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ABSTRACT, — In this paper we study some of the implications for
stability of cquilibria in nonlincar clastostatics of assuming thaf the stored
energy {unction is rank one convex.
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RisuME - Pans cet article nous ¢tudions la stabilitd des équilibres

en élastostalique non linéaire sous Phypothése que la fonction d’énergie
emmagasinée est convexe de rang un,

INTRODUCTION

Let the functional B be defined by

E(y}mf L{x, u(x), Vu(x))dx, {©.1}
Q
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100 1 SIVALOGANATHAN

where Q< R” and u: Q- RB" Then any smooth weak minimiser y, of B
satisfies

L
(x, 4, V) ): (x, u, V)
ou'

(0.2}
i=1,2,...,n, Yxef)
and the Legendre-Hadamard condition
(x, 1o () Vi )M A pP =0,
0.3)

Vxel, Vi, peRt

(for a proof see Morrey [11]}. The integrand L. is said to be rank once
convex if

&* L . -
=i, u, PYA i ad pf =0 Vi, pe @ (0.4)

In this paper we examine some of ihe implications for stability of
smooth solutions of (0. 2) of assuming that L is rank one convex.

Suppose u, is a smooth solution of (0.2}, Roughly speaking, we say
that u, imbedded in & one parameter family of equilibria { u (o, )} parame-
trised by @ in some interval 1 around zero if

{1) for each wel, u (o, x) is a solution of (0.2) and

(i) wo{x)=u(0, x).

For the precise meaning see Pefinition 1.5,

In the context of nonlinear elastostatics L. (X, 4, Vi)=W (Vu), where W
is the stored energy function. In section 2, part II, we generate familics of
equilibria from any smooth equilibritun solution by exploiting the inva-
riances of the underlying Euler-Lagrange system.

Given any integrand L.(x, », Vi) and a corresponding onc parameter
family of equilibria {u (o, .)} we can generate further maps uy: Q — R" by
taking any function 0:0 — [ and defining

Uy {x) =u(0(x), x),

i.c. we allow the parameter to be a function of position. If 8|, =0 then
1, and wu,, satisly the same boundary condition. Our main result in section 1
is that u, is the global minimiser in this class i e.

E (1) 2 E(uy)

Auinades de Pinstitui Henvi Poincard - Analyse non linéaire



IMPLICATIONS OF RANK ONE CONVEXITY 101

for all functions 0 (x) such that 8],,=0. Our arguments usc what appears
to be a natural generalisation of the one dimensicnal field theory of the
Calculus of Variations (see e. g, Cesari [6], Morrey [11]).

Basically, the problem is to show that uy minimises E on some admissible
set of. A necessary and sufficient condition for this to hold is that there
exist a functional 4 : & - R with the propertics

() E(wzF (v, Vued;
(i) F (WZF {up), Yue s and
(i) F (up) =E{ug).

It is clear that the existence of # satisfying properties {i)-(iii} implies that
U, is globally minimising in &, Conversely, if ug Is the global minimiser
in o7 then & = B satisfies (1)-(iii).

In the field theory of the Calculus of Variations the approach is to
ensure that (i) holds by an appropriate convexity assumption on L and
that {ii) and (iii) arc satisficd by choosing & to be a null Lagrangian i. e,

T )= j N{x, u, Vi) dx,
[$]

where N is chosen so that # (i) =% (u,) = {u,), Yue.s. A central prob-
lem is to characierise the set of all N with this property. This question
has been studied by a number of authors including Ball, Curric and
Olver {4], Edelen [7]. Ericksen {8], Landers [10}, Oflver {12}, Olver and
Sivaloganathan [13], Rund [14]. In our arguments N is given by the right
side of (1.11), this generalises the situation for one dimensional problems
where u: | — K and 4 is the Hilbert invariant integral of the classical field
theory (see Cesari {6), p. 70). Examples of the application of the one
dimensional field theory to elastostatics are contained in Ball and
Marsden [5] and Sivaloganathan {15} There have been various attempis
to extend the ficld theory to multiple integral problems (see e. g Weyl {17],
Morrey [113, Rund [14] and the references therein) however, in contrast to
the one diomensional theory, the gap between the known necessary and
sufficient conditions is still large.

