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ON THE STABILITY OF CAVITATING EQUILIBRIA

By
b SIVALOGANATHAN

School of Mathematical Sciences, University of Bath, Claverton Down, Rath, UK

1. On the stability of cavitating equilibria. The mathematical phenomenon of cav-
itation in the setting of finite elasticity was first demonsirated by Ball in {3]. This
work was subsequently extended and generalised in [23, 21, 15] and many aspects of
the problem are now well understood (see [1, 9, 10, 11, 12, 15, 17, 22, 18, 8] and the
references therein). It is known that these cavitating equilibria, which correspond to
discontinuous radial deformations of a ball of hyperclastic material, are often global
minimisers of the stored energy in classes of radial maps of the ball {see [3, 21, 22]).
In this paper we demonstrate certain stability properties of these cavitating equilibria
with respect to general (not necessarily radial) variations in W'’ (B}.

The setting for this work is a ball of compressible isotropic hyperelastic material
occupying the region B = {x ¢ R*: [x| < 1} in its reference state. We refer to maps
u: B — R’ as deformations of the ball and we seek cquilibria by minimising the
corresponding stored cnergy

E(u):/BW(Vu(x))dx (1.1)

+

over admissible deformations. (Here #W': M3X3 — R" is the stored energy function

of the material and Mix“" denotes the space of real 3 x 3 matrices with positive
determinant.) The equilibrium equations are the Euler-Lagrange equations for E,
namely

a |oW

— |

5 |5 VI09)
In the displacement boundary-value problem the ball is held under a prescribed radial
boundary condition u(x) = Ax for x € 88 (where A > 0 is a constant). It is known
that, under suitable hypotheses on W (see [3, 21]), there is a critical value Ay, such

{
that for all A <4, the homogeneous deformation

=0 forxehB, i=1,2,13 (1.2)

0" (x) = Ax (1.3)
is the global minimiser of £ in the class of radial deformations of B. However,

for each A > A, there is a unique (cavitating) map ucm(x} which produces a
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302 J. SIVALOGANATHAN

spherical cavity of radius ¢(4) at the centre of the ball which is the global radial
minimiser. Moreover, it is known that u_,, is a weak solution of the corresponding
three-dimensional equations (see [3]) and that the radius ¢(4) of the cavity produced
is a monotone increasing function of A, with ¢(d) \, 0 as A\, A (see, ¢.g8., [3,
217).

In Theorem 2.5, under suitable hypotheses on W , we prove the following stability
property for the cavitating equilibrium close to initiation: given any d € (0, 1) and
any tolerance M > 0, if ¢(1) is sufficiently small, then

E(w) > E@) forallu-u =@€ w, "(B/By), P>3, (1.4)

with fu—u [, < M, where B; = {x € R": x| < 6} and ||-[,, denotes the L™
norm. Notice that the admissible deformations u appearing in (1.4} only differ from
u, away from the cavity; moreover, by the Sobolev embedding Theorem, ¢ may be
taken as continuous, and so the deformation u=u, + ¢ does not change the shape
of the cavity nor does it introduce further holes. Hence the cavitating equilibrium
is a strong local minimiser in any L™ neighbourhood, sufficiently close 1o initiation
of cavitation, with respect to these continuous variations supported outside B, .

We also give an alternative stability result in Corollary 2.6 (which follows from
the proof of Theorem 2.5) in which & is not fixed but depends on ¢ : this shows
that, for small cavity sizes ¢, u, is stable with respect to perturbations ¢ supporied
outside a boundary layer proportional to ¢ provided that [i¢ll_, is of the order of
the thickness of the layer.

These results allowing continuous perturbations contrast with the recent interesting
work of James and Spector {12] which shows, that for certain stored energy functions,
the energy of a cavitating equilibrium u e Can always be reduced by introducing line
discontinuities. Interestingly, the uniformly polyconvex stored encrgies we consider
do not satisfy the hypotheses of [12].

In Sec. 3 we consider variations u—u, = ¢ € Wol’P(B) for P < 3 and show
that the cavitating equilibria are not strict local minimisers of the energy in L=(B)N
W]‘P(B): in particular we show that given any ¢ > 0 there exists u € Wi’P(B},
fu—ui, <e,with E(u) = E(u,).

In Sec. 4 we prove stability of cavitating equilibria with respect to a class of vari-
ations which permits limited variations in the cavity shape.

