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Lecture 3
Deterministic Representation – Classical Quadrature & New Ideas

Stochastic collocation (and polynomial chaos) methods

Deterministic representation

Gauss quadrature

Sparse grids

Quasi-Monte Carlo quadrature

Multilevel Quasi-Monte Carlo
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RECALL: Computational Challenges
Simulating PDEs with Highly Heterogeneous Random Coefficients

−∇· (k(x, ω)∇p(x, ω)) = f (x, ω), x ∈ D ⊂ Rd , ω ∈ Ω (prob. space)

Sampling from random field log k(x, ω) (correlated Gaussian):

truncated Karhunen-Loève expansion of log k (see above)

matrix factorisation, e.g. circulant embedding (FFT)

via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Quadrature – (the central problem!):

Monte Carlo, Quasi-Monte Carlo

stochastic Galerkin/collocation (+ sparse grids)

Solve large number of multiscale deterministic PDEs:

Efficient discretisation & FE error analysis (mesh size h)

Multigrid Methods, AMG, DD Methods
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Weak Formulation & Finite Element Discretisation

Write PDE (subject to p|∂D ≡ 0) in weak form: p(·, ω) ∈ H1
0 (D) s.t.∫

D
∇v · (k(x , ω)∇p(x , ω)) dx =

∫
D
f (x , ω)v dx , ∀v ∈ H1

0 (D).

∃!p(·, ω) ∈ H1
0 (D) a.s. in ω ∈ Ω (subtle in lognormal case).

Let Vh ⊂ H1
0 (D) be the space of continuous, piecewise linear FEs

w.r.t. a mesh Th with mesh width h > 0.

Find ph(·, ω) ∈ Vh that satisfies weak form for all vh ∈ Vh.

Write ph(x , ω) :=
∑Mh

i=1 Piϕi (x). Then this is equivalent to the
random matrix system

A(ω)P(ω) = F(ω)
with

Ai ,j(ω) :=

∫
D
∇ϕj · (k(x , ω)∇ϕi ) dx , Fi (ω) :=

∫
D
f (x , ω)ϕi dx
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Finite Element Approximation
Short Primer

A short primer on Finite Element discretisation (spatially)
on the blackboard . . .
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Finite Element Approximation
Nodal basis for linear triangles

A nodal basis function with its support.
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Finite Element Approximation
Nodal basis for linear triangles

Triangulation of an L-shaped domain with the supports of several basis

functions.
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Finite Element Approximation
Triangulations

Triangular mesh on a square domain.
Triangular mesh on a polygonal

approximation of a circle.
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Finite Element Approximation
Triangulations

Tetrahedral mesh of complex 3D geometry (engine block).
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Stochastic Collocation
Introduction

Collocation methods are a long-established technique for solving integral
or differential equations and are based on requiring the equation under
consideration to hold at a finite number of collocation points sufficient to
determine an approximate solution in an appropriate finite-dimensional
function space (typically global polynomials).

They were first applied to solve PDEs with random inputs in [Xiu &
Hesthaven, 2005] & [Babuška, Nobile & Tempone, 2007]

Like MC, they reduce to a series of uncoupled deterministic
subproblems for which legacy code can be used essentialy unmodified.

Unlike MC, collocation can take advantage of smooth dependence of
the solution on the random parameters to yield spectral convergence.

Nonlinear problems pose no additional difficulty (unlike stoch. Galerkin)

If we are only interested in one or a few scalar quantities of interest
stochastic collocation reduces to classical Gauss quadrature.
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Deterministic parametric representation
Probabilistic Measures to (weighted) Lebesgue Measures

Truncated KL expansion leads to a parametrisation by a vector of
i.i.d. Gaussian random variables y := {Yj}sj=1.

Each Yj has Gaussian density ρj = ρ and image Yj(Ω) = R. Identify

L2
P(Ω) ' L2

ρ(Rs), where ρ =
s∏

j=1

ρj .

random variables with probability measure P and bdd. 2nd moments are

identified with square integrable Lebesgue-measurable fcts (w. weight ρ)

Replace k(x , ω), p(x , ω) . . . with k(x , y), p(x , y).

