer samples on finer levels.

Multilevel Markov Chain Monte Carlo

For simplicity $s_{\ell}=s_{\ell-1}$.
What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} \rightarrow 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ : (on level ℓ let us denote the posterior by $\pi^{\ell}:=\pi^{h_{\ell}, s_{\ell}}\left(\cdot \mid \mathbf{y}^{\text {obs }}\right)$)

$$
\mathbb{E}_{\pi^{\llcorner }}\left[Q_{L}\right]=\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]+\sum_{\ell} \mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]
$$

Multilevel Markov Chain Monte Carlo

For simplicity $s_{\ell}=s_{\ell-1}$.
What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} \rightarrow 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :
(on level ℓ let us denote the posterior by $\pi^{\ell}:=\pi^{h_{\ell}, s_{\ell}}\left(\cdot \mid \mathbf{y}^{\text {obs }}\right)$)

$$
\mathbb{E}_{\pi^{L}}\left[Q_{L}\right]=\underbrace{\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]}_{\text {standard MCMC }}+\sum \sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]}_{\text {multilevel MCMC (NEW) }}
$$

$$
\widehat{Q}_{h, s}^{\mathrm{MLMetH}}:=\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} Q_{0}\left(\mathbf{Z}_{0,0}^{n}\right)+\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}}\left(Q_{\ell}\left(\mathbf{Z}_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(\mathbf{Z}_{\ell, \ell-1}^{n}\right)\right)
$$

Multilevel Markov Chain Monte Carlo

For simplicity $s_{\ell}=s_{\ell-1}$.
What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} \rightarrow 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :
(on level ℓ let us denote the posterior by $\pi^{\ell}:=\pi^{h_{\ell}, s_{\ell}}\left(\cdot \mid \mathbf{y}^{\mathrm{obs}}\right)$)

$$
\mathbb{E}_{\pi^{L}}\left[Q_{L}\right]=\underbrace{\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]}_{\text {standard MCMC }}+\sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]}_{\text {multilevel MCMC (NEW) }}
$$

$$
\widehat{Q}_{h, s}^{\mathrm{MLMetH}}:=\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} Q_{0}\left(\mathbf{Z}_{0,0}^{n}\right)+\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}}\left(Q_{\ell}\left(\mathbf{Z}_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(\mathbf{Z}_{\ell, \ell-1}^{n}\right)\right)
$$

In reality, we also reduce number $s_{\ell-1}$ of random parameters on coarser levels.

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 ... 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{Z}_{\ell, 0}^{n}, \ldots, \mathbf{Z}_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $\mathbf{z}_{0}^{0}:=\mathbf{Z}_{\ell, 0}^{n}$ and generate $T_{0}:=\prod_{j=0}^{\ell-1} t_{j}$ samples $\mathbf{z}_{0}^{i} \sim \pi^{0}$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{Z}_{\ell, 0}^{n}, \ldots, \mathbf{Z}_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $\mathbf{z}_{0}^{0}:=\mathbf{Z}_{\ell, 0}^{n}$ and generate $T_{0}:=\prod_{j=0}^{\ell-1} t_{j}$ samples $\mathbf{z}_{0}^{i} \sim \pi^{0}$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?
(2) $k>0$: Set $\mathbf{z}_{k}^{0}:=\mathbf{Z}_{\ell, k}^{n}$ and generate $T_{k}:=\prod_{j=k}^{\ell-1} t_{j}$ samples $\mathbf{z}_{k}^{i} \sim \pi^{k}$:

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{Z}_{\ell, 0}^{n}, \ldots, \mathbf{Z}_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $\mathbf{z}_{0}^{0}:=\mathbf{Z}_{\ell, 0}^{n}$ and generate $T_{0}:=\prod_{j=0}^{\ell-1} t_{j}$ samples $\mathbf{z}_{0}^{i} \sim \pi^{0}$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?
(2) $k>0$: Set $\mathbf{z}_{k}^{0}:=\mathbf{Z}_{\ell, k}^{n}$ and generate $T_{k}:=\prod_{j=k}^{\ell-1} t_{j}$ samples $\mathbf{z}_{k}^{i} \sim \pi^{k}$:
(a) Propose $\mathbf{z}_{k}^{\prime}=\mathbf{z}_{k-1}^{(i+1) t_{k-1}}$ with $q_{k}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\pi^{k-1}\left(\mathbf{z}_{k}^{\prime}\right)$ Subsample!

