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i, Introduction

In this paper we study the stability of a class of singular radial solutions to the
equilibrium equations of nonlinear elasticity, in which a hole forms at the centre of a
ball of isotropic material held in a state of tension under prescribed boundary displace-
ments. The existence of such cavitating solutions has been shown by Ball[1], Stuart [11)
and Sivaloganathan[10}, Our methods involve elements of the field theory of the
caleulus of variations and provide & new unified interpretation of the phenomenon of
cavitation,

For the displacement boundary-value problem for a ball of elastic material, it is
known that (under suitable assumptions on the stored energy function) there exists
a critical boundary displacement at which the homogeneous deformation loses stability
and a singular stable solution - corresponding to a deformation with a cavity - bifur-
cates off (see Ball[1], Sivaloganathan [10]}). However, the methods used to obtain these
results rely on variational techniques. Stuart[11] proves the existence of such singular
equilibria using a shooting argument but is able to conclude little as to their stability.
Our methods hold under mild hypotheses on the stored energy function (sce Section 5)
and apply to the cases he considers. In particular, they apply to situations in which
the growth of the stored energy function is insufficient to guarantee the compactness
of minimizing sequences for the total energy, and where consequently the existence of
equilibrium soluations must be proved using methods other than variational ones.

The invariance of the equilibrium equations under rescaling leads to a natural choice
for a feld of extremals. More specifically, any singular solution may be extended to an
infinite domain as a solution of the equilibrium equation (Proposition 5-3). We con-
struct a field by extending the set of all rescalings of such a solution using homogeneous
deformations. This construction is central to the arguments of this paper and is shown
in Ifigure 1. Then by applying a modified form of a sufficiency theorem due originally to
Welerstrass {see Scction 4) we are able to show that, for boundary displacements
greaber than some critical value, the cavitating deformations are unique and globally
stable in the class of radial deformations. For boundary displacements less than or
equal to this eritical value, a homogeneous deformation is the unigue global minimizer
(Theorem 6-10).

As noted in Ball{1], the homogencous deformations are isolated from the cavitating
ones in the space of smooth functions and thus the bifurcation is not obtainable using
standard bifurcation techniques. Our field theory approach has the advantage over
previous ones of treating both the bifurcating singular and trivial homogeneous
solutions within the same framework.
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In this paper we do not consider surface energy effects. However, experimental work
on the internal rupture of rubber suggests that this has little effect on the initiation of
fracture through cavitation. For further details see Ball [1] and the references therein.

2. Notation
We denote the set of all real 3 x 3 matrices by M%%% and we write
MY = (F e M33; det F > 0},
SO(3) = {Fe M3, det F = 1}.
The Sobolev space Wh1(g,b) is the Banach space of equivalence classes of Lebesgue

measurable functions whose first derivative exists in the sense of distributions and lies
in LYa, b). We equip WV (a, b) with the norm |} I, 1 where

v b
fledly =f lu| dac +f [u'| .

3. T'he stored energy function and radial deformations
We shall consider deformations of a homogeneous ball of elastic material which in
its reference configuration oceupies the region
B = {Xecl? [X]| < 1}. (3:1)
A deformation of the ball is a funetion x: B - 113 under which a particle with position

vector X moves 0 a point with position vector x(X). Heneeforth we will be concerned
with radial deformations in which case x may be expressed in the form

r{R)
X(K) = e X, (3:2)
where B = |X|.
In the displacement boundary-value problem the values of ¥ are prescribed on the
boundary of B, so that
*(X)=AX for XedB. (3-3)
If W: MY -> R* is the stored energy function of the material then the total energy I
assoclated with the deformation x is given by

Ex) = fB W(Vx(X))dX, (3-4)

whenever X satisfies the local invertibility condition
det (Vx(X)) » 0 for XeB. (3-5)

The equilibrium equations of nonlinear elasticity under zero body force are the Euler-
Lagrange equations for the functional I, namely
a (oW ,
é—ﬁ(—éﬁ (VX(X))) =0 ({==1,273), (3-6)
We assume that W is frame-indifferent, so that

W(QF) = W(F) forall FeM¥S, QeS0(3) (3-7)
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and we suppose further that W is isotropic, so that it satisfies the additional condition
W(FQ) = W(F) forall FeM¥3, @QeSO(3). (3-8)
It is well known that (3-7) and (3-8) hold if and only if there exists & symmetric function
®: RS, — R satisfying
W(F) = ®{vy,v,,v;) forall FeMP®, (3:9)
where R, = {(c), 05, 05) R3¢, > 0 1=1,2,3}

and the v, are the eigenvalues of (F7F)3, known as the principal stretches. (For a proof
asee Truesdell and Noll[12].)