In scetion 2 we apply the results of section 1 to nonlinear elasticity. In
Proposition 2.4 we obtain a partial answer to the question of whether rank
one convexity implies quasiconvexity by showing that the homogencous
deformations are gtobally minimising in various classes of deformations
(for Turther details regarding this open problem see Bali [3]). Finally, in
section 2, part 1H, we apply owr techniques fo prove a uniqueness result
originally due o Knops and Stuart 9], The result, which is contained in

Yol §, n” 2-1988,



102 1. SIVALOGANATHAN

Theorem 2.5, is that if the stored energy functions is rank one convex
and strictly quasiconvex then the only smooth solution of the equilibrivm
equations satisfying affine boundary conditions is the affine (homogencous)
map itself,

The resulis of this paper are, we hope, a first step towards a ficld
theory for three dimensional problems of nonlinear clasticity under realistic
convexity assumptions on the stored energy function.

I, PRELIMINARIES

Let QaR" nz ] be a boanded domain with strongiy Lipschitz boundary
and let L1V xR« M"™" - R be C* on its domain of definition, where
M"** denotes the space of 1 x i matrices and VER" is some open set with
Qa ¥V, Later, in considering applications {o clasticity, we allow L to have
singularities.

Given we W * (Q; B define the corresponding energy E(u) by

E(u) nf Lx u(x), Valx) dx, (t.1)
Q
where (Vu(x))= -f-lf}, Lj=1,2,...,n
B

For the purposes of this paper we consider the displacement boundary
value problem in which the values of u are specified on the boundary of
£ by

a0 (1 2)

u im =Uy

for some given funetion ug,.

Nuolt Lagrangians
Let N:Ux xR - B be C! on its domain of definition, where 1g R is
some open interval and Uaca R is open and contains €2

Drrmvmion 1.1, — We say that N (x, 0, P} is a null lagrangian il and
only i the functional

del

L0y = J N{x, 0(x), VO{x))dx

Annales de Vlnstitut Heard Pofucaré - Analyse non Hinéaire



IMPLICATIONS OF RANK ONE CONVEXITY 103

satisfies
& (61):"*“??(82)
for all 8, such that:
() B,eC G R, i=1, 2
(i) 0, —0,eCy(Q; 1) and
(iil) 6;(x)el, Vxel), i=1, 2,

Remark 1.2. — It follows by approximation that % is constant on alf
Oe W' = () that satisfy (i1i) and that agree on JQ.

The next Lemma gives a characlerisation of N.

Limma 1.3, — N{x, 6, VO) is g null lagrangian if and only if

J {[C’N(x 0(x), VG({))]”%(%T)
ol d8g -

O 0 06, VO s 0. 01.)
(91"

YO0eCH(Y) and Ve CF () such that :
() 8(x)el, vxefd
and (1.5)
(i) G(x)+n(x)el, Vel
Proof. — H N is a null lagrangian then any 0eCH{E)) is a global
minimiser of . against all admissible variations ne CJ (€3) and thus (1.4)
holds. Conversely given 8¢ C' () and neCZ () satislying (i) and (ii)
then it follows by the dominated convergence theorem that

b
LO+1) =2 (0) 4 f{ifﬁ(eﬂn)d;
o dt

]
xﬁf(@)-l—f J {;}(}}\} {x, 8-+tm, VB4+LV 1) {n.a (1.6)

%[(;T;(x B-+in, V6+t\7n) 1 dx di
[’

= 7 ()

this follows on replacing 6 by 011 in (1.4} and observing the convexity
of the domain of definition of N for fixed x.

Vol. §, 1" 2-1988.



104 1. SIVALOGANATHAN

Remark 1.4, — If 1=R then Lemma 1.3 is simply the statement that
N is a null lagrangian if and only if the Buler-Lagrange equation for % is
identically satisfied in the sense of distributions for ali e C* ().

Families of equilibria

Dermrion 1.5, — We say that the one parameter family of functions
{u(o, x)} parametrised by el some open interval around zero is a one
parameter family of equilibria if

(i) for cach acl, u (o, .)eC* () R" and is a solution of {0.2);

(if) all the partial derivatives up to second order i.e.

