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Introduction

In this paper we present general techniques for demonstrating the stability
of solutions of the equilibrium equations of nonlinear elasticity under the con-
stitutive assumption of polyconvexity. Our approach extends and unifies ideas
from the classical field theory of the calculus of variations and shows that a
sufficient condition for stability is that there exists a solution to a certain generalised
Hamilton-Jacobi differential inequality. Using this approach we show that for
a large class of polyconvex stored energy functions all equilibria are strong local
minimisers with respect to variations of sufficiently small support.

Let 2 C R™ be bounded and open. To any given map u: £ — R" we asso-
ciate an energy

E(u) = fL(x, u(x), Vu(x)) dx. 0

It is well known that any smooth minimiser of E satisfies the corresponding
Euler-Lagrange equations:
& (oL oL
— == — A4 j == eeey R
e (r T =T, Ve i=l2..n @
We define the set of admissible maps
A, = {uE Wl’p(QQ RY:lu — uollc <, u]ag = uofag} )]

and consider the question of whether a given solution «, of (2) is a strong local mini-
miser of E in the sense that #4, minimises E on A4, for some &> 0 (where we use
||l to denote the supremum norm on the space of continuous functions on £2). We
study this question in two cases: first when L(#, u, .) is strictly convex, and second
in the case of finite elasticity (which corresponds to taking L(#, u, Vu) = W(x, Vu)),
where we make the constitutive assumption that W, the stored energy function
of the material, is polyconvex (see § 3).

This problem has been studied in the case when m or n equals 1 and L(#, 4, .)
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is strictly convex in the beautiful work of HILBERT, WEIERSTRASS, JACOBI, and many
others, and is collectively referred to as the field theory of the calculus of the
variations (see e.g. BLiss [5], BoLzA [4)], CESARI [6] and the references therein).
The case where m and » are arbitrary and L(x, u, .) is convex is treated elegantly
in the work of WEYL [14] (see also RUND [11] for further references). Unfortunately,
the methods employed by these authors rely heavily on the convexity of L and
do not apply to polyconvex integrands of the type often encountered in finite
elasticity.

The idea underlying our treatment of the convex case is most easily demon-
strated in one dimension with m =n=1 and 2 = (0, 1) if we consider the
problem of showing that a given solution u, of (2) minimises E(u) (given by (1))
on

o= {u€ W0, 1)1 u(©0) = uo(0), u(l) = ug(D), [t — uollc < & (4)

for some &> 0. Our approach is to try to construct a C* function S(x, u(x))
with the following properties
i) L N = d S % o5 " Yued 0,1
(1) (xyuau):dx (x’u)‘—a_)—c(xau)_!_%(xau)u ue & xE(, )9
(%)

(D) L(x,uolx), uo(x)) = — S(x uo(x)) = (x Uo(x)) + (x, uo(x)) tig(),

x€(0, 1). (6)

for some ¢ > 0. Clearly if such an § exists then u, is a strong local minimiser of
ds
E since f Ec(x, u) dx is constant on /, and equal to E(u,) by (6).
0

In order that S satisfy (i) it is necessary and sufficient that it satisfy the partial
differential inequality

oS
g (x u)—I—H(x u, u(x,u)) x€(@©,1), Vuco,, )
where the function
oS oS
H(x, u,-a—u) —S { F — L(x, u, F)}

is the Legendre transform of L with respect to its third argument and is often
referred to as the Hamiltonian. Inequality (7) is an easy consequence of (5) since
given any x€(0,1) and u, FER with |u — up(x)| <&, there exists a C' u
in o/, satisfying u(x) = u, u'(x) = F. (For example, just choose % to be an appro-
priate polynomial.) Hence, for fixed x and u, (5) holds for any F = «" and (7)
follows. We will refer to (7) as the Hamilton-Jacobi inequality (expression (7)
with equality for all x is often referred to as the Hamilton-Jacobi equation in the
calculus of variations or the Hamilton-Jacobi-Bellman equation in dynamic
programming). A related approach, known as a verification technique, is used by
VINTER & LEwIs {17] in the context of control theory. Since (6) is only a deriva-
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tive along the graph of u, it is not surprising that in general there can be infinitely
many solutions of (6) and (7).

Example. Let L(x,u,u’) = (')> + 4> and let uy(x)==0; then since
2
L(x, u, F) = kuF for any k& [—2,2], S(x, u) — k% satisfies (5) and (6) for
any k€ [—2,2]. In this case (7) becomes

oS 2S5\2
=— 4+ 11— 2
0_‘8x 4(8u) “

and S(x, u) solves the Hamilton-Jacobi equation only if &k = +2.

Hence in order to prove that u, is a strong local minimiser of E it is sufficient
to prove that there exists a solution of the differential inequality (7) that satisfies
the boundary condition (6). The main point is that we have only to solve a differ-
ential inequality and not an equation, an observation which allows us to treat
higher dimensional problems.

To construct a solution of (6) and (7) we show first in § 2.1, using an observa-
tion from WEYL [14], that we can assume without loss of generality that #,==0
and that L(x, u, ¥') and S(x, u) are of quadratic or higher order in # and v/, i.e.
that

L(xs 09 0) = L:Z(xs"‘()) 0) = L53(x3 05 0) = 0 (8)
and that

S(x, 0)=86—i(x, 0)=0 Vxel0,1], )

where L,; denotes the partial derivative of L with respect to its i argument.
Since u, =0 it now follows that the boundary condition (6) is automatically
satisfied. Hence we only require to solve the differential inequality (7) for
lu — uo| = |u| < ¢ sufficiently small. In Lemma 2.2 we show, that as a conse-
quence of (8), the corresponding Hamiltonian is of quadratic or higher order in u

os
and —, i.e. that
du

H(xs 0, O) = H’Z(x’ 09 0) = Hs3(x’ 07 0) = 0 v xe [09 1]' (10)
We are now in a position to solve (7) using an expansion argument. First note that

by (9)
S(x, u) =} 7(x) u? + E(x, w), (11

where E(x, u) is O(|u|?) for small u. Now, using (10) and (11), expand (7) in a
Taylor series in u to give