In the case of radial deformations

vy =t (R), vy=v5= ﬂ——?, (3-10)

and by (3-4) and (3-9) the corresponding energy then takes the form

Bx) = an1() = g [ 1 (i, N, M0 a. (311)

It is shown in Ball{1] that the study of weak solutions to (3-6) of the form (3-2) is
equivalent to stadying solutions 7 on (0, 1] of the radial equilibrium equation

d oy 1) {E) oy T (A
2 | re AL IRASLE S ) T :
dR[R o, (r (®), " )] 2k, (v, "2, 1, (312)
where @ ; denotes differentiation of ¢ with respect to its 4th axgument and ¢ satisfies
(i) (1) = A > 0, (3-13)
(i} #(R)> 0 for Re(0, 1], (3-14)
def
(i) if (0} = Limr{B) > 0 then Lim7'((R)) =0, (3-15)
-0 R0
. oy e B AR oy TUE) (8 ,
where TR = (m) D, (7 (.B),M—R—-,—E—) (3-16)

is the radial component of the Cauchy stress. Notice that {3:12) is the Euler-Lagrange
equation for the functional I given by (3-11) and that the homogeneous deformation

r(R) = AR (3-17)

is always a solution of (3-12)-(8-15) (this follows from the symmetry of ®). Condition
(i} represents the boundary condition (3:3) and (ii) corresponds to the requirement of
local invertibility (3-5). It follows from (3-2) that if #(0) > 0 then the deformed ball
contains a cavity and (iii) is the natural boundary condition that the cavity is stress-
free. We say that re 02((0, 1]) is & cawlating equilibrium solution if it is a solution of
(3-12)~(3-15) satisfying #(0) > 0.
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4. Elements of the field theory
In this section we present elements of the classical Weierstrass theory of the Caleulus
of Variations. For ease of presentation we restrict attention to conditions under which
solutiens of the Kuler~Lagrange equation for

20)= [ f@ vty @) e (@)
namely solutions of
%(ﬁa(ma y@),y' (%)) = fale, y(z) y' (@) (4-2)
are global minimizers of % on the set of admissible functions
=4 :f{ye WL 1(0,1); 9(0) 2 o, y(1) = B}, (4:3)

where f is & positive C? function, f; denotes differentiation of f with respect to its sth
argument, and & > 0, £ > 0 are constants. (For a statement of the general theory and
related results we refer to Cesari[4], Gelfand and Fomin{5], Morrey[8] and the
references therein),

Definition 4-1, The Weiersirass excess function & R* > R corresponding to the integral
(4-1) is given by

det
ela,y 2 q) =@y 0 ~F @ y,p0) +@-0f oy ) (4-4)
It is well known that if ¢, & C¥{[0, 1]) is a strong local minimum of % on & then
Ela, o) yol),g) 2 0 forall geR and xe(0,1) (4:5)

In higher dimensions the analogous conditions are quasiconvexity and the Legendre-
Hadamard condition (see Giaquinta[6], Ball and Marsden[2}) which imply (4-5) in
the case of dimension one.

Definition 4-2. If D < R is connected we say that y € O3 D) is an extremal of & on D
if y is a solution of (4-2) on D,

Definition 4-3. If § < R? is an open simply connected region, we say that the one-
parameter family of functions {y(-,d); Se A}, y(-,d}: R > R with A © R congtitutes a
Jield of extremals F of & over § if

(i} foreach (#,b)¢ S there exists a unique & A such that y{a, 8) = b,

(i} for each deA y(+, ) e O*(Dy) is a solution of (4-2) on I, where

Dy o {weR; (v, y(x, 8)) e 8},

Definition 4-4. We define the slope function P: 8§ - R corresponding to the field of

extremals & by

Pla,b) = wyle sy for (ab)es,

=g
where §,c A is the unique element satisfying y{x, 8,) = b. (i.e. P(e,b) is the slope at
(a,b) of the unigue extremal of the field passing through that point). For the purposes
of this section we require P e C1(8).

