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In this paper we study homotopy classes of deformations and their properties under weak
convergenee, As an application, we give an analytic proof (in two and three dimensions) of the
existence of infinitely many local minimisers for a displacement boundary-value problem from
finite elasticity, posed on a noncenvex domain, under the constitutive assumption of
polycenvexity.

1. Introduction

The paper is motivated by a well-known (two-dimensional) heuristic example due
to Fritz John (see e.g. [11]). Let the annulus

A={xeR*a<|x| =+ ) <b} (1.1}

be the region occupied by a nonlinearly elastic material in its reference state and
consider maps (deformations) u: A - R? satisfying the boundary conditions u(x) = x
for all x €94 and

det Vu(x) >0 for xefd (1.2)

Under the assumption that the matetial is hyperelastic (and under zero body forces)
the energy stored by such a deformation is given by

E(u)= j W(Va(x)) dx, (1.3

where W:M2** 5 R™* is the stored energy function and M%*? denotes the space of
2 x 2 matrices with positive determinant (see e.g. [6, 14, 20]).

Heuristically, one expects multiple equilibria in such a displacement boundary-
value problem corresponding, for example, to deformations of 4 which rotate the
inner (or equivalently the outer) boundary by an integer multiple of 27: for example,
consider the maps », v in Figure 1.1, where we have indicated the image of a radial
line under the map. Though heuristically plausible as an argument for multiple
equilibria, there has to our knowledge been no analytic proof given of the existence
of these multiple equilibria. In Theorem 3.1, we give conditions under which these



596 K. D. E. Post and J. Sivaloganathan

u
e —— At st D

’.
©©

Figure 1.1

equilibria exist and show that they are all local minimisers of (1.3) (see Remark 3.2).
To do this, we express the condition that the image of a radial line in 4 under a
deformation winds » times around the origin as an analytic condition, using the
classical notion of winding number (sce Section 2 and Definition 2.8), and prove
that this is preserved under sequential weak convergence in W'7(4) for p = 1. This
enables us, for each N e N, to prove the existence of minimisers for (1.3) by the
direct method of the calculation of variations in a class .~ of maps that winds
almost every radial line in the annulus N-times around the origin (see Theorem 3.1).

In Lemma 3.6, we give an estimate for inf,, . .~ E(#) in terms of the winding number
N. Once the existence of a minimiser #™ of E in &#" is established for each N e N, it
is straightforward to argue that #" is also a strong local minimiser of E in a class of
deformations with no winding number constraint (see Remark 3.2). 1t also follows
that if #" is a strict local minimiser of E in /%, then #" is radially symmetric (see
Remark 3.5).

In Section 2, we review some basic results concerning the winding number of a
curve in the plane, and apply these results to obtain an analytic condition on
deformation of 4 which is preserved under weak convergence (see Definition 2.8).
In Section 3, we apply this in two dimensions to ebtain the existence of minimisers
of E on «#" for each N € N. In Section 5, we give corresponding results for a three-
dimensional probiem in which the two-dimensional annular domain is replaced by
a three-dimensional tubular domain. Though our proofs in Sections 2, 3 and 5 are
stated for the case of the symmetric domains above, and particular boundary con-
ditions, our arguments are quite general and do not depend on the symmetry inherent
in these samples. In particular, the two dimensional example extends with [ittle
difficulty to any domain lying between two star-shaped regions (with a common star
centre lying in the mnner region) and to a wide class of displacement boundary
condifions.
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In Section 4, we treat the special example of rotationally symmetric maps of the
annulus A. In this setting, more explicit information is obtained on the properties
of the equilibria. In particular, it is possible to prove the existence- of multiple
equilibria by directly seeking radial symmetric minimisers. Finally, in Section 6 we
discuss some of the difficulties in extending the results of Sections 2, 3 and 5 to
mixed displacemem traction problems. '

Preliminaries :
Given n, peN, we denote n-dimensional Lebquue and p-dimensmndl Hausdo:ﬂ"
measure by &7, #7,

Let Q c R* be a domain. We denote by WhP(Q:[R") the Sobolev space of maps
u: Q- R" u e L/(Q), whose first-order weak derivatives Var exist and satisfy Vu e L7(Q).
We will often abbreviate W!(Q:R*) to WL(Q),

Given we WiP(Q), p= 1, when dealing with pointwise plopeitles of u, or its
restriction to lower-dimensional submanifolds, we will not identify maps that are
equal almost everywhere. In our context, it is advantageous to work with a particular
representative of «. In pdlilculdl the precise representative of u, denoted #*, is defined
for x £ by

j uiy) dy
B(x)n& L

) lim - if this Hmit exists, S
u"'(,\j) = 4§ r-20 J‘ . 1 d}) (14)
B(x)$2

0 otherwise,

where B.(x) = {p: lx rl<r} Wc 1efel o [8 13], and the references therein for
important properties of the precise representative.

