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Monte Carlo Methods
The Buffon Needle Problem

In 1777, George Louis Leclerc, Comte de
Buffon (1707–1788), French naturalist and
mathematician, posed the following problem:

Let a needle of length ` be thrown
at random onto a horizontal plane
ruled with parallel straight lines
spaced by a distance d > ` from
each other. What is the probability
p that the needle will intersect one
of these lines?

Answer: p = 2`
πd (simple geometric arguments)

Laplace later used similar randomised experiment to approximate π.

The term “Monte Carlo method” was coined by Ulam, von
Neumann, Metropolis in the Manhattan project (Los Alamos, 1946).
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Monte Carlo Methods
The Buffon Needle Problem

Proceedings of the Royal Society of London, 2000
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Monte Carlo Methods
Monte Carlo Simulation for the Buffon Needle Problem

Let {Hk}k∈N denote a sequence of i.i.d. binomial random variables
s.t.

Hk(ω) =

{
1 if k-th needle intersects a line,

0 otherwise.

Their common distribution is that of a Bernoulli trial with success
probability p = 2`/πd . In particular: E [Hk ] = p ∀k.

SN = H1 + · · ·+ HN is the total number of hits after N throws.

Strong Law of Large Numbers:

SN
N
→ p almost surely (a.s.)

Compute realizations of Hk by sampling Xk ∼ U[0, d/2] (distance of
needle center to closest line) and Θk ∼ U[0, π/2] (acute angle of
needle with lines) using a random number generator.
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Monte Carlo Methods
Monte Carlo Simulation for the Buffon Needle Problem
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Monte Carlo Methods
Monte Carlo Simulation for the Buffon Needle Problem

Setting d = 2, ` = 1 gives p = 1
π . We should get N/SN

N→∞−→ π.

A Matlab experiment yields

N SN N/SN rel. Error

10 3 3.333 6.10e-2
100 32 3.125 5.28e-3

1000 330 3.030 3.54e-2
10000 3188 3.137 1.54e-3

Mario Lazzarini (1901) built machine that carries out repetitions of
this random experiment. His needle was 2.5cm long and the lines
3.0cm apart. He claims to have observed 1808 intersections for 3408
throws, i.e

π ≈ 2 · 2.5

3
· 3408

1808
= 3.141592920353983 . . .

A relative error of 8.5 · 10−8 !

Is this too good to be true?
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Monte Carlo Methods
Basic Monte Carlo simulation – Convergence results

Given a sequence {Xk} of i.i.d. copies of a given random variable X ,
basic MC simulation uses the estimator

E [X ] ≈ SN
N
, SN = X1 + · · ·+ XN .

By the Strong Law of Large Numbers,
SN
N
→ E [X ] a.s.

Also, for any measurable function f ,
1

N

N∑
k=1

f (Xk)→ E [f (X )] a.s.

If E [X ] = µ and Var[X ] = σ2, then (via the Central Limit Theorem)

E [SN ] = Nµ, Var[SN ] = Nσ2 and S∗N =
SN − Nµ√

Nσ
→ N(0, 1),

i.e. the estimate is unbiased, the standard error is σN−1/2 and the
distribution of the normalised RV S∗N becomes Gaussian as N →∞.
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Monte Carlo Methods
Various Convergence Statements

1 Since

E

[(
SN
N
− µ

)2
]

= Var
SN
N

=
σ2

N
→ 0,

we have mean square convergence of SN/N to µ.

2 Also Chebyshev’s Inequality implies, for any ε > 0,

P

{∣∣∣∣SNN − µ
∣∣∣∣ > N−1/2+ε

}
≤ σ2

N2ε
,

i.e. the probability of the error being larger than N−1/2+ε converges
to zero for any ε > 0, as N →∞.

3 If ρ := E
[
|X − µ|3

]
<∞, then the Berry-Esseen Inequality gives

|P{S∗N ≤ x} − Φ(x)| ≤ ρ

2σ3
√
N
,

where Φ denotes cumulative density function (CDF) of N(0, 1).
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Monte Carlo Methods
Exercise 1

Exercise 1

(a) Using the Berry-Esseen bound derive a confidence interval for the
estimate SN/N and (upper and lower) bounds on the probability that
µ falls into this confidence interval.