Definition 4-5. We define the Hilbert integral £ relative to ¥ and the field & by
1
FH(z) = fo Fl, (e, Pl 2(@)) + (2'(2) — Pz, 2)) [ 32, 2(2), P, z())) dx (4-6)

for zes, where P is as in Definition 4-4.
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Definition 4-6. For each yeC‘([O, 1]) the graph of y, Gr(y), is given by
y) = {(z,y(a); ze[0, 1]).
Definition 47, We say that y, is embedded in the field of extremals & over Sif
(i) Gr(go) < 5,
(i) yolx) = y(z,8) for ze[0,1], some JeA,
The following result is well known (see Cesari[4] for a proof).
ProposITION 4-8. Let % be a field of extremals of & over a region 8§ < R which 1s open
and simply connected. Then there exists a function #7%: R® - R with the property that
(1) &% (x,z(x), Plw, 2(x))) e WH(0, 1),
and
(i) LH(2) = H™(w, o), Plz, 2(x))) |55,
where (i) and (ii) hold for all ze WH1(0, 1} with Gr(z) = §
Using the proposition we ean prove that next result which is a modified version of a
theorem found in Cesari[4}, p. 73.
TuroREM 49, Suppose that the extremal iy € O¥([0, 1]) with y, €57 is embedded in o field
of extremals F over S {(an open simply connected subset of R®). Let

E(x,y; Pla,y),q) > 0 forall (x,y)e8, oll geR with ¢+ Pix,y), (46)
where P is the slope function corresponding to & . Then

L(yg) < Lly)
for all yes, y %= y, satisfying Griy) < S and such that
A0, y(0), (0, y(0)) = S7(0, 4,0}, 5o(0)). (4-7)
Proof. It follows from (4-4) and (4-6) that
Lly) > LHy) = AF(w, y(x), Ple, yle) |z
= A, yo(@), Yol @) [E28 = L¥ o) = £ (¥a),

whenever y e, y % y, satisfies Griy) S and (4:7). The last equality follows from the
definition of #* and the assumption that y, is embedded in #.

Remark 410, Notice that this version of theorem 4-9 allows the competing functions
yesd to satisfy y(0) > a provided that condition (4-7) is satisfied.

5. Constitulive assumptions and properties of radial equilibria
Tor the remainder of this paper we make the following assumptions on the material
response. We assume that @ eC¥R5,) and that @,(1,1,1)=10 s0 that the un-
deformed configuration is a natural state. We suppose farther that
(I) @ 14{v;,v,,v5) > O (the tension-extension inequality),
Koy - Ru
(1) (”*q)ﬂ(”l’”z’”a) EARLEUAE ”3)) >0 Q%)%

v Yy
(these are the weakened Bafker~Ericksen inequalities),

(IT1) for each ae(0,c0) there exist ¥,ve(0,00) such that (a) @ ,(%,a,a) > 0 and
(6) P ,(v,a,a) < 0.

For examples of stored energy functions and their correlation withexperimental dats,
we refer to Ogden[9] and the references therein.
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We now examine the implications of our assumptions on the properties of solutions
of (3-12).
Proposrrron 51, Let reC?({0,1]) be o solution of (3:12) satisfying (3-14). If
det
r{Hy) /Ry = v'(Ry) = A, for some Bye (0, 1], A€ (0,00}, then 1(B) = A R for Re(0, 1),
Proof. Bguation (3-12) is of the form »” = f (R, r, ") where fis CL. Standard results for
ordinary differential equations then imply that the solution #(R) to the initial value
problem with data »(By) = ARy, v'(By) = Ag, is unique. Hence r(B) = A R,
Cororrany 5-2. If re C2{0, 1]} is a solution of (8-12)-(3-15) with

det
r{0) = Limr(R) > 0
B0

(i.e. o cavitating equilibrium solution), then »(R)/ R is o monotone function. Moreover
(i) ﬂ—(ﬂ)) = l(ﬁr"(.R)—-ii-(ﬁ—)) Jor Re(0,1]
di\ R R R T
(&)

(i) 7'(R) <%= for Re(0,1]

Proof. Statement (1) is immediate. From Proposition 51 and (i), #(E)/Ris a monotone
function. (i) then folows since r(&)/R -»> 00 as B — 0 from the assumption that
r(0) > 0.