TN VN LET R LT a*u .
R e Tt LA k=12 ...,n
doo Axt do? T Dudxt Oxfaxk

exist and are continuous on I x {3,

We next define a family of maps & that is obtained from the one
parameter family of equilibria by replacing the parameter with a function
0(x). More specifically

o= {y(x) 10 CHE; 1) and By, =01}, (1.7

where
del’
Uy =u(0(x), x)  for xel (1.8
i.e. .o consists of maps y, satisfying the same boundary condition as u,,
where
del
o (%) = (0, x). {1.9)
The next Theorem is the main result of this section and shows that u, is
the global minimiser of E on ..
Turorpm 1.6, -— Let {u(o, x)} be a one parameter family of equilibria
and ler L. be rank one convex, then
E (1) 2 B (uo)s Vupe o,
where & is defined by {1.7) and u is given by (1.9),
Proof. — A simpie calculation gives
dut ou

Vi{x) =Vu(0(x), x}= ( 0 X) o g+ (B (3, X) ae (zc))
oxt do ox!

du u 20
= 0 X e+ (000, X)® .
¥ G ox

X

Annales de Plastitar Henrd Pofncerd - Analyse non Jinéaire



IMPLICATIONS OF RANK ONE CONVEXITY 105

It then follows from the assumption that 1. is rank one convex {0.4) that
LG 1002, Vol 215 1000, 5409, )

oL o 20 (x)
+ arﬂ (x NU{X) (B(X)s X)) (B( ) it a’(ﬂ [ (I . ]1}

where

Notice that the right hand side of inequality (1.11) is a function of x,
O(x), VO(x). We next show that it is in fact a null lagrangian (see
Definition 1. 1}. By Lemma 1.3 it is sufficieni to prove that the expression

. o ._
H[ e (x . & (00, x))(j’({a(x), z)]n,ﬁ(e&-)
aFy Yijod

+ f?”'i (w w9, SO0, ,\)) X 069, 9
! dot

dL
+61*‘;;<5’ _0(’6) (G(x) >c)>j i (B (x), x)
az du i)u
61-4 h al ( Uy (2‘), 65 {G{ )) ({)( ), L) (e (x), \,} (X)
oL Ou 0
1 ﬁ%ap(x ug(x) (G(x), )),) S - (0 (x), x) ({)(\) } ()

i we fow v)T 0w 0 o] e o

Vol. 5, n” 2-1988.



106 J. SIVALOGANATHAN

is equal to zero. We integrate the first term in squarc brackets in (1.13)
by parts which yiclds

o 0 dL
L{[ ( 00 x) )x" uamc“(e( % X)) oF,

A &L 2L [ o
"""""" (9 (x), x (6%:5‘8;54*51;5;' L EJE( (x), x )‘i‘ (9 (x), X} )]

A2 2,7 2
4oL P 00, 9+ 0" u (eo»} 9% (x )D M 000, 3

(')F'B@FJ Ox¥ axP axh ol o
L ET LER® M a0
g . X R 4] e (0 {(x , X} (X
o 2 00 9 }WJ 009, 97 0, 9 5

0*1 o
SIS T

OxY¥ du

" aEy oF

[ ‘7,2 i
+2 200, 925w

aF '5 doi

1l(X)} (1.14)

where we have suppressed the arguments of the derivatives of L. Simplify-
ing (1.14} yields

'}? 2,0
RE Ia“w() B
Q 1% OFT ox7 ox®

L au' 0 L 4L )
(0(x), x)+- "F' ,} N Orj) ) 7 ({)}dx

8u 7 (6L Ju
— a e 3 , x), = (o, x
Jﬂ{ ( (0(x), x )in (ar«‘f,(')““’ u{o, x) 65(& \})

‘”J(,\ 0 (8 (), ), 5“(@{) ))Dn{a@)}dx, (1.15)

c'ﬂ* Ol oxP

=0 (x)

o'

which is equal to zero by our definition of a one parameter family of
equilibria [see Definition 1.5(i)}.

Hence by Lemma 1.3 the integral of the right-hand side of (1.11) is
constant for all maps in % and is equal in particular to its value for the

Annales de Ulnstitet Henri Poincerd - Apalyse non lingaire



IMPLICATIONS OF RANK ONE CONVEXITY 107
map corresponding to 0=0, u(0, x}, i.e

E (1) = j‘ L(x, up, Vug)dx
£

;f L(x u(0, x), '(35{0, 5}) dx:j L(x, 4p, Viry) dx=E{uy),
I ¢ o

Ox
proving the result.

