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Motivated by work of Gent and Lindley [3], a rigorous treatment of cavitation in
finite elasticity was first given by Ball [2] in a fundamental paper, and subsequently by
a number of authors [4, 10, 12, 16} (see also [1] for aelotropic materials and [9] for the
dynamic problem). The setting for these works is a ball of initially perfect material
which is held in a state of tension under prescribed radial loads or displacements
on the boundary. It is known that under appropriate assumptions on the stored
energy function, there exist weak solutions to the equilibrium equations of elasticity
in which a cavity forms at the centre of the ball (see, e.g., [2, 12, 16]). For the
displacement boundary value problem, if 1 represents the radius of the deformed
ball, it can be shown that these cavitating solutions bifurcate from the initially stable
homogeneous deformation at a critical boundary displacement 4 = Aq (at which
point the homogeneous deformation loses stability}. Analogously, for the traction
problem, bifurcation to a deformation with a cavity occurs at a critical value of the
applied Cauchy load P (see [2] for a discussion of stability).

In Secs. 1 and 2 of this paper we prove convergence of these critical loads and
displacements in the incompressible limit.

Consider a hyperelastic body occupying the region B = {Xe R X < 1}. With
any deformation u: B — R’ of the ball, we associate an energy

E(u) = [B W (Vu(X))dX | (1)

where ¥ is the stored energy function of the material and characterises the material
response. We consider, initially, a class of stored energy functions of the form

W E) = W(F) + hik, det F — 1) VF e M, ke (0, ky), (2)

where W™ is the stored energy function of an incompressible material and % is a
compressibility term with the property that

hk,8) = o0 ask—Qif£0. (3)
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522 J. SIVALOGANATHAN

The energy corresponding to a deformation wu of a ball of elastic material charac-
terised by w* is then

Efu) = /1; w*(va(X))dXx. (4)

Clearly Ek(u) — oo as k — 0 unless
detVu{X) = 1 for almost every X € B.

Thus, & represents the compressibility of the material and in the limit & — 0 only
incompressible deformations have finite energy: we call this the incompressible limit.
In Theorem 3 we show that the critical displacements A¥ " at which cavitation

crit
occurs for materials characterised by w* satisfy

k
Agy— 1 ask —0. (5)
The corresponding Cauchy loads at which bifurcation occurs are given by
k 1 Kook .k Lk
Pcrit = Xk Z(I), I(Acril 4 )"cri! * A’Cril) (6)
( crit)

{see Sec. 2.2), where <I>k(v1 s Vo, V) = Wk(F) VF € Mi” , the v, being the eigen-

values of VF'F.

To show convergence of these critical loads to the incompressible critical load P

poses a more difficult problem as it involves passing to the limit in (6) as A

and k¥ — 0 simultaneously. We overcome this by an alternative characteggation
of the critical load as the “stress at infinity” in an infinite body. This relies on the
invariance of the equilibrium equations under rescaling which, as noted in [2], is
such that an infinitesimal hole in a finite expanse of material behaves as a finite hole
in an infinite expanse. If P(c¢) is the radial Cauchy stress on the boundary of a ball
for a cavitating equilibrium solution with cavity of size ¢, then the critical load at
which cavitation occurs is the limit of P(c) as ¢ — 0. Under the rescaling this may
be replaced by the limiting value of the stress on the outer boundary of a finite ball
that contains a cavity of fixed size, the limit now being taken as the size of the ball
tends to infinity (with the hole size remaining constant). Using this approach in Sec.
2, we prove 1n Theorem 6 that

P

c

k

inc
rit Pcrit ask — 0.

An explicit example of convergence of critical loads and displacements, which moti-
vated this work, is given in Ball {2, Example 7.6].

In Sec. 3 we consider some consequences of the arguments of Sec. 2 for cavitation
in radially inhomogeneous materials. We show that the mathematical phenomenon
of cavitation depends crucially on the nature of the material present at the origin
of the ball. In particular, for a class of inhomogeneous incompressible materials,
the critical load for cavitation is the same as the critical load for a homogeneous
incompressible ball composed entirely of the material found at the origin of the
inhomogeneous ball (this result appears in [11]: the related problem of a composite
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sphere made of two homogeneous incompressible materials was subsequently studied,
independently, in Horgan and Pence [5, 6] and analogous conclusions drawn). For
the inhomogeneous compressible case we give sufficient conditions for cavitation to
occur and demonstrate that any deformation which keeps the ball intact is unstable if
the radial stretch at the origin exceeds A}C‘ff , the critical boundary displacement for
a ball composed entirely of the material present at the origin of the inhomogeneous
ball. The argument used in the proof of this result is motivated by a result in [7].
In this interesting paper, James and Spector [7] examine the stability of cavitating
solutions under general three-dimensional perturbations. They find that, for certain
stored energy functions, the energy of cavitating solutions can be further lowered
through the introduction of line cracks and they relate this to the phenomenon of
crazing,

Other results concerning stability of equilibria with respect to general three-dimen-
sional variations are contained in [8, 14, 15, 17].

1. Preliminaries. Consider a ball of compressible homogeneous hyperelastic ma-
terial which occupies the region B = {X ¢ R |X| < 1} in its reference state. Any
deformation u: B — R’ satisfying the local invertibility condition

detVu(X) >0 ae X €B (L.1)

has the associated energy
E(u) = / WX dX (1.2)
B
where W Mi“ — R* is the stored energy function of the material and Mix‘a’
denotes the set of 3 x 3 matrices with positive determinant,
The equilibrium equations under zero body force are the Euler-Lagrange equations
for (1.2},
a |aw .
W[a—ﬁl.(w)l_o vXeB, i=1,2,3. (1.3)
We will assume that W is isotropic and frame indifferent so that

W(QF) = W(FQ)=W(F) VFeM.", vQeS0(3).