Prorosrrron 83, Let reC3((0,11) be o cavitating equiltbrium solution, Then r 48
extendable to & C*(0, c0)) as a solution of (3-12) that satisfles

{i) f,,%%m) >r' (B} >0 for Re(0,00),

(ii) %nn ?.(}};) = Em P {R) = A, forsome A,efl, ).

The proof of this result is analogous 1o that of Sivaloganathan[10], proposition 1-6,
and will be omitted.

The following conservation law which is easily verifiable will play an important role
in our analysis.

Prorosirion 5-4. If re C?((0, 1]) 45 a solution of (3:12) satisfying (3-14) then

d 3 . rr r / / L — ’ ror .
Llw(o(r a0 (o) oslrn )] - omo(rn D)

Jor Be(0,1].
Asnoted in Ball[1], (56-1) is the radial version of & general conservation law for finite
clastostatics (see concluding remarks). For future reference we introduce the related

notation
wp r B DA B (fii .
H(R,R,r)-3 q)T’R’R-i_R ¥ (D'IT’R’R . {5-2)

Prorosirior 5-5. Let re C%(0, 1}) be a cavitating equilibrium solution. Then

TR L A
(1) %;T(}H ('R’R’?) 0,

() Liry = H*(1,7(1),2'(1)),
in particular any cavitating equilibrium solution has finite energy. The proof of this
proposition follows the lines of Sivaloganathan[10], proposition 1-13, and will be
omitted,
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Our next proposition concerns the invertibility of the relation v = »(R)/R.

Prorosiriow 56, If r e C3({0, 00)) is g cavitating equilibrium solution then there exists
g C3{(A,, 00)) satisfying
) r(R)
6) o(“F) =& for Re(0,00),
(it) Limg{v) = 0,

V=0
(i) Lim g{v) = a0,
VA,
where A, 1s as given in Proposition 5-3.

Proof. This is an easy consequence of Propositions -2, 5-3 and the inverse function
theorem.

Cororvary 5-7. Let e C%(0, 1]) be a cavitating equilibrium solution. Then
Lim H*{g(v),v,7"{g(v))) = 0,
Y00

where g is as given 1n Proposition 5-6.

Progf. This follows from Proposition 56 and Proposition 5-5 (i).

8. Interpretation of cavitution using the field theory
6.1, Construction of o field

We now combine the ideas and results of Sections 4 and 5 to study the stability of
solutions to the radial equilibrium equation (3:12) on the set of admissible deformations

Ay = {re WHY0,1); 7(1) = A,r > Oa.e., 7(0) 2 0} {6-1)

We agsume throughout this section the existence of at least one cavitating equilibrium.
solution & C?{(0, 1]), which by Proposition 5-3 may be extended to »,& C*{0,00)) as a
solution of (3:12) with
7o(B)
R

A, a8 R (6:2)

for some A, {1, co}. (In particular we make no assumption on the unigueness of 7.}

Prorvosirion 6:1. Let

det
y(R,8) = dr, (?) for Re(0,00) and d&e(0,00). (6-3)
def
Then F, = {y(-,4); de (0, )} (6+4)
is a field of extremals of I over D, , where
Dy, = {(B,7)eRY r > AR,7 > 0O, R > 0} (6+5)

and I is given by (3-11).

Proof. The set %, consists of extremals because of the invariance of (3-12) under the
scaling (r, R)-> {(dr, dR) for any d € (0, o). By Definition 4-3 it is now sufficiens to show
that through any point of I, there passes only one element of %, Let (R, ro)€ D) ;
by (6-2), (6-8) and as r(R)/R - o0 as B -> 0, it follows that

YRy, 8y ARy as 80
and Y8y, 8) >0 as &> c0.
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Hence there exists d, & (0, co) such that y(B,, 4,) = 7,; so the extremals coverD, . The
uniqueness of §; is a consequence of Corollary 5:2.