0 2 % [n,(x) + H’ZZ(X’ 0: 0) + 2H’23(x7 0: 0) JT(X) + H333(x9 0, 0) nZ(x)] u2
+ E(x, u),
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where the error term E is also O(|u|?). Clearly, in order that S satisfy (7) for |u|
sufficiently small, it is necessary that zz(x) satisfy

0 = 7'(x) + H,25(x,0,0) + 2H,55(x, 0, 0) 7(x) -+ H.33(x,0,0) n%(x)  (12)

on (0, 1) and a sufficient condition for S(x, u) = % n(x) u* to satisfy (7) for |u|
sufficiently small is that z(x) satisfy (12) with strict inequality on [0, 1]. It can be
shown that in this one-dimensional case the existence of a solution 7(x) of (12)
on [0, 1] is exactly equivalent to the nonexistence of conjugate points in the sense
of Jacobi (see also Remarks 2.7 and 2.8).

In § 1 we generalise the ideas outlined above to higher dimensional problems
by use of null Lagrangians N(#, u, Vu): these are the natural analogues of the

ds
functions o (x, u) used in the one-dimensional case and are integrands with
the property that #(u) = f N(x, u, Vu) dx is constant on all maps u that agree
2

on 62, A complete description of these Lagrangians in terms of arbitrary potentials
follows, for example, from OLVER & SIVALOGANATHAN [10] and is given in Theo-
rem 1.2.

An analogue of the differential inequality (7) then follows in this higher di-
mensional case when one tries to choose N(«, 1, Vu) such that

() L(x,u,Vu) = N(»,u,Vu) NVucd, Vaxch, (13)
(i) L(x, uo(x), Vue(x)) = N(x, ug(x), Vue(¥)) Vac L. (14)

Hence we require that the generalised Hamilton-Jacobi differential inequality
0=Sup{N(x.u,F) — L(»,u,F)} VYucd, xsc@ (15)
F

holds. An explicit form for this differential inequality in terms of arbitrary po-
tentials is given in Proposition 1.3 and is the natural analogue of (7) in the higher
dimensional setting.

Our problem therefore is to construct solutions N(#, u, F) to (15) which satisfy
the boundary condition (14). In Theorem 2.4 we prove that this problem is always
locally solvable in the case when L(«, u, .) is strictly convex, and hence that u,
is a strong local minimiser in the small: in other words, given &,€ 2, u, is a
strong local minimiser with respect to variations with sufficiently small support
around «,. This result is implied in the work of WEYL [14] but our approach has
the advantage of being direct and avoids the problem of solving the Hamilton-
Jacobi equation. We also give sufficient conditions, in Theorem 2.5, for u, to
be a strong local minimiser (i.e. with no restriction on the support of the admissible
variations).

In § 3 we present our main results for non-convex problems when we consider
the case of finite elasticity. We make the constitutive assumption that L(x, u, Vu)
= W(x, Vu), the stored energy function of the material, is uniformly polyconvex
in the sense that

W(x, F) == |F|> + W(x, F) for some x>0, ¥ FcM™",  (16)
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where W(x,.) is polyconvex. (Stored energy functions of this type are uniformly
strictly quasiconvex in the sense of Evans [8].) In this case we prove that the
corresponding Hamilton-Jacobi inequality is always locally solvable and hence
that any smooth equilibrium for such a stored energy function is a strong local
minimiser in the small (Theorem 3.2). Our construction of this local solution is
indirect, relying on the use of a comparison functional and an observation from
SIVALOGANATHAN [13] (see Remark 3.6). The arguments used are outlined at the
beginning of § 3. Remark 3.6 also indicates a direct approach to solving (15) in
the polyconvex case.

We remark finally that it would be interesting to incorporate the conditions of
quasiconvexity or strong ellipticity (rather than the stronger condition of poly-
convexity) into a set of sufficient conditions for a strong local minimiser (the
techniques of [13] may offer an approach to this problem).

Notation. Throughout this paper 2 C R", m = 1, will denote a bounded do-
main with C' boundary. Given any map u in the Sobolev space W!?(2; R"),
p.n=1, we write

), = llul, + [V,
where

1
wP)?  if 1 <p<oo,
1w, = (/1 1) hEpe

esssup |[w| if p =oo.
Throughout this paper we will assume that p > m so that by the Sobolev em-
bedding theorem W'?(2; R") is compactly embedded in C(2;R"). Given u¢
c(2; R") we write

llc = Sup |u(%)].

xc2

We will make the following abbreviations:

LP(2) = L7(2; RY),

WhHQ) = W@ RY),
C(2) = C(2; RY).

§ 1. The Field Theory of the Calculus of Variations
and the Generalised Hamilton-Jacobi Inequality
Let the Lagrangian
L: QXR"XR"n > R 1.1

be C? on its domain of definition and define the integral functional E: Wi?(2)— R
by
E(w) = [L(» u,Vu)dx. (1.2)
Q .
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Throughout this paper u, € C*(£2) will denote a solution of the Euler-Lagrange

equations for E, namely

o (oL oL

-— |— =— v i=1,2,...,n. .

e (@u,; (x, u, Vu)) o7 (%, u,Vu) xc, i=1,2,...,n (1.3)
In this paper we consider the Dirichlet problem (i.e. the displacement boundary-

value problem), but a fortiori the results apply to mixed problems. We will consider

in particular the question of whether u, is 2 minimiser of £ on the set of admissible

maps A, where
AC{u:u—u,c WP ()}, p>m. (1.9

The choice of A will vary depending on the nature of the stability of u, which we
are trying to prove. For example, in proving Theorem 2.4 we take 4 to be given
by (2.3) and in proving Theorem 2.5 we take 4 to be given by (2.4).