PDE becomes purely deterministic with high-dim’l parameter space:

−∇x · (k(x , y)∇x p(x , y)) = f (x , y), x ∈ D, for a.a. y ∈ Rs ,

where log k(x , y)) = log k0(x) +
∑s

j=1

√
λj φj(x) yj .

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 11 / 39



Deterministic parametric representation
Probabilistic Measures to (weighted) Lebesgue Measures

Truncated KL expansion leads to a parametrisation by a vector of
i.i.d. Gaussian random variables y := {Yj}sj=1.

Each Yj has Gaussian density ρj = ρ and image Yj(Ω) = R. Identify

L2
P(Ω) ' L2

ρ(Rs), where ρ =
s∏

j=1

ρj .

random variables with probability measure P and bdd. 2nd moments are

identified with square integrable Lebesgue-measurable fcts (w. weight ρ)

Replace k(x , ω), p(x , ω) . . . with k(x , y), p(x , y).

PDE becomes purely deterministic with high-dim’l parameter space:

−∇x · (k(x , y)∇x p(x , y)) = f (x , y), x ∈ D, for a.a. y ∈ Rs ,

where log k(x , y)) = log k0(x) +
∑s

j=1

√
λj φj(x) yj .

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 11 / 39



Deterministic parametric representation
Probabilistic Measures to (weighted) Lebesgue Measures

Truncated KL expansion leads to a parametrisation by a vector of
i.i.d. Gaussian random variables y := {Yj}sj=1.

Each Yj has Gaussian density ρj = ρ and image Yj(Ω) = R. Identify

L2
P(Ω) ' L2

ρ(Rs), where ρ =
s∏

j=1

ρj .

random variables with probability measure P and bdd. 2nd moments are

identified with square integrable Lebesgue-measurable fcts (w. weight ρ)

Replace k(x , ω), p(x , ω) . . . with k(x , y), p(x , y).

PDE becomes purely deterministic with high-dim’l parameter space:

−∇x · (k(x , y)∇x p(x , y)) = f (x , y), x ∈ D, for a.a. y ∈ Rs ,

where log k(x , y)) = log k0(x) +
∑s

j=1

√
λj φj(x) yj .

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 11 / 39



Stochastic Collocation Method
Discretise in stochastic parameters via tensor-product polynomials

Write PDE in weak form: Find p ∈ H1
0 (D)× L2

ρ(Rs) s.t.∫
D
∇v · (k(x , y)∇p(x , y)) dx =

∫
D
f (x , y)v dx , ∀v ∈ H1

0 (D).

Let
⊗s

j=1 Pqj ⊂ L2
ρ(Rs) be the tensor-product space of (global)

polynomials of order qj in dimension j .

Find ph ∈ Vh ×
⊗s

j=1 Pqj that satisfies weak form for all vh ∈ Vh at

collocation points {yn}N
sc

n=1 (zeros of L2
ρ–orthogonal polynomials)

As in MC case, leads to a set of Nsc decoupled linear systems
(in the case of Stochastic Galerkin methods, the systems are coupled!).

But cost grows v. fast with dimension s & polynomial order q:

Nsc = O (qs) (full tensor) and Nsc = O
(

(s+q)!
s!q!

)
(total degree)

This can be reduced via sparse grid techniques (e.g. Smolyak) see below!
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Stochastic Collocation Method
Hermite Polynomials (Gaussian RVs) & Legendre Polynomials (uniform RVs)

Hermite polynomials – orthogonal in L2
ρ(R)
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Stochastic Collocation Method
Hermite Polynomials (Gaussian RVs) & Legendre Polynomials (uniform RVs)

Legendre polynomials – orthogonal in L2(−1, 1)
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Stochastic Collocation Method
Distinction between Quadrature and Interpolation

Many terms floating around these days in UQ: Stochastic
Galerkin, Stochastic Collocation, Polynomial Chaos Expansions,
Gauss Quadrature, Response Surfaces, Surrogates, . . .

