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It is well known from the work of Nogther that every variational symmetry of an
integral functional gives rise to a corresponding conservation law. In this paper, we
prove that each such conservation law arises divectly as the Eunler-Lagrange equation
for the functional on taking suitable variations around a minimizer.

1. Introduction

Classically, since the pioncering work of Noether [9], conservation laws associated
to stationary points of an integral functional have been obtained npon writing the
invariance of that functional under a suitable one-parameter group of transforma-
tions and combining the result with the Euler-Lagrange equations that express
stationarity (see, for example, [10]). Such an approach implicitly assumes that the
stationary points of the functional ave smooth enough for all ¢hain rules to be licit;
it also presupposes that the Euler-Lagrange equations are indeed satisfied.

More recently, Morrey (see, for example, [8]) introduced the notion of quasicon-
vexity, which was later developed by Ball [1] to obtain a variational approach to
static hyperelasticity. A difficulty in that variational approach is the current inabil-
ity to prove that minimizers of the potential energy satisfy the associated Euler-
Lagrange equations'. A major difficulty is that the usually adopted restriction that
kinematically admissible displacement fields u should satisfy

detVu >0 a.e

prohibits the usual smooth variations wy +t¢, { € R, ¢ € C3(82), around a mini-
mizer wg € WHH{02).

In spite of that obstacle, Ball showed in (3] that conservation of the energy—
momentum tensor-—a seminal conservation law associated to the homogeneous
character of the energy density-—could be obtained for minimizers of the poten-
tial energy, even though the Euler-Lagrange equations might not be satisfied. Ball

partial regularity results for quasiconvex integrands have been obtained by Evans [T}, but
under hypetheses that are incompatible with the usual growth reguirement {1.3) in nonlinear
elasticity.
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obtained this result by using ‘inner’ variations around wug, that is, variations of the
form ug(z + (), t € R, ¢ € CL{($2).

In this short paper, we propose to generalize the above quoted result and to show
that a suitable cholce of more general one-parameter groups of transformations will
directly generate a host of conservation laws {in weak form} for minimizers of the
energy, the Kuler-Lagrange equations not withstanding.

In §2, we recall the classical Noetherian approacl: to conservation laws. In §3,
we demnonstrate how more general one-parameter groups of transformations perimnit
us to circumveni the Euler-Lagrange equations and directly derive conservation
laws for energy minimizers. In &4, we apply this approach to the specific setting
of hyperelasticity and recover, in particular, Ball’s results. The final section is very
short and points to & few pogsible extensions of our method.,

Finally, we should stress a strong bias in favour of conciseness. We thus chose
not to spell out all smoothness and/or growth assumptions on the energy densities,
since these may vary with the specific kind of transformations under consideration.
The reader is invited to consult the relevant references for a description of the
precise assumptions on those densities, given a particular invariance.

For further background and references on conservation laws and applications, we
refer (o the comprehensive text of Olver [10]. In this paper, we adopt the notation
used in {10] and will also refer to key calculations contained therein.

2. Variational symmetries

Let £2 C B™ he a domain and consider the integral functional

E{uy ') = ‘/;21 Lz, u(x), Vulx)) dz, (2.1)

where L : 2xR" xR™™ — R is a given Carathéodory integrand, {2/ is an arbitrary
open subdomain of 2 and F is defined on maps w : {2’ — R"™, which are (at least)
in WhHi(2' R,

Jonsider a smooth one-parameter group of transformations of independent and
dependent variables given by

(xau} -7 (537'&') - (Et(mau):@f:(m:u)): (2'2)

where £ € R is the group parameter and ¢ = ( corresponds to the identity trans-
formation (so that Zp{m,w) = = and Pplw,w) = u). We will sometimes write
(Ey{w, u), P (a,u) = (Z(z,u, 1), Ple,u, t)) to emphasize the role of the parame-
ter ¢, in which case it will be assumed that =, ¢ are smooth with respect to all
their arguments,

An important concept when working with such groups of transformations is the
notion of the infiniiesimaol generator of the group, which is the differential operator
defined hy?

