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In this paper we present some interesting variants on the mathematical phenomenon
of cavitation in nonlinear elasticity. The paper is motivated by experimental work of
Gent & Tompkins on pressurized elastomers, the fundamental mathematical work of
Ball on cavitation and an example of degenerate cavitation due to Sivaloganathan.
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1. Introduction

The setting for manyt of the previous studies on cavitation in finite elasticity (see,
for example, Horgan & Polignone (1995) and references therein) is one in which a ball
of homogeneous compressible hyperelastic material with stored energy function W is
held in tension under prescribed radial boundary displacements or loads. It is known
that (under appropriate hypotheses on W) the radial deformation that minimizes
the total stored energy of the body is one which produces a hole at the centre of
the deformed ball, provided the boundary displacements or loads are sufficiently
severe (see, for example, Ball 1982; Sivaloganathan 1986a). This is the mathematical
phenomenon of cavitation. These cavitating deformations have the further property
that they are invertible mappings on the punctured ball (i.e. on the domain of the
ball minus its centre—which is where the singularity forms).

We first demonstrate that there are classes of materials which may not exhibit the
above type of cavitation but which are capable of undergoing cavitation when sub-
jected to an internal hydrostatic pressure. One way in which such a situation arises
is when, as in the experiments of Gent & Tompkins (1969), samples of polymers are
left in a gas, at pressure Py say, over a period of hours (Gent & Tompkins (1969) used
a number of different gases including argon and nitrogen). The pressurizing gas then
dissolves into the minute pores of the polymer and, on release of the external pres-
sure, we can view the polymer as being internally subject to a negative hydrostatic
pressure. Gent & Tompkins (1969) allowed the samples to come into equilibrium first
and then removed the confining pressure. They found that small holes would then
appear in the sample if this pressure Py was sufficiently large.

Mathematically, let us assume that our material is homogeneous, compressible,
hyperelastic and occupies the domain 2 C R? in its reference state. Let M_?_X?’ denote
the set of real 3 x 3 matrices with positive determinant and let W: M_?_XS — RT be

+ A notable exception is the interesting paper by Miiller & Spector (1995).
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3646 J. Sivaloganathan

the stored energy function of the material. A deformation of the body is a map
w : {2 — R? which satisfies the local invertibility condition

det Vu(x) > 0 almost everywhere. (1.1)

Then the total energy stored in the deformation is given by
B(u) = / W (Vu(@)) dz. (1.2)
o’

In the displacement boundary-value problem we specify the boundary values u|sg.
Under the conditions of internal hydrostatic loading described above we may attempt
to model the initial internal material response by the new stored-energy functiont

W) (F) = W(F) + Pydet F for F € M>*3, (1.3)

The extra term is chosen so that it contributes a term Pyl (corresponding to the
internal hydrostatic pressure) to the Cauchy stress tensor for W) | Of course this
will only be valid on a short time-scale since, over a period of time, the gas will
come out of solution and the response of the sample will return to that described by
the original stored-energy function W. (This appears reasonable provided that the
pressure Py has not been sufficient to cause permanent damage to the sample—as
occurs for large pressures in the experiments of Gent & Tompkins (1969).)

The new stored energy function W) may now satisfy some of the many hypothe-
ses under which it is known that cavitating equilibria exist (see, for example, Ball
1982; Stuart 1985; Sivaloganathan 1986a,b; Meynard 1992) even though the origi-
nal stored-energy function W may not allow cavitation. In §§2 and 3 we study the
displacement and dead-load traction problems for the stored-energy function W (7o),
We give conditions on W) under which cavitation does not occur when Py = 0
but does occur for Py > 0 for sufficiently large boundary displacements or loads
(see theorems 2.3, 2.4 and 3.2). We also note that for any fixed boundary displace-
ments, energy minimizers exhibit cavitation if the internal pressure P, is sufficiently
large (see theorem 2.4 and the subsequent remark). An example of a stored-energy
function to which this analysis applies is given in example 2.6.