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{Z}_{\ell, 0}^{n}, \ldots, \mathbf{Z}_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $\mathbf{z}_{0}^{0}:=\mathbf{Z}_{\ell, 0}^{n}$ and generate $T_{0}:=\prod_{j=0}^{\ell-1} t_{j}$ samples $\mathbf{z}_{0}^{i} \sim \pi^{0}$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?
(2) $k>0$: Set $\mathbf{z}_{k}^{0}:=\mathbf{Z}_{\ell, k}^{n}$ and generate $T_{k}:=\prod_{j=k}^{\ell-1} t_{j}$ samples $\mathbf{z}_{k}^{i} \sim \pi^{k}$:
(a) Propose $\mathbf{z}_{k}^{\prime}=\mathbf{z}_{k-1}^{(i+1) t_{k-1}}$ with $q_{k}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\pi^{k-1}\left(\mathbf{z}_{k}^{\prime}\right)$ Subsample!
(b) Accept z_{k}^{\prime} with probability

$$
\alpha_{\ell}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\min \left(1, \frac{\pi^{k}\left(\mathbf{z}_{k}^{\prime}\right) q_{k}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{n} \mid \mathbf{z}_{k}^{\prime}\right)}{\pi^{k}\left(\mathbf{z}_{k}^{n}\right) \mathrm{q}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{n}\right)}\right)
$$

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{Z}_{\ell, 0}^{n}, \ldots, \mathbf{Z}_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $\mathbf{z}_{0}^{0}:=\mathbf{Z}_{\ell, 0}^{n}$ and generate $T_{0}:=\prod_{j=0}^{\ell-1} t_{j}$ samples $\mathbf{z}_{0}^{i} \sim \pi^{0}$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?
(2) $k>0$: Set $\mathbf{z}_{k}^{0}:=\mathbf{Z}_{\ell, k}^{n}$ and generate $T_{k}:=\prod_{j=k}^{\ell-1} t_{j}$ samples $\mathbf{z}_{k}^{i} \sim \pi^{k}$:
(a) Propose $\mathbf{z}_{k}^{\prime}=\mathbf{z}_{k-1}^{(i+1) t_{k-1}}$ with $q_{k}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\pi^{k-1}\left(\mathbf{z}_{k}^{\prime}\right)$ Subsample!
(b) Accept \mathbf{z}_{k}^{\prime} with probability

$$
\alpha_{\ell}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\min \left(1, \frac{\pi^{k}\left(\mathbf{z}_{k}^{\prime}\right) \pi^{k-1}\left(\mathbf{z}_{k}^{n}\right)}{\pi^{k}\left(\mathbf{z}_{k}^{n}\right) \pi^{k-1}\left(\mathbf{z}_{k}^{\prime}\right)}\right)
$$

i.e. set $\mathbf{z}_{k}^{i+1}=\mathbf{z}_{k}^{\prime}$ with prob. $\alpha_{\ell}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)$; otherwise $\mathbf{z}_{k}^{i+1}=\mathbf{z}_{k}^{i}$

