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Introduction 

In this paper we present general techniques for demonstrating the stability 
of solutions of  the equilibrium equations of  nonlinear elasticity under the con- 
stitutive assumption of  polyconvexity. Our approach extends and unifies ideas 
f rom the classical field theory of the calculus of variations and shows that  a 
sufficient condition for stability is that there exists a solution to a certain generalised 
Hamilton-Jacobi  differential inequality. Using this approach we show that for 
a large class of  polyconvex stored energy functions all equilibria are strong local 
minimisers with respect to variations of  sufficiently small support. 

Let ~ Q R m be bounded and open. To any given map u : ~ ---> R n we asso. 
ciate an energy 

E(u) = f L(x, u(x), Vu(x)) ax. (1) 

I t  is well known that any smooth minimiser of  E satisfies the corresponding 
Euler-Lagrange equations: 

) c~x~ (x, u, Vu) = ~ (x, u, Vu), V x E ~ ,  i = 1, 2 . . . .  , n. (2) 

We define the set of  admissible maps 

A~ = {,,C W " ( ~ ;  R") : 11,, - -  UoHc < e, u]0~ = Uo/~} (3) 

and consider the question of whether a given solution uo of (2) is a strong local mini- 
miser of  E in the sense that Uo minimises E on A~ for some e > 0 (where we use 

[]. I[c to denote the supremum norm on the space of continuous functions on .Q). We 
study this question in two cases: first when L(x, u, .) is strictly convex, and second 
in the case o f  finite elasticity (which corresponds to taking L(x, u, V u) = W(x, V u)), 
where we make the constitutive assumption that W, the stored energy function 
of the material, is polyconvex (see w 3). 

This problem has been studied in the case when m or n equals 1 and L(x, u, .) 
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is strictly convex in the beautiful work of  HILBERT, WEIERSTRASS, JACOBI, and many 
others, and is collectively referred to as the field theory of the calculus of the 
variations (see e.g. BLISS [5], BOLZA [4)], CESARI [6] and the references therein). 
The case where m and n are arbitrary and L(x, u, .) is convex is treated elegantly 
in the work of WEYL [ 14] (see also RUND [ 11] for further references). Unfortunately, 
the methods employed by these authors rely heavily on the convexity of  L and 
do not apply to polyconvex integrands of the type often encountered in finite 
elasticity. 

The idea underlying our treatment of  the convex case is most easily demon- 
strated in one dimension with m = n = 1 and ~Q = (0, l) if  we consider the 
problem of showing that a given solution Uo of (2) minimises E(u) (given by (l)) 
o n  

d e  ---- (u E W1'1(0, 1) : u(O) ---- Uo(0), u(1) = Uo(1), II u - Uo llc -< e} (4) 

for some e > 0. Our approach is to try to construct a C 3 function S(x, u(x)) 
with the following properties 

d ~S ~S 
(i) L(x, u, u') >= -dx S(x, u) = ~xx (x, u) § ~uu (x, u) u' u u E d~,  x E (0, 1), 

(5) 

(ii) 
d OS OS 

L(x, Uo(X), Uo(X)) = ~x S(x, Uo(X)) = ~ (x, Uo(X)) + ~ (x, Uo(X)) do(x), 

x E (0, 1). (6) 

for some e ~ 0. Clearly if  such an S exists then Uo is a strong local minimiser of  
! 

- -  f dS (x, u)dx is constant on d e  and equal to E(uo) by (6). E since dx 
o 

In order that S satisfy (i) it is necessary and sufficient that it satisfy the partial 
differential inequality 

0 ~ ~ (x, u) + H x, u, ~uu (x, u) x E (0, 1), u u E d e ,  (7) 

where the function 

=supI   ] 
is the Legendre transform of L with respect to its third argument and is often 
referred to as the Hamiltonian. Inequality (7) is an easy consequence of (5) since 
given any x E ( 0 , 1 )  and u, F E R  with ] u - - u o ( x ) i • e ,  there exists a C 1 
in d~  satisfying ~(x) ----- u, u'(x) = F. (For example, just choose fi to be an appro- 
priate polynomial.) Hence, for fixed x and u, (5) holds for any F = u' and (7) 
follows. We will refer to (7) as the Hamilton-Jacobi inequality (expression (7) 
with equality for all x is often referred to as the Hamilton-Jacobi equation in the 
calculus of  variations or the Hamilton-Jacobi-Bellman equation in dynamic 
programming).  A related approach, known as a verification technique, is used by 
VINTER & LEWIS [17] in the context of  control theory. Since (6) is only a deriva- 
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tive along the graph of  Uo it is not surprising that in general there can be infinitely 
many solutions of (6) and (7). 

Example. Let L(x, u, u') = (u') z q- u 2 and let Uo(X) = O; then since 
U 2 

L(x, u, F) ~ kuF for any k E [--2, 2], S(x, u) = k --f satisfies (5) and (6) for 

any k E [--2, 2]. In this case (7) becomes 

> ?s 2_ uS 
0 = ~x + �88 \Ou/ 

and S(x, u) solves the Hamilton-Jacobi equation only if k = 4-2. 

Hence in order to prove that Uo is a strong local minimiser of E it is sufficient 
to prove that there exists a solution of the differential inequality (7) that satisfies 
the boundary condition (6). The main point is that we have only to solve a differ- 
ential inequality and not an equation, an observation which allows us to treat 
higher dimensional problems. 