Remark 1.7, — The integral of the right-hand side of {1.11) appears
to be the natural generalisation of the Hilbert invariant integral of the
one dimensional ficld theory of the calculus of variations {see Cesari [0]).

The Theorem has a natural generalisation to the case when

[N U i N .

Z. APPLICATIONS TO ELASTOSTATICS

i, The stored Knergy Fanction

In this section we describe some of the implications of the results of
section: 1 for the stability of equilibria, under zero body foree, of a homo-
gencous 1sofropic elastic body which in its reference siate occupies some
bounded domain Q<R" In the notation of section 1 this corresponds to
the case

L(x, u, Vu)=W(Vu), (2.1)
where W : MW"+ R" is the stored energy function of the material and

M%7 = { Fe M"*" : det F>01, (2.2)

We will assume for the purposes of this section that We C? (M”,."”, ﬂ'&"‘).

Any deformation of the body u: Q — 1" satisfving the local invertibility
condition

det(Vu{x)) =0 for a.ecxeQ) (2.3

Vol. 5, n® 2-1988.



108 1. SIVALOGANATHAN
has an associated energy E(u) given by
E(g):J W({Vu(x)dx. (2.4)
&

In order that ali maps u with finite energy should satisfy (2. 3) we require
that

W(F) -0 as detF -0
and extend the domain of W to all of M**" by setting

W{F) == o0 il detFZ0. {2.5)

The equilibrium equations, under zero body force, are the Huler-Lagrange
equations for (2.4

J (oW
@ )=0,  i=12 ... (2.6)
Ox*\ Q¥
Remark 2. 1. — The homogeneous deformations, which are the affine
maps given by
w{x)=Fx+c some FeMi"", ce Ry, (2.7

arc always solutions of (2. 6).

1L Families of equilibyia

In the context of noniinear elasticily we can generate one parameter
families of equilibria (see Definition 1.5) by taking any smooth solution
o e C*(€) of (2.6} together with any differentiable group that leaves the
Eurler-Lagrange system (2. 6) invariani. Thus, for example, the invariance
of the energy 1 under rigid body motions implies that

W{QF) = W (F}, YEFeM " QeS0(n). (2.8)
and hence that
ulat, x)=Q (o) uo (%) -+ dle) {(2.9)

is such a family whenever Q: 1> SO and d:1-+R" are any twice
continuously differentiable functions.

Similarly, the assumption of isotropy {see Truesdell and Noll [16])
implies that

WEFQ=W(E),  VFeMY", QeSO (2. 10

Annales de Pinstitur Henri Poinearé - Analyse non linéaire



IMPLICATIONS OF RANK ONE CONVEXITY 109

and hence that

e, x) =1 (Qlot) x+d (o)) (2.11)
is also a one parameter family of equilibria. However, in this case, it is
clear that in general u{c,.) will not be defined on all of Q so that
Lemma 1.3 and consequently Theorem 1.6 do not apply directly. [We
would certainly need to further restrict the class &/, given by (1.7), by
requiring that the functions 0: Q-1 satisfly Q(8(x))x+d(0{x))e,
¥xel Other difficultics would arise in ensuring that a version of
Lemma 1.3 holds as this relies on the convexity of the domain of definition
of the putative null Lagrangian.] Notice that in proving a version of
Theorem 1.6 the requirement that y,e.@ shouid satisfy (2.3) causes no
difficulties as (2.5) guarantees that E(u,) = oo whenever (2.3} fails on a
set of non zero measure,

Another family of equilibria, which we will use later in this section, is

generated by the invariance of (2. 6) under the scaling

{(x, ) = (0x 8wy >0,

) where o<1, (2.12)
- Ok

w{o, xy==(1—o)u, (

is a solution of {2.6) whenever u, is. {The parameter d=1-—o is chosen
so that u(0, x)=uy(x).] Again u(e, .) will not in general be defined on all
of §3. Notice also that the family defined by (2.12) is contained in that
described by (2.9) in the case when uy is an affine map {see Remark 2. 1),

Finally, using Remark 2. 1, we can generate another family of equilibria
which is different in character from (2.9), (2. 11} and {2, 12):

ulon x)=XA0) x+d(a) (2.13)

is a family of equilibria defined on R" for any choice of smooth functions
KT MO 41— R

Remark 2.2. — Any combination of the families (2.9), (2.11} and
(2.12) will also gencrate a family of cquilibria.