Prorosirion 6-2. Let I Dy~ R be defined by

2Ry =130 (%)} s Rorgen,, (©6)
0

where g, s the function of Proposition 56 corresponding tor,. Then P, s the slope function
corresponding to the fleld of extremals F, given by (6-4).

1
yand j

Fig. 1. A typical field.

Proof. This foltows from Definition 4-4 and (6-4) on noting that if §e (0, o) satisfies

then -—(}u}‘)—g—)— == —[E;
)

: w To) . f

and thus gc( Ro) =5

by Proposition 5-6. Hence

d (. (R o o
a?fé(‘?“(?f)) wony “(96 (Iz))-

We now construct a field of extremals & over B2, by extending %, using homogeneous
deformations.

Define & by
F = FU P, (6:7)
where F = ((+,8); 6e (= A, 0} (6-8)
and YR, 6) = (A, +0 R for Re(0,00) {6+9)

The following proposition is an ecasy consequence.
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ProposIrioN 6-3. T'he set F as defined by (6-7) is a field of extremals of I over R%. .
Moreover the corresponding slope function P is given by

PiBg, 7o) if ro> AR,

P(Ro, 7} = (6:10)

7 .
__RP_; ?’f o < Ac R{}:
L, being given by (6:6).

Proof. This is an easy consequence of Propositions 61, 6-2, Definition 4-3 and
(6-7)—(6-9).

6-2. dpplication of the sufficiency theorem

In this section we show how the phenomenon of cavitation may be viewed within the
framework of the theory developed in Section 4 and in particular how it may be
regarded as a modified application of Theorem 4-9 using the field & constructed above.
The main difficulties arise because of the singular nature of & at the origin and becaunse
the corresponding slope function P (though continuous) is not continuously dif-
ferentiable across the line A, R,

Bemark 6-4. Our constitutive assumption (I) implies that the Weilerstrass excess
function & (see Definition 4+1) corresponding to the integral (3-11} is given by

y - R Iy ZIY - rr
#0r; 0.0) = B2 00,4, 7) =0 (.35 7) ~ -2 04 (557 |
arnd satisfies
EE,rp,q) >0 forall R,rp,ge(0,00) with p sq.
Remark 6-5. The Hilbert integral I* relative to I and the field & is given by
oo For . T
) e o R Y e ] et PIR # AU .
I*#(r) —fo B l(D (I (R’?)’.R’R) + i —F (R’?))Q).at(P(R"')s_R,R) dk, (6:11)
where P is given by (6:10) and 7 is given by (311).
Prorosrrion 6:6. Let r, be a cavilating equilibrivm solution. Let  be defined by (6-7)
and H¥* by (5-2). Then for each A (0,00) and re d,,
el ™ wim ol vl admim .y 77 b ror
E{II* (.I\-,-j‘é, I (Jl-, ?)} 4 lq) (f (.R, ¥ ),jé, }"é) 4- (’? -1 {]f, 7 )) (D,l (P(R, T),‘E, ﬁ
(6-12)
Jor almost every Re D, where D < (0, 1) 45 any nonempty snterval on which r(E) satisfies
either
. ()
W%

(ii) T—(g—) <A, for ReD.

> A, for ReD or

Proof. We first consider the case when (i) holds,

Case (i)
Hrom the definition of P (6:10) it is sufficient to show that

w0020 ()2 7)o () (20 (7)) 7))

:%[H*(R,%,r;(gc(%)))] forae. ReD. (613)
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The expression on the right-hand side of (6-13) is equal almost everywhere to
2 I r i d _r
2|0 (=t (ae (7)) 0a] 5 [osga (2 (0(5)) 205 (-
7 7 1 r d {, r
o @) aaos Gl ﬂ—m@@%ﬂD%}

which in turn is equal everywhere to
; Fid i/,
ool ] E st
r 7 d
(7)) anna]s 019

where the arguments of ¢ and its derivatives are relg(r/R)),»/R,r/R. To prove (6-13)
it is therefore sufficient to show that the second expression in square brackets in (6-14)
is equal $o zero almost everywhere, i.e. that

(T;(gc(%)) r)déaq (f’c(gc(;g)) ;;)mz{m ( ( ( ))%%)
ac. ReD. W(D"(T;( ()) B R)]l(?" %)' (6-15)

