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Abstract. It is shown that every bounded strictly increasing smooth positive function of suffi-
ciently slow growth is the Jacobian of a radial hole creating equilibrium deformation for an appro-
priately constructed compressible nonlinearly elastic energy.
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1. Introduction. Explicit solutions of model equations can be useful in gain-
ing insight concerning the qualitative behavior of solutions to more general problems.
Unfortunately, the explicit construction of radial equilibrium deformations that create
new holes in a compressible nonlinearly elastic body has proven to be unexpectedly
complicated. Consequently, although cavitation is a common occurrence in rubbery
polymers, explicit solutions that exhibit this phenomenon are rare. The only such
solutions (modulo a radial null-Lagrangian; see Horgan [3] and Steigmann [15]) that
appear in the literature are for an elastic fluid (see, e.g., [3, 6]); for the Blatz–Ko
constitutive relation for foam rubbers, which was obtained, in two dimensions, by
Horgan and Abeyaratne [4] and, in three dimensions, by Tian-hu [18]; for a compress-
ible neo-Hookean material, which was obtained in [11] (see also [1, section 7.6]); and
for the generalized Carroll material, which was obtained by Murphy and Biwa [7] (see
also Shang and Cheng [12]).

The usual method of obtaining an explicit solution is to solve the differential
equation for a postulated model problem. In this paper we take a different approach;
we first posit deformations that, based upon prior results, have desired properties,
and then construct differential equations that have these deformations as solutions.
We show, in particular, that every function in a certain class of radial cavitating
deformations will satisfy an equilibrium equation that is appropriately chosen for that
particular function. The radial deformations we use are those for which the Jacobian
is an increasing radial function. The appropriate stored energy is then constructed as
the sum of two terms. The first is a homogeneous isotropic strongly elliptic stored-
energy function, while the second is a function of the Jacobian of the chosen radial
deformation. This second function is constructed so that the chosen deformation will
automatically satisfy the radial equilibrium equation. Further information on radial
cavitation is contained in the survey article by Horgan and Polignone [5].
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2. The constitutive relation. Let Ψ ∈ C2((0,∞)n) be a symmetric function.
We assume that the stored-energy function for the material is given by

W (F) = Φ(ν1, ν2, . . . , νn) := Ψ(ν1, ν2, . . . , νn) + h(ν1ν2 . . . νn)(2.1)

for all n×nmatrices F with positive determinant, where ν1, ν2, . . . , νn are the principal
stretches, i.e., the eigenvalues of the square root of FFT , and h ∈ C2((0,∞)) is a
function to be determined.

The problem of interest is to determine stationary points of the energy

E(w) =
∫

Bo

W (∇w(x)) dx(2.2)

among orientation-preserving injective w that satisfy the boundary condition w(x) =
λx for x ∈ ∂Bo, where Bo := B(0, Ro) ⊂ Rn is the ball of radius Ro centered at the
origin. For a radial deformation

w(x) =
r(R)
R

x, R := |x|,

r : [0, Ro] → [0,∞), the principal stretches at any point x ∈ Bo are given by (see,
e.g., [1]) ν1(x) = r′(R) and νi(x) = r(R)/R for i = 2, 3, . . . , n. Thus (2.2) reduces to1

E(r) =
∫ Ro

0

Φ
(
r′(R),

r(R)
R

,
r(R)
R

, . . . ,
r(R)
R

)
Rn−1 dR(2.3)

among those r : [0, Ro] → [0,∞) that satisfy r′ > 0 a.e. and r(Ro) = λRo. A
stationary point w of E corresponds to a solution r of the radial equilibrium equation

d

dR

[
Rn−1Φ,1

]
= (n− 1)Rn−2Φ,2 ,(2.4)

where

Φ,i = Φ,i

(
r′(R),

r(R)
R

,
r(R)
R

, . . . ,
r(R)
R

)
and Φ,i (v1, v2, . . . , vn) denotes differentiation of Φ with respect to its ith argument
(see [1, Theorem 7.3]). Also, if r(0) > 0, then the deformed ball contains a spherical
cavity, and r must satisfy the natural boundary condition

T (R) :=
[
R

r(R)

]n−1

Φ,1

(
r′(R),

r(R)
R

,
r(R)
R

, . . . ,
r(R)
R

)
→ 0 as R→ 0+,(2.5)

which corresponds to the radial component of the Cauchy stress vanishing on the
cavity surface.