The experiments of Gent & Tompkins (1969) described earlier correspond to a
traction boundary-value problem in which the boundary of the specimen is left free
(i.e. subject to zero tractions). In this case there is a difficulty in trying to use the
modified stored-energy function W) and the corresponding energy,

B () = / W (Vu(x)) + Py det Vu() dz, (1.4)
2

to model the situation throughout the polymer sample, since at the boundary of the
specimen we expect the dissolved gas to come out of solution almost immediately on
release of the confining pressure. To overcome this we first consider extremals of the

modified energy functional:
EPo) () = / W(Vu(z)) + Py det Vu(x) dz — / i1Pyu- (AdjVu)TN dS, (1.5)
2’ an

1 It would be interesting to try and derive a form of W(¥0) from a homogenization argument (e.g.
by considering the material as an elastic body ‘reinforced’ through the superposition of gas pockets) but
we do not pursue this possibility in this paper.
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Cavitation under internal hydrostatic pressure 3647

where Adj Vu is the adjugate matrix of Vu. The boundary term is chosen so that
the natural boundary condition for the variational problem on the outer boundary
is that the deformed surface is traction free (for the unmodified stored-energy func-
tion ). We also note that the equilibrium equations (Euler-Lagrange equations)
corresponding to the two integral functionals (1.4), (1.5) are the same since det Vu
is a null Lagrangian and the surface integral in (1.5) only depends on derivatives of
u tangential to 02. The last integral term in (1.5) is closely linked to the distribu-
tional Jacobian (see, for example, Miiller & Spector 1995, §8). There also appear to
be interesting connections between the functional (1.5) and representations for the
relaxed energy functional obtained in Marcellini (1986), but we do not pursue these
issues in this paper.

To make further analytic progress in the two types of problem described above (the
displacement and traction problems) we restrict attention to the case when 2 = B
is the unit ball in R and the deformations u are radial, i.e. of the form

r(R)
R

We say that the deformation (1.6) exhibits cavitation if (0) > 0 so that a hole forms
at the centre of B. In the case of radial deformations the functional (1.5) takes the
form

u(x) = x, where R=|z|, x € B. (1.6)

EX0) (4) = 4n TP (), (1.7)

where

i) () = /O 'Ro (r’(R), r#) T(R)) + Por' (R)r*(R)dR — 1 Pyr(1)

R’ R
! ., rm(R) r(R
:/0 R2¢<r (R), (R), (R)>dR—§P0r3(0) (1.8)

and & is the representation of the stored-energy function W in terms of the principal
stretches of the deformation w (see §2).

It turns out that the above functional is unbounded below for analogous reasons to
those noted in Ball (1982) (for the Cauchy traction problem). To see this unbound-
edness let r be given by r(R) = [R® + A%]'/3 (so that the corresponding deforma-
tion (1.6) produces a hole of radius A). Next, change the independent variable to
v=r(R)/R in (1.8) to obtain

. 00 2 1
(Po)(r) = A3 L) — 1PA3 = — A—
I (r) /(1+A3)1/3 W) 3 U dv— 3P oo as 00,
(1.9)

provided that the energy function @ satisfies a suitable growth hypothesis so that the
integral term is finite (see § 2, condition (H3)). Despite this mathematical observation
of unboundedness, in terms of the physical situation being modelled, it appears
unreasonable to expect the internal inflating pressure in the cavity to remain constant
at the magnitude Py for arbitrarily large cavity sizes A. For small cavity sizes A it
is reasonable to suppose that the inflating pressure will be maintained at Py by
diffusion of gas into the cavity from the surrounding material. For larger cavity sizes

Proc. R. Soc. Lond. A (1999)



3648 J. Siwaloganathan

it is more reasonable to suppose that the corresponding pressure P(A) exerted by
the gas in the cavity should approach that predicted by the general gas law (i.e.
P(A)A3 = const.). Hence, noting that the last term in (1.8) represents the work
done by the gas at pressure F in opening the cavity from zero radius to radius A,
we are led to replace the functional in (1.8) by the functional

1
i(r):/o R2¢(r’(R),%,L}?> dR — H(r(0)), (1.10)
where
r(0)
H(r(0)) = / P2 dt (1.11)
0

and the function P : [0,00) — (0,00) is continuous satisfying P(A) = P, for all
|A] < e and A3P(A) — c as A — oo, where €, ¢ > 0 are constants.

With this modification the previous argument showing unboundedness below the
energy functional fails and theorem 4.2 gives conditions under which I attains a
minimum in the class of radial deformations. Moreover, we prove that minimizers
must exhibit cavitation if Py is sufficiently large (in accord with the experimental
observations of Gent & Tompkins (1969)).

For general existence theorems allowing cavitation without the assumption of
radial symmetry we refer to Miiller & Spector (1995) (and to Sivaloganathan &
Spector (1999) for the case in which the possible points of discontinuity of the defor-
mations are prescribed and the energy functional includes terms penalizing cavity
initiation and growth).