We next outline the idea behind our main proof of stability. We will make exten-
sive use of the notion of polyconvexity: recall that a stored energy function W 18
said to be polyconvex if

W(F)=G(F,AdjF, detF) forall F e M*™, (1.5)
where AdjF denotes the transposed matrix of cofactors of F and
G: M7 % M x R - R U {0}
is convex (see {2, 7]).

We assume throughout this paper that ¥ is a uniformly polyconvex stored energy

function in the sense that there exists x > 0 such that

WF) = .l FI* = W(F) forall FeM™, (1.6)
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where W is polyconvex. Thus, by the polyconvexity of W, we have

E(u) > f kv + G(Vu,, Adj Vu_, det Vu )
B

oG . :
+ ﬁ(Vuc, AdjVu_, det Vu)(u'  —u

, r,(x)
M (1.7)
oG . ‘ NN
o (Vi AdiVu,, det Vu )((Adj Vu); - (Adj Vu,)7)

O
AV

e m—(Vuc, Adj Vu,, det Vu_j(det Vu ~ det Vu_)dx,

where G is the function corresponding 10 W in (1.5) and the partial derivatives of
G refer to the derivatives of G = G(F, A, d ) with respect to its arguments, We
denote the integral functional on the right-hand side of this inequality by E(u). It
is easily verified that

(i) E(w)> E(n) and ue W¥(B),

(i) E(u,)=E(u,).
Thus, to prove that u u is a local minimiser of £, it is sufficient 10 prove that u, is
a local minimiser of E. To analyse the structure of E we write u = u. + ¢ where

¢ e W1 P( B) and observe that £ then takes the form

~ oW i
Euy=FEu)+ | —(Vu
(u) = E(u,) B@F(:( D¢
2 (95 . . [43
+/ K|V¢§ +—é;{-i~(Vuc, Ady Vuc, dCtVﬂC}(Ad_] V(,ﬁ)l (1.8)
B

[43
(’}6 . . a I
+57(V,, AdiVu, det Vu )[det Vo + (Adj V)i, 1.
Notice that the linear terms in V¢ in the above expression are a weak form of

the Euler-Lagrange equations (1.2). Thus to prove that u, is a minimiser of £ it is

sufficient to prove that u, is such a weak solution and that ¥ (¢) is nonnegative for
admissible variations ¢, where

F () “éf/ K|V + ‘9GI( Vu,, Adj Vu_, det Vu_)(Adj V)
04, (1.9)
aG :
+ (Vi Adj Vu,, det Vu )[det Vo + (Adj V) ud. ],

We use this approach to prove our stability result for cavitating equilibria. In the
next section we gather results on cavitating equilibria which we will reguire in our
analysis.

2. Cavitating equilibria: properties and stability in w! ‘P, P > 3. We first consider
radial deformations u of the ball B which are therefore expressible as
_(R)
) = =y

%, where R = |x]. (2.1)



304 1. SIVALOGANATHAN

Thus

Vu(x) = L}f} (1 - "fzx) +r’(R)"§2". (2.2)

We restrict attention to the displacement boundary-value problem so that
u(x) =Aix ondpB

for some A > 0. This condition translates via (2.1} to

r(1) = A (2.3)
If the stored energy function W is frame indifferent and isotropic, i.c., W(FQ) =
W(QF)=W(F) forall Qe80(3), Fe M then it is well known (sce [24]) that
there is a symmetric function &®: RL — R satisfying W(F) = ®{v,, v,, v,) forall
F e M**® where the v, ’s are the principal stretches which are the singular values of

F, Le., the eigenvalues of VFVF . (Here RL denotes the positive octant of R3.)
For radial deformations (2.1} the singular values of Vu {given by (2.2} are easily
verified to be

vy = r(R), Uy = Uy = K%Q (2.4)
The radial equilibrium equation is the ordinary differential equation
d 2 PR P
d—R{R CI),l(r,}Q—,E)]—-H{(D,Z(r,ﬁ,ﬁ). (2.5)

This is the Euler-Lagrange equation for (1.1) when restricted to radial deformations
of the form (2.1). The homogeneous deformations w, (x) = Ax correspond to the
radial function r,_(R) = AR which is always a solution of (2.5) satisfying (2.3).

hom

We say that u,(x) = (r,(R)/R)x is a cavitating equilibrium if r, € c? {0, 11 is
0 0 ; 0

a solution of (2.5) on (0, 1) satisfying r,(0) > 0, ry(R) > 0 on (0, 1] and the
natural boundary condition