. ¢) ; a
P = ga(iﬂ, u)a—‘q‘:—g + (f)z(m,u)—%{, (23)

2Iiere and in the rest of this paper we use the convention of summing over repeated indices.
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where

] 1
E(m,u) = i:’:(m,u, £) and  {x,u) = é{@(m,u,t)

dt

£==0 (=0

(see {10] for further details).

REMARK 2.1. Hence, in particular, given a real-valued function F{z, u}, we obtain
d

;EF(Et(m, u), Py (@, u))

=0

Given any particular subdomain ' C 2, and any map u» : ' — R, the
change of variables given by {2.2) induces a new transformed function (&),
G 0 - R, where 2= (5, o (id xu)){(£2), which is obtained as follows. First
note that & = & (x, w(x)) = (5 o (id xu))(x). By our assumptions on the group
of transformations, it follows, upon application of the implicit function theorem,
that this relation can be inverted for small ¢ to yield z = (&, o (id x))*(&). The
new transformed function 4{&) depends on ¢ and is given by

(@) = [P, o (id xu)] o[£, 0 (id xu)] ™ {&). (2.4)
Through the above construction, the group of transformations (2.2) unaturally
extends to a corresponding action on the first derivatives Vyu (which are mapped
to Vgit). It can be shown that this extended action

(ﬂ’}, u, vmu) — (i> ﬁ': vzf:ﬂ')

has infinitesimal generator vl (known as the first prolongation of v), given hy

N ea 15, ; & e a ,
o) =¢ (m,u)a%;; + (,b*(a:,u)é:{:; + 7, (2, u, Vu)w, (2.5)
where
d o (:i:) 4, St 9

o (@, Vi) = 3 =

- i 8 .
e ulz))| - €, U 2.6
= gl e e - g e @) 9
(see [10, p. 114]).

Following standard terminology (see, for example, {10, definition 4.10}), we say
that (2.2) is a variational symmetry of (2.1} if, for any subdomain 2 ¢ £2 and any
map w2 — R™, we have

12

/_ Lz, u(e), Vula)) de = / (&, 4(®), V(@) dé.
o :

It then follows that if (2.2} is a variational symmetry, then

d !

— =10 2.7
div 2 ( )
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for any map w1 £ — R™. I follows from [10, theorem 4.12] that

o
S Liw, L Ven(d))
dt £

1=0

where
, Y
Div &z, w(z)) = ()%‘?({fj(m,u(m)))

From (2.7) and the arbitrariness of 2/, it now follows that the infegrand on the
right-hand side must vanish identically, and hence, by (2.5}, that

J ; o
0= &, u)) - (/)‘(w,u)% -

Using (2.6), we then obtain that

el 5+ 50 @) g+ 6 (e ) aaf =0

ut o Jan

for any map w : {2 - R™, where

5 Ouf OL
Mz, u, Vu) = [L(m w, Va)d? — Mm(m,u,vm}

are the components of the m x m tensor

C}IJ
oF

Mz, w,Vu) = [];(cc;u,v, w)l — {Vu)! (m,u,Vu)J,

which is known as the energy-momenium tensor.

Riemark 2.2, Note that the condition that (2.2) be a variational symmetry is
expressible as a pointwise condition in the following way. Since (2.9) holds for
all maps w : §2 — R®, given any triple (@, u, F) € (2 % B™ x R we can find a
map wg(-) such that (z, up{z), Vugle)) = (&, u, F). It then follows that

. P a 27,
£, u)va—ln" + e, u) pis mi (B BF ]b(a:,u,F)
o (9 Jad ald Y
# | ) + o | Lo, F) =

pointwise for any choice of (&, u, F) € 2 x R™ < B,
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REMARK 2.3. Assume that w @ {2 — R* satisfies the Fuler-Lagrange equations
for {2.1), that is,
a [ dL ar
- v » Vaulax 2.11
e (0l Ve ) = (@ (@), Vu(a) (211)

for i = 1,2,...,n Further assume that L and w are smooth encugh. Then an
application of Lhe (,ha.m rule yields

; QL
Ot o), Vul@)) = o (e, ule), V() (2.12)
for F=1,2,...,m.