A final purpose of this paper is to describe the mathematical phenomenon of
degenerate cavitation, which can occur for stored-energy functions W (o) of the form
(1.3). This phenomenon suggests links between the nonlinear elasticity problems
described herein and aspects of the continuum theory of defects and linear fracture
mechanics. To describe the degenerate nature of this type of cavitation, recall that
in order that a deformation u : £2 — R3 be physically admissible we require that it
satisfies the local invertibility condition (1.1). Mathematically, the constraint (1.1)
is accommodated by requiring that the stored-energy function W satisfies (see, for
example, Ball 1977; Ciarlet 1988)

W(F)— oo as detF — 0. (1.12)

The phenomenon of degenerate cavitation can occur when (1.1) fails. In cases when
it occurs, for sufficiently severe boundary displacements or loads, any minimizing
sequence of the total stored energy in a class of mappings satisfying (1.1) has a
subsequence converging weakly to a minimizing deformation u which satisfies

det Vu(x) >0 for x € 02, (1.13)

where in particular det Vu(x) = 0 on a set of non-zero measure. Specifically, in
the radial-displacement boundary-value problem (in which {2 = B, the unit ball
in R3) this limit deformation still produces a hole at the centre of the deformed
ball for large boundary displacements as in the non-degenerate case. However, in
degenerate cavitation, there is also a ‘core’ regionf around the centre in which the

1 Our terminology comes from the striking similarity between some of these solutions (such as exam-

ple 5.9), and solutions used to model defects by a centre of dilation in the continuum theory of defects
in crystals (see, for example, Teodosiu 1982).
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Cavitation under internal hydrostatic pressure 3649

limit deformation satisfies det Vu(a) = 0. The size of the core region varies with
the boundary conditions and increases, for example, as the boundary displacement
is increased (see example 5.9). In theorem 5.1 we give conditions (for the radial-
displacement boundary-value problem) on the stored-energy function under which
any minimizing sequence for the total stored energy in a class of maps satisfying
(1.1) converges weakly to a minimizer in the class of deformations satisfying (1.13).
Theorems 5.7 and 5.8 together give sufficient conditions under which degenerate
cavitation occurs.

Example 5.9 demonstrates that the mathematical phenomenon of degenerate cav-
itation under internal pressure loading can occur even when the underlying con-
stitutive law for the material is linear, the nonlinear behaviour arising from the
invertibility constraint (1.13). The minimizer given in the example bears a striking
similarity to singular solutions of linear elasticity which have been classically used
in the continuum theory of defects to model point defects as centres of dilation (see
Teodosiu 1982). In this classical approach one postulates the existence of a ‘core
region’ around the defect in which, typically, an atomistic model is used to calculate
the energy stored by the deformation. The main obstacle that the use of a core region
overcomes is that the singular linear elastic solutions employed have infinite energy.
Typically, the size and shape of the core region is determined by ad hoc arguments.
Interestingly, in our example a ‘core region’, Bg,, emerges as part of the minimiza-
tion and its radius is uniquely determined by the boundary data. Examples such
as this may indicate a way to unify classical approaches to modelling defects and
fracture with more recent work in nonlinear elasticity and the calculus of variations
on the existence of singular discontinuous equilibria (such as Ball 1982; Stuart 1985;
Sivaloganathan 1986a; James & Spector 1991, 1992; Miiller & Spector 1995).

Assumptions

We assume that our material is compressible, homogeneous, hyperelastic and occu-
pies the region B = {x € R3 : |z| < 1} in its reference state.

We suppose further that the stored energy function W is both frame indifferent
and isotropic so that

W(F)=W(QF)=W(FQ) YQe SO(3), FeM. (1.14)

Hence there is a symmetric function @ : R3 | — [0,00) such that &(vi,vs,v3) =
W(F) for all F € MiX?’, where the v; are the eigenvalues of VFTF (known as the
principal stretches) and R3, = {v € R® : v; > 0,7 = 1,2,3}, denotes the positive
octant of R3. We denote the partial derivatives 8&/9v; by @ ;, i = 1,2, 3. We restrict
attention to radial deformations of the ball, i.e. to deformations of the form

r(R)

(@) = —%

For such deformations

x, where R=|z|, x € B. (1.15)

z®@x r(R) T
Vu(z) =r'(R) 77 7 [I > ] (1.16)
and hence the corresponding principal stretches are
R
v, =1'(R), v =3 = M (1.17)
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(See Ciarlet (1988) and Truesdell & Noll (1965) for further details concerning hyper-
elasticity.)