(b) In the Buffon needle problem, we have

E [Hk ] = p, Var[Hk ] = p(1−p), E
[
|Hk − p|3

]
= p(1−p)(1−2p+2p2).

Calculate the confidence interval for this problem in the case
N = 3408, ` = 2.5, d = 3, and thus check how likely it is that
Lazzarini’s machine would produce 1808 intersections and a relative
accuracy of π of 8.5 · 10−8.
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Monte Carlo Methods
Quasi-Monte Carlo methods

In quasi-Monte Carlo methods, the samples are not chosen randomly, but
special (deterministic) number sequences, known as low-discrepancy
sequences, are used instead. Discrepancy is a measure of equidistribution
of a number sequence.

Example: The van der Corput sequence is such a low-discrepancy
sequence for the unit interval. For base 3, it is given by xn = k

3j
, where j

increases monotonically and, for each j , k runs through all nonnegative
integers such that k/3j is an irreducible fraction < 1. The ordering in k is
obtained by representing k in base 3 and reversing the digits. The first 11
numbers are

{xn}11n=1 = {0, 1

3
,

2

3
,

1

9
,

4

9
,

7

9
,

2

9
,

5

9
,

8

9
,

1

27
,

10

27
}.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1
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Monte Carlo Methods
Quasi-Monte Carlo methods

Replacing i.i.d. random numbers sampled from U[0, 1] in a standard
Monte Carlo approximation of E [f (X )] for some f ∈ C∞(0, 1) and
X ∼ U[0, 1], by the van der Corput sequence of length N, yields a
quasi-Monte Carlo method.

The convergence rate is improved from O(N−1/2) to O(N−2).

Although this improvement is impressive, the method does not
generalise easily and the rate of convergence depends on the
problem.

In particular, the rate of convergence for a quasi-Monte Carlo
method generally does depend on the dimension.

Wed: Dimension-independent QMC results for the “fruit-fly”
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Monte Carlo Methods
Variance reduction

The constant in the MC convergence rates is the variance σ2 of the RV
from which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect faster convergence.

To approximate E [X ] by standard MC, we draw independent samples
{Xk}Nk=1 of X and compute the sample average SN/N.

Now assume a second set of samples {X̃k}Nk=1 of X is given with
sample average S̃N/N.

Since both sample averages converge to E [X ], so does
1
2(SN/N + S̃N/N).

When Xk and X̃k are negatively correlated they are called antithetic
samples, and the approximation 1

2N (SN + S̃N) is a more reliable
approximation of E [X ] than 1

2N S2N .
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Monte Carlo Methods
Variance reduction

Theorem
Let the two sequences of RVs {Xk} and {X̃k} be identically distributed
with

Cov(Xj ,Xk) = Cov(X̃j , X̃k) = 0 for j 6= k .

Then the sample averages SN/N and S̃N/N satisfy

Var

[
SN + S̃N

2N

]
= Var

[
S2N
2N

]
+

1

2
Cov

(
SN
N
,
S̃N
N

)
≤ Var

[
SN
N

]
.

Worst case: Variance of average of N samples and N antithetic
samples no better than variance of N independent samples.

Best case: negatively correlated SN/N and S̃N/N, therefore
variance of N samples and N antithetic samples less than variance of
2N indepependent samples.

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 15 / 42



Monte Carlo Methods
Variance reduction

Theorem
Let the two sequences of RVs {Xk} and {X̃k} be identically distributed
with

Cov(Xj ,Xk) = Cov(X̃j , X̃k) = 0 for j 6= k .

Then the sample averages SN/N and S̃N/N satisfy

Var

[
SN + S̃N

2N

]
= Var

[
S2N
2N

]
+

1

2
Cov

(
SN
N
,
S̃N
N

)
≤ Var

[
SN
N

]
.

Worst case: Variance of average of N samples and N antithetic
samples no better than variance of N independent samples.

Best case: negatively correlated SN/N and S̃N/N, therefore
variance of N samples and N antithetic samples less than variance of
2N indepependent samples.
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Example: Predator-prey dynamical system
Explicit Euler discretisation

Consider the popular model of the dynamics of two interacting populations

u̇ =

[
u̇1
u̇2

]
=

[
u1(1− u2)
u2(u1 − 1)

]
, u(0) = u0.