For energies of the form (2.1) the radial equilibrium equation (2.4) becomes

d

dR

[
Rn−1Ψ,1

]
− (n− 1)Rn−2Ψ,2 = −r(R)n−1 d

dR
h′

(
r′(R)

[
r(R)
R

]n−1
)
,(2.6)

1The energy E is equal to E multiplied by the volume of the unit ball in Rn.
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and the natural boundary condition (2.5) reduces to

lim
R→0+

[
h′

(
r′(R)

[
r(R)
R

]n−1
)

+
[
R

r(R)

]n−1

Ψ,1

(
r′(R),

r(R)
R

, . . . ,
r(R)
R

)]
= 0.(2.7)

The main idea in this paper is that, given Ψ and r, (2.6) can be used to define
the function h. In order to accomplish this, we will need the following hypotheses on
the energy:

(En1) for all q > 0 and t > 0

Ψ,11 (q, t, t, . . . , t) > 0;

(En2) there exists λ∗ > 0 such that for every α ≥ λn
∗

lim
t→+∞

t1−nΨ,1 (αt1−n, t, t, . . . , t) = 0;

(En3) for every L > λn
∗ there are constants β ∈ [0, n− 1) and K > 0 such that∣∣Ψ,2 (κt1−n, t, t, . . . , t)

∣∣ ≤ Ktβ

for all λ∗ < t <∞ and λn
∗ ≤ κ ≤ L;

(En4) for q 6= t define

R(q, t) :=
qΨ,1 (q, t, t, . . . , t)− tΨ,2 (q, t, t, . . . , t)

q − t
.(2.8)

Then for every µ > λ∗ we assume that there exists a Bµ > 0 such that

|R(q, t)| ≤ Bµ

for all λ∗ < t < µ and 0 < q < t.
Remark 2.1. Hypothesis (En1) is a consequence of the strong-ellipticity of the

energy Ψ. Hypotheses (En2)–(En4) are satisfied by many examples of stored ener-
gies (see [1, 16, 17]). In particular, Stuart [16, 17] requires a more stringent growth
hypothesis than (En4): 0 ≤ R(q, t) ≤ A+Btβ for 0 < q < t.

3. The construction. Let λcrit > λ0 > 0, and suppose that J ∈ C1([0,∞)) is
a strictly monotone increasing function that satisfies

J(0) = λn
0 , lim

R→+∞
J(R) = λn

crit,

∫ ∞

0

J ′(t)tn dt ≤ 1.(3.1)

Define ρ : [0,∞) → [1,∞) by

ρ(R)n := 1 + n

∫ R

0

J(t)tn−1 dt(3.2)

so that

ρ′(R)
[
ρ(R)
R

]n−1

= J(R) for 0 < R <∞.(3.3)

For future reference we note the following properties of ρ.
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Lemma 3.1. The function ρ given by (3.1) and (3.2) satisfies
(i) 0 < ρ′(R),

(ii) d
dR [ρ(R)

R ] < 0,

(iii) ρ′(R) < ρ(R)
R ,

(iv) 0 < ρ′′(R),

(v) limR→+∞
ρ(R)

R = limR→+∞ ρ′(R) = λcrit.
Remark 3.2. Properties (i)–(v) are standard properties of radial minimizers and

radial equilibrium deformations (see, e.g., [1, 10, 16, 17]). Since our proof shows that
(3.1)3 is necessary and sufficient for (iii), it is now clear that (3.1)3 is also a standard
property of such deformations. Note also that by (3.2), ρ(0) = 1.

Theorem 3.3. Let Ψ satisfy (En1)–(En4) and let ρ be given by (3.1) and (3.2),
where λ0 > λ∗. Suppose that h ∈ C2((0,∞); (0,∞)) and satisfies

h′(J(R)) =
∫ R

0

(n− 1)sn−2

ρ(s)n−1
Ψ̂2

(
ρ′(s),

ρ(s)
s

)
ds

−Rn−1Ψ̂1

(
ρ′(R),

ρ(R)
R

)[
1

ρ(R)

]n−1

(3.4)

+
∫ R

0

sn−1Ψ̂1

(
ρ′(s),

ρ(s)
s

)
d

ds

[
1

ρ(s)n−1

]
ds

for R ∈ (0,∞), where Ψ̂i(ρ′(s),
ρ(s)

s ) := Ψ,i (ρ′(s), ρ(s)
s , ρ(s)

s , . . . , ρ(s)
s ). Then ρ is a

solution of the radial equilibrium equation (2.6) on (0,∞) and satisfies the natural
boundary condition (2.7).