2. Displacement boundary-value problem

We first consider the radial-displacement boundary-value problem in which we re-
quire that

u(z) = Az, Vo € dB, forsome A > 0. (2.1)
The total energy stored in a radial deformation w of the ball is given by

L T r
E(u) = /QW(Vu(m))dx =d4rl(r) = 47r/0 R%*® (r’(R), (}?), (}I:)> dRr, (2.2)

and this is defined on
Ay = {r e WH((0,1)) : »(1) = A, ' > 0 almost everywhere, 7(0) > 0}.  (2.3)

The condition ' > 0 corresponds to the invertibility condition (1.1) for maps of the
form (1.15) and the condition (1) = X corresponds to the boundary condition (2.1).

Constitutive hypotheses

We assume that ¢ € C%(R3 ) and will refer to the following hypotheses on &. (We
refer to Ogden (1984) for examples of stored-energy functions and their correlation

with experimental data.)
(H1) @ ;i(v1,v2,v3) >0,7=1,2,3 on Ri + (the tension-extension inequality).
(H2) &(v1,v9,v3) = 9(v1) where 9 : (0,00) — RT is continuous and satisfies

(i) ﬂii)%oo, as t — 0o,

(i) ¥(t) - 00, ast—0.

(H3)

2

v 1
m@(;ﬁ,ﬂ,@) € L*((6,00)) for § > 1.

(H4)
<vi¢,i — vjsﬁ,j> >0
v — v
for ¢ # j and v; # vj.
(H5) (i) Either

lim (45,1(@1,02,02)) — e

V1,V2 —00,v1 <V2 ’Ug

Proc. R. Soc. Lond. A (1999)



Cawvitation under internal hydrostatic pressure 3651
or

v1 7'U2'—1>i£];’l)1 <vz [Q(’Ul, U2, U2) B vl@’l (vl’ v27 vz)] -

(ii) Either

v1,v2—0,v1 >v2 2

lim (M) C e
5}

or

vl,vgli{)r,lv1>v2[¢(vl’ v, v2) — 119D 1(v1, V2, v2)] = 0.

(H6) For any fixed a € (0,00),
1 (v1,a,a) = +00, —00
as v — 00,0, respectively.
(H7) There exist constants M,eo > 0 such that
|® ;(v1, aava, a3v3)v;| < M[P(v1,v2,v3) + 1] (no summation) (2.4)
if o — 1] < €0, i = 2, 3.

Remark 2.1. Hypothesis (H3) guarantees that if A > 1, then the energy (2.2)
associated with the discontinuous incompressible map wu (given by (2.1)) with 7(R) =
(R®+ (A3 —1))/3 is finite. The inequalities (H4) are a weakened form of the Baker—
Ericksen inequalities (see Ball 1982, expression (3.10)). Hypothesis (H7) is often
satisfied by polynomial or simple rational functions of vy, va, v3.

Theorem 2.2. Let & satisfy (H1), (H2) and let A > 0, P > 0 be given. Let IF)
be defined by

1 1
I®)(r) =I(r)+ —P / det Vu = I(r) + P / ' dR. (2.5)
dr Jp 0
Then any minimizing sequence for I (P) on Ay has a subsequence converging weakly
in WH1((1,9)), any § € (0,1), to some 7 € Ay, where

IP)(7) = inf 1)
Ax

(i.e. 7 is a minimizer of IF) on Ay).

Proof. This follows by the statement and method of proof of proposition 4.1 in
Sivaloganathan (1986a) applied to F)(vy,ve,v3) = ®(vy,v2,v3) + Pvivavs. ||

Theorem 2.3. Let & satisfy (H1)-(H7) and let P > 0 be given. Then for A
sufficiently large, any minimizer r(R) of I¥) on A, satisfies r(0) > 0.

Proof. This follows directly from proposition 4.7 in Sivaloganathan (1986a) ap-
plied to &F) (v, v2,v3) = &(v1,v2,v3) + Pv1vavs. ]

Proc. R. Soc. Lond. A (1999)
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The next result notes that if the boundary condition A is held fixed and the internal
pressure P is increased, then again cavitation occurs. It also notes hypotheses under
which cavitation does not occur in the case P = 0.

Theorem 2.4. Let ¢ satisfy (H1)—-(H7) and let A > 0 be given. If P = 0 and &
satisfies

b(v,v,v)
V3

then the unique minimizer of I°) = T is the homogeneous map r%°™(R) = AR. Given
A > 1, any minimizer r of I'¥) on Ay satisfies r(0) > 0 if P is sufficiently large.