To construct a solution of (6) and (7) we show first in w 2.1, using an observa- 
tion from WEYL [14], that we can assume without loss of generality that Uo ~ 0 
and that L(x, u, u') and S(x, u) are of  quadratic or higher order in u and u', i.e. 
that 

L(x, O, O) = L,2(x~ O, O) = L,3(x, O, O) = 0 (8) 

and that 

~S 
S(x,  o) = ~u (x, o) = o u x E [0, 11, (9) 

where L, i denotes the partial derivative of L with respect to its ith argument. 
Since Uo ~ 0 it now follows that the boundary condition (6) is automatically 
satisfied. Hence we only require to solve the differential inequality (7) for 
l u --  Uo [ = t ul "< e sufficiently small. In Lemma 2.2 we show, that as a conse- 
quence of  (8), the corresponding Hamiltonian is of quadratic or higher order in u 

~S 
and ~u '  i.e. that 

H ( x , O , O ) = H , 2 ( x , O , O ) = H , 3 ( x , O , O ) = O  Y x E  [0, 1]. (10) 

We are now in a position to solve (7) using an expansion argument. First note that 
by (9) 

S(x, u) = �89 n(x) u z + E(x, u), (11) 

where E(x, u) is O(lu[ a) for small u. Now, using (10) and (11), expand (7) in a 
Taylor series in u to give 

o => ~ [~'(x) + H,22(x, O, O) + 2H,23(x, O, O) z(x) + I-L33(x, 0, 0) ~ ( x ) ]  u 2 

+ ~,u~, 
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where the error t e rm/~is  also O(lul3). Clearly, in order that S satisfy (7) for lul 
sufficiently small, it is necessary that er(x) satisfy 

0 ~ ~r'(x) + H, z2(X, O, O) + 2H,23(x, 0, 0) ~r(x) + H.33(x, 0, 0) :r2(x) (12) 

on (0, 1) and a sufficient condition for S(x, u) = �89 :fix) u z to satisfy (7) for [u[ 
sufficiently small is that :fix) satisfy (12) with strict inequality on [0, 1]. It can be 
shown that in this one-dimensional case the existence of a solution ~r(x) of (12) 
on [0, 1] is exactly equivalent to the nonexistence of conjugate points in the sense 
of Jacobi (see also Remarks 2.7 and 2.8). 

In w 1 we generalise the ideas outlined above to higher dimensional problems 
by use of  null Lagrangians N(x, u, Vu): these are the natural analogues of the 

dS 
functions ~x  (x, u) used in the one-dimensional case and are integrands with 

the property that ~ ( u )  = f N(x, u, ~Tu) dx is constant on all maps u that agree 
/2 

on cq32. A complete description of these Lagrangians in terms of  arbitrary potentials 
follows, for example, from OLVER & SIVALOGANATHAN [10] and is given in Theo- 
rem 1.2. 

An analogue of  the differential inequality (7) then follows in this higher di- 
mensional case when one tries to choose N(x, u, Vu) such that 

(i) L(x, u, Vu) ~ N(x, u, Vu) V u E A,, u x E f2, (13) 

(ii) L(x, Uo(X), VUo(X)) = N(x, Uo(X), VUo(X)) V x E ~ .  (14) 

Hence we require that the generalised Hamilton-Jacobi differential inequality 

0 ~> Sup (N(x. u, F) -- L(x, u, F)} u u E A,, x E [2 (15) 
F 

holds. An explicit form for this differential inequality in terms of arbitrary po- 
tentials is given in Proposition 1.3 and is the natural analogue of (7) in the higher 
dimensional setting. 

Our problem therefore is to construct solutions N(x, u, F) to (15) which satisfy 
the boundary condition (14). In Theorem 2.4 we prove that this problem is always 
locally solvable in the case when L(x, u, .) is strictly convex, and hence that Uo 
is a strong local minimiser in the small: in other words, given Xo E/2, Uo is a 
strong local minimiser with respect to variations with sufficiently small support 
around Xo. This result is implied in the work of WEYL [14] but our approach has 
the advantage of being direct and avoids the problem of solving the Hamilton- 
Jacobi equation. We also give sufficient conditions, in Theorem 2.5, for Uo to 
be a strong local minimiser (i.e. with no restriction on the support of the admissible 
variations). 

In w 3 we present our main results for non-convex problems when we consider 
the ease of finite elasticity. We make the constitutive assumption that L(x, u, Vu) 
= W(x, Vu), the stored energy function of the material, is uniformly polyconvex 
in the sense that 

W(x, F) --- ~ [Ft 2 + W(x, F) for some ;r > 0, V FE M "• (16) 
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B 
where W(x, .) is polyconvex. (Stored energy functions of  this type are uniformly 
strictly quasiconvex in the sense of EVANS [8].) In this case we prove that the 
corresponding Hamilton-Jacobi inequality is always locally solvable and hence 
that any smooth equilibrium for such a stored energy function is a strong local 
minimiser in the small (Theorem 3.2). Our construction of  this local solution is 
indirect, relying on the use of  a comparison functional and an observation from 
SlVALOGANATrIAN [13] (see Remark 3.6). The arguments used are outlined at the 
beginning of  w 3. Remark 3.6 also indicates a direct approach to solving (15) in 
the polyconvex case. 

We remark finally that it would be interesting to incorporate the conditions of 
quasiconvexity or strong ellipticity (rather than the stronger condition of  poly- 
convexity) into a set of sufficient conditions for a strong local minimiser (the 
techniques of  [13] may offer an approach to this problem). 

Notation. Throughout this paper /2 ~ R m, m >= 1, will denote a bounded do- 
main with C 1 boundary. Given any map u in the Sobolev space WI'P(/2; Rn), 
p , n ~  1, we write 

where 
I1 ul[1.p : Ilullp -t-IlVullp,  

1 

tlwll - / (jlwlp if l<p<  
ess sup I w I if p ---- ~ .  

Throughout  this paper we will assume that p > m so that by the Sobolev em- 

bedding theorem WI'P(/2; R n) is compactly embedded in C(~ ,  Rn). Given u E 
C(~ ;  R n) we write 

II u Ilc = Sup In(x)  j. 
x~-Q 

We will make the following abbreviations: 

LP(/2) = LP(/2; R"), 

W I , P ( ~ Q )  = W I , p ( / 2 ;  Rn), 

c(~)  = c(s~; no). 

w 1. The Field Theory of the Calculus of Variations 
and the Generalised Hamilton-Jacobi Inequality 

Let the Lagrangian 

L :  ,12X R"  X Rmx"  "->" R (1.1) 

be C a on its domain of definition and define the integral functional E : WI,P(/2)---~ R 
by 

E(u) = f Z(x, u, V u )  dx. (1.2) 
O 
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Throughout  this paper Uo E C2(~ )) will denote a solution of the Euler-Lagrange 
equations for E, namely 

Ox'---; (x, u, Vu) = ~ (x, u, Vu) V x E ~,  i = 1, 2 . . . .  , n. (1.3) 

In this paper we consider the Dirichlet problem (i.e. the displacement boundary- 
value problem), but afortiori the results apply to mixed problems. We will consider 
in particular the question of whether Uo is a minimiser of E on the set of admissible 
maps A, where 

A C= {u : u -- Uo E W~"(O)}, p > m. (1.4) 

The choice of A will vary depending on the nature of the stability of Uo which we 
are trying to prove. For  example, in proving Theorem 2.4 we take A to be given 
by (2.3) and in proving Theorem 2.5 we take A to be given by (2.4). 