2. The. winding number

The wm(hng number for closed curves in the plane

The idea behind the dcve]opment given in this subsection is sianddxd in the context
of degree lhco1y (see e.g. [15]); the precise estimates derived in the proofs w1[1 be
required later in the paper.

DermNiTion 2.1, Let
e b]-RL p0) = (TD
o(r

be & C! curve satisfying y(a) = p(b) (i.e. y is.closed) and [p(r}| = (x 2(J) 4 y*(r)* > 0 for
all r € {a, b]. Then the winding number of y (around the origin) is defined by

w2y 0

) 1. b o
indfp=—_— | : : .
-wm #y o L {0+ y (,,) - dr. o (?- 1)

Note that wind# y e 7 (since e.g. (2.1) can be regarded as the real part of the complex
contour integral 1/2mj dz where §(r) = x(r) + iy{r}). :
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Remark 2.2. It follows from the above definition and comment that the winding
number is continuous in the C' topology: ie. il p satisfies the hypotheses of the
definition, then there exists ¢>0 such that if 7 is any closed C' curve with
7 = Flictqeen < ¢ then windff y = wind# §.

We next extend the notion of winding number to closed continuous curves.

Derinition 2.3, Let p:[a, b]—R? be a continuous curve satisfying y(a) = p(b) and
[()| >0 for all € [a, b]. Let (3,), 7.:La, b] > R?, ne N, be a sequence of closed ¢!
curves converging uniformly to y on [ab]. Then we define wind#y=
fim,, ., ., wind# p,.

RoMark 24, To see that this extension of the winding number is well defined,
suppose that y is a closed continuous curve with |y(r)| > 0 for r & [a, b]. Then there
exists g,>0 such that |p(r)l>g >0 for all rela,b]. Now suppose that
Yo, ¥1:[a, b1->R? are closed C' curves satisfying 7 — ilicqasy < €0/4, i=0, 1, and
define y,:Ta, b1 =R by y,(r) = (1 — Do (r) + ty,(r} Tor rea, b] for each re[0,1].
Then

&y 28 &
20 =120~ tlpe() =N Z 00— 5 — 7 =5 >0
for ¥ e [a, b] for each t &[0, 17 and wind# y, is well defined for each r e [0, 1]. We
now claim that wind# y, = wind# p,. To see this, let

t* = sgup {t e [0, 1]: wind# y, = wind# y,}

and suppose for a contradiction that ¢* < [. Then by the continuity of the winding
number in the C* topology (see Remark 2.2), the continuity of the map 1 —y, (in the
C* topology on curves) and the fact that winding number is integer valued, it lollows
that there exists § > 0 such that windff y, = wind# v, for £ & [r*, t* + §), a contradic-
tion. Hence windff y, = wind# p, as required.

Thus, returning to Definition 2.3, for sufficiently large nnz N say,
7 = 2ull cgany < 60/4 and hence by the above argument wind# y, is constant for all
nr= N. This shows that the winding number is well defined,

From the above argument, we obtain the continuity of the winding number in the
uniform topology.

LiMua 2.5, Let y:[a, b]—R? be a closed continuous curve. Let 19{(1)] > 69> 0 for all
tela,b]. Let §F:[a,b]—-R> be a closed continuous curve satisfying
Yy — Pl e < 6o/4; then wind# § = wind# p. (Hence the winding number is continuous
in the uniform topology.)

The winding number for maps of the annulus
Let O<a<bh and let A= {xeR%:a<|x|<b}. Let the class of admissible defor-
mations of A be defined by

o = {we W'Y A):w: A — A almost everywhere, 1 = identity on d4}.  (2.2)
The condition #: A — A almost everywhere denotes the existence of a set N < A,

FLYN) =0, such that u(x) e 4 for all x e A\N. We will demonstrate that the results
presented thus far in Section 2 can be used to identify homotopy classes of maps in
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7. Roughly speaking, the idea is the loflowing: given u € 57, we transform to polar
coordinates and write # = u(r, 0), and it then foilows that «(-, 0) is absolutely continu-
ous (ie. in WhH{(a, b)) for almost every #e (0, 2z). Hence, by the embedding of
Wh{{a, b)) in C({a, b]), we may assume that
v, )

volr) = e 0)] (2.3}
is a closed continuous curve in R? for almost every ¢ e [0, 2z). Thus we may define
wind# y, for almost every 0 e [0, 2r). To adop( this approach in a way which is
preserved under weak convergence, we will require mapping pr operties of the precise
representatives (sec (1.4)) of maps in &/ on radial Hines, and their properties under
weak convergence, These arc given in the following lemmas.

LiMMA 2.6, Let ue «; then there exists N [0, 2n), Y (N) =0, such that for edch

0 e [0, 220\N, a*(r, 0) is an absolutely continuous curve lying in A with
im w*(r, 0} = blcos §,sin 0),  lm w*(, 1) == a(cos 0, sin 0},

'm,,b" =
Proof. We work in polar coordinates (r, 0). Let w*{r, 0}, (r, e P=1{a,b] x {0, 2m)
be the precise representative of w Then a=u* % 22 gimost everywhere. Thus there
exists Q < P, £2(Q) =0, such that

wir,0)e 4 for all (r, 0)e P\Q, (2.4)

By Fubini’s Theorem, there exists M <[0,2n), & HM)Y=0, such that Qy=
{refa b):(r, @) e Q) has &' measure zero for each #e [0, 2m)\M.