Unfortunately most papers and books tend to overcomplicate
matters and make them look all very daunting.

But essentially they are all based on classical quadrature and
interpolation tools for the above high-dimensional problem.

We need to distinguish between

the case we have discussed so far, that is statistics (e.g. mean,
variance, CDF) of scalar QoIs (quadrature)
and the case where we want to build a surrogate model or a
response surface (interpolation)

Classically, both of these tasks use very similar tools.
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Stochastic Collocation Method
Short Primer on polynomial interpolation and Gauss quadrature

A short primer on polynomial interpolation and Gauss quadrature
on the blackboard . . .
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Tensor grid vs. Smolyak sparse grid
Based on Gauss-Hermite nodes in R2

Now simply tensorise the rule in higher dimensions ...
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Tensor grid vs. Smolyak sparse grid
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Tensor grid vs. Smolyak sparse grid
Based on Gauss-Hermite nodes in R2
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Tensor grid vs. Smolyak sparse grid
Based on Gauss-Hermite nodes in R2
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Tensor grid vs. Smolyak sparse grid
Based on Gauss-Hermite nodes in R2

We see the sparse grid has significantly fewer points (even in 2D)!
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Stochastic Collocation – The Quadrature Case
Predator-prey example

As an example where we use the polynomial expansion simply as the basis
for a quadrature rule, let us recall the predator-prey example:

The solution operator G there was mapping the U(Γ) RV u0 to the
RV Q = u1(T ) (with unknown distribution) with Γ = u0 + [−ε, ε]2.

We can identify L2
P(Ω) with L2(Γ), i.e.

E [u1(T )] =
1

|Γ|

∫
Γ
G (u0) du0

To approximate E [u1(T )] we approximate G with GM , the Euler
method with M time steps, and the integral with a (2d-tensorised)
Gauss-Legendre quadrature rule (scaled from [−1, 1] to [−ε, ε]):

E [u1(T )] ≈ 1

2ε2

n∑
i=1

n∑
j=1

(εwi )(εwj)GM

(
u0 + [εxi , εxj ]

)
The map is very smooth and so the convergence is exponential.
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Stochastic Collocation Methods
Exercise 7

Exercise 7

(a) The Matlab function g data(n) (which is provided) computes the
Gauss-Legendre quadrature points and weights for the interval
(−1, 1). Transform and tensorise this set of points and hence write a
program that evaluates GM at the Gauss points for user-defined values
of M and n and then evaluates the integral (resp. expected value).
Study the convergence with respect to n. What do you observe?

(b) You are also given a set of model codes for the lognormal diffusion
problem in 1D. Study the codes and experiment with the different
methods. In particular, study the stochastic collocation code (based
on Gauss-Legendre points mapped to the entire real line via the
inverse CDF for the normal distribution). How fast does it converge
for this problem? How does the cost grow with dimension s? Compare
to the different Monte Carlo codes (MC, QMC, MLMC, MLQMC).
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Stochastic Collocation – The Interpolation Case

The real reason stochastic collocation was invented was to construct
response surfaces (can then be used for Bayesian inference, control, design).

Here to approximate a parameter-dependent object u = u(ξ) with values
in an abstract space V , fix a finite-dimensional subspace
VN = span{u1, . . . , uN} ⊂ V and set

u(ξ) ≈ uN(ξ) =
N∑
j=1

uj ψj(ξ)

with coefficient functions ψj : Γ→ R determined by a fixed set of

collocation points {ξj}Nj=1 ⊂ Γ.

Simplest choice for ψj : Lagrange basis of multivariate (global)
polynomials with respect to a system of unisolvent nodes

Ξ := {ξj}Nj=1 ⊂ Γ .
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Stochastic Collocation – The Interpolation Case
Lagrange interpolant

Given a univariate nodal sequence of distinct nodes

χk = {ξ(k)
1 , . . . , ξ

(k)
nk }, k ∈ N,

we denote by {`(k)
j }

nk
j=1 the associated Lagrange basis, i.e., the uniquely

determined polynomials of degree nk − 1 satisfying

`
(k)
j (ξ

(k)
i ) = δi ,j , j = 1, . . . , nk .