Remark 3.4. It follows from the proof of the above result (see (4.4)) that
h′(λn

0 ) = 0.
Finally, we use ρ to construct a family of equilibrium deformations of Bo. For

any Ro > 0 and δ > 0

uδ(x) :=
rδ(|x|)
|x|

x, rδ(R) :=
ρ(δR)
δ

(3.5)

is an orientation-preserving injective radial deformation of Bo, and, in view of (3.3),
(4.1), and [1, Lemma 4.1], J(δ|x|) is the Jacobian of uδ at any point x 6= 0. Clearly,
each uδ is a cavitating deformation that creates a new hole of radius 1/δ at the center
of the ball and satisfies the boundary condition

uδ(x) = λx, λn = λ(δ,Ro)n :=
[1 + n

∫ δRo

0
J(t)tn−1 dt]

(δRo)n
(3.6)

for x ∈ ∂Bo. Moreover, results in [1] show that each of these deformations is contained
in the Sobolev space W 1,p(Bo; Rn) for every p ∈ [1, n), while Theorem 3.3 shows that
uδ is a stationary point for the energy.

Theorem 3.5. Let W be given by (2.1) and satisfy (En1)–(En4). Let λ > λcrit >
λ0 > λ∗. Then there exists a unique δ = δ(λ) such that uδ, given by (3.1), (3.2),
(3.5), and (3.6), is a stationary point of the energy (2.2) and satisfies the boundary
condition uδ(x) = λx for x ∈ ∂Bo.

Proof. Let λ > λcrit. Then since ρ(0) = 1, it is clear from Lemma 3.1(ii) and (v)
that there exists a unique Rλ > 0 such that ρ(Rλ) = λRλ. Define δ = Rλ/Ro. Then
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by (3.5)

uδ(x) :=
ρ(δRo)
δRo

x =
ρ(Rλ)
Rλ

x = λx for |x| = Ro.

4. Proofs for the construction.
Proof of Lemma 3.1. We first note that (i) is clear from (3.2), (3.3), and the

nonnegativity of J . Next, if we divide (3.2) by Rn and use the quotient rule to
differentiate the result with respect to R, we find that[

ρ(R)
R

]n−1
d

dR

[
ρ(R)
R

]
=

(
nJ(R)Rn−1

)
Rn − nRn−1(1 + n

∫ R

0
J(t)tn−1 dt)

nR2n

=
J(R)Rn − (1 + n

∫ R

0
J(t)tn−1 dt)

Rn+1
(4.1)

=
−1 +

∫ R

0
J ′(t)tn dt

Rn+1
,

where an integration by parts has been used to deduce (4.1)3 from (4.1)2. It is now
clear from (4.1) that (3.1)3 is necessary and sufficient for (ii).

Next, if we differentiate ρ(R)/R with respect to R, we see that

d

dR

[
ρ(R)
R

]
=

1
R

[
ρ′(R)− ρ(R)

R

]
,(4.2)

and consequently (iii) is equivalent to (ii). Similarly, if we differentiate (3.3) with
respect to R, we discover that

ρ′′(R)
[
ρ(R)
R

]n−1

= J ′(R)− ρ′(R)(n− 1)
[
ρ(R)
R

]n−2
d

dR

[
ρ(R)
R

]
,(4.3)

and thus (iv) follows from (i), (ii), and the fact that J is increasing.
Finally, to obtain (v) we first note that (ii)–(iv) imply that both limits exist and

are finite. Thus, if we divide (3.2) by Rn and take the limit as R → +∞, we find,
using L’Hôpital’s rule and (3.1)2, that

lim
R→+∞

[
ρ(R)
R

]n

= lim
R→+∞

J(R) = λn
crit,

which together with (3.3) yields (v).
Proof of Theorem 3.3. Assume for the moment that s 7→ sn−2Ψ̂2(ρ′(s),

ρ(s)
s ) and

s 7→ sn−1Ψ̂1(ρ′(s),
ρ(s)

s ) are integrable on (0, R), so that the right-hand side of (3.4)
is well defined on (0,∞). Then, if we differentiate (3.4) with respect to R, it is clear
that ρ satisfies the radial equilibrium equation (2.6) on (0,∞).