Now, by the absolute continuity proper ties of the precise representative u® (see
[13, Preposition 2.87]), there exists M <0, 2r), J"‘(M) 0, such that w*(-,0) is
absolutely continuous on (g, b} for each e [0, 27\M. Now let N = MuM. We
claim that {uw*(, 0):r€(a, b)) < A for cach 0 e [0, 2r\N. (Otherwise, il #*(F, Ne¢Ad
for some # € {a, b), 0 [0, 220\N, then, by continuity of #*(-, 0}, we obtain a contradic-
tion of (2.4) and the definition of N.

Moreover, by £12, Lemuma 3.1.17], we may assume without loss of generality that
1im, - o+ w*(, 0) exist for cach 0 e [0, 227N and that by I'8, Scction 4.3] that these
limits equal bicos @, sin 0), a(cos 0, sin 0), respectively.

Hence we may assume by the last lemma that
u*(r,
yal(r) = |“'\(’ 0% re[a,b]
is a closed continuous curve with a well-defined winding number (around the origin}
for each 0 e [0, 22\N. []

The next lemma demonstrates that ./ is sequentially weakly closed.

LivmmA 2.7. Let {w,) <. converge weakly in Wh'(4), pz 1, to ue Whr(A). Then
ne .o

Proof. 1t follows from the boundedness of the trace operator that n(x) = x for x € 04
(in the sense of trace). By Lemma 2.6, there exists a set N < [0, 2m), L1 (N) =0, such
that each w,, n e N, satisfies the mapping properties given in Lcmma 2.6 for each
¢ e [0, 2n\N. Now by the results of {13, Lemma 2.9] there exists a set S0, 2n),
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FHS)=0, such that for each 0e[0,2r)\S there exists a subscquence (u, L,
satisfying wf (-, (0)~~u*(-, 0) as k— oo in Wh((a, B). Let S =SuN. Then, since the
embedding of Wh?((a, b)) in C([a, b]) maps weakly convergent sequences o strongly
convergent ones, it follows that a} (-, 0y—a*(, 0) in C(fa, b]) as k-0 for each
0ef0, 2208, Hence {u*(n®ire(ab}cd for each 0e[0,210\S (since
{wz (r, 0):r e (o, b)) = A for each e [0, 2z)\S). Thus #*: A - A almost everywhere
and hence u: A - A almost everywhere as required.

Derinmion 2.8, For each N e Z, we say that # ¢ . satisfies the homotopy condition
(Hy) il

windff y,= N for almost every 0 e [0, 27), (2.5)
where 7, 1¢ defined in terms of & by (2.3).

The next result uses the last two lemmas and shows that the condition (Hy) on
the winding number is preserved under sequential weal convergence.
Lumma 2.9, Ler Na N and let

N = {n e o uosatisfies (Hy)}. (2.6)

If () = o satisfies w,—u in WP(A), pz 1, then we o™,
Proof. By the resulis of Lemma 2.6, we may assume the exisience of a set N <0, 2n),
SUNY =0, such that cach #,, ne N and » satisly the mapping, absolute continuity
and limiling propertics of Lemma 2.6 for each e [0, 2r)\N. Now, by the arguments
of Lemma 2.7, we may suppose without loss of generality that NS < [0, 2q),
Y8y 0, and that for each (&[0, 22)\S there is a subsequence (w, ) such that
i (-, 0)—u¥(c, 0) in C([a, b]). Hence, by Lemma 2.5, since cach u,, satisfies (Hy), it
follows that u also satisfies {Hy).
REMARK 2.10. Note that if w € & n C(A) then, by Lemma 2.5, condition (2.5) holds
for alt e [0, 2na).

3. Existence of mmultiple equilibria in two dimensions

We assume hreughout this section that the stered energy function WM 5@
satisfics the following hypotheses:
(H1) W is continuous and W(F)= <o if and only if det F £0;
(H2) W is polyconvex, ie W(F)=g(F, detF} for all FeMi*? where
g M?*2 % (0, o) R is convex;
(H3) WF)z C|F)" + C, for all FeM*"? de(0, ), for some Pz2, where
C, >0 and C, arc constants.
TusorsM 3.1, Let W osarisfy (H1), (H2), {H3); Then E attains a minimum on
N = {ue of uosatisfies (Hy)lb.
Proof. The existence of a minimiser of E on
o7 = {ne WHPA) u(x) = x for x € 4, E(w) < + o0, det Va > 0} ae.  (3.1)

follows immediately from [4, Theorem 6.1 and the comments following the proof ].