The idea behind our proofs of these results is contained in an observation 
from SIVALOGANATHAN [13] that a necessary and sufficient condition for Uo to 
minimise E on A is that there exists a functional ~- : A -+ R satisfying 

(i) E(u) ~ ~ (u )  'r u E A, (1.5) 

(ii) ~ ( u )  :> ~-(Uo) V u E A, (1.6) 

(iii) ~'(Uo) ---- E(uo). (1.7) 

(The proof  of this result is trivial if such an ~- exists; conversely, choose ~- ~ E.) 
The field theory approach is to choose ~ to be the integral of a null Lagran- 

gian: in other words choose ~- to be an integral functional which is constant on 
the admissible set (see also w 3 where we do not make this assumption). Null 
Lagrangians have been studied by many authors; see, for example, EDELEN [19] 
or BALL, CURRm & OLWR [21] and the references therein. We next make precise 
this notion of  a null Lagrangian. 

Definition 1.1. We say that the C 1 function N:  ~ •  Rnx R m• R is a null 
Lagrangian if and only if 

~(u) ---- f N(x, u(x), Vu(x)) dx (1.8) 
g2 

satisfies 
~ ( u  + 9~) = ~ ( u )  v u E C'(.Q), VW E Wh'p(,c2). (1.9) 

This definition differs slightly from that given in OLVER & SIVALOGANATHAN [10] 
in which it is only required that (1.9) holds for q) E C~~ the fact that the two 
definitions are equivalent follows, for example, from Theorem 1.2, the continuity 
of Jacobian determinants (see DACOROGNA [7]) and a density argument. 

The idea of the field theory is to try to satisfy (i)-(iii) by choosing the null 
Lagrangian N(x, u(x), Vu(x)) so that 

(i) L(x, u(x), Vu(x)) ~ N(x, u(x), Vu(x)) u u E A, V x E s (1.10) 

(ii) L(x, Uo(X), Vu0(x)) -~ N(x, Uo(X), Vuo(x)) u x E Q. (1.11) 
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A first step toward effecting this construction is to describe the set of all null 
Lagrangians in terms of  the Jacobian determinants 

~(u% u% . . . .  u+) 
Jp, = ~9(xk~ ' xk~, . . . .  xkr) (1.12) 

where 
~-- (o<1, ~2, . - - ,  oQ ,  (1 .13)  

k = (k~, k2 . . . . .  k,), (1.14) 

have positive integer entries and r ~ min (m, n). Given ~ as in (1.13) and 
ME R r+l, where 

M ~-- (ml, m2 . . . .  , m,+l) (1.15) 

has positive integer entries satisfying 

1 ~ m~ < m 2 ~ . . .  ~ m r +  1 ~ m,  

we define the corresponding null divergence N ~ ( x ,  u, Uu), taking values in R m, 
by 

0 
(N~) i -~ (__l)S-, d~; 

where M; E R ~ 

if i ~ m~ for some s, 

if i = m~ for some s, 
(1.16) 

g ~  ~ ( m l ,  m2, . ..~ ms_l, m s + l ,  . . . ,  m r + l ) .  

The following characterisation of null Lagrangians can be found in the proof  
of Theorem 7 of OLVER & SWALOGANATHAN [10] (see also OLVER [9]). 

Theorem 1.2. Suppose that $2 ~ R m is star shaped. Then the C 1 function 

N : ~ • R n • R m" -+ R is a null Lagrangian i f  and only i f  

N(x, u, Vu) = Div [Po(x, u) + ~ P~(x,  u) N~] u  (1.17) 

for some C 1 functions P~(., .) and some C1R m vector-valued map Po(., .). 

If  we expand the right-hand side of (1.17) we obtain for N the expression 

<~P~ <~Pg " 3'. ~P~ ~P'~ :+ 
e x  ~ + - ~ u , ~  + :,~exm: (m~)m: + ~ J ~ ,  (1.18) 

where a + = (fl, 0q, oc2 . . . .  , ~,). On use of  this result the next proposition is 
immediate. 

Proposition 1.3. The null Lagrangian N(x, u, Vu) satisfies (1.10), (1.11) if  and 
only i f  it satisfies the generalised Hamilton-Jacobi differential inequality 

8P~o . 
0 ~ ~x  ~ (x, u) + H(x, u, V~,,,P~, U,,Po) V x E ,Q, V u E A,  (1.19) 
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together with the boundary condition 

L(x, Uo(X), VUo(X)) = N(x, Uo(X), VUo(X)) u x E ~Q, (1.20) 

where Vx,uP~ denotes first-order partial derivatives of  the P~s with respect to 
x and u, ~TuPo denotes first-order partial derivatives of  Po with respect to u, and 

H(x, u, ~Tx,uP~, VuPo) 

= S u p I " ~ u , o + ~ M B x m s ( N ~ ) m , + - ~ - ~ J ~ + - - L ( x , u ,  Vu )J (1.21) 
F =  7u 

is the generalised Hamiltonian. 

Proof. To derive (1.19), observe that given x E R m, u E R n and any FE M m• 
there exists a C x if(x) in A satisfying fi(x) : u, Vfi(x) = F. Hence, for fixed x, u, 
(1.10) holds for all FE  M m • (with N given by (1.18)). Expression (1.19)then fol- 
lows. 

w 2. The Convex Case 

In this section we focus on the case in which the Lagrangian L(x, u, Vu) is 
strictly convex in Vu. In fact we will make the stronger assumption throughout 
this section that the Hessian of L with respect to Vu is strictly positive definite; 
this corresponds to the case considered by WvXL [14]. Again 

E(u) = f L(x, u, Vu) dx (2.1) 

and Uo E C2(D~) denotes a solution of 

~ (~u,i ~ ) ~L (x ,u ,  Vu) VxE~Q, i 1,2 . . . .  , n .  (2.2) ~x--- ~ (x, u, Vu) = ~u---- 7 = 

The main results of  this section are contained in Theorems 2.4 and 2.5. Theorem 2.4 
shows that any such Uo is a strong local minimiser of  E in the small; in other words, 
that given Xo E D, Uo minimises E on 