Assume the vector of initial conditions u0 is uncertain and that it is
modeled as a (uniform) random vector u0 ∼ U(Γ), where Γ denotes the
square

Γ = u0 + [−ε, ε]2.

Goal: estimate E [u1(T )] at time T > 0.

Denote by uM = uM(ω) the explicit Euler approximation after M
time steps of length ∆t = T

M starting with initial data u0 = u0(ω).

Define the QoI Q = φ(u(T )) = u1(T ) for u = [u1, u2]T and estimate
E [QM ] using the MC method just described, where QM = φ(uM).

Expect better approximations for N large and ∆t small.
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Example: Predator-prey dynamical system
Monte Carlo Estimator

Denote the Monte Carlo estimator for E [QM ] by

Q̂M := Q̂M,N =
1

N

N∑
k=1

Q
(k)
M

i.e the average over N samples {Q(k)
M }Nk=1 of QM .

Error with N samples and M = T/∆t time steps:

eN,M = |E [Q]− Q̂M | ≤ |E [Q]− E [QM ] |︸ ︷︷ ︸
discretisation error

+ |E [QM ]− Q̂M |︸ ︷︷ ︸
Monte Carlo error

Exercise 2
Show that the mean square error can be expanded (with equality!)

E
[(

E [Q]− Q̂M

)2]
=
(
E [Q − QM ]

)2
+

Var[QM ]

N

Hint: Note that E [Q] is constant and only Q̂M is actually random.
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Example: Predator-prey dynamical system
Discretisation Error – Bias

Explicit Euler discretisation error (with some constant K > 0):

‖u(T )− uM‖ ≤ KM−1.

φ Lipschitz-continuous with constant L = 1:

|φ(u(T ))− φ(uM)| ≤ KLM−1.

Therefore

|E [Q]− E [QM ] | = |E [Q − QM ] | ≤ KLM−1.

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 18 / 42



Example: Predator-prey dynamical system
Discretisation Error – Bias

Explicit Euler discretisation error (with some constant K > 0):

‖u(T )− uM‖ ≤ KM−1.

φ Lipschitz-continuous with constant L = 1:

|φ(u(T ))− φ(uM)| ≤ KLM−1.

Therefore

|E [Q]− E [QM ] | = |E [Q − QM ] | ≤ KLM−1.

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 18 / 42



Example: Predator-prey dynamical system
Discretisation Error – Bias

Explicit Euler discretisation error (with some constant K > 0):

‖u(T )− uM‖ ≤ KM−1.

φ Lipschitz-continuous with constant L = 1:

|φ(u(T ))− φ(uM)| ≤ KLM−1.

Therefore

|E [Q]− E [QM ] | = |E [Q − QM ] | ≤ KLM−1.

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 18 / 42



Example: Predator-prey dynamical system
Balancing discretisation and MC error

For the MC error, from Exercise 1 with Var[QM ] = σ2M we get

P

(∣∣∣E [QM ]− Q̂M,N

∣∣∣ ≤ 1.96σM√
N

)
> 0.95 + O(N−1/2)

Combined with discretisation error:

P

(
eN,M ≤

KL

M
+

1.96σM√
N

)
> 0.95 + O(N−1/2).

Balance discretization and MC errors:
KL

M
≈ TOL

2
and

1.96σM√
N
≈ TOL

2
,

leads to

M ≈ 2KL

TOL
, N ≈

16σ2M
TOL2

and so Cost = O(TOL−3)
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Example: Predator-prey dynamical system
Sample trajectories

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

u
1

u
2

Population dynamics problem integrated over [0,T = 6] with

u0 = [0.5, 2]T and ε = 0.2. Unperturbed trajectory (black) along with 15

perturbed trajectories. For the unperturbed trajectory u1(T ) = 1.3942.
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Example: Predator-prey dynamical system
Antithetic sampling

We may introduce antithetic sampling to this problem by noting that, if
u0 ∼ U(Γ), then the same holds for the random vector

ũ0 := 2u0 − u0.