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $\mathbf{Z}_{\ell, 0}^{n}, \ldots, \mathbf{Z}_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $\mathbf{z}_{0}^{0}:=\mathbf{Z}_{\ell, 0}^{n}$ and generate $T_{0}:=\prod_{j=0}^{\ell-1} t_{j}$ samples $\mathbf{z}_{0}^{i} \sim \pi^{0}$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?
(2) $k>0$: Set $\mathbf{z}_{k}^{0}:=\mathbf{Z}_{\ell, k}^{n}$ and generate $T_{k}:=\prod_{j=k}^{\ell-1} t_{j}$ samples $\mathbf{z}_{k}^{i} \sim \pi^{k}$:
(a) Propose $\mathbf{z}_{k}^{\prime}=\mathbf{z}_{k-1}^{(i+1) t_{k-1}}$ with $\mathrm{q}_{k}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\pi^{k-1}\left(\mathbf{z}_{k}^{\prime}\right)$ Subsample!
(b) Accept \mathbf{z}_{k}^{\prime} with probability

$$
\alpha_{\ell}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)=\min \left(1, \frac{\pi^{k}\left(\mathbf{z}_{k}^{\prime}\right) \pi^{k-1}\left(\mathbf{z}_{k}^{n}\right)}{\pi^{k}\left(\mathbf{z}_{k}^{n}\right) \pi^{k-1}\left(\mathbf{z}_{k}^{\prime}\right)}\right)
$$

i.e. set $\mathbf{z}_{k}^{i+1}=\mathbf{z}_{k}^{\prime}$ with prob. $\alpha_{\ell}^{\mathrm{ML}}\left(\mathbf{z}_{k}^{\prime} \mid \mathbf{z}_{k}^{i}\right)$; otherwise $\mathbf{z}_{k}^{i+1}=\mathbf{z}_{k}^{i}$
(3) Set $Z_{\ell, k}^{n+1}:=\mathbf{z}_{k}^{T_{k}}$, for all $k=0, \ldots, \ell$.

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for $n \rightarrow \infty$) an independence sampler from π^{k-1}, i.e. $\mathbf{z}_{k}^{\prime} \sim \pi^{k-1}$ independent of \mathbf{z}_{k}^{i}.

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for $n \rightarrow \infty$) an independence sampler from π^{k-1}, i.e. $\mathbf{z}_{k}^{\prime} \sim \pi^{k-1}$ independent of \mathbf{z}_{k}^{i}.
- Hence, $\left\{\mathbf{Z}_{\ell, k}^{n}\right\}_{n \geq 1}$ is a Markov chain converging to $\pi^{k}, k=0, \ldots, \ell$ (since it is just standard Metropolis-Hastings)

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for $n \rightarrow \infty$) an independence sampler from π^{k-1}, i.e. $\mathbf{z}_{k}^{\prime} \sim \pi^{k-1}$ independent of \mathbf{z}_{k}^{i}.
- Hence, $\left\{\mathbf{Z}_{\ell, k}^{n}\right\}_{n \geq 1}$ is a Markov chain converging to $\pi^{k}, k=0, \ldots, \ell$ (since it is just standard Metropolis-Hastings)
- The multilevel algorithm is consistent (= no bias between levels) since both $\left\{\mathbf{Z}_{\ell, \ell}^{n}\right\}_{n \geq 1}$ and $\left\{\mathbf{Z}_{\ell+1, \ell}^{n}\right\}_{n \geq 1}$ are samples from π^{ℓ} in the limit.

Multilevel Markov Chain Monte Carlo

Dodwell, Ketelsen, RS, Teckentrup, 2013 . . 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for $n \rightarrow \infty$) an independence sampler from π^{k-1}, i.e. $\mathbf{z}_{k}^{\prime} \sim \pi^{k-1}$ independent of \mathbf{z}_{k}^{i}.
- Hence, $\left\{\mathbf{Z}_{\ell, k}^{n}\right\}_{n \geq 1}$ is a Markov chain converging to $\pi^{k}, k=0, \ldots, \ell$ (since it is just standard Metropolis-Hastings)
- The multilevel algorithm is consistent (= no bias between levels) since both $\left\{\mathbf{Z}_{\ell, \ell}^{n}\right\}_{n \geq 1}$ and $\left\{\mathbf{Z}_{\ell+1, \ell}^{n}\right\}_{n \geq 1}$ are samples from π^{ℓ} in the limit.
- But states may differ between level ℓ and $\ell-1$:

State $n+1$	Level $\ell-1$	Level ℓ
accept on level ℓ	$\mathbf{Z}_{\ell, \ell-1}^{n+1}$	$\mathbf{Z}_{\ell, \ell-1}^{n+1}$
reject on level ℓ	$\mathbf{Z}_{\ell, \ell-1}^{n+1}$	$\mathbf{Z}_{\ell, \ell}^{n}$

In the second case the variance will in general not be small, but this does not happen often since acceptance probability $\alpha_{\ell}^{\mathrm{ML}} \xrightarrow{\ell \rightarrow \infty} 1$ (see below).