We introduce the univariate interpolation operator

Ik : f 7→ Ik f =

nk∑
j=1

f (ξ
(k)
j ) `

(k)
j ∈Pnk−1

The tensor-product interpolation operator is then defined as

Ik := Ik ⊗ · · · ⊗ Ik : u 7→
∑

|α|∞≤nk

u(ξα) `(k)
α1
· . . . · `(k)

αM
,

where |α|∞ = maxMm=1 |αm| (i.e. total degree interpolation).
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Stochastic Collocation – The Interpolation Case
Example: Elliptic PDE with random coefficients

The fully discrete problem of the elliptic PDE with random coefficients is
obtained by approximating the semidiscrete solution uh : Γ→ Vh (where
Vh is the FE space) by

uh(x, ξ) ≈ uh,p(x, ξ) := (Ipuh)(x, ξ) .

Here Ip is the tensor-product interpolant constructed from univariate
Lagrange interpolants of degree p, i.e., based on p + 1 distinct nodes in
each variable.

This entails solving a (deterministic) version of the random PDE for each
of the tensor-product interpolation nodes:

Find uh(ξα) ∈ Vh for all ξα ∈ Ξ such that∫
D
k(x, ξα)∇uh(x, ξα) · ∇vh(x) dx =

∫
D
f (x, ξα)vh(x) dx ∀vh ∈ Vh.
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Curse of Dimensionality (large s)

Stochastic collocation methods

cost grows v. fast with dimension s & polynomial order q

(faster than exponential) → #stochastic DOFs O
(

(s+q)!
s!q!

)
lower # with sparse grids (Smolyak) but still exponential in s!

Stochastic Galerkin methods (not discussed)

Huge coupled problems; block dense in general; preconditioners?

Anisotropic sparse grids or adaptive best N-term
approximation can make them dimension independent
(in special cases), but needs a lot of smoothness!

Another deterministic alternative: Quasi-Monte Carlo methods

Faster than MC (O(N−1)), but in general cost grows w. s again.

Using weighted (repr. kernel) Hilbert spaces, can be made
dimension independent; requires also (some) smoothness!
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Quasi-Monte Carlo Quadrature
Reducing the number of sample points

Is(F ) :=

∫
[0,1]s

F (y) dy ≈ 1

N

N∑
i=1

F
(
y(i)
)

=: QN
s (F ) (equal weights)

Monte Carlo: y(n) unif. random
O(N−1/2) convergence
(order of variables irrelevant)

QMC: y(n) deterministic
close to O(N−1) convergence
(order of variables v. important)
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Quasi-Monte Carlo Quadrature
Numerical results for lognormal problem – Test cases and components

Covariance
r(x, x′) = σ2 exp

(
− ‖x− x′‖1/λ

)
( ‖ · ‖2 similar)

Case 1 Case 2 Case 3 Case 4 Case 5

σ2 1 1 1 3 3
λ 1 0.3 0.1 1 0.1

Mixed FEM (RT0 + p.w. const): Uniform grid h = 1/m on (0, 1)2

Sampling: circulant embedding, dimension s = O(m2) (v. large)
(“discrete KL-expansion” via FFT)

QMC Method: randomised QMC with N Sobol’ points

E[G (p)] ≈
∫

[0,1]s
G
(
psh
(
·,Φ−1(y)

))
dy ≈ 1

N

N∑
i=1

G
(
psh
(
·,Φ−1(y(i))

))
with Φ : Rs → [0, 1]s the cumulative normal distribution function.
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Quasi-Monte Carlo Quadrature
Numerical results for lognormal problem – Algorithm profile

Time (in sec) on modest laptop for N = 1000, CASE 1:
(similar for other cases)

m s Setup Φ−1 FFTW PDE Solve TOT

33 4.1 (+3) 0.00 1.0 0.22 4.5 5.9
65 1.7 (+4) 0.01 3.9 1.2 16.5 22

129 6.6 (+4) 0.06 15 5.1 67 92
257 2.6 (+5) 0.15 62 31 290 400
513 1.0 (+6) 0.6 258 145 1280 1750