It now I,ollows from (2.11), (2.12) and {2.10) that if (2.2} is a variational symmetry
of {2.1), then w satisfies the consexvation law

a |, oL ; 3 o
G [o)"(a‘ w) B (@, u, V) + &7 (m, ) ME (0, u, Vu)} =10 {2.13)
for i = 1,2,...,n. For later use, we note that the weak form of the above conser-

vation law is
ey _ .
/ i(m) [{;’f(m,u)% 4+ &Pz, u)MP (2, u, ‘G’u)} da =10 (2.14)

for any 8 € CH{(£2).

Flaborating on the last remark, our goal in the next section is to show that if (2.2}
is a variational symmetry of I given by (2.1), and if further ug is a minimizer for
E{-; 82y —for any kind of appropriate boundary conditions and under any kind of
constraint, provided these are preserved under composition of wp by a small and
smooth p(‘]imlmhon of the identity-—then the conservation law {2.14) still helds
true.

3. Variational symmetry and minimizers

Suppose that ug is a minimizer of the functional F(-;2) and let 0 € Ce).
Let (2.2) be a variational symmetry of /2 and define the one-parameter family of
variations by replacing the parameter ¢ in the definition of the group by the function
t8{x). Thus we set

(&, 7)) = (5@, w), b, w) = (S, u, t6{x), P(@, u, 10{z))).

Note that, by (2.3), the infinitesimal generator corresponding to the above group
of transiormations is given by

i r

St

b = £, u)~)—(—)—— 4 @M, w)

where

g(mﬂu) = 0(z){z, u), (/) @, ) = 0(x)d(x, u) (3.1)
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and (by (2.5) and (2.6}) its first prolongation is given by

I 5“(m,u)&% + &, u)cw)s;)—— + & (@, Vu)};w} , (3.2)
where
Is ~‘)', -~
# (2, u, V) = fld?ﬂ(”?)
dt 9% |0
gut 9

a ; , N
= ﬁ[o(m)d) (acu(a:))] - W@‘[g(m)f;(m)u(m))} (3.‘;)

In analogy with {2.4), we define the corresponding family of variations around
g by
ﬂf(i‘) = {(f) [+ (l(i XUy X i())} © EE s (ld XUy X f())}-"](iﬁ)
Note that, since @ € CH{), & = x if @ € 82 and thus 2 =  for |t| small. Purther,
(&) = ulx), @ € d12, so that &(&) is an admissible test function for B( ;2. In
other words, since wp is a minimizer for (- 2), E(@a; 2) 2 Blug; £2), from which
it easily follows that (2.7) holds for 2 = £2, and then, using {2.8), that

d
0= -/ L(&o, g, Vaig(2))

di =0

= / HU L, ug, Veue(a)) + Lz, uo, Vauo{z)) Divé(x, ug(x)) dz.  (3.4)
7]
Next, using (2.10), (3.2), {3.1) and (3.3), it follows that (3.4) is equal to

s & 3] &
| |8+ o + o, T |

+ L{x, ug, Vyug()) Div £z, ug(x)) da

a e,
(%3 \3 . L
/ﬁ[ € dae b9 (%ﬁ]

+ [dan (' (, wo())0(x)) ~ %%(fﬁ(%uo(ﬁ)) ())

J

(]I«"'z
+ L Div[g€]

' [U(J)L(a:: U, vuﬂ(a})) + L(Cﬂ Up, ‘Vug(:c)) Div f({L‘, u()(w)}}g(m)
§2

v

; oL 20
+- [Qf)’(w-,uo) BF (@, ug, Vug) + £° (0, uo) MY (, uo, V’U«o)} 5(55(33)(“’
= ().

Using (2.9), it now follows that the first term in square brackets vanishes identically
(since {2.2) is a variational symmetry}, and hence wy satisfies (2.14), which is the
weak form of the conservation law (2.13).