Complexity Theorem for Multilevel MCMC

Suppose there are constants $\alpha, \beta, \gamma, \eta>0$ such that, for all $\ell=0, \ldots, L$,
M1 $\left|\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\infty}}[Q]\right|=\mathscr{O}\left(M_{\ell}^{-\alpha}\right) \quad$ (discretisation and truncation error)
M2a $\mathbb{V}_{\mathrm{alg}}\left[\widehat{Y}_{\ell}\right]+\left(\mathbb{E}_{\mathrm{alg}}\left[\widehat{Y}_{\ell}\right]-\mathbb{E}_{\pi^{\ell}, \pi^{\ell-1}}\left[\widehat{Y}_{\ell}\right]\right)^{2}=\mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Y_{\ell}\right] \mathscr{O}\left(N_{\ell}^{-1}\right)$
(MCMC-error)
M2b $\mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Y_{\ell}\right]=\mathscr{O}\left(M_{\ell}^{-\beta}\right)$
(multilevel variance decay)
M3 $\operatorname{Cost}\left(\widehat{Y}_{\ell}^{\mathrm{MC}}\right)=\mathscr{O}\left(N_{\ell} M_{\ell}^{\gamma}\right)$.
(cost per sample)
Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ s.t. MSE $<\varepsilon^{2}$ and

$$
\mathscr{C}_{\varepsilon}\left(\widehat{Q}_{h, s}^{\text {MLMetH }}\right)=\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)} \quad(+ \text { log-factor when } \beta=\gamma)
$$

(This is totally abstract \& applies not only to our subsurface model problem!)
Recall: for standard MCMC (under same assumptions) Cost $\lesssim \varepsilon^{-2-\gamma / \alpha}$.

FE Analysis - Verifying Assumptions M1-M3
 2D lognormal diffusion problem \& linear FEs

- Proof of Assumptions M1 and M3 similar to i.i.d. case.
- M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer, Stuart, Vollmer, '11] (but still unproved for lognormal case!)

FE Analysis - Verifying Assumptions M1-M3
 2D lognormal diffusion problem \& linear FEs

- Proof of Assumptions M1 and M3 similar to i.i.d. case.
- M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer, Stuart, Vollmer, '11] (but still unproved for lognormal case!)

Key Lemma for M2b (Dodwell, Ketelsen, RS, Teckentrup)

Let $\nu=0.5$ and assume that F^{h} is Fréchet diff'ble and suff'ly smooth. Then

$$
\mathbb{E}_{\pi^{\ell}, \pi^{\ell}}\left[1-\boldsymbol{\alpha}_{\ell}^{\mathrm{ML}}(\cdot \mid \cdot)\right]=\mathscr{O}\left(h_{\ell-1}^{1-\delta}+s_{\ell-1}^{-1 / 2+\delta}\right) \quad \forall \delta>0
$$

FE Analysis - Verifying Assumptions M1-M3

2D lognormal diffusion problem \& linear FEs

- Proof of Assumptions M1 and M3 similar to i.i.d. case.
- M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer, Stuart, Vollmer, '11] (but still unproved for lognormal case!)