Thus, the trajectories generated by the random initial data ũ0 have the
same distribution as those generated by u0.

Let QM = φ(uM) be the basic samples and Q̃M = φ(ũM) the
antithetic counterparts. Note that all pairs of samples are
independent except each sample and its antithetic counterpart.

Then use 1
2(Q̂M,N + ̂̃QM,N) instead of Q̂M,2N (same cost).

To estimate Var[QM ] and Cov(QM , Q̃M) we use sample variance and
covariance (resp.), i.e.

1

N − 1

N∑
k=1

(Q
(k)
M − Q̂M,N)2 and

1

N − 1

N∑
k=1

(Q
(k)
M − Q̂M,N)(Q̃

(k)
M − ̂̃QM,N)
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Example: Predator-prey dynamical system
Numerical Experiment – Comparing standard and antithetic sampling

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

1.46

1.47

1.48
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N

u
1
(t

e
n

d
)
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e
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d
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MC estimation of E [u1(T )] using standard MC with N samples (left) vs.
MC with antithetic sampling using N/2 samples of the initial data (right),
showing the estimate along with 95% confidence intervals.
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Example: Predator-prey dynamical system
Exercise 3

Exercise 3

(a) Find an estimate for Var
[
1
2(Q̂M,N + ̂̃QM,N)

]
based on the sample

variances and covariances of {Q(k)
M } and {Q̃(k)

M } defined above.

(b) Implement the Monte Carlo method for the predator-prey system with
u0 = [0.5, 2]T, ε = 0.2, T = 6, using explicit Euler discretisation, i.e.

u̇ = f(u) and u(0) = u0 −→ uj+1 = uj + ∆t f(uj).

Study the discretisation and MC errors and compute confidence
intervals.

(c) Implement also the antithetic estimator and compare the variance of
the two estimators. How much is the variance reduced? Does this
reduction depend on the selected tolerance TOL.
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Multilevel Monte Carlo Methods
History

The multilevel Monte Carlo method is a powerful new variance
reduction technique.

First ideas for high-dimensional quadrature by Heinrich, 2000.

Independently discovered and popularised by Giles, 2007 in the
context of stochastic DEs in mathematical finance.

First papers in the context of UQ:

Cliffe, Giles, RS, Teckentrup, 2011
Barth, Schwab, Zollinger, 2011

Stochastic simulation of discrete state systems (biology, chemistry)

by Anderson, Higham, 2012 Next week

. . .
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Multilevel Monte Carlo Methods
Mean-square error – Standard MC

To estimate the expectation E [Q] of a quantity of interest Q,
assume only approximations QM ≈ Q are computable, where M ∈ N
denotes a discretization parameter (#time steps, #grid points, . . . ) and

lim
M→∞

E [QM ] = E [Q] .

More precisely, we assume the error in mean to converge at a rate
−α, i.e.,

|E [QM − Q] | . M−α, as M →∞, α > 0.

(in the predator-prey case α = 1)

From Exercise 2 we know that the mean square error (MSE) is

E

[(
Q̂M,N − E [Q]

)2]
=

Var[QM ]

N
+
(
E [QM − Q]

)2
.
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Multilevel Monte Carlo Methods
Cost scaling – Standard MC

Denote by C (Q
(k)
M ) cost associated with computing one sample Q

(k)
M

(e.g. in terms of the number of floating-point operations required)

Cost typcially grows linearly or with some power γ ≥ 1 with M. We
assume

C (Q
(k)
M ) . Mγ , γ ≥ 1.

so that C (Q̂M,N) . NMγ (in the predator-prey case γ = 1).

To balance the two MSE components, assume each ist bounded by
TOL2

2 , resulting in a total bound of TOL2 for the MSE.

This yields (since QM → Q, we have Var[QM ] ≈ Var[Q] = constant)

N ≥ 2 Var[QM ]TOL−2 and M & TOL−1/α.

So the total cost of achieving a MSE < TOL2 using a standard MC
estimator is

C (Q̂M,N) . TOL−2−γ/α
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Multilevel Monte Carlo Methods
Multilevel estimator

Key idea: use realisations of QM on a hierarchy of different levels,
i.e., for different values M0, . . . ,ML of the discretization parameter,
and decompose

E [QML
] = E [QM0 ] +

L∑
`=1

E
[
QM`

− QM`−1

]
=:

L∑
`=0

E [Y`] ,

where M0 ∈ N, M` = sM`−1, for ` = 1, . . . , L, and s ∈ N \ {1}.