!
¥

In this case there exists a symmetric function ®: Ri L R" satisfying
W(F)=®(v,,v,,v;) YFeM ™, (1.4)

where the v, are the eigenvalues of V FYF | known as the principal stretches, and
Ri+m{(vi,v2,v3):vi>0.,i=1,2,3}.l .
For incompressible matertals the admissible deformations u must satisfy the con-

straint

detvu(X) =1 ae XeB, (1.5)

inc .

and hence, for such a material, the corresponding stored energy function W' is
only defined on Mf“ = {F € MiX3 :det F = 1}. However, as noted in [2], such an
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energy function can be extended to all of Mi” for example by setting

wEy =w | L | YEeM,

(det F)!/
Henceforth we will assume that all incompressible stored energy functions are de-
fined on all of M i“ . Thus, we may also assume that the corresponding symmetric

function P (v 1> V2, V3) Is also defined on all of RL .
The equilibrium equations for incompressible materials are the Fuler-Lagrange

equations for the functional
/ W (Tu(X)) — p(X){det Vu(X) ~ 114X, (1.6)
Q

where p(X}, the pressure, is a Lagrange multiplier corresponding to the constraint
of incompressibility (1.5).
Radial deformations. We will consider only radial deformations u of B in which
case R
u(X):r(—R—)X VX €A, (1.7)
for some function r(R}, where R = [X|. In this case the corresponding principal

stretches are

v, =F{(R),  v,=v,=rR)}/R. (1.8)
For the displacement boundary value problem we specify the boundary condition
ul,, =4iX (1.9)

for some A > (.
In the Cauchy traction problem we specify, for some P € R, that

TX =PX VXedB, (1.92)

where T is the Cauchy stress tensor,
For compressible materials

I oW T

T =g OF

(1.10)

and for incompressible materials

9 Winc r
where p is the pressure. By (1.2), (1.4), and (1.8), on radial maps the energy func-
tional takes the form
ror
"R’ R
The radial equilibrium equation is the Euler-Lagrange equation for [ given by
(1.11),

E(u) = 4n{r) ‘1_9’"4an R*® (r’ ) dR. (1.11)
0

%[qu)’l(’"l’%’%”ZZR‘I’u(f":—]%,%), (1.12)

L - I T el

1c
<

T ==

ar




"ic

ge

nt

ch

7)

ral

1}
by

2)

CAVITATION, THE INCOMPRESSIBLE LIMIT, AND MATERJAL INHOMOGENEITY 525

where @, denotes the differential of @ with respect to its ith argument.

Remark. Equation (1.12) is invariant under the scaling (r, R) — {or, aR) for
o > 0. Notice also that the homogeneous deformations, corresponding to r(R) = IR,
are always solutions of (1.9) and (1.12).

Cavitating equilibria. Following [2], for compressible materials we say that r €
C*((0, 1]) is a cavitating equilibrium solution if it is a solution of (1.12) on (0, 1]
satisfying

(i) {0} =1lim,_,+{R) >0,

(i) r'(R) > OVYR € (0, 1],
together with the natural boundary condition

(iii) mp_, T(r(R)) = 0, (1.13)
where

T(r(R)) = (?)2@,5 (r’, -1’-;;, I’Q—) (1.14)

is the radial component of the Cauchy stress. Thus, under the corresponding defor-
mation u {given by {1.7)) a cavity of radius r{0) forms at the centre of the ball
and (it} is the natural boundary condition that the cavity surface is stress free. The
existence of cavitating solutions is studied in {2, 4, 10, 12, 16].

For incompressible materials the constraint (1.5) together with {1.7), (1.8) imply
that any radial deformation must satisfy

v (%)2 =] ae Reld, 1],

hence
r(R) = (R*+ 4%)'? WR &[0, 1] for some A > 0, (1.15)
are the only kinematically admissible maps. If u satisfies (1.9) and A > 1 then
A’ =2~ 1. Notice that by (1.7) this represents a deformation u of the ball which

opens a hole of size 4. For maps of the form (1.15)

2
vlz(ﬁ) . v2=v3=%. (1.16)

Bali [2] gives necessary and sufficient conditions for the map (1.7) corresponding
to (1.15) to generate a weak solution of the Euler-Lagrange equations for (1.6). The
corresponding radial Cauchy stress is then given by

o~ R\? ine R\’ r r
TR = -p(R)+ () @, ((7) ,E,E)
lSzl’inc SN2 ror sy 2 ine £ 78\2 ¥ F
“C+/Rz;‘s‘{5“”z ((;) ’5’5)“(;) P, ((;) =§’§)] ds,

where #(R) is given by {1.15) and p(R) is the pressure. This follows from [2,
Theorem 4.3] on changing variables or can be obtained formally by taking the Euler-
Lagrange equation for the functional

[ R0 ) e (-]
and noting {1.16) and (1.8}.
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For later use we note that, on changing variables from R to R/A4 we obtain

T(R)=C+ 1/A.2§ |:_§q)’i2nc ((;)2 ’ g’ Sﬁ) 3 (%)2(1), i]nc ((%)2 ;“: S)] s,

RiA T
(1.17)

where #(R) = (R3 + 1)”3.
2. Convergence of critical loads and displacements. In this section we consider a
family of compressible stored energy functions

(v, vy, v) = BV, vy, v (K, Vv,V = 1) (2.1)

parametrised by k € (0, k) , where @™ represents the stored energy function of an

incompressible material and / is a compressibility term. We will denote by I* the
correspondmg energy functional (1.11). We will assume throughout this section that