Order m2 m2 m2 m2 logm m2 logm m2 logm
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One mixed FE (saddle point system) solve with ≈ 1.3(+6) DOF ≈ 1.3s (in 2010)!
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Quasi-Monte Carlo Quadrature
Numerical results – Dimension independence (increasing m and hence s)

Quadrature error for mean pressure at centre (CASE 4)
(no FE error, MC in green, QMC in blue)
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Case4 (1−norm): m=33 ; Rates:−0.78 (QMC)−0.5 (MC)

103 104 105 10

10−6

10−5

10−4

10−3

10−2

N

M
C

 &
 Q

M
C

 E
rr

or
 (

pr
es

su
re

 a
t c

en
tr

e)

Case4 (1−norm): m=65 ; Rates:−0.74 (QMC)−0.5 (MC)

103 104 105 106

10−6

10−5

10−4

10−3

10−2

N

M
C

 &
 Q

M
C

 E
rr

or
 (

pr
es

su
re

 a
t c

en
tr

e)

Case4 (1−norm): m=129 ; Rates:−0.77 (QMC)−0.5 (MC)

103 104 105 10

10−6

10−5

10−4

10−3

10−2

N

M
C

 &
 Q

M
C

 E
rr

or
 (

pr
es

su
re

 a
t c

en
tr

e)

Case4 (1−norm): m=257 ; Rates:−0.76 (QMC)−0.5 (MC)
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Quasi-Monte Carlo Quadrature
Numerical results for lognormal problem – Robustness (varying σ2 and λ)

Expected value of effective permeability (here FE error present)

h needed to obtain a discretization error < 10−3

N needed to obtain (Q)MC error < 0.5× 10−3 (95% confidence)

σ2 λ 1/h N (QMC) N (MC) CPU (QMC) CPU (MC)

1 1 17 1.2(+5) 1.9(+7) 0.05 h 8 h
1 0.3 129 3.3(+4) 3.9(+6) 0.9 h 110 h
1 0.1 513 1.2(+4) 5.9(+5) 6.5 h 330 h
3 1 33 4.3(+6) 3.6(+8) 9 h 750 h
3 0.1 513 3.0(+4) 5.8(+5) 20 h (×5) 390 h (×8)

(last line calculated with twice the tolerance!)

Smaller λ needs smaller h but also smaller N (ergodicity).

Strong superiority of QMC in all cases.

R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 27 / 39



Quasi-Monte Carlo Quadrature
Numerical results for lognormal problem – Robustness (varying σ2 and λ)

Expected value of effective permeability (here FE error present)

h needed to obtain a discretization error < 10−3

N needed to obtain (Q)MC error < 0.5× 10−3 (95% confidence)

σ2 λ 1/h N (QMC) N (MC) CPU (QMC) CPU (MC)

1 1 17 1.2(+5) 1.9(+7) 0.05 h 8 h
1 0.3 129 3.3(+4) 3.9(+6) 0.9 h 110 h
1 0.1 513 1.2(+4) 5.9(+5) 6.5 h 330 h
3 1 33 4.3(+6) 3.6(+8) 9 h 750 h
3 0.1 513 3.0(+4) 5.8(+5) 20 h (×5) 390 h (×8)

(last line calculated with twice the tolerance!)

Smaller λ needs smaller h but also smaller N (ergodicity).

Strong superiority of QMC in all cases.
R. Scheichl (Bath & Heidelberg) Computational Methods in UQ HGS Course, June 2015 27 / 39



Quasi–Monte Carlo Quadrature
Predator-prey problem (discretisation error + quadrature error)
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Quasi–Monte Carlo Quadrature
How do they work?

Starting point: equal-weight quadrature rule QN
s (F ) :=

1

N

N∑
i=1

F (y(i))

How to choose y(1), . . . , y(N) ?

Low discrepancy points: Sobol (1950s), Faure, Niederreiter
(1980s), Dick . . .