A~,~ = (u: u -- Uo E m~'P(B~(xo)), II u - -  uollc < e) (2.3) 

for some 6, e > 0. Theorem 2.5 establishes sufficient conditions for a global 
version of this result to hold in which there is no restriction on the size of  support 
of  the admissible variations. This corresponds to showing that Uo is a strong local 
minimiser i.e. that Uo minimises E on 

A~ = (u:  u - -  Uo E W~'P((2)), ]1 u - -  Uo I rc<  e) (2.4) 

for some e > 0 .  
To prove these results we start f rom the more general setting of w 1 and try 

to construct a null Lagrangian N that satisfies (1.10) and (1.11). (Clearly the con- 
struction of  the appropriate null Lagrangians will suffice to prove these theorems.) 
We choose a specific form for N by setting P ~  ~- 0 for all o~ and M in the general 
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expression (1.17). Hence we try to determine Po(x, u) such that 

(i) L(x, u, Vu) :> Div Po(x, u) = ox-7---z(x'~ P~ u) + ~ (x, u) u,~i u u E A, 

(ii) L(x, Uo(X), Vuo(X)) = Div Po(X, Uo(X)) ---- ~ x  ~ (x, Uo) + 

355 

V x E O ,  

eP 6 
(x, Uo) u~,~ 

V xE D, 

where we make one of two choices for A depending on the nature of the stability 
result we are trying to prove: in proving Theorem 2.4 we choose A to be given 
by (2.3) and in proving Theorem 2.5 we choose A to be given by (2.4). 

w 2.1 Simplifying the Construction 

This subsection is aimed at simplifying the problem of constructing Po satis- 
fying (i) and (ii). The first lemma shows that, without loss of generality, we may 
suppose that Uo(X) ~- 0 and that L is of quadratic or higher order in u and Vu. 

Lemma 2.1. Let 

~L 
s v,v) = L(x, Uo + ~, Vuo + V,V) -- L(x, Uo, VUo) --  y~u, (x, Uo, VUo),~/ 

6L 
~u,~ (x, Uo, VUo) ~,~ v x E t2. (2.5) 

Then L is C 2 on its domain of  definition, strictly convex in U~, and of  quadratic 
or higher order in ~ and V~v; i.e., 

- - .  (x, 0, 0) ---- 0 (2.6) 

and 

Oq,(x,  0 , 0 ) = 0 ~ o ,  VxE32,  i =  1 , 2 , . . . , n ,  , x =  1 , 2 , . . . , m .  (2.7) 

Moreover the Hessian of  L with respect to V~ is positive definite and ~ =I 0 is 
a solution of  the Euler-Lagrange equations corresponding to L. 

The proof of this lemma is straightforward and will be omitted. 

We now show that we may similarly assume that Po is also of quadratic or 
higher order. To see this first notice that given x E -(2 and any FE M n• there 
exists a smooth C 1 map u EA satisfying u(x )=  Uo(X), Uu(x)= F. Hence 
inequality (i) holds in particular for u = uo(x ) and F ~ Vu arbitrary, with 
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equality for 
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F = ~7Uo(X) by (ii). It then follows that 

~L tgP~ 
(x, Uo(X), VUo(X)) = (x, Uo(X)) v x E (2.8) 

If we now set 

8 P~ (x, Uo(X)) qJ + P~(x, q~), (2.9) P~(x, Uo(X) + ~) - P~(x, Uo(X)) + ~gu---- 7 

it then follows from (i), (ii), (2.2), (2.5), (2.8) and (2.9) that 

P•(x, Uo + ~) ----- 61~'(x) + (x, Uo(X), VUo(X)) ~i + P6(x,~) (2.10) 

where fro is of  quadratic or higher order in q0 and 61(x) is any vector function satis- 
fying 

Div O(x) -- L(x, Uo(X), VUo(X)). 

It now follows on using this and (2.10) that in order to find Po(x, u) satisfying 
(i) and (ii) it is sufficient to find Po(x, q~) that satisfies 

/~(x,q~, V~0) ~ Div ffo(X,W) = ex---~(x, qO + -~9~q~,~, u  such that Uo + q0EA. 

(2.1 1) 

Thus we have succeeded in replacing the problem of finding Po satisfying (i) and 

(ii) by that of finding Po satisfying (2.11). 
In order that Po satisfy (2.1 1) it is necessary and sufficient that Po satisfy the 

Hamilton-Jacobi differential inequality 

0 ~ ~-~x~ (x,~) + / ~  x,r l VxE~2,  ]q~l < e (2.12/ 

where 

H ( x , %  A) = Sup (ATF~ ~ -- L(x, qo, F)} (2.13) 
F 

is the Hamiltonian. This is an easy consequence of (2.1 1) and the arguments given 
in the proof  of  Proposition 1.3. 

In order that H be finite for all arguments we assume henceforth that L, satis- 
fies the growth condition. 

L(x,q~,F)>=B]FIZ+D forsome B > 0 ,  D, V F E M  "x", v I q o i < e  , (2.14) 

where ]FI 2 = ( F , F ) .  
The next lemma shows t h a t / t  also is of  quadratic or higher order qJ and in 

eL 
~qo" 
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Lemma 2.2. The Hamiltonian H(x~ ~,  A) given by (2.13) satisfies 

H(x, O, O) = Hvi(x, O, O) = fflA~.(X, 0, 0) = 0 (2.15) 

(i.e. H has no constant or linear terms in % A). Moreover 

eq~ ~ ( x  , ~, ~,(x, r X)) t~ ~ e~,~ e~J ' 

where ~p satisfies 

H ~ . ( x ,  o, o) = (A-~) 5 ,  
l J 

~/(x,~,~ v,(x,w, A)) = A7 

and the tensor (A -~) satisfies 

r ~- l'~kj i 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where the above equations hold V x E ~ ,  i,j, k = 1, 2, . . . ,  n, ~, fl, ~ = 1, 2 . . . . .  m. 