RV o TolR) To(R)Y
}{lﬂ’b (;m) (D,l (FO(R), **““_“[“é""" TR ) = ). (26)
Notice that if ry(0) > 0 then the deformation (2.1) produces a hole of radius ry(0)
at the centre of B and (2.6) is the condition that the radial component of the Cauchy
stress vanishes on the surface of the cavity.
We suppose henceforth that @ is C? on its domain of definition and satisfies the
following constitutive hypotheses:

(HI)
® (v, v, vy) >0 forall v, (2.7)
(This is the tension-extension inequality; see [24].)
(H2)
yd (v, U, U -0 D (v, v,V
D v z)) _va S0 U2 V) >0 foralli# j, v, #v, (2.8}

t
{These are the weakened Baker-Ericksen inequalities; see [24].]
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(H3)
For each a € (0, oo) there exist v, w € (0, oo) satisfying ® {v,a,a)>0
and @ \(w,a,a) <0, (2.9

(This condition typically holds, for example, if the stored energy function W
satisfies W{F) — oo as detF — 0.)

Under the above hypotheses we obtain the following result,

ProrosiTioN 2.1. Let @ satisfy (H1)-(H3). Then any cavitating equilibrium r, can
be extended 10 (0, co) as a solution of (2.5) with

(i) 2 > r(R) >0 for Re (0, ),

(i) lim, o =lim,_ _ ri(R) =2

. o for some AcmRe [1,00),
{iii) fQ%J is monotone decreasing in R and lim,_, 50(!—‘,—) = 00

Given any A > A_. there is a unique ¢(4) such that

A= ey ()

and c(4) N, 0 as A A, . Given any other cavitating equilibrium 7 € CZ((O, )
then #(R) = cro(§) for some ¢ € R (i.c., all other cavitating equilibria are rescalings
of this extended solution).

Proof. (i) and (ii) follow from [21, Proposition 1.6] on noting that the proof still
holds under our assumption (H3). (iii) follows from (i) since r,(0) > 0. The final
parts of the Proposition follow from (i1}, (iii), the invariance of (2.5) under the
scaling (R, r} — {aR, ar), a >0 and the uniqueness result in {21, Theorem 3.8].

REMARK. It follows from the last Proposition that, by taking an appropriate rescal-
ing of r, if necessary, we may always normalise and assume ro(0) = I so that the
constant ¢ appearing in the Proposition is the radius of the cavity produced.

ReMARK, Under suitable additional hypotheses on @ (see [3, 21, 22]) it can be
shown that, in the class of radial mappings, the homogeneous map U, (X) = AX s
the global minimiser of the stored encrgy functional for all 2 < A . and that for
A> A . acavilating equilibrium is the global minimiser.

LLEMMA 2.2. Let u; be a radial cavitating equilibrium. Then u, can be extended to
R\ {0} as a solution of (1.2) and

Vu,(x) — A

“erit

AdjVuy(x) — A

crit

crit

crit

crit

[ as|x| — oo,
I as|x| — oo, (2.10)
det Vuy(x) — A’Sz'il as x| — oo,
where I represents the 3 x 3 identity matrix.
Proof. This result follows immediately from Proposition 2,1 (ii) and (2.2).

Our next proposition gives a more accurate representation of the asymptotic be-
haviour of the extended solution.

ProposiTION 2.3, Let 7, € Cz((o, 0o)) be a cavitating solution. Then
(i) 2B~ 1+ O/RY) as R — oo,
+ O{I/Rl) as R — oc.

R crit

(i) ry(R) =2

crit
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Proof. We make the change of variables

r 5
’Umﬁ, ¢ =R, (2.11)
and so J
v . [} ¥
Wan=r L, (2.12)
which gives {2.5) the autonomous form
E-dg¢,i(@+’i),’t),'U)=2[(D$2(’l')+?),T),U)—(I)’l(f)-%-'u,?),'{))]. {2.13)
Hence for any solution v(s)
ols) _ do
v(s)  dv
& ,(v+v,v,v)-0 (v+v,v,v) D Bl +v, v, v)
= 2| - e ’ S -1
v®,,l(v+v,v,v) fb'“(fu+v,v,v)
, L@ {5+, 0,0) =@ (10 40,0, 0)}d ~D ,(6+0, 0, 0)|
- CI),“(@+U,1),U) -
6w, v)

(2.14)
where G is C' on its domain H = {(v,9) e R’ 1w > 0,9 +v > 0}.