®™ is ¢ on R®, = L3 Vys V3) 1V, ¥y, vy > 0} we will also refer to a number
- 2> ¥3) - Y5 Vo Yy
of hypotheses on ' and h which for convenience we list together below.
(@) @, (v,.v,,v3) >0,
2

(D2) (—;,mwimii)(v) € L;(é, oo) foranyd > 1, where D(v) def CD(I/V?', v, V),
v —
(®3) (Vfd)’f(v“"2"’3)“"1‘1}’;("1"’2"’3)) >0, i#), VAV,
v~V ! J
P, -,
(94) V_-m:ﬁ'»%—(D,UEO forv, #v,,

i V.
(®5) There exist constants ;4' , € € {0, oc) such that
1D, (V) , ayvy, Vvl < M(P(vy, vy, v,)+1) (No summation)
if Jo, — 1| <&, i=2,3.
1 d =
(v~ 1y dv
(®7) There exist constants 4, B >0 and § € (0, 2) such that

(V1®>1(V1 V3, Va) V@, (v, Yy, "2)) <A +B(v2)ﬁ
ViTV,

(®6) L HyeL'(1, ), where B(v) = D(1/v, v, V).

for 0 <v, <v,.

We will say that the compressibility term /i satisfies (H) If A: (0, k) x (-1, o0) —
R" U {0} is c? , strictly convex in its second argument for each k € (0, &y}, and
satisfies
(i) h(k,v)— oo as v-» —1 foreach k € (0, &),

(ii) A(k,0)— c as k — 0 for some constant ¢,

(ii1) h(k,v)/v — oo as v - oo foreach k € (0, ky),

vy hik,v) 2 ¢ |v|/k +¢, ¥ > =1, ¥k € (0, k;), for some constants ¢, > ¢,
[
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(v) |8k, v)| < Mh(k,v)/(v+ 1)+ 1] ¥ > =1, Vk € (0, k;), for some
constant M ¢ (0, o).

Finally we shall suppose that @, ™°(1, 1, 1)+ 2k, 1) =0 vk € (0, k) so that

the undeformed configuration v, = v, = v, = 1 is a natural state for each ®.
REMARKS ON HYPOTHESES. To illustrate the implications of hypotheses (®1)-
(®7) it is useful to focus on the class of stored energies of the form

3 3

(D( s Voo V3 Z p(v Z @ V1V2V3) (%)
i=1 =1
<J

(Of course the term in 7z is redundant if @ is an incompressible stored energy
function, however it is of interest to include this term in discussing the restrictions
imposed by the hypotheses.)

(®@1) is known as the tension-extension ineguality and is satisfied by energy func-
tions of the form () if ¢, ¥, and = are convex, with at least one of them having
strictly positive second derivative. (®2) guarantees that the incompressible map
(1.15) has finite energy. (®3) is often referred to as the Baker-Ericksen inequalities
and is satisfied, for example, by all energy functions of the form (x) provided 20
and ty'(t) are increasing functions of . (P4) is satisfied by all smooth energy
functions of the form (x) provided that ¢, y, and 7 are convex. (®5) is often
satisfied by polynomial or simple rational functions ®. {P6) is the requirement
that the critical load for bifurcation to a deformation with a cavity given by (2.2.7)
(or equivalently (2.2.6)) is finite. (®7) is a growth assumption consistent with poly-
nomial growth of @: notice that for functions of the form (x) this condition is a
restriction on the growth of ¢ and ¥ only.

(H){i) is the requirement that compression to zero volume requires infinite energy.
(H)(ii) guarantees that the incompressible map (1.15) has bounded energy as & — 0.
(H)(iii) ensures that expansion to infinite volume requires infinite energy. (H)(v) is
often satisfied by polynomial or simple rationai functions.

Roughly speaking, the hypotheses in (H) state that the graph of the convex function
h has a well close to v v,v, =1 for small & and that the sides of the well become
steeper as & — O (with the bottom of the well converging to the value ¢ at v,v,v, =
1).

- ExampLE. Examples of simple stored energy functions satisfying ($1)- ($7) and
{H} are

. 3 3
(v vy v = 6 (Zvi’ - 3) to | Y -3,

i=1 i j=1
i<

l<a<3, 15ﬁ<%,




528 J. SIVALOGANATHAN

Cs

(vivyvy)*
r>1,d>1, e>0,

*

C P S
hik, vy, —1) = "j(livﬂ’z"s — 17 + ey (v vyv,)t o+

where ¢, ¢, ¢ >0, ¢y, ¢, > 0 are constants. (Choosing ac, +2fc, +dc, —cse =0
ensures that the undeformed configuration is a natural state for all k.) See also Ball
[2, Example 7.6] for an illustrative example which motivated this current work.

We next state a central result on the existence of cavitating minimisers for &"
given by (2.1). Recall that I* is given by (1.11) with ¢ = o~

THEOREM 1. Let @™ satisfy (P1)-(D5) and let 4 satisfy (H). Then for each
k € {0, ky) there exist i’c‘rit € (1, 00) and a cavitating equilibrium solution rf €
C 2((0, 1) for & with the following properties:
(1) rf is extendable to a solution of (1.12) on (0, oo),
(i) r(RYRN\. A as R— oo,
(iii) if A < A%, then r(R) = AR is the global minimiser of I* on

crit *

8= {rewh (0, 1):1(0)20, r(1)=4, ¥ >0ae Re(0, )}. (22)

If 4> 4%, then the global minimiser of /* on %7, is given by /(R) = ar’(Rja),
where « is the unique root of 4 = arf
cavity size proportional to «).