Setbing W = »/R in (6:15), this is equivalent to showing that

(e (&) -5} (=) [ oeaaam ]
w2 outlo ) 2 7 -os (B 2R (- 5) @

fora.e ReD.
But 7, is a solution of (3-12) and setting v = o/ B gives

R (g o) )

Hence
[re(g(o)) — ?f]g% G y(re(ge(v)), v,0) = 2[D 4(re(g.(v)}, v, ) ~ © 1 (rilg,()), 0, v)]

for ve(A,, c0).
Comparison with (6-16) then yields the result.

Case (ii)
In this cage (6-12) follows immediately from the definition of P (6-10) onnoting that
d Pdfoan(r v 7
Fi [H ( g DU ))] 327 [R ¢ (1;: B R)]

= Rlep(r L7 T rrr : .
= B [q) (R’R’.R)"’-(T R) D, (R’R’R)] forae. ReD, (6-17)

where in the last step we have used the symmetry of @. Equations (6:17) and (6-13)
together with (6-10) prove the proposition.
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Provosirion 6-7. Let re 4, satisfy Limg o "(B)/R > 0 and let the field F and corre-
sponding slope function P be given by (6-7) and (6-10) respectively. Then

Lim H* (R,i,P(R, r)) =0, (6-18)
0 R
where H* is defined by (5-2).

Proof. We consider the two cases

(i) mf—@ <+w
-0 B
and
(ii) T _ .
B—0 R
Case (i)
In this case there exist constants M, M, > 0 such that
M, < T(ff) < M, for £ sufficiently small.

On setting v = r/ R it follows from Proposition 5-6 and the smoothness of @ and r, that
[D(relge(v)), v, v) + (v —7e(ge(0))) D 4{relg. (), v, v)| € Const.
for ve[A,, M,].
Hence

o)) o )+ (e ) (o (7)) 2 )

for B sufficiently small and such that »/RelA, M,]. For values of £ for which
r/RelM), A,) it follows from the smoothness of @ that

roror
* (7% 7)
Statement (6-18) is now a consequence of {6-19}, (6:20), (6-10) and (5-2).
Case (ii)
Again by assumption there exists M, > 0 such that 3, < »(R)/R for B sufficiently
small.
Tt follows from Corollary 5-7 that for each e > 0there exists # with the property that

[H*(g,(0),, 7lgo(0)))| <& for ve (M, a0);

L1 B P r
e (nfo ) i

Finally, applying the arguments of case (i) for values of R for which r/R e [, ] and
using (6:21), we obtain (6-18).
We next prove one of the main results of this paper.

< Const.

(6:19)

< Const, (6-200

thus < ¢ forany R for which (M, 0). {6-21)

THEOREM 6-8. Let r,c O%{(0, c¢)) be a cavitating equilibrivm solution and let the fleld &
be defined by (6-7). Then for each Ac(0,00), if ye F is the unigque element satisfying
(1) = A, then

Iy) < I{r) (6-22)

forallre d,, r # ywith Limp_,r{R)/R > 0.
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Proof. Our proof proceeds in three steps.

Step 1
Tirst notice that by Proposition 55 {6-22) holds trivially if I(#) = +c0. Tt is a
consequence of Remark 6-4 that

2 RO DU : g o T
B0 (1,3 7) > B 0Pt 5 2) v 0= PRy (P, 2 7))
for Re(0,1], (6-28)
where P is defined by (6-10) and where strict inequality holds in (6-23) if »* + P.

Step 2
We claim that

f:RZ[ ( (R7), 5, R)%—(?"W.P(R,?'))(D (I(R SR R)]dR

R=1
= H* (R E’P(R r)) forany ae(0,1]. (6-24)

R=a

To show this, we first prove that whenever »¢ 4, then

¥ (R,ﬁ,l( ,r))errl(a, 1) foreach ae(0,1). {6-25)
If wefixae{0,1)andifred,, A > 0 then
. (B " A
(i) 1(}5_2@ Wi(g, 1), (i) %Jc[ (a),aJ. (6-26)