It now follows that r, gives rise to a solution v(s) of (2.13) and hence to a solution
¥ = f{v} of (2.14) satisfying f(4,;) = 0. Expanding / in a Taylor series around
Aoy BIVES

Sw)y=~3v—-A4_,)+gwv~2iy,) (2.15)

o ol sufficiently small. Thus v(s) = flu(s) =

~3(v(s) = Ayy) + g(v(s) — A,) for all s. Since v(s) > A, for all s, standard

arguments now imply that €3S|U(S} — Al < constant for large s and (i) follows
from (2.11). (ii) now follows from (2.12}, (2.15}, and (i).

where |£(_‘”1‘m}; < constant for v —4

LeMMa 2.4, Let r; € Cz((O, o0)} be a cavitating cquilibrium solution, Then

d " d 7 r{) z . 1
ak;(detVuo) = FIE (f'o (-E) ) =0 (}2’"&) as R — oo,

Proof. 1t follows from the radial equilibrium ¢quation (2.5) that r, satisfies

g
Al R
! r, T, f r r
(DI(rO’Wf%’ “}%)—(I)‘z(rgs r}%a }%) O ! r() f’o
X T +P R R
(rg = #)

It is now an easy consequence of Proposition 2.1(ii) and Proposition 2.3 that

;,-g|:o(?;7) as R — oo. (2.16)
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The claim of the lemma now follows from (2.16), Proposition 2.3, and Proposition
2.1{ii) on noting that

w (WR)) =5 (@) 242 (- B 1

We now make the further assumption that the convex function G corresponding
to the polyconvex function W in (1.6} has the form

G(F, Adj, det F) = G(F , Adj F) + h(dct F), (2.17)

where G: M7 « M3 L Ry {oo}and A:R™ — R are ¢ and convex. Before
proving our stability result recall that by (2.1), Proposition 2.1, and the remark fol-
lowing, under our hypotheses if a cavitating equilibrium exists then we may always
represent it as

X

000 = cuy () (2.18)

where ¢ is the radius of the cavity and u, is a cavitlating cquilibrium extended

as an equilibrium solution fo R3\{0}. Using this representation our next result
demonstrates the stability of u, for small c.

THEOREM 2.5. Let W be given by (1.6), (2.17) and let the corresponding function ¢
of the principal stretches satisfy HI-H3. Let u, given by (2.18) be a radial cavitating
equilibrium. Then given any § ¢ (0, 1) and any M > 0, forall ¢ sufficiently small,

E(w)z E(w) forall (w—u)e W, "(B\E,), P> 3, (2.19)

with flu—uw,l| <M.

Proof. Asindicated by the arguments in the introciucliou, to prove (2.19) it is suffi-
cient to prove that (2.19) holds with £ replaced by £ {where £ is the functional de-
fined by (1.8)). Since u, is a smooth solution of (1.2) it {ollows by a density argument
that the lincar terms in ¢ in (1.8) are zero forall (u—u ) = ¢ ¢ W, " (B\B,). Thusit
is sufficient to prove that F defined by (1.9) is nonnegative for all ¢ ¢ Wol "”(B\?JMJ)
with @l < M, provided ¢ is sufficiently small.

We first express the quadratic part of F as

Gpr= [ aver

+ {j—j’f—(wc, Adj Vu,, det Vu_) - %%(Amlf e Aim)J (Adj V!
fan]

06 _
+ {gg’(wc, Adj Vu,, det Vu_ju

aé z 3 { . 3
T Ad (]°cri£] ’ Acriil : )“cri[))”cri(én (Ad] vd))f

(2.20)
for all ¢ in WO"P(B\}%). (Here we have used the fact that Ad] V¢ is a null
Lagrangian and so the extra terms introduced integrate 1o zero; see, c.g., [2]).
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Now using (2.18) and Lemma 2.2 we see that
Vu, (x) = Ay 4

Cfﬁ

Adj Vu(x) — Ay (2.21)

crit” ?