The idea behind our proofs of these results is contained in an observation
from SIVALOGANATHAN [13] that a necessary and sufficient condition for u, to
minimise £ on A is that there exists a functional % : 4 — R satisfying

(1) E(u) =Fu) Vucd, (1.5)
ii) F(u) = F(u,) Vucd, (1.6)
(iif) F(ug) = E(uo). (1.7)

(The proof of this result is trivial if such an & exists; conversely, choose % =E.)

The field theory approach is to choose & to be the integral of a null Lagran-
gian: in other words choose & to be an integral functional which is constant on
the admissible set (see also § 3 where we do not make this assumption). Null
Lagrangians have been studied by many authors; see, for example, EDELEN [19]
or BALL, CURRIE & OLVER [21] and the references therein. We next make precise
this notion of a null Lagrangian.

Definition 1.1. We say that the C! function N: OxR"<xR™*" >R is a null
Lagrangian if and only if

F(u) = fN(x, u(x), Vu(x)) dx (1.8)
satisfies ‘ _
Fu-+¢)=Fu) VucCi(Q), VecWi(2. (1.9)

This definition differs slightly from that given in OLVER & SIVALOGANATHAN [10]
in which it is only required that (1.9) holds for ¢ € C5°(£2): the fact that the two
definitions are equivalent follows, for example, from Theorem 1.2, the continuity
of Jacobian determinants (see DACOROGNA [7]) and a density argument.

The idea of the field theory is to try to satisfy (i)—(iii) by choosing the null
Lagrangian N(#, u(x), Vu(x)) so that
(i) L(x, u(»), Vu(x)) = N(», u(x), Vu(x)) VYucd, VaxcQ, (1.10)

(i)  L(x, ug(®), Vue(x)) = N(&, ug(%), Vue(x)) VY ae Q. (L.1D)
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A first step toward effecting this construction is to describe the set of all null
Lagrangians in terms of the Jacobian determinants

Hu™, u™, ..., u'r)

i = axk, xk, L., x*r) (1.12)

where
& = (0‘1, X325 o005 “r): (1'13)
k=(k,ks ..., k), (1.14)

have positive integer entries and r < min (m, n). Given « as in (1.13) and
Me R'™*!, where

M= (mla My, ..., mr+l) (1'15)
has positive integer entries satisfying
IE=m<m<..<my1<m,

we define the corresponding null divergence N3,(#, u, Vu), taking values in R™,
by

0 if i == m, for some s,

(N3 = { (1.16)

(=)' i if i = m, for some s,
where M; c R’

M; =(myumy, ...,me_, M, o, Mg g).
The following characterisation of null Lagrangians can be found in the proof

of Theorem 7 of OLVER & SIVALOGANATHAN [10] (see also OLVER [9]).

Theorem 1.2. Suppose that 2 C R™ is star shaped. Then the C! function
N:QxR"xR™ — R is a null Lagrangian if and only if

N(x, u, Vu) = Div [Po(x, u) - > Py(x, u) N:,] YuecCY(Q) (1.17)
M
for some C' functions P3(.,.) and some C'R™ vector-valued map Py(.,.).

If we expand the right-hand side of (1.17) we obtain for N the expression

8Py oPf . 0Py 8Py .
— =y —= (NG, — JE 1.18
Bxf o BT ZA‘, aoms Vi, + 05 Ji (1.18)

where ot = (8, &y, %3, ...,a,). On use of this result the next proposition is
immediate.

Proposition 1.3. The null Lagrangian N(x, u, Vu) satisfies (1.10), (1.11) if and
only if it satisfies the generalised Hamilton-Jacobi differential inequality

oPS
0=3(%, u) + Hx, 1, V,uPis, VuPo) V4€Q, Vued, (L19)
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together with the boundary condition
L(x, ug(x), Vuy(x)) = N(x, ug(x), Vus(x)) VacQ, (1.20)

where V, P denotes first-order partial derivatives of the Pis with respect to
x and u, VP, denotes first-order partial derivatives of P, with respect to u, and

H(x, u; vx,upgb vuPO)

aPs oP§ oPg
— Sup ‘3 - U+ ZMZ( m, T &;‘ — L(%, u, Vu)} (1.21)

F=Vu

is the generalised Hamiltonian.

Proof. To derive (1.19), observe that given ¥ € R™, u€ R" and any Fe& M™"*",
there exists a C! #(x) in A4 satisfying %(¥) = u, Vu(x) = F. Hence, for fixed «, u,
(1.10) holds for all Fe M™*" (with N given by (1.18)). Expression (1.19) then fol-
lows.

§ 2. The Convex Case

In this section we focus on the case in which the Lagrangian L(x, u, Vu) is
strictly convex in Vu. In fact we will make the stronger assumption throughout
this section that the Hessian of L with respect to Vu is strictly positive definite;
this corresponds to the case considered by WEYL [14]. Again

E(u) = fL(x, u, Vu) dx 2.1)
2
and u, € C2(§) denotes a solution of

o (oL oL

( - (%, u, Vu)) — (v, Vu) Vxef, i=12,..,n. 2.2)
ox* ou
The main results of this section are contained in Theorems 2.4 and 2.5. Theorem 2.4
shows that any such u, is a strong local minimiser of E in the small; in other words,
that given x,€ 2, u, minimises £ on

Aes = {u: u— uyc W(I)’p(Ba(xo))’ lu — uolic < & (2.3)

for some 0, ¢> 0. Theorem 2.5 establishes sufficient conditions for a global
version of this result to hold in which there is no restriction on the size of support
of the admissible variations. This corresponds to showing that u, is a strong local
minimiser 7.e. that ¢, minimises E on

Ao ={uru — ug € WP (Q), | u — uo)c < & (2.4)

for some ¢ > 0.