Proof. The existence or rf satisfying the above would follow from [12, Propo-
sitions 4.7 and 0.3 and Theorern 1.11] were it not for the fact that our ®° do not
satisfy hypothesis (E1)(ii} of [12]. However, this condition is only used in (12} in
proving the existence of a minimiser of the energy on &, . Our hypothesis (H) guar-
antees that a minimiser still exists by adapting the arguments of Ball [2, Theorem
7.11.

2.1, Convergence of critical displacement. In this subsection we prove that the
critical displacements ;“f:cm for (Dk, whose existence is guaranteed by the previous
theorem, satisfy }ifm — 1 as k- 0. (By (1.15) ;Lg;fl = 1.,) To do this we need the
following preparatory results.

The first proposition examines the behaviour of minimisers of I* as k — 0.

(1/a) (i.e., r represents a deformation with

PROPOSITION 2. Suppose that ®™ satisfies ($1), (®2) and A satisfies (H) and let
{k,} be a sequence with k,e(0,ky), k, =0 as n - co. If ¥, is a minimiser of

% on &, , then for each 4> |
Yy ———— ¥ asn — oo, (2.1.1)

where
— 1y’ (2.1.2)

is an incompressible deformation.

fi

fu
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Proof. The existence of Vi, is a consequence of Theorem 1. It then follows that

1) = Inf 1) < 10

chb‘“( N R) a‘R+/ Rh(k,, 0)dR  (2.1.3)

for all »n. Setting v = F(R)/R in the right-hand side expression in (2.1.3) and using

{®2), we obtain
o

RCD’“C(”' z )dR Af W av < +
/ "R F v - l) ( ) o
where A = (2>~ 1)""?, and hence (H)(ii) and (2.1.3) imply that
I (¥, )} < constant, (2.1.4)

uniformly in n. We now make the change of variables u, = yi and p = R’ in
(2.1.4). Then writing %, for du, /dp we obtain

. e\
i, = ("Ri) y;(n. (2.1.5)
From (2.1.4), (2.1.5), and (H)(iv) we obtain

1
fo |:L'¢h~~1|a’,ogc-k,T for all n, (2.1.6)

where ¢ is a constant. Then since u, (1) = A

Wl.l .
U, LN asn— oo, (2.1.71

i

where #{p) = (p + (23 —1)). As A > 1, it foliows from (2.1.7} that u, (0) is
uniformly bounded away from zero. Hence by (2.1.2) and (2.1.5) we obtain

ol N? FN\Z v .
fo R (T") Vi, = (E) F dRm[O iy, ~uldp (2.1.8)
and
/0 | ¥, — F14R < const. ( fO | i i, - y;if”ldR) (2.1.9)
for all n. Since
Vv =V FIS e vk =PRI+ IFF =y 7 (2.1.10)

for all n, by the triangle inequality and as the second term on the right-hand side
of (2.1.10) is bounded by 21°F € L'(0, 1), it follows from (2.1.7)-(2.1.10) and the

dominated convergence theorem that
¢ Loy
y, ——=TF asn-— oo.

n

Finally, as Y, (1) = A for all n (2.1.1.) holds. The next result proves convergence
of the critical d:splacemenls
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THEOREM 3. Let ®™ satisfy (®1)—(®5) and let A satisfy (H). If A%, is the critical

displacement for cavitation corresponding to the stored energy function il (given

by (2.1)}, then
k
crit

A

Proof. The existence of )Lfm is a consequence of Proposition 2. Suppose for a

contradiction that (2.1.11) does not hold. Then by Theorem 1 there exist a sequence
k, -0 as n— oc and §, > 1 which satisty

— 1 ask 0. (2.1.11)

kﬂ.
crn

Aty 20> 1 Yn.

Now fix A € (d,, 1). By Theorem 1 the global minimiser of I* on & is AR for
each », but Proposition 2 then gives a contradiction.

2.2. Convergence of critical loads.

Critical load: compressible case. The Cauchy traction problem for radial maps
differs from the displacement boundary value problem in that the displacement con-
dition (1.9) (which corresponds to r(1) = A) on the outer boundary of the ball
is replaced by the condition (1.9a), that the radial component of Cauchy stress be
specified. Using (1.14), this takes the form
1 k

+ 1

-(—;E{)—)—zd) (r (D), r(1), k1)) =P, (2.2.1)

T (r(1)) =

where P € R 1s given.
For the purposes of the discussion which follows, first fix any & € (0, k). Given

any cavitating equilibrium solution r,(R) for the stored energy function CI)k, The-
orem | shows that r,(R) may be extended to {0, oo) as a solution of (1.12) with
lim,_ r(R)/R = Efm . We will show that the critical load at which bifurcation to
a deformation with a cavity occurs, Pciih , 1 the “stress at infinity” produced by this
extended radial deformation of R® , l.e., that

PX = tim TX(r (R)). (2.2.2)

crit 7 R0

To see this notice first, by Theorem 1, any other cavitating equilibrium #R} for o~
may also be extended to (0, co) as a solution of {1.12) and that

a3 pa— . R
FR)y=dr, (a') , (2.2.3)
where d > 0 is uniquely determined by the cavity size

F(0) = dr (0). (2.2.4)

Conversely, by the Remark following (1.12), for any d > 0, 7 defined by (2.2.3)
is a cavitating eguilibrium with cavity given by (2.2.4). The critical Cauchy load at

which bifurcation occurs, Pckri[, is given by the limiting value of the radial Cauchy

stress on the boundary of the ball, produced by a cavitating equilibrium, as the size