In order to show that s 7→ sn−2Ψ̂2(ρ′(s),
ρ(s)

s ) is integrable on (0, R) we use (3.3),
(En3), ρ′ ≥ 0, and the fact that J(s) ∈ [λn

0 , λ
n
crit] for each s to conclude that

sn−2

∣∣∣∣Ψ̂2

(
ρ′(s),

ρ(s)
s

)∣∣∣∣ = ρ(s)n−2

[
s

ρ(s)

]n−2
∣∣∣∣∣Ψ̂2

(
J(s)

[
ρ(s)
s

]1−n

,
ρ(s)
s

)∣∣∣∣∣
≤ Kρ(s)n−2

[
ρ(s)
s

]β−n+2

≤ Kρ(R)βsn−2−β ,
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which is clearly integrable on (0, R) since β < n− 1.
In order to prove that s 7→ sn−1Ψ̂1(ρ′(s),

ρ(s)
s ) is integrable on (0, R), we will

show that

lim
s→0+

sn−1Ψ̂1

(
ρ′(s),

ρ(s)
s

)
= 0.(4.4)

Now, by (3.3),

sn−1Ψ̂1

(
ρ′(s),

ρ(s)
s

)
= ρ(s)n−1

[
s

ρ(s)

]n−1

Ψ̂1

(
J(s)

[
ρ(s)
s

]1−n

,
ρ(s)
s

)
.(4.5)

Moreover, since λn
0 ≤ J(s) ≤ λn

crit, hypothesis (En1) implies

Ψ̂1

(
λn

0 t
1−n, t

)
≤ Ψ̂1

(
J(s)t1−n, t

)
≤ Ψ̂1

(
λn

critt
1−n, t

)
, t :=

ρ(s)
s
.(4.6)

Since ρ→ 1 and t→ +∞ as s→ 0+, (4.4) now follows from (En2), (4.5), and (4.6). In
addition, the natural boundary condition (2.7) follows from (3.4), (4.4), together with
the integrability of s 7→ sn−2Ψ̂2(ρ′(s),

ρ(s)
s ) and s 7→ sn−1Ψ̂1(ρ′(s),

ρ(s)
s ) on (0, R).

Finally, we need to show that the right-hand side of (3.4) is bounded as R→∞
in order that h can be extended smoothly as a real-valued function on (λn

crit,∞). Let
R1 > 0. Then by (3.4)

h′(J(R))− h′(J(R1)) =
∫ R

R1

(n− 1)sn−2

ρ(s)n−1
Ψ̂2

(
ρ′(s),

ρ(s)
s

)
ds

−Rn−1Ψ̂1

(
ρ′(R),

ρ(R)
R

)
ρ(R)1−n

+R1
n−1Ψ̂1

(
ρ′(R1),

ρ(R1)
R1

)
ρ(R1)1−n

+
∫ R

R1

sn−1Ψ̂1

(
ρ′(s),

ρ(s)
s

)
d

ds

[
ρ(s)1−n

]
ds

(4.7)

for R ∈ (R1,∞). Now, it is clear from Lemma 3.1(v) that (4.7)2 is bounded as
R → ∞. Next, the sum of the integrals on the right-hand side of (4.7)1, (4.7)4 is
equal to

(n− 1)
∫ R

R1

s−1

[
s

ρ(s)

]n [
ρ(s)
s

Ψ̂2

(
ρ′(s),

ρ(s)
s

)
− ρ′(s)Ψ̂1

(
ρ′(s),

ρ(s)
s

)]
ds.(4.8)

However, by Lemma 3.1, λcrit <
ρ(s)

s ≤ ρ(R1)
R1

=: µ for R1 ≤ s < ∞ and hence, in
view of (En4), the absolute value of (4.8) is bounded by a constant times∫ R

R1

1
s

[
ρ(s)
s

− ρ′(s)
]
ds =

∫ R

R1

− d

ds

[
ρ(s)
s

]
ds

=
ρ(R1)
R1

− ρ(R)
R

,

which is bounded as R→∞.
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5. The energy: Uniqueness. In this section we note that, whenever the func-
tion h is convex, the cavitating radial equilibrium solution we have constructed is
the unique global minimizer of the energy among radial deformations. The following
three results can be found in Sivaloganathan [13] (see also [14]).