To prove these results we start from the more general setting of § 1 and try
to construct a null Lagrangian N that satisfies (1.10) and (1.11). (Clearly the con-
struction of the appropriate null Lagrangians will suffice to prove these theorems.)
We choose a specific form for N by setting Pj;= 0 for all x and M in the general
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expression (1.17). Hence we try to determine Po(¥, u) such that

oPy oP§ .
@) L(, u,Vu) = Div Po(%, u) =52 (%, 4) + 22 (v, w)ui Vucd,

VacQ,
. . oPg oPy .
(i) L(s, o(%), Vito(#)) = Div Po(#, o(#)) = =3 (¥, tto) + 27 (%, tic) ..
VacQ,

where we make one of two choices for 4 depending on the nature of the stability
result we are trying to prove: in proving Theorem 2.4 we choose 4 to be given
by (2.3) and in proving Thecrem 2.5 we choose A to be given by (2.4).

§ 2.1 Simplifying the Construction

This subsection is aimed at simplifying the problem of constructing P, satis-
fying (i) and (ii). The first lemma shows that, without loss of generality, we may
suppose that uy(#) = 0 and that L is of quadratic or higher order in u and Vu.

Lemma 2.1. Let

- oL
L(x’ ¢5 V(P) = L(x, Uy + (pa vuO + vw) . -L(x: uO, vu()) - 67(‘”, uO; vuO)(pi
oL

— o7 (® u0, Vug) gt Vel (2.5)

Then L is C? on its domain of definition, strictly convex in Vep, and of quadratic
or higher order in ¢ and Vep; ie.,

oL
—a?(x, 0,0)=0 (2.6)

and

oL
a—q;(x,0,0):O VacQ, i=12..,n a=12..,m @27

Moreover the Hessian of L with respect to Ve is positive definite and ¢ =0 is
a solution of the Euler-Lagrange equations corresponding to L.

The proof of this lemma is straightforward and will be omitted.

We now show that we may similarly assume that P, is also of quadratic or
higher order. To see this first notice that given #€ 2 and any F€ M"*™ there
exists a smooth C! map uc A satisfying u(x) = uy(¥), Vu(s) = F. Hence
inequality (i) holds in particular for # = uy(%) and F= Vu arbitrary, with
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equality for F = Vu,(x) by (ii). It then follows that

oL o P;
Gt (8 80(®), Vro(s) = ST (®uo®) VacQ. 2.8)

If we now set
P3(%, uog(x) + @) = Pg(%, uo(#)) + (x u(®) ¢’ + Pi(%,9), (2.9
it then follows from (i), (i), (2.2), (2.5), (2.8) and (2.9) that

Pi(s, o + ) = @) + [ (%, 10(¥), Vuo(x)><p] L Pisg)  (@10)

oul,
where P, is of quadratic or higher order in ¢ and 6(%) is any vector function satis-
fying

Div O(») == L(x, uo(%), Vuy(x)).

It now follows on using this and (2.10) that in order to find P(x, u) satisfying
(i) and (ii) it is sufficient to find Py(#,@) that satisfies

- _ a P; P

L(x, @, V) = Div Py(x, ) = ( ,P) + o (p,“ V@ such that u, - @cd.
2.11)

Thus we have succeeded in replacing the problem of finding P, satisfying (i) and

(ii) by that of ﬁndlng P, satisfying (2.11).

In order that PO satisfy (2.11) it is necessary and sufficient that PO satisfy the
Hamilton-Jacobi differential inequality

oPS
Oﬁ

oP,
(,(p,—a—(;—) Ve, Jpl<e 2.12)

where

is the Hamiltonian. This is an easy consequence of (2.11) and the arguments given
in the proof of Proposition 1.3.

In order that H be finite for all arguments we assume henceforth that L satis-
fies the growth condition.

L(x,¢, F) = B|F|*+ D forsome B>0,D, YFcM"™™ Vp|<e, (2.14)

where |F[* = (F, F).
The next lemma shows that H also is of quadratic or higher order ¢ and in
oP,

o
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Lemma 2.2, The Hamiltonian ﬁ(x,(p, A) given by (2.13) satisfies
H(x,0,0) = Hy,(#,0,0) = Hy(x,0,0) =0 (2.15)

(i.e. H has no constant or linear terms in @, A). Moreover

T r k

H,i,i(%, 0,0) = —yj%(x,%w(x,% A4) — &p‘zapk( %9, w(x,%A))a =
(2.16)

— 32" vk
Hig(%,0,0) = . 6qpk( N2 w) Aﬁ, .17
Ha0(%,0,0) = (A1), (2.18)
where y satisfies

;%(x P, ¥(*, ¢, 4)) = A} (2.19)

and the tensor (A1) satisfies
azi -
where the above equations hold ¥ x ¢ .Q, LLk=12,...,n 08vy=12,....,m

Proof. 1t follows from the strict convexity of I:(x, @, .) and the growth condition
(2.14) that (2.13) is finite for all arguments and that the supremum is attained at
the unique F satisfying

A = F). (2.20)

0P

By (2.7) and the implicit function theorem this can be inverted for |4 | sufficiently
small to give

F, = yi%,9, 4) (2.21)
where y is C? on its domain of definition. Hence by (2.21), (2.13) is equivalent to
H(x, ¢, A) = Ai(x, ¢, A) — L(%, 9, v). (2.22)

Hence using (2.20) we find that

oy oL 3w’§
H (x,% A) = Ak a(p: ( P A) —_gqji(x"p9 1/)(‘”’¢’ A)> 3 k(x & w)

aL
=g (%, 9, p(x, ¢, 4)) (2.23)
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and
_ 8'q)k ) k
X — [ 7.__'}'
Ho (s, 0 905, ) = Wh(p A) + AL o ) — o - G
= pu(%, ¢, 4). (2.24)
By (2.20) and (2.21) it follows that ¢ satisfies
. oL
A =g — (%9, v(x,9, 4)). (2.25)

Part (2.15) of the lemma ncw follows from (2.22)-(2.25) and Lemma 2.1. Similar
calculations yield the remaining claims of the lemma.