01
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of the cavity produced by the deformation tends to zero. Thus by (2.2.3) and (2.2.1)

2
Pl = tim (1) = im 7 ) @ 0k/@), dnafd), dr /)

2

I k. .k k k

= ( k ) (D’ I(Acrii’ Acrit’ )”cril)’
“erit

where we have used Theorem 1(iii). It now follows that
k , k
Poyy = Jim T7(r (R)),

crit —
as required.
Having this characterisation, the key to proving the convergence of the critical
loads (Pckm} as k — 0 lies in the observation that
k o d Lk w JR? [r'(R} ko k
A NI T dR:f IR 15 e K (ryw, k| dR
o 2R2 [f'k(R) inc ' inc]
= e K 2D T - (R)D, dR, 2.2.5
[ o e e (225
where we have used {1.14), (1.12), (1.13), and the definition of o {2.1). Notice in
particular that the compressibility term £ does not enter explicitly in (2.2.5).

Critical load: incompressible case. By (1.17) if the Cauchy load on the boundary
of the ball is P € R, then C = P . If we now specify that the cavity surface be stress

free (i.e., that T(0) = 0}, then we obtain

AR [ e ((R\® F F RN\? _ mc{(RN\* 7 F
r- ?{'ﬁq”z ) 7r)-F) er () ww)|®

Hence, by previous arguments, taking the limit 4 — 0, we obtain for the bifurcation

point
inc Oosz F inc R 2 inc
Pclril:_"/(; %P (7)) & |9k

©oR* [r we [(R\' 1 T R\?  wmc{(R\" r r
—fg "ﬁ“{ﬁq)’z ((7) "% R ‘(?) © (7‘) 7 ') K

(2.2.6)

for any r of the form (1.15}.

Clearly the convergence of the critical Cauchy loads Pckr.u to P is proved if we
can pass to the limit & — 0 from (2.2.5) to (2.2.6). However this presents some
technical difficulties, the main one being that the convergence result established in
Proposition 2 is only on (0, 1) and we require convergence of the extended functions
on (0, oo). Notice that if we set v=r/R we obtain the equivalent form

ine o 1 d cincf 1
Lorin *]; ma‘;‘p (;"2", \E V) dv (2.2.1

as given by Ball [2].
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The idea now is to use v = /R as the independent variable in the compressible
case also, but to do this we require the following two preparatory results,

PROPOSITION 4. Let @™ satisfy {®1)- (d5) and let A satisfy (H). Then for each
k € (0, k,) there exists g, : (lfm, o) — (0, o), where g, € C‘z((lfm, oc)) and
satisfies

(8()=v) 1@, (), v, vl = 20, S ), v, v, K(g"

(v), v, v)} (2.2.8)

for ve (A, | 0o).

verit
Moreover, if 1 ¢ (li‘m, co) and £, is the minimiser of I* on &, , then

R

Proof. The existence of ch‘m

this theorem that if 4 ¢ (Afm, o), then the global minimiser », on * on A
satisfies r,(0) > 0, moreover, r, can be extended to (0, oc) as a solution of (1.12)

and lim,_ r(R)/R = A By a well-known property of solutions of (1.12) (see,

crit *
e.g., [12, Corollary 1.2]) »,(R)/R is strictly monotone decreasing on (0, oo}, Thus,
we can invert the relation

& (r"(R)) =r(R), Re(0,1]. (2.2.9)

is a consequence of Theorem 1. It also follows from

r(R)
R
to give R as a function of ve& (}L’:ril, oo0). Now define

A —

(2.2.10)

g (V) = (R(v)) forve (i

verit ? OO) '
Clearly (2.2.9) holds by construction and Theorem 1(iii) implies that the validity of
(2.2.9) is independent of the choice of 4 € (4, , o).

Expression (2.2.8) follows from rewriting (1.12) using v as the independent vari-
able and noting that
d dv d d
iR - R"jﬁﬁ = (g (V) - V)E;-

The idea will be to use v as the independent variable in proving convergence of
(2.2.5) to (2.2.6) {or {2.2.7)) as k — 0 and g, {v) as the dependent variable instead
of R and r. This has the advantage that all cavitating solutions for a given o*
give rise to only one corresponding function g, . The next proposition concerns the
behaviour of g, as k — 0.

R

PROPOSITION 5. Let @™ satisfy (®1)- (@7) and let 4 satisfy {H). Then
gv) = 1/v* ask -0 (2.2.11)

for each v € (1, co), where g, is as given in Proposition 4.

Notice that by Theorem 3, given any v € (1, oo}, g,{v) is defined for k suffi-
ciently small. The proof of Proposition 5 is of a technical nature and is given in the
Appendix.
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TuroreM 6. Let @™ satisfy (®1)- (D7) and let A satisfy (H). Then
PLo— P ask -0, (2.2.12)

¢ crit

where P(f;i[ is the critical Cauchy load for cavitation for @ and Pci':if (given by

(2.2.6)) is the critical Cauchy load for an incompressible material with stored energy
function ®"°.
Proof. Setting v =r, (R)/R in {2.2.5) and using Proposition 4 we obtain

inc

Ph= | e dT ) o [PV g0, v, V)~ g 000 ), Vo V) g
crit dv i V3(V - gk(v))

(2.2.13)
where T, (v) e, ]f(gk{v}, v, v)/v’ and g, is as defined in Proposition 4. As P
satisfies (P7) by assumption, the integrand in (2.2.13) is bounded by (,**5I+B‘.f’r")/v3 £
Ll{(l , o0)) . Expression (2.2.12) now follows from Proposition 5, Theorem 3, (2.2.7),
and the dominated convergence theorem.