Proposition 5.1. Assume that

Φ̂11(q, t) > 0(5.1)

for all q > 0 and t > 0. Let rc ∈ C1([0,∞)) ∩ C2((0,∞)) be a cavitating equilibrium
solution; i.e., rc satisfies (2.4) on (0,∞), (2.5), rc(0) > 0, and r′c > 0 a.e. Suppose
that Ro > 0, and define λ = rc(Ro)/Ro. Let r ∈ Aλ,

Aλ := {r ∈W 1,1((0, Ro)) : r(Ro) = λRo, r(0) ≥ 0, r′ > 0 a.e.},(5.2)

satisfy

0 < lim sup
R→0+

[
r(R)
R

]
.(5.3)

Then

E(rc) < E(r)

unless r ≡ rc, where E is given by (2.3).
Corollary 5.2. Let λ > 0 and Ro > 0. Then, under the hypotheses of the

previous proposition, there exists at most one cavitating equilibrium solution rc ∈
C1([0,∞)) ∩ C2((0,∞)) that satisfies rc(Ro) = λRo.

Remarks. 1. The statement of Theorem 6.8 in [13] actually requires that (5.3) be
satisfied with lim sup replaced by lim inf. However, the remark after the proof of [13,
Theorem 6.9] notes that the result remains valid under this weaker hypothesis.

2. Theorems 6.8 and 6.9 in [13] also appear to require the weakened Baker–
Ericksen inequality R(q, t) ≥ 0, where R is given by (2.8). However, an examination
of the proofs in [13, 14] shows that this inequality is used only to extend a solution
of the radial equilibrium equation from (0, Ro) to (0,∞), a step not needed in our
presentation.

Proof of Corollary 5.2. Let λ > 0 and Ro > 0. If rc is any cavitating equilibrium
solution that satisfies rc(Ro) = λRo, then rc ∈ Aλ and rc satisfies (5.3). Thus, by the
previous proposition, two distinct cavitating equilibrium solutions rc1 and rc2 would
satisfy E(rc2) < E(rc1) and E(rc1) < E(rc2), which is a contradiction.

Corollary 5.3. Let λ > 0 and Ro > 0. Suppose that rc ∈ C1([0,∞)) ∩
C2((0,∞)) is a cavitating equilibrium solution that satisfies rc(Ro) = λRo. Then,
under the hypotheses of the previous proposition, E(rc) < E(rh), where rh(R) := λR.

Proof. For any λ > 0 and Ro > 0 the homogeneous deformation rh(R) := λR
satisfies rh ∈ Aλ and (5.3). The result then follows from Proposition 5.1.

In order to make use of Proposition 5.1 we will need the following additional
hypothesis on the energy:

(En5) there exist φ, ψ : (0,∞) → R and Ψ∗ ∈ C((0,∞)n; R), with φ > 0, ψ ≥ 0,
and Ψ ≥ 0, that satisfy

Ψ(ν1, ν2, . . . , νn) =
n∑

i=1

φ(νi) +
∑
i 6=j

ψ(νiνj) + Ψ∗(ν1, ν2, . . . , νn),



1468 J. SIVALOGANATHAN AND S. J. SPECTOR

where t 7→ Ψ∗(t, t, . . . , t) is bounded on (0, λ∗] and ψ ≡ 0 if n = 2.
We now use Proposition 5.1 to show that if our equilibrium solutions are su-

persolutions for the energy Ψ, then they are energy minimizers among the radial
deformations.

Theorem 5.4. Let Ψ satisfy (En1)–(En5) and let ρ be given by (3.1) and (3.2),
where λ0 > λ∗ and J ′ > 0 on [0,∞). Suppose that

d

dR

[
Rn−1Ψ̂1

(
ρ′(R),

ρ(R)
R

)]
< (n− 1)Rn−2Ψ̂2

(
ρ′(R),

ρ(R)
R

)
.(5.4)

Finally, suppose in addition that h ∈ C2((0,∞); (0,∞)) satisfies (3.4) and h′′(s) ≥ 0
for s ∈ (0, λn

0 ) ∪ [λn
crit,∞). Then the radial cavitating deformation rδ(λ) given by

Theorem 3.5 satisfies

E(rδ(λ)) < E(r)

for every r ∈ Aλ (see (5.2)).
Proof. We first show that h′′ is nonnegative on its domain of definition. Let

s ∈ (0,∞). If s /∈ [λn
0 , λ

n
crit), then h′′(s) ≥ 0, by hypothesis. If s ∈ [λn

0 , λ
n
crit), then

by (3.1) there exists an R ∈ [0,∞) such that J(R) = s. Therefore, by (3.3) and the
radial equilibrium equation (2.6),

d

dR

[
Rn−1Ψ,1

]
− (n− 1)Rn−2Ψ,2 = −ρ(R)n−1h′′ (J(R)) J ′(R).(5.5)

The desired result now follows from (5.4), (5.5), and the assumed positivity of ρ and
J ′.