To prove (6:25) it is therefore sufficient, by (6:26) and the definitions of H* and P, to
prove that the function G (0, 1] x R* — R defined for Bela, 1] by

vaRj(q)(fé(gc(v)),v,’e‘J}Jr(f}~?’é(9'c('e‘)}))q’u(?’é(.%(v)),@W)) i v>A, (6:27)
(B, v) = .
—émd)(v,w,v) if v<gaA, {6-28)

satisfies the condition that G(R, ) is a Lipschitz function on [r{a ), AJe] uniformly for
Re[a, 1]. To this end we calculate 8G'/dv and show that it is bounded unifor mly for
Bela,1]in the two cases

ve[r(a),g] N{A, ) and ve[r(a),%} (0, A,]. {(6-29)

By using {6-28) and the smoothness of @, it is clearly sufficient to consider the first case
only; 8G/dv is then given by

G R, v)
v

{q’m (:{2)) ge(0) + 20 5+ D — @ 1 75(g,(2)) go(v)
(0= 76lge (D)) (P11 7(9:(0) golw) + 2D 1)}
= {;_3{2@,2 + @y (0 =7 DD 72 (g0 gi(0) + 20 1Y), (6:30)
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where the arguments of the derivatives of @ are r:(g.(v)), v, v. Since r, is a solution of
(8-12), on setbing v = ./ we obtain

(re{ge(e)}—) 4 D4 (relg.(v)), v, v) = 2[ @ (relg, (), v, ¥) = Dy {re(g,(v)), v, )]
dv

for we(A,0), (6:31)
and hence

(0 = 7o) (D1 7e(Go(v)) G0} + 2D 15) = 2[ P — D] for we(A,0), (6:32)
where the arguments of the derivatives of © are r;(g,(v)), v, 2.

QOur claim on the boundedness of 8@/dv is then a consequence of (6-30), (6-32),
Propositions 5+3, 56, the smoothness of ¢ and the assumption that v satisfies the first
of the two conditions of {6-29). This proves (6-25), and the claim (6-24) will follow by
the fundamental theorem of calculus once we show that (6-12) holds for almost every
Re(a,1). By Proposition 6-6, it is sufficient to show that (6-12) holds almost every-
where on 4, where 4 = [Re(a, 1); r(R)/R = A}, whenever mes (4) > 0. By (6-26) the
derivative of r/R exists for almost every Red. We may assume without loss of
generality that every point of 4 is an accumulation point of 4 (by disregarding a
countable number of points of 4), Thus for any R e 4 at which the derivative of r(E)/R
exists there exists a sequence {R,}c 4 with B, > R as n > c0 and the derivative is

given by
(?‘(Rn) T(R))
R, B
Lim\ —&——— | = 0.
P N L
But the derivative of r/R is given almost everywhere by
1/, r(B)
]
thus ' (R) = r(R}/B = A, for almost every i e A. Then an exactly analogous argument
to that used in proving Proposition 6.6 (ii), together with (6-25), implies that (6-12)
is satisfied for almost every Re 4. Together with Proposition 66, this proves the
claim (6-24).

Step 3
Thus by (6-23), (6-24), Proposition 6:7 and the assumption that» & y, it follows that
1 "
I(r) = Lim | B2 (w,l,i) AR > H#(1, 4, P(1, 1)
a0 Ja R R

—Lim H¥* (a, ﬂg—), Pla, r(a))) . (6:33)

a—0
On using Proposition 6-7 the right hand side of (6-33) is equal to
HA(L A, P(LAY) = HY1,A,4/(1)) = I*(y) = 1(y), (6-34)
where we have used the fact that I*(y) = I(y) as y is embedded in &.
As an application of Theorem 68 we obtain the following.