Proof. It follows from the strict convexity ofL(x,  ~,  .) and the growth condition 
(2.14) that (2.13) is finite for all arguments and that the supremum is attained at 
the unique F satisfying 

el 
A~' = ~ (x, q~, F). (2.20) 

By (2.7) and the implicit function theorem this can be inverted for I A[ sufficiently 
small to give 

F~ = ~i(x, ~,  A) (2.21) 

where W is C 2 on its domain of  definition. Hence by (2.21), (2.13) is equivalent to 

H(x ,~ ,  A) ~ k _ = Akwv(x, % A) -L(x, ~,  ~p). (2.22) 

Hence using (2.20) we find that 

eL 
= #q--~ (x, ~,  ~p(x, q ,  A)) (2.23) 
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and 
k 

- -  . ~ 8 ~  . x HA~( x, 9% ~(x, ~v, A)) = ~f~(x, of, A) + Ak ~ ( , 9 ~, A) 

= w'~(x, ~ ,  A ) .  

By (2.20) and (2.21) it follows that y~ satisfies 

6L 
A; = ~ (x, ~, V(~, ~e, A)). 

8L 8~v k 
- -  (x,% A) 

(2.24) 

(2.25) 

Part (2.15) of the lemma new follows from (2.22)-(2.25) and Lemma 2.1. Similar 
calculations yield the remaining claims of the lemma. 

w 2.2 Solving the Hamilton-Jacobi Differential Inequality 

To recapitulate, we have succeeded in w 2.1 in replacing the problem of deter- 
ming P(x, u) satisfying conditions (i) and (ii) at the beginning of w 2 by that of 
determining a solution P(x, 9~) of (2.12). We now address the problem of construct- 
ing a solution of (2.12). We will first prove that (2.12) is always locally solvable 
in the following sense. 

Proposition 2.3. Given Xo E [2 there exists 6 ~ 0 such that 

o => ~ (,,,~) + H t x , ~ , - ~  ) v i~ t<~ ,  

has a solution on B,~(Xo) for all e sufficiently small. 

(2.26) 

Proof. We expand the right-hand side of (2.26) in powers of q%" and observe 
that in order to prove that (2.26) hold for 19~t sufficiently small it is sufficient to 
prove that it is satisfied strictly by the lowest order terms in the expansion (since 
these dominate the expansion for [9~1 small). 

Correspondingly, using (2.9), we write 

fi~(x, r163 = �89 ~ ( x )  q/qfi + E~(x, 9~), (2.27) 

where E ~ is of cubic or higher order in q~ and az~ = ~zj~. It now follows from 
Lemma 2.2 that the terms of lowest order in the expansion of the right-hand side 
of (2.26) are quadratic and given by 

[ 
�89 I F  (~i~(x)) ~'~J +/4~i,Ax, 0, 0) ~ J  + 2ff~;4(~, 0, 0) ~d~jq~ k 

(~Q x - -  

(2.28) 
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Notice that only second derivatives of H with respect to the entries of A occur, 
since by (2.27) all derivatives of higher order contribute terms of cubic or higher 
order in the ~;. 

It is thus sufficient to prove that the quadratic form in ~i given by (2.28) is 
uniformly negative definite on B~(xo) for some 6 > 0 for some choice of  the 
coefficient functions (~r~} in (2.28). 

To this end we choose 

zr~i ~ zr(x) " i = 1, 2 . . . . .  n (no summation) (2.29) 

1 
and all the other ~r~'s equal to zero. Now let ~r(x) = -- -~- (x -- x~) V x E B6(xo); 

then all the terms in (2.28), except for those involving the first derivative of  the 
coefficient functions ~r~, are bounded in B~(x). In fact (2.28) becomes 

(v~ ') + ~,o~(x, o, o) q~'~ + 2ff~(~, o, o) ~ '~ ,  + H,,14(~, O, O) ~o'~,. 

(2.30) 
Clearly by choosing ~ > 0 sufficiently small we can ensure that (2.30) is uniformly 
negative and hence that (2.26) holds for ]~ t sufficiently small for this choice of the 
Jr~'s. This completes the proof  of  the proposition. 

The last proposition together with the arguments outlined at the beginning 
of w 1 yields the proof  of the following theorem. 

Theorem 2.4. Suppose that Uo E C2(~) is a solution of(2.2). Then given x o E f2 
there exist e(Xo), ~(Xo) > 0 such that E(u) ~ E(uo) for all u --  u o E W~'P(B~(xo)), 
p >  n with ]lU-- UoIIc< e(Xo). 

We next establish conditions under which Uo is a strong local minimiser in the 
large (i.e. with no restriction on the size of the support of the admissible varia- 
tions). This is the content of  the next theorem. We will use (2.28) < (respectively 
(2.28) < ) to denote that the quadratic form given by (2.28) is negative definite 

(respectively strictly negative definite) for all x E -Q. 

Theorem 2.5. Suppose that uo E C: (~)  is a solution of(2.2) and that there exists 

a set o f  coefficient functions {z~} in C ' ( ~ )  satisfying the differential inequality 
(2.28) < in ~ then Uo is a strong local minimiser of  E: i.e. 

E ( u ) ~ E ( u o )  Y u - -  UoE W~'P(I2) with I l U - U o l l c < e ,  for some e > O .  

This theorem will follow from the expansion arguments used in the proof  of the 

last proposition once we prove that (2.28) < has a solution throughout ~.  This is 
the content of  the next proposition. 

Proposition 2.6. Suppose that the coefficient functions ( ~ j  are in C1(f2) and 
satisfy the differential inequality (2.28) < in ~ .  Then there exist (~r~) that satisfy 
(2.28) < in ~2. 
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Proof. Let 

~i~(x) = 7r~. -t- n-i)(x) for i , j  = 1, 2 . . . . .  n, o~ = 1, 2 . . . .  m, (2.31) 

where the ~ ' s  will be determined at a later stage. Then in order that {~i)} satisfy 
(2.28) < in f2 it is necessary and sufficient (since the {n~.} satisfy (2.28) -~ by assump- 
tion) that the {~i)} satisfy 

{ ~  _ _ 

(~(x))  + 2H~,A~,(X, O, O) -~ ~ikX~t ~ + na~a~(x, O, O) -~ 

_ _ } o) :~,~:~j, + t4A.~4(x, o, o) ~ }  ~'~ < o + ~a}(x, 0, ~-~ V x c ~ q .  