Now let λ > λcrit, r ∈ Aλ, and suppose that

0 < lim sup
R→0+

[
r(R)
R

]
.(5.6)

Then, by Proposition 5.1, all we need show is that (5.1) is satisfied. If we differentiate
(2.1) twice with respect to ν1 and set ν1 = q and ν2 = ν3 = · · · = νn = t, we find that

Φ̂11(q, t) = Ψ̂11(q, t) + t2n−2h′′(qtn−1).

Consequently, in view of (En1), a sufficient condition for (5.1) is that h′′ be nonneg-
ative on its domain of definition, which has previously been shown.

Before proceeding further we note that the convexity of h, together with h′(λn
0 ) =

0 (see the remark following Theorem 3.3), implies that h is bounded below by h(λn
0 )

on (0,∞).
Next, suppose alternatively that (5.6) is not satisfied and therefore that

0 = lim
R→0+

[
r(R)
R

]
.

Then, in particular, r(0) = 0, and hence∫ Ro

0

nr′rn−1dR =
∫ Ro

0

d

dR

[
rn
]
dR = r(Ro)n = λnRn

o = n

∫ Ro

0

λnRn−1dR.(5.7)

Now, in view of the convexity of h,

h

(
r′(R)

[
r(R)
R

]n)
≥ h(λn) +

(
r′(R)

[
r(R)
R

]n

− λn

)
h′(λn),



MYRIAD RADIAL CAVITATING EQUILIBRIA 1469

and consequently, by (5.7),∫ Ro

0

h

(
r′(R)

[
r(R)
R

]n−1
)
Rn−1dR ≥

∫ Ro

0

h(λn)Rn−1dR.(5.8)

If E(r) = +∞, we are done. If instead E(r) < ∞, then by (En5) and since h is
bounded below,

R 7→ Rn−1φ

(
r(R)
R

)
∈ L1((0, Ro)),(5.9)

R 7→ Rn−1ψ

([
r(R)
R

]2)
∈ L1((0, Ro)).(5.10)

We claim that

0 = lim inf
R→0+

RnΨ̂
(
r(R)
R

,
r(R)
R

)
.(5.11)

Otherwise, RnΨ̂
( r(R)

R , r(R)
R

)
≥ K > 0 for small R, and thus

Rn−1Ψ̂
(
r(R)
R

,
r(R)
R

)
≥ K

R
.

This inequality, together with (En5), implies

nRn−1φ

(
r(R)
R

)
+

1
2
n(n− 1)Rn−1ψ

([
r(R)
R

]2)
≥ K

R
− Ψ̂∗

(
r(R)
R

,
r(R)
R

)
,

which, since r(R)/R and hence Ψ∗ are bounded, contradicts (5.9) or (5.10).
Next, Ψ,11> 0. Therefore Ψ̂(q, t) ≥ Ψ̂(t, t) + (q − t)Ψ̂,1 (t, t), and hence

Ψ̂
(
r′(R),

r(R)
R

)
≥ Ψ̂

(
r(R)
R

,
r(R)
R

)
+
(
r′(R)− r(R)

R

)
Ψ̂,1

(
r(R)
R

,
r(R)
R

)
=

1
n
R1−n d

dR

[
RnΨ̂

(
r(R)
R

,
r(R)
R

)]
,

which, when multiplied by nRn−1 and integrated over (Rk, Ro), yields∫ Ro

Rk

nΨ̂
(
r′(R),

r(R)
R

)
Rn−1dR ≥

[
Rn

o Ψ̂ (λ, λ)
]
−
[
Rn

k Ψ̂
(
r(Rk)
Rk

,
r(Rk)
Rk

)]
.(5.12)

In particular, choose a sequence Rk → 0+ as k → ∞ so that Rn
k Ψ̂
( r(Rk)

Rk
, r(Rk)

Rk

)
converges to its lim inf, which is zero by (5.11). Then, if we let k →∞ in (5.12) and
apply the dominated convergence theorem, we find that∫ Ro

0

Ψ̂
(
r′(R),

r(R)
R

)
Rn−1dR ≥

∫ Ro

0

Ψ̂ (λ, λ)Rn−1dR,

which, together with (2.1) and (5.8), yields E(r) ≥ E(rh). The desired result now
follows from Corollary 5.3.
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6. Examples.