Key Lemma for M2b (Dodwell, Ketelsen, RS, Teckentrup)
Let $\nu=0.5$ and assume that F^{h} is Fréchet diff'ble and suff'ly smooth. Then

$$
\mathbb{E}_{\pi^{\ell}, \pi^{\ell}}\left[1-\boldsymbol{\alpha}_{\ell}^{\mathrm{ML}}(\cdot \mid \cdot)\right]=\mathscr{O}\left(h_{\ell-1}^{1-\delta}+s_{\ell-1}^{-1 / 2+\delta}\right) \quad \forall \delta>0
$$

Theorem (Dodwell, Ketelsen, RS, Teckentrup)
Let $\left\{\mathbf{Z}_{\ell, \ell}^{n}\right\}_{n \geq 0}$ and $\left\{\mathbf{Z}_{\ell, \ell-1}^{n}\right\}_{n \geq 0}$ be from Algorithm 2 and choose $s_{\ell} \gtrsim h_{\ell}^{-2}$. Then

$$
\mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Q_{\ell}\left(\mathbf{Z}_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(\mathbf{Z}_{\ell, \ell-1}^{n}\right)\right]=\mathscr{O}\left(h_{\ell}^{1-\delta}\right) \quad \forall \delta>0
$$

and $\mathbf{M} 2 \mathbf{b}$ holds for any $\beta<1$. (unfortunately $\beta=\alpha$ not 2α)

Numerical Example

2D lognormal diffusion problem on $D=(0,1)^{2}$ with linear FEs

- Prior: Separable exponential covariance with $\sigma^{2}=1, \lambda=0.5$.

Numerical Example

2D lognormal diffusion problem on $D=(0,1)^{2}$ with linear FEs

- Prior: Separable exponential covariance with $\sigma^{2}=1, \lambda=0.5$.
- "Data" $y^{\text {obs }}$: Pressure at 16 points $x_{j}^{*} \in D$ and $\Sigma^{\text {obs }}=10^{-4} /$.

\times	\times	\times	\times
\times	\times	\times	\times
\times	\times	\times	\times
\times	\times	\times	\times

Numerical Example

2D lognormal diffusion problem on $D=(0,1)^{2}$ with linear FEs

- Quantity of interest: $Q=\int_{0}^{1} k \nabla p d x_{2}$; coarsest mesh size: $h_{0}=\frac{1}{9}$
- Two-level method with \#modes: $s_{0}=s_{1}=20$

Numerical Example

2D lognormal diffusion problem on $D=(0,1)^{2}$ with linear FEs

- Quantity of interest: $Q=\int_{0}^{1} k \nabla p d x_{2}$; coarsest mesh size: $h_{0}=\frac{1}{9}$
- Two-level method with \#modes: $s_{0}=s_{1}=20$

Autocorrelation fct. (a.c. time ≈ 86)

$\mathbb{E}\left[\widehat{Y}_{1}\right]$ w. 95% confidence interval

Numerical Example

2D lognormal diffusion problem on $D=(0,1)^{2}$ with linear FEs

- 5-level method w. \#modes increasing from $s_{0}=50$ to $s_{4}=150$

Numerical Example

2D lognormal diffusion problem on $D=(0,1)^{2}$ with linear FEs

- 5-level method w. \#modes increasing from $s_{0}=50$ to $s_{4}=150$

Level ℓ	0	1	2	3	4
a.c. time $=t_{\ell}$	136.23	3.66	2.93	1.46	1.23

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Reduced autocorrelation related to delayed acceptance method [Christen, Fox, 2005], [Cui, Fox, O'Sullivan, 2011]

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Reduced autocorrelation related to delayed acceptance method [Christen, Fox, 2005], [Cui, Fox, O'Sullivan, 2011]
- Multilevel burn-in also much cheaper (related to two-level work in [Efendiev, Hou, Luo, 2005])

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Reduced autocorrelation related to delayed acceptance method [Christen, Fox, 2005], [Cui, Fox, O'Sullivan, 2011]
- Multilevel burn-in also much cheaper (related to two-level work in [Efendiev, Hou, Luo, 2005])
- Related theoretical work by [Hoang, Schwab, Stuart, 2013] (different multilevel splitting and so far no numerics to compare)