Given (unbiased) estimators {Ŷ`}L`=0 for E [Y`], we refer to

Q̂ML
L :=

L∑
`=0

Ŷ`

as a multilevel estimator for Q (today use standard MC on all levels).

All expectations E [Y`] sampled indep. ⇒ Var Q̂ML
L =

∑L
`=0 Var Ŷ`.

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 27 / 42



Multilevel Monte Carlo Methods
Multilevel estimator

Key idea: use realisations of QM on a hierarchy of different levels,
i.e., for different values M0, . . . ,ML of the discretization parameter,
and decompose

E [QML
] = E [QM0 ] +

L∑
`=1

E
[
QM`

− QM`−1

]
=:

L∑
`=0

E [Y`] ,

where M0 ∈ N, M` = sM`−1, for ` = 1, . . . , L, and s ∈ N \ {1}.

Given (unbiased) estimators {Ŷ`}L`=0 for E [Y`], we refer to

Q̂ML
L :=

L∑
`=0

Ŷ`

as a multilevel estimator for Q (today use standard MC on all levels).

All expectations E [Y`] sampled indep. ⇒ Var Q̂ML
L =

∑L
`=0 Var Ŷ`.
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Multilevel Monte Carlo Methods
Multilevel Monte Carlo estimator

If each Ŷ` is itself a standard Monte Carlo estimator, i.e.,

Ŷ0 = Ŷ0,N0 :=
1

N0

N0∑
k=0

Q
(k)
M0

and

Ŷ` = Ŷ`,N` :=
1

N`

N∑̀
k=0

(
Q

(k)
M`
− Q

(k)
M`−1

)
, ` = 1, . . . , L,

one obtains a multilevel Monte Carlo estimator.

The associated MSE then has the standard decomposition

E

[(
Q̂ML

L,{N`} − E [Q]
)2]

=
L∑
`=0

VarY`
N`

+ E [QML
− Q]2

into sample variance and bias (shown as for standard MC in Exerc. 2).
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Multilevel Monte Carlo Methods
MLMC variance reduction

Choose discretisation parameters and numbers of samples again
to balance the terms in the MSE.

The bias term is the same as for the standard MC estimator,
leading again to a choice of ML = M & TOL−1/α.

But why do we get variance reduction – or rather lower cost for
the same variance?

1 As we coarsen the problem, the cost per sample decays rapidly
from level to level, with O(sγ)

2 Since QM → Q, then Var[Y`] = Var[QM`
− QM`−1

]→ 0 as
`→∞, allowing for smaller and smaller sample sizes N` on finer
and finer levels.
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Multilevel Monte Carlo Methods
Optimal sample sizes

The cost of the MLMC estimator is

C (Q̂ML
L,{N`}) =

L∑
`=0

N`C`, C` := C (Y
(k)
` ).

Treating the N` as continuous variables, we can now minimise the
cost of the MLMC estimator for a fixed variance

L∑
`=0

VarY`
N`

=
TOL2

2

The solution to this constrained minimisation problem is

N` '
√

Var[Y`]/C`

with implied constant chosen such that the total variance is TOL2

2
(which leads to the constant 2

TOL2

∑
`

√
C` VarY`)
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Multilevel Monte Carlo Methods
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Multilevel Monte Carlo Methods
MLMC cost

This results in a total cost on level ` proportional to
√

C` VarY` and
therefore

C (Q̂ML
L,{N`}) ≤

2

TOL2

( L∑
`=0

√
C` VarY`

)2

For comparison, the cost fo standard MC is C (Q̂ML,N) = 2
TOL2 CL Var[QML

].