3. Cavitation in inhomogeneous materials. In this section we examine some conse-
quences of the arguments of Sec. 2.2 for cavitation in inhomogeneous materials. We
will only consider stored energy functions which are radially inhomogeneous, i.e., of
the form ®(Ry,, v,, v;). We will show that the critical values at which bifurcation
to a deformation with a cavity occurs depends crucially on the nature of the material
found at the origin. In particular, in the inhomogeneous incompressible case, we
show that the critical load at which cavitation occurs is the same as the critical load
at which cavitation occurs for a homogeneous ball composed entirely of the material
found at the origin. In the inhomogeneous compressible case, we show that cavita-
tion occurs for sufficiently severe boundary displacements or loads. We also show
that any radjal deformation r which keeps the origin fixed {i.e., with r(0) = 0} is
unstable if lim,_,r'(R)=1> l*c’]f’i’t“ , where )JC’:::“ is the critical displacement for cav-
itation for a homogeneous ball composed entirely of the material found at the origin
of the inhomogeneous ball (i.e., a ball with stored energy function OO0, v, vy, V3))-
This result for the compressible case should be compared with James and Spector [7,
Theorem 4.2},

We remark finally that the assumption of radial inhomogeneity is rather a severe
one and that for general inhomogeneities one would expect that singularities such as
cavitation could occur at points of the ball other than the centre.

3.1. The incompressible case. As in the homogeneous case the constraint of in-
compressibility forces all kinematically admissible radial maps to be of the form

r(R)= (R + A, Rel0, 1] forsome 4> 0. (3.1.1)

By the arguments of Ball [2] (see also Sec. 2), if we specify the radial component
of the Cauchy stress on the boundary of B to be P, then the radial component of
Cauchy stress corresponding to the map (3. [.1) is given by

2 .
s -re [ [0 (0 @ 5 ) - (0 (0 ()5 D) o

where @, denotes ad/ov,.
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If we require that the cavity surface is stress free, then f‘(O) =0 andso P isa
root of

‘/A?_s SN2 F 7 sy 2 N2 F O
p= f [ (““s(?) 5 J“(;) ‘Dw(*‘“’(f-) '3 s)} as.,
{3.1.2)
where F(R) = (R3 4 1)1/3 (this follows from the change of independent variable
s —5/A).

ReMARK. In the following theorem we will require that our inhomogeneous, in-
compressible stored energy function ®(R, v,,v,,v,) satisfy inhomogeneous ver-
sions of the constitutive hypotheses (¥2), (®6) of Sec. 2; by this we will mean
that those hypotheses hold with @ replaced by ®(A(v’ — )”3 1/v*, v, v} for any
A > 0. Thus, for example, (®2) then becomes the assumption that the incompress-
ible deformation (3.1.1) has finite energy for this inhomogeneous energy function.

TueoreM 7. If the incompressible inhomogeneous stored energy function @ satis-
fies the inhomogeneous versions of (®2), (P6) and (P3), (®7) uniformly in R,
then the critical load Pc’;‘l][mm for cavitation is the same as the critical load for a
homogeneous ball composed entirely of the material found at the origin.

Proof. The critical load P, is given by the limit of (3.1.2) as 4 — 0. On

setting v = 7/s the integral in (3.1.2) takes the form

Jovow o
(144317 (v2 - v

x [VCI),2 (A(vsw l)—l’l3, ‘%,v,v) —;15@,1 (A(V3—~ 1)_”3, \%,v,v” dav.

(3.1.3)
By (®3) this integrand is positive and by {®7) it is dominated by
2 I
et [A + BV [v--—] e L'(1, 00).
v — 1w v
Thus, by the dominated convergence theorem, we pass to the limit 4 — ¢ in (3.1.3)
to obtain 1
mhom
e T o [0(0 vy av. (3.1.4)

Comparison with (2.2.7) then yields the result.

3.2. The compressible case. In this subsection we study cavitation for radially
inhomogeneous materials. In particular, for simplicity, we will focus on the class of
stored energy functions of the form

3

3
DR, v, vy, v} =Y aRp(v,)+ > BIRYW (v, )+ 7(R)A(v v,vy),  (3.2.1)
i=1 i, j=1
i#]

where «, f. y are smooth positive functions in C?‘([O, 17). (However, many of the
results and techniques will apply to more general energy functions.) We will assume

thr
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throughout that the following hypotheses hoeld:
(I) ¢, w, h are nonnegative and C? on (0, o).
(11} ¢, h are strictly convex and ¥ is convex.
(I1) h(6) — oo as 6 — 0 and h{(8}/d — oo as § — 0.
(1V) (2 - DA/ - D', IV, v, v)e L' (8, o0) for & €(l, 00).
(V) There exist constants M, & € (0, co) such that
5@
W(R’ Vi, @V, AN

i
if Jo, — 1] <gg, 1=12,3, YR € [0, 1].
In this section we treat the displacement boundary value problem. We define the
corresponding inhomogeneous energy functional f mho™ on &7, {given by (2.2}) by

< MI®(R, v, V,, vy) + 1]

1
inhom 2 i _L _I:_
I (r)_fo R d)(R,r ,R,R)dR (3.2.2)
and the corresponding equilibrium equation is
d 26&) ! r r _ 8&3 s F r
ar [R &, (7 R "E)] =g (Rr o R) - G2

PROPOSITION 8. For each A € (0, 00} there exists a minimiser r(R) of 7oem on
&7, , Moreover r € C2((0, 1]) and satisfies (3.2.3).