On homotopy conditions 601

(The fact that &7 is nonempty follows, for example, by considering a map of the
form (4.1) with p(R) = R and (R} = 2Nn(R ~ a}/(b — a}.) The proof of our theorem
follows from observing that if (w,) =™ is a mmumsmg sequence for E on .oz,
then by the arguments of [4] there is a weakly convergent subsequence

—p in WEP(A) as k— oo for some v e &7 and E(w) = lim inf,., o, E(u,, ) and u sat-
1sﬁe‘; (Hy) by Lemma 2.9, Hence u & /" is a minimiser of E on /N

REMARK 3.2. If W satisfies (H1), (H2), (H3) with P > 2, it follows from Theorem 3.1
that E has infinitely many strong local minimisers: fix N & N and let " be a minimiser
of E on V. Since W''P(A) e C(A), if de s/ satisfies [ — ez < @/8 then, by
Lemma 2.5, wind# #(-, 0} = N for all 6 € [0, 2=} and so e Y. Hence E(™) < E(iF)
and so 1" is a strong local minimiser of E on .o/,

REMARK 3.3. Note that if P> 2 then, by the compact Sobolev embedding, we may
assume further in the proof of Theorem 3.1 that u, —u in C{£). Hence the fact that
u satisfies (Hy) if the minimising sequence {u,) satisfies (Hy) is immediate by
Lemma 2.5 without recourse 1o the results of Lemma 2.9

RuEMARK 3.4. Since W is polyconvex by assumption, standard arguments {(see c.g.
[17) imply that W is quasiconvex and in particular that, for p 22,

E()z E@™™y for all we o,

where #"°™(x) == x, Thus this homogeneous map is the global energy minimiser (with
no winding number constraint),

Rimark 3.5. The following straightforward argument demonstrates that, for frame
indifferent isotropic stored energy functions W, if @ is a strict local minimiser of £
in /%, then u is rotationally symmetric. Let # be such a strong local minimiser then
ue C(Q) by [19, Theorem 57, let

cosp  —sing
) = ( : ) peR
sing  cosg

and consider #,(x) =0 (@u(Q(p)x) xe A Then u,lon=nlos |u—tt,lce—0 as
¢— 0 and

A

E(u,) = J WO " Va(Qx)Q) dx = J W{Vu(x)) dx.
A

Since, by assumption, # is a strict local minimiser, it follows that », = u for all ¢
sufficiently small. A straightforward continuity argument now gives that u, =uw for
all ¢ and so u i rotationally symmetric.

Finally in this section, we give a simple lower bound for inf,~ E in terms of the
winding number N.

Limma 3.6, Lei W satisfy (H3); then

2 P
mf E = (mes AY™ (\/5.% “ N) .

A b
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Proof. First, observe thal by Hélder’s inequality,

J- |Ve|” = (mes A) P [ Vulh (3.2)
A
and that if # € &/~ then
vl >_1 I bR @ ] .(?f{] autl 1| a? IR d0
Mle=m )L S er a | " |er TR0 ]
25“1 o 2
SR ol |" ok IR d0
= \/ib 4] ] |Hl2 e
o - ! o
- @ [ [P7OR T OR _—
= \/ib 0 o quZ ‘ ‘
2
~ PN, (33)

b
by (2.1). Hence by (H3), (3.2) and (3.3} it follows that

2 P
E{) = (mes A (\/‘n C—m ) .0

Remark 3.7. The results of [2] (see also [5, 137]) give conditions under which a
minimiser &, of Theorem 3.1 {for some N ¢ N} is a weak solution of a corresponding
system of Euler-Lagrange equations. The basic idea is to consider two (ypes of
variations which preserve the invertibility condition (1.2): ‘inner’ variations, which
are of the form:

(i) 1, (x) = u(®,(x))  where ®,{x) = x + ¢¥(x) with ¥ & C}{4), (3.4)
and ‘outer’ variations which are of the form:

(i1} 1 (x) = @ (ny(x))  where @, () =y + e¥() with ¥ & Chlug(A)), (3.5)
(In the above, #y is & minimiser, ¢ R is a parameter, and the Euler-lLagrange
equations are derived by setting (d/de)E{x,;) = 0.)

Notice that by Lemma 2.3, both inner and ouler variations preserve the condition
(Hy) if e ¢ R is sufliciently small.

In case (i), the corresponding Euler*Lagrzmge equations are

d
ax*

“W(Vu( VoL — uf(x )'H i (Vu( ))J =0 in%{4) i=12 (3.6)
(The expression in square brackets is sometimes referred 1o as the Energy-
Momentum Tensor.)

In case (ii), the corresponding Euler-Lagrange equations are

g
5(;; (T uP)=0 1in Duy(A) i=172, (3.7}
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where T= (T} is the Cauchy stress tensor defined on ug(4) by

1w "
- —— (Vg (x ) (Vi (x))"" (3.8)

T@ol¥D = 4o Vg () OF

It is interesting to note that the arguments leading to the proof of Theorem 3.1 can
also be used to proves the existence of minimisers of functionals such as

Eu) = j Valx)i?dx, pz2,
A

on sets of the form
sty = {ue WhP(A):det Vi 2 0 almost everywhere, wjy,; = wlentity, w satisfies (Hy)}

for each N e N. (Note that equality is allowed in the determinant constraint defin-
ing &#y.)