23
det Vuc(x) — cm ,

uniformly on B\B; as ¢ - 0.
Combining (2.20) and (2.21) we obtain

AT %[ Vel forall e W, (B\B,) (2.22)
B
for all ¢ sufficiently small. -
It now remains 1o estimate the cubic part of & @ using our assumption (2.17) this

is given by

7 {P) = f ' (det Vu etV = ., (p ({;)) detV, (2.23)

where . . a2
p(c) = del Vu,(x) = detVuo( ) PD(C) (-(}?l) (2.24)

and u, is as in (2.18). Integrating (2.23) by parts gives
BAP) = w[ L (Adj Ve 2l (p (5)) for all ¢ € W' (B\B,)
¢ B 3 Tax C

1 i . aX.n uf R RY R}
-, waver [ (2) 7 (2) <) &
By the smoothness of det Vuy(%) and Lemma 2.2 it follows that W (p(n) is

uniformly bounded for # strictly bounded away from zero. Moreover, using Lemma
2.4, we oblain

(2.25)

K (pmyp' (mm = 0 as 7 — oc.
Hence if 0 <& < R then 0 < ¢ < £ andso

B ( ( )) ( ) .Is_ —» ( uniformly on B\B; as ¢ — 0. (2.26)
It now follows from (2.25) and (2.26) that forall ¢ € WOI‘P(B\F(S) with [|@]l , <M
Fon< [ et 227

for ali ¢ sufficiently small.
Combining (2.22) and (2.27) we obtain

Flé) = % \vel forall ¢ e W, "(B\B,), ¢l < M
B

for all ¢ sufficiently smali, completing the proof of the Theorem.
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COROLLARY 2.6. Given M > 0, there exists N > 0 such that

E(w +¢) > E(u) forall¢c W, "(B\B,,), P>3,

with @]l < MNc.

Proof. This follows by slight modification of the arguments in the proof of The-
orem 2.5 on noting that the estimate {2.27) for () still holds under the above
assumptions (by (2.25)) for N sufficiently large.

ReEmARK. The hypotheses of the Coroltary imply that the variations ¢ are sup-
ported outside a “boundary layer” proportional to the cavity radius ¢ and that ..
is of the order of the thickness of the layer, Finally, we remark that the proofs of The-
orem 2.5 and Corollary 2.6 also hold for maps ¢ that are constant on "ﬁé and I’?Nc,
respectively (i.e., it is not necessary that the variations ¢ vanish on these regions)

3. Stability of cavitating equilibria in 17"’ 'P(B), P < 3. It follows from [3] that
the radial cavitating equilibria u, are in w! 'P(B) for P < 3. We demonstrate that
u, is not an isolated minimiser of the energy in the sense that given any ¢ > 0 there
exists u € WI’P(B) N L®(B) with {ju—- u.ll,, <c¢and E) = E{u,). The proof
is based on a scaling argument {see [, 14]). We briefly recall the main idea in our
context for the benefit of the reader.

Let u: B - R® be given by u(x) = Ax+ ¢(x) where ¢ ¢ WG' "D{B). Now consider
u,: el — R’ defined by

u (x) = eu Gf—) .

/m W (Vu,(x))dx = /CB w (Vu @)) dx

=& [ w(vay)dy = e E(u).
B

Then
{3.1)

Thus u, is a deformation of the ball of radius ¢ with & times as much energy
as the original deformation u of B. Now, up to the exclusion of a set of zero
measure, let B = {J°, B, (x,) be a disjoint decomposition of B where B, (x) =

{(x e R: ix —x,| < ¢} are disjoint balls. (This is possible by the Vitali Covering
Theorem.) Now define a deformation @ of B by

i(x) = Ax, +¢gu (x;xf) =IX+e (xmxr.) ifx€ B (x)

i i

Then i € Wl’P(lj’), |, = Ax (see [5] for details) and it is easily verified that by
{3.1), since translations do not change the stored energy,

E@) = | W(Vax))dx = ief[;‘(u). (3.2)
i f

Since the {B, (x)} fill B, it follows that iz = P %naf and hence that E(u) =

E{@), ie., both u and ii have the same energy. Thus, in general, it is possible to
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i

Fig. 1

construct infinitely many distinct maps with the same energy as u and satisfying the
same Dirichlet boundary condition (provided that u # ix).

Now observe that if u (x) = (r.(R)/R)x is a radial cavitating map then by this
construction there ar¢ maps producing infinitely many holes with the same ENergy
as u,. Moreover, since the restriction of u_ 1o any sphere of radius R € (0, 1) is
equal to the restriction of an affine map then by the above construction applied to
u, restricted to B, we have deformations of the form given in Fig. 1 with the same
energy as u, .