If VarY` decays faster than C` increases, the cost on level ` = 0
dominates. Since Var[QM0 ] ≈ Var[QML

], the cost ratio of MLMC to
MC estimation is then approximately

C0/CL h s−Lγ

If C` increases faster than VarY` decays, then the cost on level
` = L dominates, and then the cost ratio is approximately

Var[YL]/Var[QML
] h TOL2

(provided E
[
(Q − QL)2

]
h (E [Q − QL])2, which is problem dependent).
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Multilevel Monte Carlo Methods
General Complexity Theorem

Theorem

Let TOL < exp(−1) and assume there are constants α, β, γ > 0 such that
α ≥ min{β, γ} and, for all ` = 0, . . . , L,

(M1) |E [QM`
]− E [Q] | . M−α` ,

(M2) Var[Ŷ`] . N−1` M−β` ,

(M3) C (Ŷ`) . N`M
γ
` .

Then there are L and {N`}L`=0 s.t. E

[(
Q̂ML

L,{N`} − E [Q]
)2]
≤ TOL2 and

C (Q̂ML
L,{N`}) .


TOL−2, if β > γ,

TOL−2 | logTOL|2, if β = γ,

TOL−2−(γ−β)/α, if β < γ.
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Multilevel Monte Carlo Methods
Exercise 4

Exercise 4

(a) Solve the constrained minimisation problem on Slide 30 to find the
otimal numbers of samples on each level. (Hint: Use a Lagrange
multiplier approach to include the constraint and then consider the
first-order optimality constraints to find the minimum.)

(b) Proof the complexity theorem.
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Multilevel Monte Carlo Methods
Adaptive MLMC Algorithm

The following MLMC algorithm computes the optimal values of L
and N` adaptively using (unbiased) sample averages (Ŷ`) and sample
variances (s2` ) of Y`.

The sample variances can be used directly in the MC error estimates.

To bound the bias error, we assume there exists an M? > 0 such that
the error decay in |E [QM − Q] | is monotonic for M ≥ M? and
satisfies |E [QM − Q] | h M−α.

This ensures (via the inverse triangle inequality) that

|E [QM`
− Q] | ≤ 1

sα − 1
Ŷ`

and gives a computable error estimator on level L to determine
whether hL is sufficiently small or whether L needs to be increased.
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variances (s2` ) of Y`.

The sample variances can be used directly in the MC error estimates.

To bound the bias error, we assume there exists an M? > 0 such that
the error decay in |E [QM − Q] | is monotonic for M ≥ M? and
satisfies |E [QM − Q] | h M−α.

This ensures (via the inverse triangle inequality) that

|E [QM`
− Q] | ≤ 1

sα − 1
Ŷ`
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Multilevel Monte Carlo Methods
Adaptive MLMC Algorithm

Adaptive MLMC Algorithm

1. Set TOL, L = 1 and N0 = N1 = NInit.

2. For all levels ` = 0, . . . , L do

a. Compute new samples Y
(k)
` until there are N`.

b. Compute Ŷ` and s2`, and estimate C`.

3. Update estimates for N` using the formula on Slide 30 and

if ŶL >
sα−1√

2
TOL, increase L→ L + 1 and set NL = NInit.

4. If there is no change

Go to 5.

Else

Return to 2.

5. Set Q̂ML
L,{N`} =

∑L
`=0 Ŷ`.
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Multilevel Monte Carlo Methods
Exercise 5

Exercise 5

(a) Implement the multilevel MC method for the predator-prey problem.
Choose M0 not too small to avoid stability problems with the explicit
Euler method. Compare the cost to achieve a certain tolerance TOL
for the mean square error (in terms of floating point operations)
against your other two implementations (standard MC and antithetic
MC estimator). How big is the computational gain?

(b) Recall that α = γ = 1 in that case. Verify this with your code.
Compute Var[Ŷ`] and Var[Q̂M`

] for a range of values of ` and M0.
What is the numerically observed rate β? Prove this theoretically.

(c) Can you think of any further enhancements of your code?
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Exercise 6

Exercise 6

(a) Think of a UQ question in your field of research and try to formulate
a simple model problem that encapsulates the essential question.
What type of uncertainty is it? How could you model it within your
problem? Can you formulate a Monte Carlo simulation to estimate
the uncertainties in a derived quantity of interest from your model?
Are any of the variance reduction techniques we discussed applicable?
Is there a natural model hierarchy that could be exploited in a
multilevel algorithm?