DerpNrtion 2. 3. - We say that W is quasiconvex at Fe M if

J. W(F-+~Vfg(g§))dx§f W (F) dx=mes (D) W (F) (2.14)
)

>
for all bounded open sets D<R?, VoeW) “ (D), and is strictly quasi-
convex at F if (2.14) holds with strict inequality whenever @#0. We say
that W is quasiconvex if (2. 14) holds ¥V Fe M"*".

Vol. 5, n° 2-1988.



110 1. SIVALOGANATHAN

1t is well known that if W is quasiconvex then it satisfies (0.4) (see c. g,
Morrey [11], Ball[2]}. The converse question, first posed by Morrey, is still
open. A partial answer 1s furnished by the next proposition,

Prorosimon 2.4, — Let the family of equilibria u(v, .}, ol (some open
interval around zero) be defined by (2.13), where K:1 - M**" and
d:1—R" are twice continuously differentiable functions satisfying
KO =F, d(Q) =c¢ for some Fe MLY'", ce R,

Then BE{ug)2E(ue), Yujesd, where o is defined by (1.7 and
uo{xp=lx-+c.

Proof. — This follows by a straightforward application of Theorem
1.6.

. Uniqueness of eguilibria

in this section we show how the uniqueness result of KEnops and Stuast
[9] mray be derived by the methods of section 1. Their result is the foliowing.

Thieorem 2.5, — Let § be star-shaped and let W e C* (M®*", R) be rank
one convex and stricily gquasiconvex at Fe MY If u, ¢ C? () is a solution
of (2.6) satisfving

Ug{X) =¥ x-¢ Vxedd, jorsomeceR" (2.15)
then
Up(¥)=Fx+e,  Vxel

The proof of this Theorem is deferred until the end of this section. The
idea of it and the main difficulties arc most easily demonstrated by
considering the case =1 the unit ball in R* and setting ¢=0. Assume
the existence of an equilibrium u, (x)#£F x and to ry to apply a version
of Theorem 1.6 with the family {w (o, x)} defined by (2. 12) to conclude
that

E{ug) 2 E (1), Vo st Gl(m:O. (2.10)

each point x radially onto the boundary 6]3) then by (2.18), (2. 15), (1.8}

Annales de Unstinee Henrd Poincaré - Analyse non lingaire
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and (2.12) it follows that

and that

def -
E(W")2B(u,) where u'(x)=Fx, Vxel

(Knops and Stuart [9] conclude this by the use of a divergence identity
for equilibrium solutions). But if W is strictly quasiconvex then
E(ug)>E(w"), a contradiction. However, in this case, even though
Ge W' “(B), Lemma 1.3 and Remark 1.2 do not apply directly. There
are two main probiems associated with our putative nuil Lagrangian [the
right-hand side of (2.26)}: firstly it is defined for those functions 8(x) for
which ]g ()LQ, VxeQie fora given xe0 the admissible valuces 0 (x)
—8(x

must lie in a closed set. Hence when trying to obiain the analogue of
Remark 1.2 by approximating 0 by smoother funciions care has to be
taken to ensure that the approximating functions respect the constraint.,
Secondly, Lemma 1.3 does not apply divectly since it requires the inte-
grand to be in C* in order to use the dominated convergence theorem fo
obtain (1.06) but the differentiability properties of (2.26) in x and 10 as
x, (1--0)-0 are not clear, We circumvent these difficuities in
Proposition 2.8 and Corollary 2.9 using a procedure which allows us to
work away from the singular point =1,

Hypotheses on Q. — For the remainder of this paper we will assume
further that Q is star-shaped with respect to the origin, i ¢. that Get} and
that for each x e\ {0} there exists a unique >0 such that 1xe 70, We
will also assume that Q has & C' boundary in the sense that there exists
an open neighbourhood U of Q2 and ¢ e C' (U, R), with V ¢ non vanishing
on U, such that

2= {xeU: p(x)=0} (2.17)

The assumption that € is star-shaped with respect to the origin then
implies that
Y. Ve(Y)r#0, VY e a0, (2.18)

Vol. 5, n” 2-1988,



112 1. SIVALOGANATHAN

Drrmvrion 2.6. — We define the scaling function ¢: Q& — R {or each
xe N J 01 by assigning €(x) to be the unigue positive number such that

_.‘.._'":. _____ e ¢y (2. 19)
and set g(0)=0.