6.1. Ogden materials. In order to illustrate the form that hypotheses (En1)–
(En5) take for a well-analyzed class of materials, we now restrict our attention to
three dimensions and consider materials whose constitutive relation is of the form

Ψ(λ1, λ2, λ3) = φ(λ1) + φ(λ2) + φ(λ3) + ψ(λ1λ2) + ψ(λ2λ3) + ψ(λ1λ3),(6.1)

where φ, ψ ∈ C2((0,∞)). (Such constitutive relations were used by Ogden [8] to
match theory with experiments.)

For such materials we make the following assumptions (cf. [1, 16, 13, 14, 9] and
especially [17, 10]):

(Og1) for all s > 0

φ′′(s) > 0, ψ′′(s) ≥ 0;

(Og2) there exist β ∈ [1, 2), γ ∈ [0, 1), and B > 0 such that for every s > 0

|φ′(s)| ≤ B
[
s−γ + sβ

]
, |ψ′(s)| ≤ B[s−γ + s(β−1)/2].

We now show that (Og1) and (Og2) imply (En1)–(En5). First, it is clear that
(En5) is satisfied with Ψ∗ ≡ 0. Next, we differentiate (6.1) with respect to λ1 and let
λ1 = q and λ2 = λ3 = t to get

Ψ̂1(q, t) = φ′(q) + 2tψ′(qt),

Ψ̂11(q, t) = φ′′(q) + 2t2ψ′′(qt).
(6.2)

Then (Og1) and (6.2)2 yield (En1). If we differentiate (6.1) with respect to λ2 and
let λ1 = q and λ2 = λ3 = t, we get

Ψ̂2(q, t) = φ′(t) + qψ′(qt) + tψ′(t2),(6.3)

and hence, when q = κt−2, we find that

Ψ̂2(κt−2, t) = φ′(t) + κt−2ψ′(κt−1) + tψ′(t2).(6.4)

In order to obtain (En3) we take the absolute value of (6.4) and use the triangle
inequality and (Og2) to conclude that

|Ψ̂2(κt−2, t)| ≤ B[(t−γ + tβ) + (κ1−γtγ−2 + κ(β+1)/2t−(β+3)/2) + (t1−2γ + tβ)],

which implies (En3). Similarly, if we take q = αt−2 in (6.2)1 and use the triangle
inequality and (Og2), we obtain

|t−2Ψ̂1(αt−2, t)| ≤ B[α−γt2(γ−1) + αβt−2(β+1) + 2α−γtγ−1 + 2α(β−1)/2t−(β+1)/2],

which approaches zero as t→∞ since γ < 1. This implies (En2).
In order to obtain (En4) we first use (6.2)1 and (6.3) to get

R(q, t) =
tφ′(t)− qφ′(q)

t− q
+
t2ψ′(t2)− qtψ′(qt)

t− q
.(6.5)

We then fix µ > λ∗ and consider two cases: 1
2λ∗ ≤ q < t < µ and 0 < q < 1

2λ∗ <
λ∗ < t < µ.
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Case I. 0 < q < 1
2λ∗ < λ∗ < t < µ. Then |t − q|−1 ≤ 2/λ∗, and hence (6.5)

together with (Og2) and the triangle inequality yield

|R(q, t)| ≤ 2B
λ∗

[t1−γ + tβ+1 + q1−γ + qβ+1 + t2(1−γ) + tβ+1 + (qt)1−γ + (qt)(β+1)/2],

which is bounded for 0 < q < t < µ since γ < 1. This implies (En4) for small q.
Case II. 1

2λ∗ ≤ q < t < µ. Then (6.5) together with the mean-value theorem
applied to the functions φ̃(s) := sφ′(s) and ψ̃(s) := sψ′(s) yield

R(q, t) = φ̃′(c∗) + tψ̃′(ĉ)(6.6)

for some c∗ ∈ (q, t) and ĉ ∈ (qt, t2). Thus, since φ and ψ are C2, the function |R| is
bounded when 1

2λ∗ ≤ q < t < µ. Therefore (En4) is also valid for larger q.