(2.32) 

other ~ 

Now let 

~(x) = eexp  -- [ + ( x '  -- c)], (xl) 
x 2 

where k > 0  and c i s  chosen so that x 1 - c > 0  V x =  E ~.  

xm 

On substituting this expression for .~ into (2.33) and dividing by exp [-- k ( x ' - - c ) ]  
we obtain 

--k~ic? i + 2eH#A](x, O, O) ~i~j + 2e~a]A~(X, 0, 0) =~0iq~ ~ 

+ e2ffA,A)(X, O, O)exp [~ek(x '  -- c)] ~i~'. 

Choosing k = 1 and e sufficiently small, we see that this quadratic form is strictly 
negative definite. Hence (2.31) is a solution of (2.28) < throughout ~.  

Remark 2.7. It is interesting to note the way in which the existence of a set of 
coefficient functions {'~t~} satisfying the conditions of the last Theorem (i.e. (2.28)-~) 
implies the positivity of the second variation of E(u) (given by (2.1)) at Uo. Notice 
first that by the definition of L, (2.5), all second and higher order derivatives of 
L with respect to u and Vu evaluated at Uo, VUo are equal to the corresponding 
derivatives of/7 when evaluated at 9~ = 0, Vg~ = 0. Hence 

,. ~2LO . OZL ~ OL o . . 
6 2 E ( u o )  ( r  = 1 # , j 

, f>a~s  ~ a ~ s  ~ . . a ~ Z o  . = ~ ~Z~,~ ~'~'~ + 2 ~ , ' ~ , + ~ , ~ , - ( ~ , ~ J ) , ~ .  

Choose ~]i(x)= •(x), i = 1, 2 . . . .  , n (no summation) and all the 
equal to zero. On substituting this into the left-hand side of (2.32) we obtain 

- -  - -  . . - -  - -  . . - -  . . 

(~),, cyqJ + 2H~,~!(x, O, O) 7t~'~' + 2HAJA~(X, O, O) nn~Cp'Cy § HAIA)(X , O, O) ~2Cp'Cp'. 

(2.33) 
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(The addition of the divergence term contributes nothing to the second variation, 
by the divergence theorem, since ~ vanishes on ~ . )  Expanding the divergence 
term and rearranging then yields 

>,. [ Lg,~ + (A-1)~ 

where (A-l) ,  defined as in Lemma 2.2, is the inverse of \c~<p,k #q0,~]" Notice that 

our assumption of strict convexity of  of L with respect to Vu implies that the first 
term in the integrand is nonnegative. It now follows from Lemma 2.2 that the 
condition that the coefficient functions {z~} satisfy (2.28) z is exactly equivalent 
to asking that the remaining term in the integrand, i.e. 

e2Z~ (~Ta),=] ~kf~, 

be a non-negative quadratic form in the 9~;'s, i.e. by subtracting the integral of 
an appropriate divergence from 82E(uo) (~ ,~ )  we have made the integrand 
nonnegative (and thus in particular 82E(uo) ( %  ~)  is also). The converse question 
as to whether positivity of the second variation implies the existence of a set of 
coefficient functions satisfying (2.28) < appears to be open and I hope to address 
this in a later paper. 

Remark 2.8. In the one-dimensional case (m = n = 1) (2.28) < reduces to 
(12), the ordinary differential inequality given in the introduction. In this case 
it can be easily shown, by the continuation principle, that (2.28) -~ has a solution 

on L) (which is an interval) if and only if (2.28)= is solvable on ~ .  (2.28) = is 
known as Legendre's equation and in this case Remark 2.7 reduces to an obser- 
vation of Jacobi--see BOLZA [4].) It is also interesting to note that, in this one- 
dimensional case, Legendre's equation transforms to the Jacobi conjugate point 
equation (i.e. the linearised Euler equation)under a nonlinear change of variables 
(see BOLZA [4]). Under this correspondence the existence of  conjugate points can 
be shown to be equivalent to the nonexistence of a solution of  Legendre's equation 
throughout the interval. 

Remark2.9.  For the one-dimensional case (m = n - - 1 )  TONELLI [22, H, 
p. 344] proves a result more powerful than Theorem 2.4 (see also BALL & MIZZL 
[20, p. 334]). A striking consequence of TONELLI'S theorem is that given any 
e > 0, there is a 8 > 0 with the property that E(u) ~ E(uo) V uE W~o'P((Xo -- 8, 
Xo -}- 8)) satisfying [I u -- Uo ]lc < e. 



362 J. SIVALOGANATHAN 

Example2.10. Let m = n = 1, L(x, u, u') = �89 [(u')2 -- u2], ~ = ( 0 , 2 ) ,  
Uo ~ 0. Then (2.28)= (which is equivalent to (2.28) -~ in this case) becomes 

:r'(x) + 1 ~ 7r2(x) ~ 0 x E [0, 2]. 

It  is easily verified that this has solution :r(x) = tan (c --  x) and that no solution 
exists for 2 ~ zt. 

w 3. The Polyeonvex Case 

In this section we combine the ideas and results developed in the earlier 
sections to study the stability of  equilibria, under zero body force, of an inhomo- 
geneous elastic body which in its reference state occupies some bounded domain 
3 2 Q R  n, n =  1 ,2 ,3 .  In the notation o f w  this corresponds to the case 

L(x, u, Vu) = W(x, Vu), (3.1) 

where W: 32 x M"+• R + is the stored energy function of the material and 

M n• = {FE mn• d e t F >  0}. (3.2) 

Any deformation of the body u : 32-+ Rn satisfying the local invertibility 
condition 

det (Vu(x)) > 0 for a.e. x C 32 (3.3) 

has an associated energy E(u) given by 

E(u) = f W(x, Vu(x)) dx. (3.4) 
s 

The equilibrium equations, under zero body force, are the Euler-Lagrange equa- 
tions for (3.4) 

c~ (~W~ (x, Vu (x ) )~=O,  xE.O, i = 1 , 2 ,  n. (3.5) 
t~x '~ \ c r ~ ]  " '"  

Definition 3.1. (i) I f  n = 2 we say that the stored energy function W(x, F) 
is polyconvex if and only if there exists a convex function G : ~ x M 2 •  cxz) 

R+ such that 

W(x, F) = G(x, F, det F) V F E M 2x2 Y x E f2. (3.6) 

(ii) I f  n = 3 we say that the stored energy function W(x, F) is polyconvex if 

and only if there exists aconvex function G:.QxM3•  oo)--~ R+ 
such that 

W ( x , F ) = G ( x , F ,  adjF, detF)  V F E M  3• V x E ~  (3.7) 

where adj F and det F denote the adjugate matrix and determinant respectively. 