Lemuma 2.7, — The scaling function € satisfies
seWh 2 (Q, RyNCHIN{0}, R)

Proof. — Let o, B be respectively mf Ele sup | xil w

the usual Buclidean metric. Since QCQ by cassumpllon. it follows that o,
B0 and that

os |2 p vreB\(0)
e(x)
As >0 i follows that
drlsews el vxeoN©) (.20
By definition
m(‘)zc Vxe N0} (2.21)
e{x)

where @ Is the function of {2.17). We now extend the definition of & to
t£) where £>1 is chosen so that tQcQi)U and Y. V@(Y)#0, this is
always possible by (2. 18). It then foliows from (2.18) and the implicii
function theorem that seC'{tONJ0}, R) and hence eeC(QO, R) by
(2.20). Differentiation of (2.21) gives

i X 1§ x Y ‘
E:(XJV{E)(&:(X)) &% (x) \ V(P(ti(a»t) )Jvrw XEHNLD)

Vv
s Ve(ne OB N0 (2.22)
(x/2). Vo (x/e)’
AseeCHON{0}, R) clearly e C' (AN {0}, B) and the boundedness of
Ve now follows from the continuity of the right-hand side of (2.22) and
the compactness of J€.

Prorosrmon 2.8, — Suppose that W is rank one convex and that
upeC*HQY) is a solution of (2.6) that satisfies ug|m=Fx for some

Awnales do lastitnt Henri Poincaré - Analyse non linéaire



IMPLICATIONS OF RANK ONE CONVEXITY 113
FeM " Let ¢,e(0,1) and define

. I —g(x if = (Ng, Q)

e(ag):{ 00 xefiNe (2.23)

I—gq iff xeg
where g{x) is the scaling function corresponding to £), given by
Definition 2.6, Then
E (1) 2 B (), (2.24)
where g is defined by (2.12) and (1. 8).
Notice that

Fx if xeli\g,Q

{2.25)
iy ()= Lo ”0(&) if xegQ
&
Proof. — Our proof proceeds in 2 stages.
Step 1. — We first show the existence of a sequence 8,cC* (0} with
the foliowing properties
0 Y eh, Vxel, Vi
Gli (\')
. cil)
(i) 0, —8 as n-» o0
VR FL <)
(i) VO, —-= V0 as n-» o0 and

(iv) 6, (x)=s(x), Vxel™N\g,Q Vn
To obtain the existence of such a sequence let Y, e C! ([0,17) be another
sequence satisfying
@ Wz Vielod], Vi

. C(0.1))
(i) o, —— ¥ as 0 ao;

© where \If(f):{ ! llf I‘G(.ﬁm )
go 10 1€[d), g4l

(0,4 -
(i)’ ti!,i B as s o0 and

(iV) ¢fl (() = \il (’)a v le {ggs 1]. \/ n.

The smoothness of €(x}, shown in Lemma 2.7, then implies that

def

en (X) = an{] - 8(:&))5 Vi

is & sequence satisfying (1}-(iv).

Val. 5, n° 2-1988.



114 1. SIVALOGANATHAN

Step 2. — By (2.12), (1. 10) and (1. 8) it follows that

V ity (x) =V ( 1—0(x) )

— [u ( AT ( x )
g < 00 )1 8(3()

The assumption that W is rank one convex implies that W{F+A ® i} is
a convex function of i for Fe M ", &, neR". Thus
W

WE+A@ W2 W(F)+ - ?I* (Fyaiy/ (2.27)

@ VE{x) (2.26)

and hence

WV uy) gW(V u( x)) (W(V g ( = ))
1-0(x) /) ar 1-0(x)

) i X i X X 3 fe g
..,““(1---6@)) o "<i-----()(a:})1---—-()(5)}0"'(“}’ Vet 229

The arguments of Theorem 1,6 show that the integral of the right-hand
side of (2.28) s constant for all functions 8eCH{(£Y) that vanish on D

and that satisfy 1 - ) efl, ¥xeld and is equal in parficular o ils value

for 0=0, te. E(u,).