Since £ is strictly convex, the unique smooth invertible solution of (3.6) and (3.7)
satisfying the boundary conditions is wo(x) = x. Hence for each N = 1, it follows that
a corresponding minimiser #, of E on .y cannot be smooth and invertible. This
can oceur, for example, when det Viry = 0 on a set of nonzero measure. In such cases,
the arguments in [2,5, 13}, leading to the system (3.7) break down (as (3.8) 1s not
defined), but those leading to (3.6} are still valid for these minimisers.

4. An example

Rotationally symmetric maps of the annulus o
ExAMPLE 4.1, In this section, we consider maps n: A —» 4, A= {x¢ R*:a<|x| < b},
which are of the form

cos (0 + y{(R))
w(x)=p(R){ |
sin (8 + ¥{(R))
where (R, #) are polar coordinates in the plane, R=|x|, and p:[a, bl—=[a &)
W [a, b]—R. It follows that, for sufficiently smooth deformations of this type,
P'(R) cos (0 + ) — p(Rwr' sin (0 + ) x
Vi(x) = . ) ®—
p'(R) sin (0 + ) + p(RW cos (0 + 4/ — R

) for all x € 4, (4.1)

g
g Sin (6 + o) 1,
+ ®R( ) (4.2)
P X1
R cos (8 + )

A straightforward calculation shows that

iV =tr [Vu(Va)' 1= (E) +(p P+ (py'Y (4.3)
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and {using the identity det (@®a + h® b) = (a, b, — a,b,)*} that

2
(det Var)2 = det [VaVa'] = [ o ﬂ . (4.4)

The next lemma is straightforward to verify.

LemMa 4.2, If (p, 4y e WhH(a, b)), p:{a, b1 —=(0, o), ¥ :[a, b] - R and satisfy

J R [(%) + (pY + (p:jf’}”] dR < + o0, (4.5)

Jor some Pz 1, then the corresponding map u given by {4.1) lies in WF(A).

For simplicity, we restrict attention to a class of polyconvex stored energy functions
of the form

1
W(F)=§|F|2+h(detF) for Fe M**2, (4.6)

where h:{0, «0)—R" is convex, C* and satisfies
h(d}— o0 as d—0, co. 4.7)

We extend h to be defined on R by setting h(d) = + oo if d & (—o0, 0. Notice that
W is both frame indifferent and isotropic; i.c. that

W(F)=W(QF)= W(FQ) forall Fe M%3*% for all Q e SO(2)

(see e.g. [6, 14, 20]). For stored energy functions of this form, it fellows from (4.3),
(4.4) that the total stored energy (1.3) corresponds to a rotationally symmetric
deformation of the form (4.1) is given by

b B 2
E(w) = 2nl(p, ¥) = 2n J R E ((p’}z + (%) + (,()lff')z) +h (p’ %ﬂ dR. (4.8)

For each N e N {0}, we seek equilibria by minimising I on the set
AF™ = {(p, ) € W ((a, D) pla) = a, p(b) = b, p(R)> 0
a.e. on (a, b}, W(a) =0, w(b) = 2N=}, (4.9)

The condition p’ >0 ensures that the maps (4.1} satisfy (1.2} and the condition
¥r(b) = 2N corresponds to the homotopy condition (Hy} in this symmetric setting.
Let (p,, ¥r,) € &/{™ be a minimising sequence for I on &/{¥"™, 1.e. I{p,, ¥, ) =10l gym
as n-» oo, then

b |
[(;0;)2 + =5 () + az(l!f{.)z} dR VYneN.

I(p)l’ l!‘/ll) g a J’ b

[

Hence {{p,, ¥, )2 is a bounded sequence in W'*({q, b)) and hence has a weakly
convergent subsequence, still labelled ({p,,4,)), converging weakly to some
(p, ) € WhA({q, b)) satisfying p(a) = a, p(b) = b, ¥r(a) = 0, yr(b) = 2Nn. Standard results
imply that I is sequentially weakly lower semicontinuous on such a subsequence
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and it then follows that
inf = liminf I{p,, ) 2 Ip, )

AP e

so that, in particular I{p, ) < co. Thus, by the properties of h, it follows that p(R) >0
ae. Re(a b) and so {p, ) e #F™. Hence

Hp, )= inf I.

™

Standard regularity arguments then show that (p, ) € C*((a, b)) and satisfy the Euler—
Lagrange equations:

: d 1 2 ? p p "2 I3 I '0 .
(i) iR [Rp (R) + ph (p R)] =g HRoWY +p P R )
i
(i) ;]fﬁ [RARW/(R] =0, Rela,b).
Remark 4.3. A straightforward, though slightly lengthy, calculation shows that any

smooth solution of (i) and (i) above gives rise to a corresponding solution w (by
(4.1)) of the full Euler-Lagrange equations for E (given by (1.3)), ie.