We will assume throughout this section that W(x, Vu) is uniformly polyconvex 
in the sense that 

W(x, F) = ~ ]F] 2 + W(x, F) V FE M "• for some ~ > 0, (3.8) 
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w h e r e / ~ x ,  .) is polyconvex and where G-will denote the corresponding convex func- 
tion of  the minors given by Definition 3.1. We will suppose for the purposes of 

this section that G is C 2 on its domain of definition. 
Again throughout this section Uo will denote a smooth solution of  (3.5). 

The main result of  this section is to demonstrate, in this polyconvex case, an ana- 
logue of Theorem 2.4 namely 

Theorem 3.2. I f  W(x, F) is polyconvex and Uo E C2(~) is a solution of (3.5), 
then, given Xo E f2, there exist e(Xo), 6(Xo) > 0 such that 

E(uo + el) ~ E(uo) u q~ E W~'P(B~(xo)) with 1[~ l[c < e. (3.9) 

We now outline the strategy of proof  of this result: the idea is to use the obser- 
vation from w 1 that in order to prove that uo minimises E(u) on A,,~ (given by 
(2.3)) it is necessary and sufficient that there exists afunctional ~ : A,,o ~ R such 
that 

(i) E(u) => ~-(u) V u E ,'L,o, (3.10) 

(ii) ~ ' (u)  ~ o~-(Uo) u u C A~,o, (3.11) 

(iii) ~-(Uo) ----- E(uo). (3.12) 

In this section we do not assume that ~ is a null Lagrangian. Our choice 
of ~ is given by the integral of  the right-hand side of  (3.13), which we denote 

L(x, Vu), and Lemma 3.3 shows that solutions of the Euler-Lagrange equations 
for E are automatically solutions of the Euler-Lagrange equations for ~ .  It follows 
from this same lemma that our choice of ~ satisfies (i) and (iii). Hence it only 
remains to prove that ~ satisfies (ii). To this end we set u----Uo + r and 
demonstrate, in Proposition 3.4, that there is a null Lagrangian N(x,% Vg~ ) 

such that L(x, ~Uo + V~ )-- N(x, ~, V~) is strictly convex in V~ (in the case 
n = 3 this holds for I]~ ]lc sufficiently small). Since the addition of  a null Lagran- 
gian does not change the variational structure of the integral functional Y ( u )  
we can now apply our results from the convex case (i.e. Theorem 2.4) to conclude 
that (ii) and consequently Theorem 3.2 holds. 

We will prove Theorem 3.2 in the case n ~-- 3, stating where necessary the 
corresponding result for the two-dimensional case. 

It is a consequence of the assumption of polyconvexity and (3.8) that 

w(x ,  Vu)  > ,, IVul  2 + v Uo, adj VUo, det VUo) 

( - + ~ (X, Vuo, adj Vuo, det VUo) u i 

+ ~ (x, Vuo, adj Vuo, det Vuo) ((adj Vu)/~ -- (adj Vuo)~) 

+ -~- (x, VUo, adj Vu o, det Vuo) (det Vu -- det Vuo) V u E A~,~. 

(3.13) 
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We denote by L(x, Vu) the Lagrangian which is given by the right-hand side of 
the above inequality. The following lemma relates equilibria for f W(x, Vu) 

to those of f L,(x, Vu). n 
f2 

Lemma 3.3. I f  uo is a solution of(3.5) then Uo is a solution of  the Euler-Lagrange 

equations for ~ ( u )  = f L(x, Vu) dx, 
f2 

E(u) > ~ ( u )  V u ~ A~,~, (3.15) 

and moreover 

~(Uo)  = f ~L(x, VUo) dx -= f W(x, Vuo) dx = E(uo). (3.16) 
O s 

The proof  of this lemma consists of a straightforward calculation and will be 
omitted. 

Proposition 3.4. (i) I f  n = 2 then there exists a null Lagrangian N(x, ~, V~) 
such that 

L(x, VUo + Vq~) -- N ( x , %  V~) (3.17) 

is strictly convex in Vq). 

(ii) I f  n = 3 then there exists a null Lagrangian N(x, q~, V~) such that 

[,(x, VUo + Vg~) -- N(x,r163 Vg~ ) (3.18) 

is strictly convex in V~ for Hg~lic sufficiently small. 

Proof. We prove the result in the case when n = 3. The case n ~ 2 follows 
by analogous arguments. 

To prove the result it is clearly sufficient to prove that the Hessian of 

/~(x, Vuo + Vt/~) -- N(x ,~ ,  Vq~) with respect to the gradient variable is strictly 
positive definite for some choice of null Lagrangian N. Hence it is sufficient to 
consider those terms in L(x, VUo + V ~ )  which are of quadratic or higher order 
in VW. These terms are 

860 ~ o  
- -  - ~i~v~ w ,~ =- ~!d ~ t e~,,~w,~,w,~'r ,7 + 3e e~Uo,~q) ,~q) ,~,). 

(3.19) 
Now let 

N(x, 9~,Vq~)=_�89176 .. . . ) , , ~ ' e  ,J~ . . . . .  s ,, ' 

/ ,~o ,, 

This is easily verified to be a null Lagrangian. (It has the form of a divergence which 
vanishes on the boundary of ,(2.) On subtracting this null Lagrangian from (3.19) 
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we obtain 

_,o, ko _ ,  ok , 

- w o �89 t - g D - ]  ( 3 . 2 1 )  

The only terms which are quadratic or higher order in Vq) are now the first and 
third terms in the above expression, i.e. 

. . . . . .  ( 3 . 2 2 )  

It  now follows from the fact that the first term is uniformly positive definite 
that the whole expression is a strictly positive definite quadratic form in Tq~ for 
[]r sufficiently small. 

We now apply Theorem 2.4 for the convex case to the integrand 

L(x, rp, TqO = Z,(x, VUo -Jr- VW) --N(x, ep, VW) (3.23) 

to conclude that ~ ~- 0 is a strong local minimiser in the small for f L(x, % V~) 
s 

and hence that Uo is a strong local minimiser in the small for ~(u) = f L(x, Vu). 

Finally, this together with Lemma 3.3 demonstrates that ~" satisfies (3.10)-(3.12) 
completing the proof  of  Theorem 3.2. 