Finally, to obtain maps u € W' "”(B) N L™(B) inany L™ neighbourhood of u,
with the same energy as u, we usc the above construction to obtain a deformation
which produces a thin “shell of holes” together with a cavity at the centre of B. Let
0 <€, <& <1 and consider the map

igﬂx on B\B, ,
u{x) = :

SrR13) (f;/d}x on B, ,
1

where & = ¢ fe, so that (d/e))r.(¢,/d) = r_(¢,)/e,. Then u is defined on B\A,
A={x¢ R ¢ S Ix| €&} and u(x} = px forall x € 34, where p, = r.(g,)/¢,.
Extend u to all of B by defining w on A4 by first writing 4 as the disjoint union
of balls of radius &, or less and then define a composite map as above in this region
using rescalings of u_ restricted to BEE(O). The same arguments given above show
that E(u) = E(u,). Moreover, by choosing |¢, — ¢, sufficiently small we can ensure
that {ju—u|l is as small as required.

4. Stability of cavitating equilibria—variations in cavity shape. In this scction we
prove stability of cavitating equilibria with respect 1o a class of deformations which
permits {limited) variations in the cavity shape. We use an argument from [19] and
an observation of {6].

The class of deforriations is defined as follows. Let u, be an (extended) cavitating
radial equilibrium. Then let

u,(x) & 6 (x)u, (OJLJ , (4.1)

fo
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where 6 € C'(B\{0}) is positive, bounded, and satisfies
0,5 =1 and lim inf@(rx) > 6 >0 foranyxe B\{0}, (4.2)
™0t

for some ¢ > 0.

Clearly the maps u, given by (4.1}, (4.2) can produce nonspherical cavities and
Uglyp = Wty (for example if 8 is of the form p(ixl)w(ﬁ} then u, given by (4.1)
produces a cavity surface of distance p({])w(ﬁ’f—l)c from the origin in the direction
x). Notice also that u. corresponds to the choice 6 = 1 in (4.1). We will prove
that u, is globally minimising in the class of maps given by (4.1), (4.2). We state the
result for rank-one convex stored energy functions W (the result then automatically
follows for polyconvex stored energy functions since polyconvexity of W = rank-one
convexity of W', see, e.g., [2])

THEOREM 4.1. Let the stored energy function ¥ be rank-one convex and let u, be
an (extended) cavitating radial equilibrium. Then
E(u,) > E(u,) (4.3}
for all u, given by (4.1), (4.2).
Proof. Tt follows from (4.1) that

X X X\ X
Vuy(x) = Vu, (7) + [u, (5) - Vo, (3) 3] @ ve. (4.4)
Since the stored energy function W is rank-one convex it follows from (4.4) that

)2 (. (3))+ 22 (00, (3)) 1 ) -0 (3) 5], 09

It follows from [20] that on compact subsets of B\{0} the right-hand side of (4.5)
is a null Lagrangian and from [6] it is equal to the expression

d o) 5y W [/ du
where x
u(x, 1) = (7) (4.7)

By (4.5), (4.6), (4.2), and the divergence theorem
Eu,) = / W{(Vu,(x))dx > E(u )
5 :

+1imf /f’(x) (’)u'(’ N (')u(x ,)) i dS (48)
e=C Jap Ji ET aF! Ix 7 .

We now demonstrate that the integral in (4.8) over dB_ converges to zero as £ — 0.
To see this notice first that by the isotropy and frame indifference of W

oW ?ﬂ(x ny=0 (/X () el XXt
F \ox™ AN ) R R Rr:

dfRY By (B xx”
+@, (”( (7) TR TR O R
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r.{R)

(see, e.g., [3]). An easy calculation from (4.7), using the representation u {x) = “"x,
gives _ .

b3] u‘ ir ( R ) L R )CJI

'-(;}-t— X,I)—- ( R = r. (7) T (410)

Using (4.9) and {4.10), the integral over 8B, in (4.8) then takes the form

/cw /10(’() ('; (i‘}) B igl) f;,q)‘l (r; (IT{) ) fr";f)s ”“f)) drdS. (4.1

To estimate (4.11) first note that by Proposmon 2.1
( ) (4.12)
bou

er(T) _ (_fi)
R AN
nded by

it follows that {4.11) is

Hence, since R =¢ on 888,

faﬁc [lo(x) (é)z {r(;(};q}'l (r; (5, rr}(j)’ fic_e@)l 27 (%) deds. (4.13)

It now follows from (4.2} that the arguments in the functions appearing in (4.11)
satisfy # =% — 0 as ¢ - 0 on the domain of integration. Finally, since

by (2.6), this fact combined with the bound {4.13) and the boundedness of ¢ imply
that the integral in (4.11) converges 10 zero as ¢ — 0 completing the proof of the
result.
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