(b) Implement a simple Monte Carlo code to quantify the uncertainties. If
your problem has natural model hierarchies and allows to couple them,
try to estimate Var[Ŷ`] and Var[Q̂M`

] in the same way as we did
above to check whether multilevel Monte Carlo would be beneficial.

(c) Implement a multilevel MC method for your problem. Do you achieve
the gains that were predicted in (b)?
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Recall: Case Study in Radioactive Waste Disposal
Model Problem

uncertain k →
Darcy’s Law: ~q + k ∇p = f

Incompressibility: ∇ · ~q = 0
→ uncertain p, ~q

Typical simplified model for k:

log k(x , ω) = isotropic, scalar Gaussian e.g. with

exp. covariance (ν = 1
2 ): R(x , y) := σ2 exp

(
−‖x−y‖λ

)
KL expansion: log k(x , ω) ≈

∑J
j=1
√
µjφj(x)Yj(ω)

with Yj(ω) i.i.d. N(0, 1)

FE discretisation: A(ω) P(ω) = b(ω) later

QoI Q(ω), e.g., particle travel time from repository to boundary
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Recall: Case Study in Radioactive Waste Disposal
Numerical Experiment with standard Monte Carlo

D = (0, 1)2, unconditioned KL expansion, Q = ‖ − k ∂p
∂x1
‖L1(D)

using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

Num. observed FE-error: ≈ O(h−3/4) h O(M
−3/8
h ) ⇒ α ≈ 3/8

Num. observed cost/sample: ≈ O(h−d) h O(Mh) ⇒ γ ≈ 1

Total cost to get RMSE O(TOL): ≈ O(TOL−14/3)
to get error reduction by a factor 2 → cost grows by a factor 25!

Case 1: σ2 = 1, λ = 0.3, ν = 0.5

TOL h−1 Nh Cost
0.01 129 1.4× 104 21min

0.002 1025 3.5× 105 30days

Case 2: σ2 = 3, λ = 0.1, ν = 0.5

TOL h−1 Nh Cost
0.01 513 8.5× 103 4 h

0.002 Prohibitively large!!
(actual numbers & CPU times on a cluster of 2GHz Intel T7300 processors)
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Multilevel MC for Radioactive Waste Disposal Problem
Numerical Experiment with standard Monte Carlo

Assuming optimal AMG solver (i.e. γ ≈ 1) and β ≈ 2α. Then for
α ≈ 3/4d−1 (as in the example above) the cost in Rd is

d MC MLMC per sample

1 O(ε−10/3) O(ε−2) O(ε−4/3)

2 O(ε−14/3) O(ε−8/3) O(ε−8/3)
3 O(ε−6) O(ε−4) O(ε−4)

Optimality (for γ > β = 2α)

MLMC cost is asymptotically the same as one deterministic solve to
accuracy ε for d > 1, i.e. O(ε−γ/α) !! (only true for rough problems!)

Can we achieve such huge gains in practice?
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Multilevel MC for Radioactive Waste Disposal Problem
Numerical Experiments: D = (0, 1)2; Q = ‖p‖L2(D); standard FEs

ν = 1
2 , σ2 = 1, λ = 0.3, h0 = 1

8
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Multilevel MC for Radioactive Waste Disposal Problem
Numerical Experiments: D = (0, 1)2; Q = ‖p‖L2(D); standard FEs

hL = 1/256 (solid line is FE-error)

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor,

3.2GByte RAM, with sparse direct solver, i.e. γ ≈ 1.2
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Multilevel MC for Radioactive Waste Disposal Problem
Verifying Assumptions in MLMC Complexity Theorem: ν = 1/2, σ2 = 1, λ = 0.3

∣∣E[G (1)(p)− G (1)(ph)
]∣∣

where G (1)(p) := Lω(Ψ)− bω(Ψ, v)

given Ψ(x) = x (outflow on right).

V
[
G (2)(ph)− G (2)(p2h)

]
where G (2)(p) :=

(
1
|D∗|

∫
D∗ p(x)dx

)2
(i.e. 2nd moment of p over small patch)

=⇒ α = 1 and β = 2

Can be proved rigorously for the lognormal case! (more details Tue/Wed)
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