O Gy [ =0 xeQ=4, i=1,2
8x°‘__8F;(“'x =0 x =4, i=12,

for energy functions of the form (4.6},

RiMaRrK 4.4, Integration of (ii) shows that if (p, ) € &Z¥™ is a minimiser of I on
%™, then Rp*(RW(R)= ¢ = constant for R € (a, b). Hence, if ¢ # 0, then y is one-
signed. The case ¢ = 0 can only occur if N =0 (by the boundary conditions} and in
this case ¥ = 0. Thus for any minimiser {p, ) we have that the corresponding angle
of twist ¥ is monotonic in R, i.e. the corresponding map {4.1) of the annulus is a
monotone fwist map.

ReMaRK 4.5. The following example shows that the homotopy condition (Hy} is not
preserved in general under convergence in I, 1 £ P < co. We consider a sequence
of radial maps (1) of the form (4.1} with corresponding functions (py, Y1), ke N,
where

p{R)=R forall k
and
0 for Rela b—1/k}
VilR)= {Zn[k(R —b)+1] for Re[b—1/k,b].
Then it is easily verified that (u,) is bounded in W*!(A4) and that m—u, as k—w

in I” for all } £ P < oo, where x is the identity map. However, #, satisfies (I} for
all k but » satisfies (Hy).

The example of this section can be extended to a much wider class of isotropic,
frame-indifferent, stored energy functions. It follows from our results that for each
N e N,, I attains a minimum in the class of rotationally symmetric maps /™. By
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Theorem 3.1, we have that E attains a minimum on &% (defined by (3.1)} with no
assumption of rotational symmetry. It is an open question at present whether, for
the stored energy function of the example, any nonhomogeneous minimiser whose
existence is guaranteed by Theorem 3.1 is necessarily rotationally symmetric (a
possible approach is given in [16]). Note that the existence of infinitely many locally
minimising critical points of the energy functional does not necessarily imply the
existence of infinitely many unstable critical points (as one might expect by a Morse-
type argument) since each local minimiser may sit in an infinitely high potential well
due o condition (4.7).

5. Existence of multiple equilibria in three dimensions

In this section, we present a three-dimensional example demonstrating the existence
of multiple equilibria for a Dirichlet boundary-value problem from nonlinear
elasticity.

et @ < R® be the ‘hollow tube’ (see Fig. 5.1) of radius ¢ and thickness (b — a):

O={{x,p20eR:Z[(X*+ P — P+ 22 Z0%), (5.1)

where a, b, c e R are constants satisfying 0 <ag<b<¢; le. Q is the domain lying
between the two tori T,, T,, where

T (x, p, 2y e RI[(2+ ) -+ 22507}, O<r<e
We proceed analogously to the two-dimensional case considered earlier.
The winding nembers for curves on the torus 7',

Let »:[0, 1]~ T, be the closed C! curve. We define two winding numbers for any
such curve.

Figure 5.1



On homotopy conditions 607

Dirnrrion 5.1, The axial winding number, denoted by wind™ », is defined to be
the winding number of the projection of y onto the x, y-plane, ie.

L[ x{(0)p(e) = p{(0)x(2)
— ¢
2 Jo XM+

windV# y =

where p(() = (x(t), p{t), 2(c}) for t& [0, 1].
We nex! define a ‘tubular’ winding number for which we require the following
axially symmetric, curl-free, unit tangent vector fietd # on the torus T,

—aZX

o )t
fx)s=—1  —zy forall x=(x, v, 2)e T,. (5.2)

&

Notice that, locally, #(x) == Vii(x), where

frix) =D tan 4 (m;);_“() for (X2 -+ ,1"2) # ¢

DeFNiTionN 5.2, The twbular winding number of y, denoted wind®# y, is given by

i
wind@ y = L J tHyp(0) - Pt dt. {5.3)
2nh g

REMARK 5.3. It is a consequence of Stokes’ Theorem that wind® y is integer-valued.
To see this, first observe that if y, and v, are homotopic curves on T, and (s, {),
y:10,1] % {0, 11— T,, is a smooth homotopy (s € [0, 1] being the homotopy param-
eter) with (0, Y=1,(), (1, )=7,(), then wind®# y,=wind®¥», by Stokes’
Theorem applied to the surface § ‘swept out’ by the homotopy, where §=
{x, v, 20€ T,:(x, 3, 2) = p(s, 1) for some s& [0, 1], 1[0, 17},

1t is a basic result from algebraic topology (see e.g. [97]) that the fundamental
group of the torus is commutative and that we can homotope any given curve
7:[0, 11> T; to a basic curve of the form A% + ™, m, ne Z, where + denotes the
join of the curves and A, n e N, denotes the join of n curves A% - ... 4 A", where

Ay = ([e — b] cos 2xt, [¢ — b] sin 211, 0), te[0, 1],

and AU for ne N denotes the same curve with the reverse orientation, Similarly,
#® denotes the join of m curves g + ... 4+ u'V, where

w91 = (¢ + b cos 2mt, 0, bsin 2mt), te[0, 17,

(see Fig. 5.2). A straightforward calculation, using the additivity of the definition
(5.3) and the fact that wind@# (2") =0, then shows that

wind@# (2% 4 4p) = m  for all n,me Z.