Proof. The existence of a minimiser + of / o on &, follows, for example, by
the techniques of [2, Theorem 7.13. The smoothness of r follows by the method
employed in [12, Proposition 0.3].

REMARK 9. Notice that our class of stored energy functions satisfies

qu)(\"l H V2 E] V3) S (B(Rs V; Y V2 Y V3)
<k, (v, vy, vy VY, >0, i=1,2,3vRe[0, 1],

where k , k, >0 and ® is the stored energy function of a homogeneous material
which exhibits cavitation: simply choose

ky = max{sup a, sup #, sup v},

k, = min{infa, inf §, infy},
and
DV, vy, Va) = D0V D wVV AV Vv (3.2.4)

i#j

We will demonstrate that, for sufficiently large boundary displacements A, any min-

inhom 1y o7, corresponds to a deformation with a cavity. To do this we

imiser of [/
o2,

need the following preparatory result which is a consequence of Ba
Proposition 6.7].

ProposiTION 0. If r € & and r(0) = O then I(r) > I{ry ) » Where From () =
2R and 7 is the energy functional (1.11) corresponding to the homogeneous stored

energy function @ given by {3.2.4).
We next demonstrate that cavitation occurs for sufficiently large 4.



|
[Ei
i
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Proposition 11. If 4 is sufficiently large, then any minimiser » of /™% 4y o,
satisfies r(0) > 0.

Proof. The result follows by the following elementary argument based on [2] (see
also [12]). Let r, (R) = (R® + (4* - 1.))”3. Then it is casily verified that 7, € .57,
Now let 7, denote any minimiser of /™™™ on S (at least one exists by Proposition

8). Then M
AE d=et" Iinhom(rinc) _ Ilnhom{r}t) < sz(’"inc) _ kl[(".ﬁ.) ,

where [ is the energy functional corresponding to the homogeneous stored energy
@ given by (3.2.4). We now demonstrate that r,(0) > O for sufficiently large A:
suppose that r,(0) = 0 for an unbounded set of 4. Then by Proposition 10

AE iy I(ry) =k I(r, ).

Now, setting v =r,_ (R)/R in the first integral and evaluating the second, we obtain

o0 2
88k 1) | [T e (o) av- 24D
v —=1) v ky (23—

The first term in square brackets is monotone decreasing in A and the second tends
10 —oo as A — oo, hence AE is negative for large A contradicting the assumption
that r, is a minimiser of 7™™™ on & . Thus, r,(0) >0 for all 4 sufficiently large.

ReMARK. One of the main problems with treating the inhomogeneous case is that
we have no explicit representation of a “trivial” solution of (3.2.3), 1.e., a solution with
7(0) = 0. (In the homogeneous case it is the homogeneous deformation FR)=AR.)
However, in the next result, we give conditions under which any sufliciently regular
deformation r € & with (0) = 0 is unstable 10 a variation with a cavity and we
relate this 1o the nature of the material found at the origin of the ball. In particular,

if the radial stretch at the origin corresponding 1o such a deformation exceeds "™

crit *
where )Li‘fif’ is the critical displacement for a homogeneous ball composed entirely

of the material found at the origin, then it is energetically more favourable for the
ball to cavitate.

ProOPOSITION 12. Let r € &, satisfy r(0) = 0 and suppose that lim,_, YRy =1[¢€
(0, oo]. ,

If [ > li‘ﬂ;", then 7 is not a minimiser of 7'"™™ on %7, , where Ai’r‘ﬁ“ denotes
the critical displacement after which cavitation occurs for a homogeneous ball with
stored energy function <'I3(O, Vi Vi, Vo).

Proof. We assume without loss of generality that 7™°™(r) < 400, otherwise the
result is trivial. We first consider the case 0 </ < +oc.

For ¢ € {0, 1) define

Ale) = 5—89 (3.2.5)

By the hypotheses of the proposition

ey > ase—0. (3.2.6)
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By Theorem 1 and our assumption on the structure of 513, the homogeneous stored
energy function &3(0, Vv, V,, v,) exhibits cavitation. Let 7 (R) be a cavitating equi-
librium for (0, v,, v,, v4). Then by Theorem I, since { > A?fl’[“ for each ¢ suffi-
ciently small, there exists «(¢) such that

(:’C (a) j'(6) (3.2.7)
Now define _ [ ar(Rfa) for Re0,¢],
A }“{r(R) for Re[e, 1].
Then
AE = Imhom ) mhom(’)
N qrc(R/oz) ar (R/a)
[(D ( 3 R ’ R )
(R} r(R)
—cb( rR), =2 TH R

L ~ ' R R

ar (R/a) arc(R/a)> ]

Mt'f)(O,ré(R/a), e

& (0, rir/ey, Ll LU

— B0, Me), Me), &(8))}

(0, Ae). A(e), Ale))

_613(8}2, ¥ (eR), f{—:g—), %‘%m)]}d}t.

In the above integral the first and third terms in square brackets tend to zero as
¢ — 0, however the second term converges to a negative constant as ¢ — 0, thus AE
is negative for sufficiently small & and r is not a minimiser of /™™,

We next consider the case [ = +oc. In this case let

R4 (13— nehy's
r(R) = (R +( e )™ on |0, e, (3.2.8)
H{R) on (¢, 1],
where Z = A(¢) as given by (3.2.5). Then
AE = Iinhom(ra) _ Iinhom(r) < sz(n",:) _ sz{?') ’

where [ is the energy functional corresponding 1o the homogeneous stored energy
® as given by (3.2.4). By Proposition 10

AE Sk I(r) ~ ki I(ry ),
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where 1, (R) = A(e)R. On setting v = /R in the first of these integrals we obtain

fove) 2
AEgkzﬁ(A%nf »-—3"—3@(12,\;,\,) gy a4, 1)
ae (v2 = 1) v ky (27 —1)

The first term in square brackets is finite by hypothesis (IV) and monotone decreasing
since A(g) — oo as ¢ — 0. Hypothesis (I1I) implies that the second term tends to
-0 as £ — 0, hence AE is negative for sufficiently small ¢ and 7 is not a minimiser
of Iinhom .