6.2. Deformations. It is easy to construct radial cavitating deformations: the
specification of a strictly monotone increasing radial Jacobian J(R) that satisfies (3.1)
suffices. The content of Theorem 3.3 is that such a deformation will satisfy the radial
equilibrium equation for every stored energy function of the form (6.1) that satisfies
(Og1) and (Og2), provided h is defined by (3.4). The difficulty is then ensuring that
this equilibrium deformation is the unique radial minimizer of the energy, i.e., that
the combination of deformation and stored energy satisfies (5.4).

One method of obtaining a family of such deformations is to perturb from a known
solution. We illustrate this idea when the initial solution is isochoric. The resulting
deformations will be nearly incompressible, as is expected in many elastomers (see,
e.g., [2] or [8]), since the resulting energy will heavily penalize even small changes in
volume. First, let’s restrict our attention to the energy

Ψ(λ1, λ2, λ3) := φ(λ1) + φ(λ2) + φ(λ3),(6.7)

where φ satisfies (Og1), (Og2) and φ′ is a convex function. (For example, φ(t) = tβ+1

with β ∈ [1, 2).) Then (5.4) reduces to

d

dR

[
R2φ′(ρ′(R))

]
< 2Rφ′

(
ρ(R)
R

)
or, equivalently,

Rφ′′(ρ′(R))ρ′′(R) < 2
[
φ′
(
ρ(R)
R

)
− φ′(ρ′(R))

]
.(6.8)

However, the mapping t 7→ φ′(t) is convex:

φ′
(
ρ(R)
R

)
≥ φ′(ρ′(R)) + φ′′(ρ′(R))

[
ρ(R)
R

− ρ′(R)
]
,

and so, in view of (6.8), a sufficient condition for (5.4) is that the function ρ satisfies

Rρ′′(R) < 2
[
ρ(R)
R

− ρ′(R)
]

(6.9)

(or, equivalently, d
dR trace(F) > 0).
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Now, let λ0 > 0, and suppose that θ : [0, 1] → [0, 1] is continuous with θ > 0 on
(0, 1] and that

θ(s) = o(s6) as s→ 0+.(6.10)

Then for each s ∈ [0, 1] define

ρ(R, s)3 := 1 + 3
∫ R

0

J(t, s)t2 dt,(6.11)

J(R, s) := λ3
0 + θ(s)(1− e−sR)(6.12)

and note that

JR(R, s) = sθ(s)e−sR, sθ(s)
∫ ∞

0

t3e−st dt =
6θ(s)
s3

,(6.13)

where the subscript R denotes the partial derivative with respect to R. (If λ0 = 1,
the deformation at s = 0 is isochoric.) By (6.13), for each s > 0, R 7→ J(R, s) is
strictly monotone increasing and satisfies (3.1)3, provided 0 < θ(s) ≤ s3/6, which is
a consequence of (6.10) for all sufficiently small s.

Next, by (4.2), (4.3), and (6.13)1,

Rρ′′(R)
[
ρ(R)
R

]2
= sθ(s)Re−sR − 2ρ′(R)

[
ρ(R)
R

] [
ρ′(R)− ρ(R)

R

]
,

which shows that (6.9) is equivalent to

sθ(s)Re−sR < 2
[
ρ(R)
R

] [
ρ(R)
R

− ρ′(R)
]2
.(6.14)

However, in view of (4.1), (4.2), and (6.13)1,

R6

[
ρ(R)
R

]4 [
ρ(R)
R

− ρ′(R)
]2

=

[
1− sθ(s)

∫ R

0

t3e−st dt

]2

,

so that (6.14) is the same as

sθ(s)R7

[
ρ(R)
R

]3
< 2esR

[
1− sθ(s)

∫ R

0

t3e−st dt

]2

.(6.15)

Finally, we note that in view of (6.10), θ(s) ≤ s3/12 for s sufficiently small, and
consequently, by (6.13)2,

sθ(s)
∫ R

0

t3e−st dt ≤ 1
2

(6.16)

for small s. In addition, et ≥ (1+t7)/7! and hence, upon multiplying (6.15) by (sR)−7

and making use of (6.16), it suffices to show

2
θ(s)
s6

[
ρ(R)
R

]3
<

1
7!
[
(sR)−7 + 1

]
(6.17)

in order to obtain (6.15). However, for small s, (6.17) is a consequence of (6.10)–(6.12),
which completes the example.
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