Now using the approximating sequence 0, and the dominated conver-
gence theorem we see that the intepral of the right-hand side of (2. 28) at
0:=0 is cqual to its value at 6=0, for any n and hence (2. 24) helds.

CoroLiary 2.9
E (") 2 E(uo), (2.29)
where
F)=Fx, xeld (2.30)
Proof. — By (2.25)

E (15) = J W) dx + J W (v it ( 2z )) dx
0N i 600 £y

:-n.z(]~~8'(‘,')mcs{§2)W(F)Mi'{;.[ W (Vu (Y))dY. (2.31)
0
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Since
E{u" = [ W (F) dx==mes {Q) W (L),
[43

inequality (2.29) follows from (2.31} and (2.24).

Proof of Theorem 2.5, — If ¢=0 and u,#F x by using Corollary 2.9
we obtain a contradiction of the strict quasiconvexity of W at I, and the
result follows. If ¢#0 then we apply the arguments of Proposition 2.8
with the family of equilibria (2. 12) replaced by a combination of (2.12)
and (2. 13), more specifically we choose

ufoy, x) = (10 uo(f)Mg- (2.32)

Again, as in Proposition 2.8 we choose & given by (2.23) then
Fx+4¢ i xefl g0

Ug(Xx)= X )
W=, ;{0(~--)+(% ~ggde i xeg
£p
Now exactly analogous argumenis (o those conlained in the proof of
Proposition 2.8 show that F (1) ZE(u,) and hence by the arguments of

the proof follows as in the case ¢=0.

Remark 2.10. — The use of different combinations of the famifies (2. 9),
(2. 11} and (2.12) may permit a proof of Theorem 2.5 for some domains
that are not star-shaped.

3. CONCLUDING REMARKS

The scaling family of deformations (2. 12} offers an approach to answer-
ing the question of whether rank one convexity of W implies guasiconvex-
ity of W. We first remark that, by a scaling argument, in order to show
that W is quasiconvex, it is nccessary and sufficient to check that the
quasiconvexity condition (2. 14) holds for one bounded open set DR,
mes D520 (see e, g Ball [17 p. 205). We choose P2=1 the anit ball in R".
Now let u: B— B be any deformation (not necessarily an equilibrium

Yol 5, n" 2-1988.
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solution) satisfying
| gy F x (3.1
and set
w=ow %), (3.2
@ (x)
Then

V%(g@}:Vﬂ( —————— x>+|:E(
@ (x) ¢ (x

and the corresponding energy is given by

1(m)‘lif1f«:(yq,)==f (Vg(i)-% (i“)—V(*) @v@)dx.w.cn
B P L ND O/ ]

‘The assumption that W is rank one convex implics that the integrand in
(3.4) is convex in V . The guestion of whether rank one convexity implies
guasiconvexity is now replaced by the question of whether (p(,(g;)a]gg] is
the global minimiser of F on the set

A= {QEW S (B) (= Fxye Wi=(B), @lw=1}, (3.9

R

) H(@(D&) o VoW G

where, in order that u, be well defined, we require that —%—eB, VxeB.
Px
H weC*(B) and @es/, is a smooth solution of the Euler-Lagrange

equation for I namely
- AW . - N
() )]
ar, ®/ L\e¢ P/O.

()2 ) )
Y N LY () E N
@ ¢/ @/ ax"
®V<p)}—:0 {3.6)

then it is possible to prove an analogue of Coroliary 2.9 for the functional
i, ie

Hp) =Hgo)
This is equivalent to
E(up)SE(uo),  where ug(x)=Fy,
ic u; is a deformation of B satisfying the same boundary conditions as
the homogeneous deformation with no more energy than it. This result
follows by arguments analogous to those contained in the proof of Theo-
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IMPLICATIONS OF RANK ONE CONVEXITY 117

rem 1.6 (see Remark 1.7), Proposition 2.8 and Corollary 2.9 on observ-
ing that (3. 6) inherits the scaling invariance of (2.6}, te that 6@(%) is a

solution of (3. 6) whenever o is,
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