REMARrK. For general coefficient functions «, £, 7 in (3.2.1) one would expect
nonuniqueness of “trivial” solutions of (3.2.3) (i.e, those satisfying r(1) = A, r(0) =
0). These could be obtained, for example, by taking two appropriate maps r;, /5
satisfying r (1) =r, (1) =4, r(0) = ry(0) =0, substituting them into the differential
equation {3.2.3), using (3.2.1), and treating the two equations thus obtained as a pair
of differential equations to be solved for the coefficient functions o, 8, ¥.

In cases where there is uniqueness of solutions to (3.2.3) satisfying r(1) = 4,
r{0) = 0, one would expect, by Proposition 12, that bifurcation to a deformation
with a cavity occurs when the radial stretch at the origin of this “trivial” deformation
which keeps the ball intact reaches l:ﬁ;n {the critical boundary displacement for a
homogencous ball composed entirely of the material found at the origin). However, a
justification of this conjecture would require a detailed study of solutions of (3.2.3).

4. Appendix.
Proof of Proposition 5. The proof proceeds in two stages: we first show that

k
@, (g, (vy): vq, vp) — constant  as k—10

for each v, € (1, co) and then that this together with our assumptions on o imply
(2.1.11).
Step 1. Fix vy € (1, 00). Then by Theorem 3 there exists a constant ¢, € (0, 00)

such that
k
crit

A

and so g, (v,) is well defined. Let (k,), k, € (0, ¢y}, be a sequence with k, — 0
as n — oo. Now applying Proposition 2 we may assume without loss of generality
that the minimisers r; of I on J:/VO converge to an incompressible deformation

and in particular that t”hey satisfy

<V, for k € (0, ¢;),

2
r,'\,n(R) — F(R) = (F(%) as 1 — oc pointwise for a.e. R € (0, 1),
and
r, (R) X
A"R - ’-%ﬂ as n — oo pointwise for a.e. R € (0, 1), (4.1)

where #{R) = (R* +vi— 1),

fc
is
ex

11
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By Theorem 1 the r, are cavitating equilibrium solutions, thus

1 k
“j*z‘q)’ 1" (8 (Vo) s Vo Vo) =

k
7 (r, (1)) 7!

R ? ks Tk T
"',;' (Dai (}k"’ R .E) dR (42)

for each n, where we have incorporated the zero stress boundary condition and T*
is given by (1.14) with © = o~ . By (1.12) and the definition of P~ (2.1), the above
expression takes the form

1 2
2R i ine ! inc}
— (2P, ~r @, dR, (4.3)
/0 (rk )3 |:R 2 k” i
The integrand is positive by (®3), hence using {P7) we obtain the bounds
2R2 [rk inc ’ inc] 2R2 i:rk ! } (rk )ﬁ
0< iy | 2D 7 — 1, D, < =52 —r A+B| =
= ("k )3 R 2 k, 1 ";3 R k, R
4R e \* R "
5———A+B(—”) <c, +¢,———=<c¢, +c,R (4.4
)g R ] 175 (rk" )2-_,9 176

for all n, where ¢, ¢,,and ¢, are constants. To obtain (4.4) we have used the fact
that r';c < r. /RYR and the fact that r, {0} is uniformly bounded away from zero

by Proposition 2. Since £ < 2 the right-hand side of (4.3} is in Ll((), 1), hence by
(4.1) and the Dominated Convergence Theorem we can pass to the limit in (4.2) and
(4.3) to obtain
Lo & LoR?
"_(I): ﬂg V),V,V)—*/‘————{
VS 1 ( k"( 0 0 Q a (’-\;)3

as n — oo, where 7 1s defined as in (4.1}. Setting v = F(R)/R now gives the integral

in (4.5} the form
© 1 4o/
j; ————~———(V3 T v (\7 VY, v) dv (4.6)

0

%cp, e _#o, 1} dR (4.5)

and this expression is finite by (®6). Hence

o, T"(gk”(vo}, Vg, Vo) — constant  as n — co. (4.7

5l
o] ™

Step 2. From (4.7) and the definition of ®" it follows that

l inc

;—2—<D, | (gk" (Vols Vo Vo) + h’(kn , g,,\_"(vo}vé — 1} — constant asn-—o0. (4.8)
0

We now suppose for a contradiction thai (2.1.11) does not hold so that, without loss
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of generality, there exist v € (1, o0), d; > 0, and a sequence (kj} converging to
zero satisfying either

(i) g (V¥ <1-4, Vj or
(il) g, (V' >1+8, /.
If (i} holds then by the convexity of # for each j
Hk;s g (99" = 1) S Bk, =y). (4.9)

However,

h(k;, —8y) = h(k;, 0) = —8gh'(k;, 8,) for each j (4.10)
for some Bj € (—=é,, 0). It then follows from (4.10) and parts (ii), (iv) of hypothesis
(H) that

Wk, 8;)— o0 asj— oo (4.11)
Thus, by the convexity of A{k, ),
K(k;, —8,) = —o0 s j = oo, (4.12)

(4.12), (4.9), (P1) and (i) now together contradict (4.8). A similar contradiction is
obtained if case (i1) holds.
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