Following our earlier development, we next extend the notion of axial and tubular
winding number from C! to continuous curves .
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Figure 5.2

Durnition 5.4, Let y:10, 17— T, be a continuous curve. Then we define

windO y = lim windf y,,

Ny o0

Wil"id(z)# Y= liin Wind(z}# })u:

Hes 6
where ,:[0, 17— T, n e N, is any sequence of C' curves converging uniformly to 3.
ReMark 5.5, An analogous argument to that given in Remark 2.4 shows that
wind™ y, i = 1, 2, is wel} defined and continuous in the uniform topology.

The winding numbers of maps of the tubular domain
Let © be the hollow tube defined by (5.1). Analogously to the two-dimensional case
considered in Section 3, we consider maps o in the class

o = {ne WHQ) u:Q—-Q ae. ulyg =identity}.

In order to define homotopy classes for such maps, we first define the ‘tubular
projection’ operator P:Q - T, given by

U

P(x) = P{Xs B Z) = (.’N’ ;,:,: 0 [:(’..,__ (3)2 4+ 22],?5 s

for all x={(x, y,z)&, (5.4)

where F={x* + y?)%.

DErNImoN 5.6, Given M, N e Z, we say thal u satishes the homotopy condition
(Hpg ) if

wind [P(u(§)] = M
and
wind®# [Pa(7)f] = N, (5.5)
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P(x)
X o«
.f
L4
_..—’/
Figure 5.3, Verlical eross-section through $} showing the action of P.

for H* ac. x ={x, v, )& T, where 7: [0, 17 Q is defined by

. Xy 1 (3" - C- .
#H)=¢ (-f;,}_—,O) A+ {thh ) -+ cz)b(:\'l 1 fJ’ pil-— ;—“}’ z), tef{0,17.

{5.6)
Remark 5.7, The projection is chosen so that P@(§) is a closed curve on .. I
ue C(O) .o, then (5.5) holds for all (x, y, zye T, by Remark 5.5,

The proof of the next lemma is exactly analogous to that of Lemma 2.9, and is
thercfore omitted.

LumMa 5.8, Let (u,) < o converge weakly to w in WH(E), Pz 1. If u, satisfies (Hu w)
Sor all ne N, then u satisfies (Hy y).

Existence of minimisers
Given M, N e Z, let

MY = e o satisfies (Hyyx), det Va0 almost everywhere},

where
E(u) = J W(Va(x)) dx,
Q

and (Hy y) is given by Definition 5.6. We assume throughout this subsection that
the stored energy function W:M**? — IR satisfies the loliowing hypotheses:
(H1) W is continuous and W(F) = o if and only if det F = 0;
(H2) W is polyconvex, iLe. W(F)=g(F, ad] F,det I ) for all Fe MY, where
g M3 M3 % (0, o) > R is convex;
(H3) W(F)z C,(IF" +|adj F|?) + Cyforall F e M3%3 de(0, o), for some P = 2
and Q = PAP - 1), where C; >0 and C; are constants.

THEOREM 5.9. Let W satisfy (H1), (H2), (H3); then E atiains a minimum on I MN for
each M, N e Z.

Proof. The proof of this theorem follows from Lemma 5.8 and [4, Theorem 6.1]
and is analogous to the two-dimensional case (Theorem 31y i
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ReEMARK 5.1(h By exactly analogous arguments to those used in Remark 3.2, it
follows that if P> 3 then, for each M, N € Z, the minimiser whose existence is given
by Theorem 5.9 is a strong local minimiser of E in WH"(Q)~ L*(Q).

6. Concluding remarks

In generalising the two-dimensional example of Section 3 to three dimensions, it is
natural to try and replace the annulus 4 by a shell. However, there are serious
difficulties in defining a homotopy condition corresponding to (Hy) in this three-
dimensional setting. The fundamental topological problem thal one encounters is
that there is no smootly unit vector field defined on $? {the ‘hairy ball theorem’),
though there clearly is on §', and hence a notion of winding number on $? is not
available. (Of course, there do exist examples of smooth unit vector fields on the
torus and these give rise to the winding numbers wind“# y defined in the first part
of Section 5.)

There are natural approaches to generalising the results in this paper Lo the case
of mixed displacement traction problems. In this section, we ocutline one such
approach and point out some difficulties that arise.

For simplicity, we focus attention on the following specific three-dimensional
problem.

Let

Q={{x,yeR ¥+ <l, ~LZz<L} (6.1)

be a cylinder of length 2L. Given a deformation u: €2~ &3, we specify the boundary
displacement at the ends of the cylinder

i, = identity, (0.2)
where
0 ={(x, v, 20eQiz=+L, x>+ <1}, (6.3)

The displacement on the remainder of the boundary of the cylinder is feft unspecified
(so that in the subsequent variational probiem this will give rise 1o a natural, zero
traction, boundary condition).