Remark 3.5. There is an obvious global version of  this Theorem, with no re- 
striction on the support of  the admissible variations, which can be deduced by 
applying Theorem 2.5 to f L(x, ~, V~). However> one would not expect such a 

result to be optimal in general. It is still open, in this polyconvex setting, as to 
whether the criterion of positivity of  the second variation fails as a sufficient 
condition for a strong local minimiser. (See also Remark 2.7.) Work in BALL & 
MARSDE~ [3] shows that the criterion certainly fails for mixed displacement trac- 
tion problems. 

Remark 3.6. Our proof  of  Theorem 3.2 shows indirectly that, for uniformly 
polyconvex integrands, the Hamilton-Jacobi inequality (1.19), as given in Pro- 
position 1.3, together with the boundary condition (1.20), is always locally solv- 
able. An alternative approach to the construction we have used would be to work 
directly with the Hamilton-Jacobi inequality. The main problem that we would 
encounter is that the Hamiltonian H as defined by (1.21) is not in general smooth. 
However it is interesting to note that in these cases it is sufficient to solve 

0 ~ ~ (x, u) 4- H(x, u, Vx,uP~, V,,Po) V x E ~ ,  V u E A, (3.24) 
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where 

8P~ .. 
H(x,  u, Vx,,P~,VuVo) = Sup ~ * o  - , .  

A=ad jTu  (3.25) 
d=de tTu  

8P~ } 
+ ~ J~+ -- G(x, Vu, adj Vu, det Vu) , 

i.e., we treat the determinant, adjugate and gradient as independent variables. 

The advantage of (3.24) is that f fwi l l  be smooth if G is strictly convex and clearly 
a solution of  this differential inequality will yield a solution of (1.19) since 
H ~ H . t  

Our proof  of  (Theorem 3.2 can be interpreted in the spirit of  the last remarks 
as having constructed a solution of (1.19) by solving a smooth generalised Hamil- 
ton-Jacobi inequality in which the Hamiltonian H is replaced by a smooth 

Hamiltonian H which is an upper bound for H. 
We remark also that given any particular equilibrium the techniques we have 

used in the proof  of Theorem 3.2 may yield stronger results as demonstrated by 
the next example 

Example 3.7. Let W(F) = tr (FrF)+ h (det F), where h is C a and strictly 
convex, then W is polyconvex. Let 

[x' + v(x 2, x3)] 
U 0(X  ) = / x 2  , , (3.26) 

I X  3 , 

where ~ solves A ~  = 0 in ,(2. Then Uo represents a shear and is a solution of  
(3.5); since det V u o ( X ) ~  1, (3.5) reduces to 

duo = 0, (3.27) 

and Uo clearly satisfies (3.27). In fact Uo is a global minimiser of E(u)for the dis- 
placement boundary value problem. This is a consequence of the following argu- 
ment which is analogous to the proof  of Theorem 3.2: by the convexity of h 

E(u) ~ f tr (VurVu) + h (det Vuo) + h' (det Vuo)(det  Vu -- det Vuo)dx .  
a 

Since Uo is an isoehoric deformation, it follows that the last term in the integral 
is a null Lagrangian with integral zero. Now by the convexity of  tr (VurVu)  
and (3.27) it follows that 

f tr (Vu r Vu) + h (det Vuo) dx ~ f tr (Vug" Vuo) + h (det Vuo) dx = E(uo). 
g2 

* Related notions are used by PONTE CASTANEDA [I 5] in the study of overall properties 
of nonlinear composites; see also TALBOT • WILLIS [16] for the use of comparison 
functionals. 
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Remark 3.8. The following heuristic example indicates that the result of  
Theorem 3.2 might be optimal. Consider a bar of  stiff material embedded in a 
matrix of softer material and subjected to uniform boundary displacements in 
which the vertical sides remain vertical at the same distance apart and the hori- 
zontal sides are pushed together. One might expect that for boundary conditions 
of this type which are sufficiently severe, there would be multiple equilibria 
corresponding to the phenomenon of buckling (even though this a pure displace- 
ment problem). (See BALL [2].) 

/solf...~ 

stiff 

In particular we would expect that the equilibrium Uo in which the deformed rod 
remained vertical (i.e. unbuckled) is unstable and not a strong local minimiser. 
Theorem 3.2 however would say that Uo was a strong local minimiser in the small. 
To see that this does not  contradict our above observation that Uo is unstable, 
first fix Xo in the bar. The restriction on the size of support around Xo of  the ad- 
missible variations imposed by saying that Uo is strong local minimiser in the 
small effectively shortens the length of  bar available for buckling (i.e., it would 
require a variation over a greater length of  the bar to reduce the energy). 

Concluding Remarks 

The techniques used in w 3 in the proof  of  Theorem 3.2 can be extended to 
treat higher dimensional polyconvex problems (i.e. n ~ 3) with little difficulty, 
provided that hypothesis (3.8) is strengthened. The main point is to ensure the 
existence of  a null Lagrangian satisfying the claim of Proposition 3.4. It can be 
verified that if the spatial dimension n = 2r or 2r -4- 1, then the assumption 

W(x, F) ---- ~ IF[ 2 -1- ~ IF] 2r 4- W(x, F) for some z, ~ > 0. 

with W polyconvex, is sufficient to ensure that the appropriate version of  Propo- 
sition 3.4 holds by analogous arguments. 

The results presented in this paper bear on an interesting theorem of TONELLI 
[22] concerning the regularity of minimisers of  E(u) (given by (1)) on the set 
d e  (given by (4)). (This corresponds to the case m = n = p = 1 with ~ an inter- 
val.) Tonelli 's partial regularity theorem has recently been reproved by BALL & 
MIZEL [20] using arguments in field theory. It would be interesting if this approach 
could be extended to polyconvex problems, perhaps through use of the Implicit 
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Function theorems of VALENT [23] and the results of w 3. (Regularity of minimi- 
sers under the assumption of  strict quasiconvexity is studied in EVANS [8].) 

I remark finally that it would be interesting to relax the smoothness assump- 
tions made in this paper. (For example, allowing non-smooth potentials P ~  
should make it easier to satisfy (1.20).) In this context the work of LIONS [18] 
should be relevant. 

Acknowledgements. I thank GARETH PARRY for useful discussions and JOHN BALL for 
constructive suggestions concerning the manuscript. My thanks also to JOHN TOLAND 
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