$ 2.2 Solving the Hamilton-Jacobi Differential Inequality

To recapitulate, we have succeeded in § 2.1 in replacing the problem of deter-
ming P(x, u) satisfying conditions (i) and (ii) at the beginning of § 2 by that of
determining a solution 1—’(x, @) of (2.12). We now address the problem of construct-
ing a solution of (2.12). We will first prove that (2.12) is always locally solvable
in the following sense.

Proposition 2.3. Given x,¢€ Q2 there exists 6 > 0 such that

o

o Py }_’0
0 _Z_ (x @) +H (x @, — P Vipl<e, (2.26)
has a solution on Bs(%,) for all ¢ sufficiently small.

Proof. We expand the right-hand side of (2.26) in powers of ¢’ and observe
that in order to prove that (2.26) hold for [¢ | sufficiently small it is sufficient to
prove that it is satisfied strictly by the lowest order terms in the expansion (since
these dominate the expansion for |¢| small).

Correspondingly, using (2.9), we write

Pi(x, ) = 3 73(%) 7 + EX(%,9), (2.27)

where E° is of cubic or higher order in ¢ and =#j; = &j;. It now follows from
Lemma 2.2 that the terms of lowest order in the expansion of the right-hand side
of (2.26) are quadratic and given by

.

d
o i) #7 + (3, 0,0) g+ 20T14505,0,0)
+ HA?‘AJ’?(‘”’ 0’ 0) ”I:i‘Pk”g‘Pl}
a . . = oo vy L5 v ol i
=3 gg(ﬂij(x)) + Hyii(%, 0, 0) 4 2H¢1Az(xa 0,0) =%, + HA};A;’(W, 0, 0) nfm e’

(2.28)
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Notice that only second derivatives of H with respect to the entries of 4 occur,
since by (2.27) all derivatives of higher order contribute terms of cubic or higher
order in the ¢'.

1t is thus sufficient to prove that the quadratic form in ¢' given by (2.28) is
uniformly negative definite on Bs(xg) for some &> 0 for some choice of the
coefficient functions {7} in (2.28).

To this end we choose

my=n(¥) i=1,2,...,n (no summation) (2.29)

1
and all the other z}’s equal to zero. Now let m(x) = — 5 (x! — x}) ¥ &€ By(x,);

then all the terms in (2.28), except for those involving the first derivative of the
coefficient functions zj;, are bounded in Bs(#). In fact (2.28) becomes

1 . — . — P — .

— 5 @) + Hyipi(#, 0,0) ¢'¢” + 2Hyu4!(#, 8, 0) ng'p” -+ Hyl41(%, 0, 0) gy’
(2.30)
Clearly by choosing & > 0 sufficiently small we can ensure that (2.30) is uniformly

negative and hence that (2.26) holds for |¢ | sufficiently small for this choice of the
mi’s. This completes the proof of the proposition.

The last proposition together with the arguments outlined at the beginning
of § 1 yields the proof of the following theorem.

Theorem 2.4. Suppose that u, € C2(§) is a solution of (2.2). Then given %, € £2
there exist &(%,), 8(%0) > 0 suchthat E(u) = E(uy) for all u — uy € WE"(Bs(%o)),
p>n with |u — tug]c<< &(%,).

We next establish conditions under which u, is a strong local minimiser in the
large (i.e. with no restriction on the size of the support of the admissible varia-
tions). This is the content of the next theorem. We will use (2.28)= (respectively
(2.28)<) to denote that the quadratic form given by (2.28) is negative definite

(respectively strictly negative definite) for all x¢€ £.

Theorem 2.5. Suppose that uy, € C 2(.!5) is a solution of (2.2) and that there exists
a set of coefficient functions {m;} in CH ) satisfying the differential inequality
(2.28)= in Q then ug is a strong local minimiser of E: i.e.
E) = E(uy) Yu—u,c WEP(2) with |u— uy|c<<e, for some ¢ >0.

This theorem will follow from the expansion arguments used in the proof of the

last proposition once we prove that (2.28)< has a solution throughout 0. This is
the content of the next proposition.

Proposition 2.6. Suppose that the coefficient functions {7} are in CY(Q) and
satisfy the differential inequality (2.28)= in Q. Then there exist {my} that satisfy
(2.28)< in 2.
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Proof. Let
ﬁg(x) =m; + ayx) for i,j=1,2,...,n, «a=12 ..,m, (2.31)

where the 77;;’s will be determined at a later stage. Then in order that {#}} satisfy
(2.28)< in Q2 it is necessary and sufficient (since the {z]} satisfy (2.28)< by assump-
tion) that the {7} satisfy

0 _ rr = T2 —
{a_x“ (nf]‘(x)) + ZHWiAz(x, 0, 0) ﬂ})k + HA};A?(W, 0, 0) n,-knfl
+ Hagai(#, 0, 0) iy + Hypap(s, 0,0) ?zk?v"z} P9’ <0 Vxel.
(2.32)

Choose (%) = n(%), i=1,2,...,n (no summation) and all the other 7
equal to zero. On substituting this into the left-hand side of (2.32) we obtain

(;i):l ‘Pi‘l’i + 2ﬁtpi.4;(x> 0, O) EQDi(Pj + ZI;A}A?(‘”, 0’ O) ﬁnjal(plqﬂ _‘_ ﬁA}A}(x’ 0’ 0) ;62(pl(pj

(2.33)
Now let
— k
(%) = g exp — [? (x! — c)] ,
xl
x? —
where k> 0 and c is chosen so that x! —¢>0 Va=| ~ € Q.
xm

— k
On substituting this expression for 7 into (2.33) and dividing by exp [— —(x1 —c)]
we obtain €

—kg'p' + 2eH,i41(%, 0,0) ¢'p? + 26H 41 49(x. 0, 0) mho'y’
— —k .
+ &2 H4141(#, 0, 0) exp [T (' — C)] ¢’

Choosing k = 1 and ¢ sufficiently small, we see that this quadratic form is strictly
negative definite. Hence (2.31) is a solution of (2.28)< throughout Q.