Lattice rules: Korobov, Hlawka, Hua, Wang (50s), Sloan. . .
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Quasi–Monte Carlo Quadrature
How do they work? [Kuo, Schwab, Sloan, ANZIAM J 2011]

Choose the Hilbert space Ws := (H1(0, 1))s with norm

‖F‖2
Ws

:=
∑

u⊆{1,...,s}

∫
[0,1]|u|

(
∂|u|F

∂yu
(yu; 1)

)2

dyu ,

i.e. all mixed first derivatives w.r.t. the parameters are bounded.

Due to linearity of error in F we have

|Is(F )− QN
s (F )| ≤ ewor

(
{y(i)},Ws

)
‖F‖W

with
ewor

(
{y(i)},Ws

)
:= sup

‖F‖Ws≤1
|Is(F )− QN

s (F )|

the worst case error (related to discrepancy of the point set).
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Quasi–Monte Carlo Quadrature
How do they work? [Kuo, Schwab, Sloan, ANZIAM J 2011]

Ws is a reproducing kernel Hilbert space with kernel

K (y, z) :=
s∏

i=1

(1 + min(1− yi , 1− zi )) .

It is an easy exercise to show that ewor
(
{y(i)},Ws

)
can be written

down explicitly in terms of K (y, z).

As in the classical analysis, this leads to the dimension-dependent
bound for standard QMC points sets

ewor
(
{y(i)},Ws

)
.

(logN)s

N

which is unsatisfactory because it only starts to decay when N is
exponetially large in s −→ Introduce weights in Ws , . . .
[Sloan, Woźniakoski, 1998 & 2001]
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Quasi–Monte Carlo Quadrature
How do they work? [Kuo, Schwab, Sloan, ANZIAM J 2011]

Choose instead weighted Hilbert space Ws,γ := H1
γ1

(0, 1)× . . .× H1
γs (0, 1)

with norm

‖F‖2
Ws

:=
∑

u⊆{1,...,s}

1

γu

∫
[0,1]|u|

(
∂|u|F

∂yu
(yu; 1)

)2

dyu ,

e.g. γu =
∏s

i=1 γi (product weights) or γu = Γ|u|
∏s

i=1 γi (POD weights).

Now under some decay (or summability) conditions on the weights it
is possible to show (for certain rules)

ewor
(
{y(i)},Ws,γ

)
. N−1+δ

for some 0 < δ ≤ 1/2; decay depends on smoothness of F , in
particular on the size of the mixed first derivatives.

Hence ordering of coordinates is crucial for dimension independence.
There are no point sets that are equally good in all coordinates.
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Quasi-Monte Carlo Lattice Rule (of rank 1)
[Sloan & Joe, Lattice Methods for Multiple Integration, OUP, 1994]

Given a generating vector zgen ∈ {1, . . . ,N − 1}s and a

random shift ∆ ∼ U
[
(0, 1)s

]
:

z(i) := frac

(
i zgen
N

+ ∆

)
, i = 1, . . . ,N

The random shift makes estimator unbiased (!) and is very convenient for

analysis and for adaptive error control

Efficient component-by-component (CBC) construction available
– controlled by weights γu . (see [Sloan, Reztsov, Kuo, Joe, 2002] and

www.maths.unsw.edu.au/∼fkuo)

For infinite dimensions and improper integrals, need extra weight
function ψ2 in ‖ · ‖Ws,γ . [Kuo, Sloan, Wasilkowski, Waterhouse, 2010],

[Kuo, Nicholls, 2014]
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Quasi-Monte Carlo Lattice Rule (of rank 1)
Bounding ‖F‖Ws,γ in the lognormal model problem

To show G (psh) ∈ Ws,γ , we first bound the mixed 1st derivatives of
psh w.r.t. parameters in any finite subset u ⊂ N:∣∣∣∣∣∂|u|psh∂yu

(·, y)

∣∣∣∣∣
H1(D)

≤
‖f ‖H−1(D)

kmin(y)

|u|!
ln 2|u|

(∏
j∈u

√
µj ‖φj‖L∞(D)

)

Assume G (psh) linear. If KL-eigenvalues µj decay suff’ly fast we can
find weights γu s.t. G (psh) ∈ Ws,γ .