Again, heuristically, one expects many equilibria to this mixed problem, corre-
sponding, for example, to twisting one end of the cylinder through a multiple of 27
about the z-coordinate axis. (In Figure 6.1 we show two such delormations, together
with the image of an axial line inscribed on the outer surface of £.)

The linking number

To analylically isolate the different classes of deformations sketched above, we recall
the classical notion of the linking number of two non-coplanar, nen-intersecting,
closed C! curves p, u: [0, 17~+IR3, which is given by

-1 1 i A s, 1
link# (y, pt) = —/.—f.; J L E)Eg_].—(j;li(l—{)-ig ds dt,
o (¢
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s
|

zZ
IZ;
Figure 6.1

where A is the triple vector product
Als, 8) = [3(s) A f(1)] - (p(s) — pel£)

{see [17, p. 4037).

The notion of linking number is due originally to Gauss and is integer-valued. It
counts the number of intersections of one of the curves with any surface spanning
the other curve (taking into account muitiplicity and direction of crossing, see [17,
p. 403]); see Figure 6.2.

By the approximation arguments of Section 2, we can extend this definition of
linking number to non-intersecting confinuous curves y and g and show that it is
well defined and locally continuous in the uniform topology on such curves. Hence
if (3,), (41} are closed continuous converging uniformly to y and g, respectively, then
link# (y,, g,) is well defined for sufficiently large n and lim,.. link# (p,, #.) =

link{f (y, &)

Figure 6.2. Two curves with linkg (y, g} = 1.
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Classes of maps e

Proceeding analogously to our approach carlier in this paper, we attempt to analyti-
cally identify these different classes of maps. We work in cylindrical polar coordinates
(r, 0, z), where re [0, 17, 0 € [0, 2r). For each 7& [0, 1), # € [0, 27), let [, ; denote the
straight line in € parallel to the z-axis given by r=7# 0=0, —LZ£z< L.

We- first identify the ends of the cylinder by joining them in the obvious way; ie.
we identify pairs of points (1, G, L), (1, 8, — L) for each {r, 0} € [0, 1] x [0, 2=). Under
this association, each axial line /, ; gives rise to a corresponding closed curve denoted
by p0:[ L, L1~ R (parametrised by ze [ L, L]). Let p:[—L, L]->R? denote
the closed curve corresponding to the choice =0 (i.e. the axis of the cylinder).

Now given NeN and a deformation # e C(Q) satisfying (6.2), we say that u
satisfies the condition (Hy ) il tink# (u(y, 4), u(#)) is defined and equal to N for all
(7, 0y e (0, 1] x [0, 2m).

Existence of energy minimisers

Now, given P> 3, we consider the variational problem of minimising the stored
energy functionai given by (5) and (H1)}-(H3) in the last part of Section 5 on the
sct of deformations

o = {u e W) det Vi > 0 almost everywhere,

# = identity on dQp.q, J-

Q

det V() dx = Vol u(Q)}

The integral constraint in the definition of &7 is included to prevent interpeneiration
of matter by deformations in ./ (see [77]). Since P> 3, we may assume (by the
Sobolev Embedding Theorem) without loss of generality that {u & A then we C(Q).
By the results of [7], it follows that E attains a minimum on 7. We next consider
minimising £ on

SN = fwe 7 u satisfies (Hy)},

where N e N is given (and fixed).

At present, it is unclear to us under what (if any) hypotheses a minimising sequence
(n,) = &7™ necessarily has a subsequence converging weakly in W'P(Q) to some
uwe /" One problem is that there may exist (potential limit) deformations
we WhPQ), detVu>0 almost everywhere, E(w)< -+« and such that
link#f (e(ys 5), () is undefined for any (7, Dy e{0, 17 % {0, 2n) as shown by the next
example.

ExaMPLE 6.1, Let W(F)=q«|F|” + f(det FY —ylog|det F| for Fe M¥**® where
o, 3, v > 0 are constants, p= 1, r 2 1. Now consider a deformation

u(x) = (p(2)x, p(2)y, 2z} for x ={x, y, 2} € Q.
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e —
e Ty
4 o
i
‘-—.._“____“__,—‘
Figure 6.3
Then
¢ 0 ¢
Vu(x)=10 ¢ oy and det V=2
0 0 1

Let ¢(z) = z* where a = 1.

Then an easy calculation yields # € Wh(Q), E(u) < + oo, det Vu > 0 almost every-
where, but the linking number link# (s(y; ), #(w)} is undefined for any
(7, 0y € (0, 1] % [0, 2%). (See Fig. 6.3 for the case o = 2))

Indeed, deformations like # may be relevant in the modelling of fracture in certain
materials (so that an energy minimising deformation # may develop such a singularity
as the number N & N is increased).
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