Remark 2.7. 1t is interesting to note the way in which the existence of a set of
coefficient functions {7} satisfying the conditions of the last Theorem (i.e. (2.28) =)
implies the positivity of the second variation of E(u) (given by (2.1)) at u,. Notice
first that by the definition of L, (2.5), all second and higher order derivatives of
L with respect to u and Vu evaluated at u,, Vu, are equal to the corresponding

derivatives of L when evaluated at ¢ =0, Vg = 0. Hence

5 . /' oL ) e e ig
u = = —_— T i
( 0) (([),(P) 2 OF! 8F/§ DsaPsp + OF eu Qo @’ + 8u’u’¢(p X

&

@250 ) ZZO &2 7o
p— — i ! j F} " ’ j
%[fa(p’i &p,{e q’m(p»ﬁ + 2('3(]3—,1@ 8(qu)>a¢ +

ag’ &pj‘Pi‘Pj ~ (WGP, -
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(The addition of the divergence term contributes nothing to the second variation,
by the divergence theorem, since ¢ vanishes on 8£.) Expanding the divergence
term and rearranging then yields

y52

. . o*L°
0*E(uo) (p,9)=1% fb_’&_p_ [‘P,L + (A (W — ﬂfnk)Q’k]

alio
A 1 k] !
l:q)ﬂﬂ + ( (6(}9,,7 aq) nl) (P]
o2 ) i i
Y (U 1yin i j_ & i7
(a(p,{3 &p" Jk) (‘/1 ) (8¢’Z a‘pl nl) @ + a(p &pJ‘P‘P (ﬂu)wc(p(p >

2
m) Notice that
our assumption of strict convexity of of L with respect to Vu implies that the first
term in the integrand is nonnegative. It now follows from Lemma 2.2 that the
condition that the coefficient functions {xj}} satisfy (2.28)% is exactly equivalent
to asking that the remaining term in the integrand, i.e.

&*L° 5 Lo 8*L°
| — AV (A | —— — 7"
[ (aqo,{e ég* ””‘)( & (aqa,:; og' ) e (“k’)m] e

be a non-negative quadratic form in the ¢”s, i.e. by subtracting the integral of
an appropriate divergence from 8*E(u,) (¢, ) we have made the integrand
nonnegative (and thus in particular 62E(u,) (¢, ) is also). The converse question
as to whether positivity of the second variation implies the existence of a set of
coefficient functions satisfying (2.28)= appears to be open and I hope to address
this in a later paper.

where (A1), defined as in Lemma 2.2, is the inverse of (

Remark 2.8. In the one-dimensional case (m = n = 1) (2.28)= reduces to
(12), the ordinary differential inequality given in the introduction. In this case
it can be easily shown, by the continuation principle, that (2.28)= has a solution
on £ (which is an interval) if and only if (2.28)~ is solvable on £2. (2.28)~ is
known as Legendre’s equation and in this case Remark 2.7 reduces to an obser-
vation of Jacobi—see BoLza [4].) It is also interesting to note that, in this one-
dimensional case, Legendre’s equation transforms to the Jacobi conjugate point
equation (i.e. the linearised Euler equation) under a nonlinear change of variables
(see BoLza [4]). Under this correspondence the existence of conjugate points can
be shown to be equivalent to the nonexistence of a solution of Legendre’s equation
throughout the interval.

Remark 2.9. For the one-dimensional case (m == n = 1) ToNELLI [22, II,
p. 344] proves a result more powerful than Theorem 2.4 (see also BALL & MIzEL
[20, p. 334]). A striking consequence of TONELLI'S theorem is that given any
e> 0, thereisa 6> 0 with the property that E(u) = E(uo) Y u€ W§((xo — 6,
xo + 0)) satisfying [u — uolc << e.
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Example 2.10. Let m=n=1, L(xuu)=%[W)? —u?], 02=(0,2,
uo = 0. Then (2.28)~ (which is equivalent to (2.28)= in this case) becomes
ax)+1+a%(x)=0 x€[0,A].

It is easily verified that this has solution z(x) = tan (¢ — x) and that no solution
exists for 1 = =.

§ 3. The Polyconvex Case

In this section we combine the ideas and results developed in the earlier
sections to study the stability of equilibria, under zero body force, of an inhomo-
geneous elastic body which in its reference state occupies some bounded domain
2C R, n=1,2,3. In the notation of § 1 this corresponds to the case

L{x, u, Vu) = W(x, Vu), 3.1
where W:Q xM"*"— R* is the stored energy function of the material and
M7 = {Fec M""*": det F> 0}. 3.2)

Any deformation of the body u: Q- R” satisfying the local invertibility
condition

det (Vu(x)) >0 for ae. ¢ 0 (3.3)
has an associated energy E(u) given by
E(u) = f W(x, Vu(x)) dx. 3.9
2

The equilibrium equations, under zero body force, are the Euler-Lagrange equa-
tions for (3.4)

o (oW
ax”™

ﬁ(x, Vu(x)))zo, xc 02, i=12,...,n. 3.5)

Definition 3.1. (i) If » = 2 we say that the stored energy function W{(x, F)

is polyconvex if and only if there exists a convex function G:Q x M2"2x(0, o)
— R* such that

W(x,F) = G(x, F,det F) Y Fc M?**? Vaxc0. (3.6)

(i) If n =3 we say that the stored energy function W(#, F) is polyconvex if

and only if there exists a convex function G:Q x M>*3x M**3x (0, c0) > R+
such that

W(x, F) = G(%, F,adj F,det F) YFcM¥3 Vaxc (3.7)
where adj F and det F denote the adjugate matrix and determinant respectively.