TrroREM 6:9. For each X & (0, co) there exists at most one cavitaling equilibrium solution
r, & C3((0, 1]) satisfying r,(1) = A,
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Proof. We suppose for & contradiction that for some X & (0, oo} there exist two distinet
cavitating equilibrium solutions 7o 1x€ C((0, 1) with 7(1) = 741} = A, These would
then give rise to two distinct fields of extremals F and . Application of Theorem 6-8
with each of these fields in turn would first yield I(r,} < I(r) and then I(ry) < I (r.),
a contradiction,

Finally, we indicate how the requirement Lim g ,o#(R)/R > Omay be dropped in the
statement of Theorem 6-8. To do this we first note that the conclusions of Theorem. 68
hold for every » e 4, with the property that

?‘(Rﬂ)

ey R 3
T

for some sequence R, -> 0 ag n — co. Again by the arguments of Theorem 6-8, (6-35) is
satisfied provided

H* (R PR, ?-(Rn))) >0 as n-»o (6-35)

Lim ™) 5 5 5 (6-36)
00 73
for some sequence R, —> 0 as # -> oo and some constant § > 0. If there does not exist
a sequence satisfying either (6:35) or (6-36), then

Lim "2 _ g (6-37)

and there exists a constant % > 0 such that

23 _?_ 1 .3: o = .
B3 (R’R’R) 2k for Re(0,1], {6:38)
where we have used (5-2), {6:10) and the continuity of ©.

We now assume that ® satisfics the further condition

3
(V) Pl vp,05) = 3 e+ (01, 00,09), (6-39)
where #® >0 and Lim®w,o0,0) < +oo. (6-40)
>

(i.e. we assume that singular behaviour of @ for » close to zero is contained purely in
the ¥ term).
Now suppose that rc 4, satisfies J (r} < +o0. 1t follows from (6-39) and (3-11) that

R4y (iR) e LY0, 1), (6-41)

Thus if conditions (6-35) and (6:36) do not hold for any sequence E, — 0 then by
(6-38)(6-40)

K ror o "

— hl— - L 2 [ e

0 < 7 < R (R’R’R) < 3R i,lr(R)-i—const.,
contradicting (6-41). So for stored energy functions of the structure indicated the
conclusions of Theorem 6-8 hold without the restriction Limp o r(R)/R > 0,
There are hypotheses other than (IV) that we may impose on the stored energy

function to obtain the same result. However these are of a technical nature and do not
shed further light on our interpretation.
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Qur results also show that under hypotheses (I)-(IV} on the stored energy function
the following theorem holds.

TuEOREM 6-10. Suppose there exists a cavitating equilibrium solution 7, C*((0, 1})
withr,(1) = A > 0. Then

(i) 7, 18 unique and extendable to r,c C*((0,0)) us a solution of (3-12),

(i) Limq%{g) = A, forsome A e[l,c0),

R

(iif) if A < A, then r(R) = AR is the unique global minimizer of I on 4,,

(iv) if p > A, then the global minimizer v, of I on A, exists, is unique and satisfies
7, (0) > 0. Moreover

7, (R) = dr, (?) for Re(0,1],
where 8 15 the unigque roof of
ér, (é) = jt.

Proof. The theorem is an easy consequence of the above arguments, Proposition 5-3,
Theorem 6-8 and the definition of our field of extremals # (6:7). (The above theorem is
proved using variational methods in Sivaloganathan{10] though under different
hypotheses on the stored energy function).

7. Concluding remarks

Exactly analogous results to those given in this paper apply to the two-dimensional
problem in which B is the unit disc in R*.

In a recent paper Horgan and Abeyaratne|7] demonstrate the existence of a
cavitating equilibrium solution in the case of a Blatz and Ko material by implicitly
integrating the radial equilibrium equation. The corresponding two-dimensional stored
energy function is given by

Dy, v,) = plo7® + 054 20,0, 4).

1t is easily seen that ® satisfies the two-dimensional versions of hypotheses (I)-(1V) and
thus that the cavitating solution is the global minimizer of the energy amongst radial
deformations (by Theorem 6-10),

In closing we remark that the natural way in which the conservation law (5-1} arises
in the expression for the Hilbert integral I* (see Remark 6-5 and (6-24)) indicates that
the general n-dimensional version of this law, namely

0 oW C
—e a W e Bopl e Py | =
o [x WG (Xbaly o )1 W,
may be of relevance in extending the field theory to higher dimensions (within the
context of nonlinear elasticity). However, serious difficulties may arise in extending

the Weierstrass theory, as indicated in Ball and Marsden [2].

T would like to thank J. M. Ball who first motivated my interest in thefield theory by
noticing the existence of two fields of extremals.

The work contained in this paper was carried out at Heriot—Watt University under
a Science and Engineering Research Council Studentship and grant.
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