We have thus recovered (2.14) for any variational symmetry, provided that g is
a minimizer for E(-;$2). In the next section, we apply this to the specific setting
of hyperelasticity and recover known resuits in a rather straightforward manner.
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4, Hyperelasticity and conservation laws

In nonlinear elasticity, m = n = 2 or 3 and the integral functional
E(w) = [ L(w, Vu(z)) de (4.1)
Ja

is the energy stored by a deformation w @ {2 — R™ of an elastic body occupying
the region £2 in its reference configuration. The integrand L : 2 x MP™™ — R™ is
known as the stored-energy function of the material (where MP™" denotes the set
of real n x m matrices with positive determinant).

Typically, deformations are required to satisfy the local invertibility condition

det Vu(z) >0 ae., (4.2}
which is usually incorporated variationally by requiring that
L{x,F) -+ co as detF — (. (4.3)

Assumption (4.2) prevents local interpenetration of matter. (If w is C b $his result
follows directly from the inverse function theorem, see alse [5]. If » only lies in &
Sobolev space, then results on the invertibility properties of w are contained, for
example, in [2,6,12].)

If the stored-energy function is explicitly independent of @, so that L = L{I),
then the material is said to be homogeneous.

Frame indifference of the stored energy requires that

LIQF) = L{F)

for all F € MP™ and all Q@ € SO(n) (the n x n special orthogonal matrices,
j.e. orthogonal matrices with delerminant -+1). If, in addition, the material is
isotropic, then

for all /€ MP™™ and all Q € SO(n} (see [5] for further background on nonlinear
elasticity}. In the context of nonlinear elasticity, the structure and properties moen-
tioned above give rise to the following variational symmetries: homogeneity of the
material yields

{m,u) — (2 -+ic,u); (4.4)
translational invariance yields

(2, u) — (2, v+ tc); (4.5)
rotational invariance of the energy yields

(2, u) = (@, Q{t)u);
and isotropy of the material yields

(z,u) = (Q{1)z,u),
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where ¢ € R™ is a constant vector and € : (—46,d) — SO(n), § > 0, satisfies
Q(0) = I. Fach of the above variational symmetries immediately gives rise to
corresponding conservation laws via the formula (2.13) {see [10, pp. 281--283)).

Of notable interest is the conservation law

d u Out oL , e
e - | L{Vup(2))d, ~ B OFE (Vuglz)| =0, 8=1,2,...,n, (4.6)

which we obtain here from the use of the family of symmetries given by (4.4) and
upon application of (2.13). This conservation law was derived by Ball in [3] using
dnner’ variations of the form we(x + t@(x)) (with ¢ € CH{2) and £ € R to palli-
ate the difficulty encountered in using usual variations of the form wug(x) -+ fp{x)
because these may viclate {4.2) for arbitrarily small £ 5 0, even though wg satis-
fies (4.2)).

Ball also considered ‘outer’ variations of the form

ug(w) + tp(ue(®)), ¢ € Cgluo{2)),

from which he derived the weak form of the Canchy equilibrium equations satisfied
by g, namely,

(Div, T); = )J (T3] = 0 (4.7)

i we(f2), where

Ty} =

is called the Cauchy stress tensor and = = ug ' (y). In the context of this paper
{and the weak form of the conservation laws (2.14)), this same result obtained in [3]
follows from the use of the family of symmetries (4.5) together with test functions
O(x) = 0{ug(z)), where 0 € Ci{up{{2)) (see [3,4] for further details).

0 L

(Vu()( N[Vue(x)] " (det Vaug(z)) !

REMARK 4.1, As a further example, we now suppose that L{F) is homogeneous of
degree p, so that LOF) = AP L{F) for all F € M7 for any A > 0. Then

() = (1 + O, (1+ 0 = (&,4)

is a further variational symmetry of (4.1).
Application of (2.13) immediately yields the following conservation law:
- OL

f-} -
) — ]\[Q(Vuu(r)) w-y;ww 3TE (Vg (x))ul(z)| =0, F=1,2,...,n

(see [10, example 4.32]). Note, however, that the requirement of p-homogeneity of
L is incompatible with condition (4.3), which must therefore be dropped if such a
sehting is adopted. The next examplie iHustrates such a situation and demonstrates
that minimizers may satisly the weak form of some conservation laws but not others.