We will assume throughout this section that W(#, Vu) is uniformly polyconvex
in the sense that

W(x,F)=x|F|* + W(x,F) ¥ FeM"™", forsome x>0, (3.8)



Stability of Equilibria 363

where W(x, -) is polyconvex and where G will denote the corresponding convex func-
tion of the minors given by Definition 3.1. We will suppose for the purposes of
this section that G is C? on its domain of definition.

Again throughout this section u, will denote a smooth solution of (3.5).
The main result of this section is to demonstrate, in this polyconvex case, an ana-
logue of Theorem 2.4 namely

Theorem 3.2. If W(x, F) is polyconvex and u,€ C*(Q) is a solution of (3.5),
then, given &, € 2, there exist &(x,), 6(%o) > 0 such that

E(uo + @) = E(uo) VY@ € WyP(Ba(%)) with |lgc <e. (3.9)

We now outline the strategy of proof of this result: the idea is to use the obser-
vation from § 1 that in order to prove that u, minimises E(u) on A, ; (given by
(2.3)) it is necessary and sufficient that there exists afunctional % : 4,5 — R such
that

@ Euwy=F(m) Yucd,, (3.10)
(ii) FW)= F(uy) Y uc Ay, (3.11)
(iii) Fug) = E(to). (3.12)

In this section we do not assume that & is a null Lagrangian. Our choice
of & is given by the integral of the right-hand side of (3.13), which we denote
]:(x, Vu), and Lemma 3.3 shows that solutions of the Euler-Lagrange equations
for E are automatically solutions of the Euler-Lagrange equations for . It follows
from this same lemma that our choice of & satisfies (i) and (iii). Hence it only
remains to prove that % satisfies (ii). To this end we set u = u, + ¢ and
demonstrate, in Proposition 3.4, that there is a null Lagrangian N(#, ¢, V)
such that L(x, Vu, + Vg )— N(»,¢, V) is strictly convex in Ve (in the case
n = 3 this holds for |l¢ || sufficiently small). Since the addition of a null Lagran-
gian does not change the variational structure of the integral functional % (1)
we can now apply our results from the convex case (i.e. Theorem 2.4) to conclude
that (ii) and consequently Theorem 3.2 holds.

We will prove Theorem 3.2 in the case » = 3, stating where necessary the
corresponding result for the two-dimensional case.
It is a consequence of the assumption of polyconvexity and (3.8) that

W(x,Vu) = » |Vu|? + G(x,V u,, adj Vu,, det Var,)

oG . ]
+ 5}:,— (x: vu()a ad] vuO; det vuO) (ll,; - ué)ytx)

oG , o . ;
+ — (%, Vg, adj Vu,, det Vuy) ((adj V), — (adj Vue),)

oA

oG
-+ = (x, Vi, adjVu,, det Vi) (det Vu — det Vug) Y ucAd, ;.
(3.13)
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We denote by i(x Vu) the Lagrangian which is given by the right-hand side of
the above inequality. The following lemma relates equilibria for f W(x, Vu)

to those of fL(x Vu).

Lemma 3.3. If u, is a solution of (3.5) then u, is a solution of the Euler-Lagrange
equations for F(u) = [ L(x, Vu)dx,
2

E(uy=%u) VYucAd,, (3.15)
and moreover

F(ug) = [L(x,Vuo)dx = [ W(%, Vug) dx = E(u). (3.16)
o Q

The proof of this lemma consists of a straightforward calculation and will be
omitted.

Proposition 3.4. (i) I/ n == 2 then there exists a null Lagrangian N(»,¢, V)
such that

L(x, Vu, + V) — N(#, @, V) (3.17)

is strictly convex in Vep.
(ii) If n =3 then there exists a null Lagrangian N(x,q, V) such that

L(x, Vu, + V) — N(x, @, V) (3.18)

is strictly convex in Ve for ||@||c sufficiently small.

Proof. We prove the result in the case when n = 3. The case n = 2 follows
by analogous arguments.

To prove the result it is clearly sufficient to prove that the Hessian of
L(x, Vu,+ Vo) — N(%,¢, V) with respect to the gradient variable is strictly
positive definite for some choice of null Lagrangian N. Hence it is sufficient to
consider those terms in L(x, Vu, - V) which are of quadratic or higher order
in Vg. These terms are

8GO eG®
*|Vg|* + 3 i 3 (e 00" ) + 7 (e pip et + 3 e o0 9 ).
3.19

Now let

. oGO N cGO
N(x,cp, vq)) —2 A' 6 8aﬁ/(p(p [ BY + 6 Ud 8 8aﬂy(p ,,3?9 wy oo

[ | ]'860 ijk i k
Tz \® d tad Eapyl0sn® 5y )25+ (320)

This is easily verified to be a null Lagrangian. (It has the form of a divergence which
vanishes on the boundary of £2.) On subtracting this nufl Lagrangian from (3.19)
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we obtain

o 2G® . lex
Py IVlP |2 _ (Pjsukaaﬂy(Pk,y _% (67_) 8 — (Preuk )

i Kk
SuﬁyW’ﬁ!P »y % ( 2d |

o 8G®
— et 1 () (3.21)

The only terms which are quadratic or higher order in Ve are now the first and
third terms in the above expression, i.e.
o o 6G°
A — Vet () (322

It now follows from the fact that the first term is uniformly positive definite
that the whole expression is a strictly positive definite quadratic form in Ve for
llgllc sufficiently small.

We now apply Theorem 2.4 for the convex case to the integrand

L(%, @, V) = L(x, Vu, + V) — N(%, @, Vep) (3.23)

to conclude that ¢ = 0 is a strong local minimiser in the small for f L(x, @, Vo)
2
and hence that u, is a strong local minimiser in the small for #(u) = f L(x,Vu).

Q2
Finally, this together with Lemma 3.3 demonstrates that # satisfies (3.10)—(3.12)
completing the proof of Theorem 3.2.