Theorem [Graham, Kuo, Nichols, RS, Schwab, Sloan, 2014]

E[G (psh)]− Qs
N

(
G (psh)

)
= O(N−1/2) if µj‖φj‖2

L∞(D) = O(j−2−δ)

E[G (psh)]− Qs
N

(
G (psh)

)
= O(N−1+δ) if µj‖φj‖2

L∞(D) = O(j−3)

Optimal rates (provable) for Matérn with ν > 3
2d .
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Quasi-Monte Carlo Lattice Rule (of rank 1)
Quadrature Error (1D, Matérn covariance, rank-1 lattice rule)
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Higher order QMC methods (polynomial lattice rules): O(N−k)
[Dick, Pillichshammer, 2007] – but requires again more smoothness from F
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Quasi-Monte Carlo Lattice Rule (of rank 1)
Quadrature Error (1D, Matérn covariance, rank-1 lattice rule)

Rates

ν σ2 λ = 0.1 λ = 1.0

0.25 0.82 0.89
0.75 1.00 0.64 0.83

4.00 0.60 0.63

0.25 0.80 0.86
1.5 1.00 0.66 0.73

4.00 0.58 0.55

Higher order QMC methods (polynomial lattice rules): O(N−k)
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Quasi-Monter Carlo Methods
Exercise 8

Exercise 8

(a) Use the file lattice-38005-1024-1048576.5000.txt from Kuo’s
webpage web.maths.unsw.edu.au/~fkuo/lattice/index.html

that contains a generating vector for a rank-1 lattice rule with equal
weights γj = 0.05 to construct a set of QMC points on the unit
square [0, 1]2. Randomise and use this set to approximate E [u1(T )]
in the predator-prey example and compare the convergence of this
QMC rule with the convergence of your other codes.

(b) As part of the model codes for the lognormal diffusion problem in 1D
you will also find a QMC code there. Experiment also with that code.
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Multilevel Quasi-Monte Carlo
Combining approaches and gains – Complexity theorem

QMC acceleration complimentary to ML variance reduction!

[Giles, Waterhouse ’09] (SDE), [Kuo, Schwab, Sloan ’12] (uniform affine),

[Harbrecht et al, ’13] (lognormal, but not tractable & no effic. gains)

Theorem (Multilevel QMC) [Kuo, RS, Schwab, Sloan, Ullmann, to be submitted]

Assume FE error O(M−α` ), Cost/sample O(Mγ
` ) (as above) and

V∆

[
Qs

N`

(
G (p`)

)
− Qs

N`

(
G (p`−1)

)]
= O(N−η` M−β` ), with 1 ≤ η < 2.

There exist L, {N`}L`=0 (computable on the fly) to obtain MSE < ε2 with

Cost(Q̂MLQ
L ) = O

(
ε
− 2
η
−max

(
0, ηγ−β

ηα

))
+ possible log’s
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Multilevel Quasi-Monte Carlo
Discussion and setup for numerical test case

If QMC optimal (i.e. η ≈ 2), if β ≈ 2α and γ ≈ 1 (e.g. via AMG) then

Cost(Q̂MLQ
L ) = O

(
ε−max(1, d

α)
)

Better than MLMC complexity O(ε−max(2, d
α)) for α ≥ d/2.

Optimal for α ≤ d! In that case the cost is O(ε−1).

Also: Multilevel stochastic collocation [Teckentrup, Jantsch, Webster,

Gunzburger, 2014]

Numerical experiment:

D = (0, 1)2; stand. FEs; Q = 1
|D∗|

∫
D∗ p dx

Matérn cov.; truncated KLE w. s ∼ h−2/ν ;
randomised lattice rule with γj = 1/j2.
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Multilevel Quasi-Monte Carlo
Numerical Experiments
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Multilevel Quasi-Monte Carlo
Numerical Experiments
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