Exanprne 4.2, Let A ¢ R? be the 2D annulus A = {@ ¢ R? :
0 < a < b Consider minimizing

E(u):/AEVu{gd:z: (4.8)

< b}, where
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on W12(A4) subject to the boundary condition
wlga = id, (4.9)
The Euler-Lagrange equations for {4.8) and (4.9) are formally given by

A= 0,

’u,l,'}/, = id

(4.10)

and, by the strict convexity of (4.8}, the unique global minimizer is given by the
homogeneous map
u” = .
There are clearly no other weak solutions for this Dirichlet problem in W L2(A).
However, the resullts of [11] show that, for each ¥V € N, there exists a minimizer
u” of E on
Av = {uw e W' A)  det Vu 2 0 ae.,
w: A= A w=xon A, usatisfies (Hn)},
where (Hy) is a homotopy condition that the map w twists the annulus through
2N (see [11, definition 2.8]).

The arguments of [3] apply to show rigorously that each u” must satisly the
weak form of the corresponding energy--momentuin equations (4.6), namely,

Div M = Div{[Va[*] — 2Vu*Vu] = 0,

N

which are given in component form by
a . 9] ooy OUR OUF
’ GaP Dxe

oMy =
o Oa®

Note that ™ cannot satisfy the weak form of the Euler-Lagrange equations (4.10)
because of the unigqueness result ailluded to above,

It is interesting to note that the integrand in (4.8) is homogenecus of degree two
and so, by remark 4.1 {(p = n = 2), each u? also satisfies the weak form of the
conservation law

We anticipate that, in this example, each w® wiil be degenerate in the sense that
dot VN = 0 on a set of non-zero measure. In this case, the corresponding Cauchy
stress tensor will be undefined and so the weak form of the Cauchy equations {4.7)
will not hold.

More precisely, using polar coordinates, we write

wux) = u(r,0), relab], 0¢el02x).

Then, lor a.e, ¢ & [0,2%),
w{r, 0}
utr, )]
is a clased continuous curve in the plane with a well-defined winding number around the origin,
denoted wind(vg). The map w is said to satisly (Hy), provided that wind(yp) = N for a.e.
g € [0,2x).

Yolr) = v € fab],
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5. Concluding remarks
For sufficiently regular deformations w4 : {2 - R™, it is possible to change variables
to rewrite the energy fanctional (4.1) as an integral over the deformed configuration
u(f2),
E{u) = / L{Vu(x))de = f L(V2(u)) du,
n {f2)

where L(F) = det FL(F~') and 2 : w(2) — R" is the inverse of w : 2 — B?
(see, for example, [1]). In the context of this paper, it is interesting to note that the
energy momentum tensor for L is equal to the Cauchy stress tensor for L and vice
versa, i.e.

oF

ol FT

G L e PN — (BT
OF det F [I(F M= (F

(P1)| = M(r)

and . ,
~ - L 0L oL (F-yr
M(F) = |L(F) - FT 22 (F)| = (F ) 22—,
(F) (F) ()F( )u ()F( )det(F*l)
Hence these two tensors are, in a precise sense, dual to one another.

Finally, we note that in this paper we have only considered variational point
symmetries of the integral functional (2.1} and the corresponding conservation
laws (2.13). However, Noether’s theorem also applies to more general symime-
tries, known as divergence symmetries, for which the infinitesimal invariance crite-
rion (2.10) is replaced by the requirement that

; oL 9, oL
Pl u@)) o + 5o (@@ ul@)

+& f;)"*’]:‘ " ((92&- £ (a, u(a:))) MP = Div B,
where B is a vector function of @, u and the derivatives of u (see [10, p. 283]). The
only modification thal arises in our initial derivation of the conservation law (2.18)
is the inclusion of a term involving B. The modification to our derivation of the
weak form of this {more general) conservation law as a necessary condition for a
minimizer is straight forward and we leave this as an exercise for the interested
reacer. For further details of the general version of Noether’s theorem we refer
to [10].
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