Remark 3.5. There is an obvious global version of this Theorem, with no re-
striction on the support of the admissible variations, which can be deduced by
applying Theorem 2.5 to f L(x, ¢, V). However, one would not expect such a

Q

result to be optimal in general. It is still open, in this polyconvex setting, as to
whether the criterion of positivity of the second variation fails as a sufficient
condition for a strong local minimiser. (See also Remark 2.7.) Work in BAaLL &
MARSDEN [3] shows that the criterion certainly fails for mixed displacement trac-
tion problems.

Remark 3.6. Our proof of Theorem 3.2 shows indirectly that, for uniformly
polyconvex integrands, the Hamilton-Jacobi inequality (1.19), as given in Pro-
position 1.3, together with the boundary condition (1.20), is always locally solv-
able. An alternative approach to the construction we have used would be to work
directly with the Hamilton-Jacobi inequality. The main problem that we would
encounter is that the Hamiltonian H as defined by (1.21) is not in general smooth.
However it is interesting to note that in these cases it is sufficient to solve

P8 —
= J‘;(x u) + H(x, u,V, Py, V,P) VYxc, VYucd, (324



366 J. SIVALOGANATHAN

where

_ oP§ Py
H(x, u, vx,uPM, VuPO) == FSZUVI:‘ {6 7 u,ﬁ + Z 8xms( M)ms
1 dettn (3.25)

OPy s .
&lj;‘ J& — G(%, Vu, adj Vu, det Vu)},

i.e., we treat the determinant, adjugate and gradient as independent variables.
The advantage of (3.24) is that H will be smooth if G is strictly convex and clearly
a solution of this differential inequality will yield a solution of (1.19) since
H=H.*

Our proof of (Theorem 3.2 can be interpreted in the spirit of the last remarks
as having constructed a solution of (1.19) by solving a smooth generalised Hamil-
ton-Jacobi inequality in which the Hamiltonian H is replaced by a smooth
Hamiltonian H which is an upper bound for H.

We remark also that given any particular equilibrium the techniques we have
used in the proof of Theorem 3.2 may yield stronger results as demonstrated by
the next example

Example 3.7. Let W(F) = tr (FTF) + h(det F), where 4 is C* and strictly
convex, then W is polyconvex. Let

xl + ,‘p(x2’ x3)
uo(%) = | x2, , (3.26)

x3,

where y solves Ay = 0 in £. Then u, represents a shear and is a solution of
(3.5); since det Vuy(x) =1, (3.5) reduces to

Aug =0, (3.27)

and u, clearly satisfies (3.27). In fact 4, is a global minimiser of E(u) for the dis-
placement boundary value problem. This is a consequence of the following argu-
ment which is analogous to the proof of Theorem 3.2: by the convexity of A

E(u) = ftr (VuT Vu) 4 h(det Vu,) + ' (det Vi) (det Vu — det Vu,) dx.
0

Since u, is an isochoric deformation, it follows that the last term in the integral
is a null Lagrangian with integral zero. Now by the convexity of tr (VuTVu)
and (3.27) it follows that

[tr (VutVu) + h(det Vug) dx = [ tr (Vug Vue) + h (det Vu,) dx = E(uy).
g g

T Related notions are used by PONTE CASTANEDA {15] in the study of overall properties
of nonlinear composites; see also TALBOoT & WILLIS [16] for the use of comparison
functionals.
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Remark 3.8. The following heuristic example indicates that the result of
Theorem 3.2 might be optimal. Consider a bar of stiff material embedded in a
matrix of softer material and subjected to uniform boundary displacements in
which the vertical sides remain vertical at the same distance apart and the hori-
zontal sides are pushed together. One might expect that for boundary conditions
of this type which are sufficiently severe, there would be multiple equilibria
corresponding to the phenomenon of buckling (even though this a pure displace-
ment problem). (See BALL [2].)

soft

a2
stitf

In particular we would expect that the equilibrium #, in which the deformed rod
remained vertical (i.e. unbuckled) is unstable and not a strong local minimiser.
Theorem 3.2 however would say that u, was a strong Jocal minimiser in the small.
To see that this does not contradict our above observation that u, is unstable,
first fix #, in the bar. The restriction on the size of support around &, of the ad-
missible variations imposed by saying that u, is strong local minimiser in the
small effectively shortens the length of bar available for buckling (i.e., it would
require a variation over a greater length of the bar to reduce the energy).

Concluding Remarks

The techniques used in § 3 in the proof of Theorem 3.2 can be extended to
treat higher dimensional polyconvex problems (i.e. » > 3) with little difficulty,
provided that hypothesis (3.8) is strengthened. The main point is to ensure the
existence of a null Lagrangian satisfying the claim of Proposition 3.4. It can be
verified that if the spatial dimension n = 2r or 2r + 1, then the assumption

W(x, F) = u |F|? 4 % |F]r - W(x, F) for some x, % > 0.

with W polyconvex, is sufficient to ensure that the appropriate version of Propo-
sition 3.4 holds by analogous arguments.

The results presented in this paper bear on an interesting theorem of TONELLI
[22] concerning the regularity of minimisers of E(u) (given by (1)) on the set
&/, (given by (4)). (This corresponds to the case m = n = p = 1 with 2 an inter-
val.) Tonelli’s partial regularity theorem has recently been reproved by BALL &
MizeL [20] using arguments in field theory. It would be interesting if this approach
could be extended to polyconvex problems, perhaps through use of the Implicit
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Function theorems of VALENT [23] and the results of § 3. (Regularity of minimi-
sers under the assumption of strict quasiconvexity is studied in Evans [8].)

I remark finally that it would be interesting to relax the smoothness assump-

tions made in this paper. (For example, allowing non-smooth potentials Py,
should make it easier to satisfy (1.20).) In this context the work of Lions [18]
should be relevant.
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