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state
- Using a special "preconditioned" random walk to be dimension independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]
- Reduced autocorrelation related to delayed acceptance method [Christen, Fox, 2005], [Cui, Fox, O'Sullivan, 2011]
- Multilevel burn-in also much cheaper (related to two-level work in [Efendiev, Hou, Luo, 2005])
- Related theoretical work by [Hoang, Schwab, Stuart, 2013] (different multilevel splitting and so far no numerics to compare)
- pCN random walk not specific; can use other proposals (e.g. use Hessian info about posterior [Cui, Law, Marzouk, '14])

Some Other Interesting Directions/Open Questions

- Application in other areas (especially for multilevel MCMC): other (nonlinear) PDEs, big data, geostatistics, imaging, physics [Elsakout, Christie, Lord, '15]

Some Other Interesting Directions/Open Questions

- Application in other areas (especially for multilevel MCMC): other (nonlinear) PDEs, big data, geostatistics, imaging, physics [Elsakout, Christie, Lord, '15]
- Multilevel filtering, data assimiliation, sequential MC [Hoel, Law, Tempone, '15], [Beskos, Jasra, Law, Tempone, Zhou, '15], [Gregory, Cotter, Reich, '15], [Jasra, Kamatani, Law, Zhou, '15]

Some Other Interesting Directions/Open Questions

- Application in other areas (especially for multilevel MCMC): other (nonlinear) PDEs, big data, geostatistics, imaging, physics [Elsakout, Christie, Lord, '15]
- Multilevel filtering, data assimiliation, sequential MC [Hoel, Law, Tempone, '15], [Beskos, Jasra, Law, Tempone, Zhou, '15], [Gregory, Cotter, Reich, '15], [Jasra, Kamatani, Law, Zhou, '15]
- Multilevel methods for rare events - "subset simulation" [Elfverson et al, '14], [Ullmann, Papaioannou, '14], [Elfverson, RS, in prep]

Some Other Interesting Directions/Open Questions

- Application in other areas (especially for multilevel MCMC): other (nonlinear) PDEs, big data, geostatistics, imaging, physics [Elsakout, Christie, Lord, '15]
- Multilevel filtering, data assimiliation, sequential MC [Hoel, Law, Tempone, '15], [Beskos, Jasra, Law, Tempone, Zhou, '15], [Gregory, Cotter, Reich, '15], [Jasra, Kamatani, Law, Zhou, '15]
- Multilevel methods for rare events - "subset simulation" [Elfverson et al, '14], [Ullmann, Papaioannou, '14], [Elfverson, RS, in prep]
- Multilevel stochastic simulation in systems biology, chemistry.. [Anderson, Higham '12], [Lester, Yates, Giles, Baker '15], [Moraes et al '15]

Some Other Interesting Directions/Open Questions

- Application in other areas (especially for multilevel MCMC): other (nonlinear) PDEs, big data, geostatistics, imaging, physics [Elsakout, Christie, Lord, '15]
- Multilevel filtering, data assimiliation, sequential MC [Hoel, Law, Tempone, '15], [Beskos, Jasra, Law, Tempone, Zhou, '15], [Gregory, Cotter, Reich, '15], [Jasra, Kamatani, Law, Zhou, '15]
- Multilevel methods for rare events - "subset simulation" [Elfverson et al, '14], [Ullmann, Papaioannou, '14], [Elfverson, RS, in prep]
- Multilevel stochastic simulation in systems biology, chemistry. [Anderson, Higham '12], [Lester, Yates, Giles, Baker '15], [Moraes et al '15]
- Multilevel high-order QMC \& adaptive stochastic collocation

Conclusions

- I hope the course gave you a basic understanding of the questions \& challenges in modern uncertainty quantification.
- The focus of the course was on the design of computationally tractable and efficient methods for high-dimensional and large-scale UQ problems in science and engineering.
- Of course it was only possible to give you a snapshot of the available methods and we went over some of them too quickly.
- Finally, I apologise that the course was of course also strongly biased in the direction of my research and my expertise and was probably not doing some other methods enough justice.
- But I hope I managed to interest you in the subject and persuade you of the huge potential of multilevel sampling methods.
- I would be very happy to discuss possible applications and projects on this subject related to your PhD projects with you.