=0 asv— oo, (2.6)

Proof. If P =0 and condition (2.6) holds, then by theorem 2.2 a minimizer r(R)
exists. By (H1),

ST ERA ] YA WY (VR P 27
R (r’R’R 2NN ) T \T T R) P\ R RR 27)
for almost every R € [0, 1].

If 7(0) = 0, then, by propositions 0.3, 4.2 of Sivaloganathan (1986a), 7( R) satisfies

r € C%((0,1]) N C*(]0,1]) and »(R)/R — L as R — 0 for some [ € (0, c0).
Now, given ¢ € (0,1), using the symmetry of ¢ and integrating (2.7) gives

[ ol i) om> [imo (o 7))

=LA\ N\ )\ — L3P
3PN AA) = 5e € e ¢

Passing to the limit € — 0 gives
I(r) > %@()\,)\,)\) = I(rhom), (2.8)

Next suppose that r(0) > 0 so that limp_,o 7(R)/R = co. Then integrating (2.7) and
proceeding analogously to the above argument gives

1
2 ;T 1 1.3 7'(5) ’)"(8) T(E)
_— > 2 —_— = — L 7 L
/S R@(T,R,R> dR > 3@\ M) — 3¢ @( et

) - Loy (r(;), r(;), r(ge)) /(r(:) )3.

Passing to the limit ¢ — 0 using (2.6) gives again
I(r) > I(rkom). (2.9)
Hence, by (2.8) and (2.9), cavitation does not occur for P = 0 since the homogeneous
map 5™ is the global minimizer in this case for any A > 0 (note that the inequality
(2.9) is strict if 7 # r5°™ on a set of non-zero measure).
The proof of the second part of this theorem that for large P any minimizer

r(R) satisfies r(0) > 0 foliows from a straightforward modification of the proof of
proposition 4.7 in Sivaloganathan (1986a) (by showing that the incompressible map

r(R) = (R® + (\* —1))1/3 (2.10)

has less energy than the homogeneous map 78°™ for large P). |
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Cavitation under internal hydrostatic pressure 3653

Remark 2.5. The restriction A > 1 in the second part of theorem 2.4 stems
from the use of the test map (2.10) in the above proof. Notice that this map is not
physically admissible if A < 1. This restriction can be relaxed to allow any A\ > 0 if
we replace hypothesis (H3) by the assumption that for any A > 0 there exists some
map r € A, satisfying r(0) > 0 that has finite energy (this assumption is often
satisfied by stored-energy functions that satisfy (H3)).

Example 2.6. Consider the stored-energy function

2
D(v1,v2,v3) = ZM[U— +Ui2]7

i=1
where p1 > 0 is a constant.

By theorems 2.3, 2.4, cavitation does not occur in the above example for P = 0
but does occur for any given P > 0 for sufficiently large boundary displacements A,
or for fixed A for sufficiently large P.

3. The traction boundary-value problem

In the radial dead-load traction problem we replace the condition (2.1) by specifying
that the radial Piola stress T®(x) corresponding to the deformation (1.15) satisfies

TR(x) =Tz Vx € dB,

where T' € R is a given constant.
Corresponding to this boundary condition and under internal hydrostatic pressure
of magnitude P > 0, in the class of radial deformations, we seek to minimize

Ep(r) = /0 R*® (r', %, %) + Pr'r2dR — Tr(1) (3.1)
A= {rewb((0,1)): 7(0) > 0, ' > 0 a.e.}. (3.2)

Our first result is that Ep attains a minimum on A.

Proposition 3.1. Let @ satisfy (H1), (H2). Then Ep attains a minimum on
A={rewh((0,1)): 7(0) >0, ' > 0 a.e}.
Proof. By (H2)(i) it follows that

1 1 1
Ep(r) 2 1/ R2y(r') dR+k1/ R2r’+k2/ R 4k —Tr(1)
2 0 0 0 R

for any r € A, where k1, ke > 0 may be chosen arbitrarily large by suitable choice of
ks. Thus, integrating the second integral by parts yields

1 1
Ep(’r‘) > % / Rgdz(’r”) dR + (k)l — T)’/’(l) + k3 + (k)g — 2/{)1)/ RrdR;
0 0

Proc. R. Soc. Lond. A (1999)



3654 J. Sivaloganathan
choosing k1 > T, ky — 2k1 > 0, yields
1
Br(r) > | / R2(r') dR + (k1 — T)r(1) + ks. (3.3)
0

By (3.3) if (r,) C A is a minimizing sequence for Fp, then (r,(1)) is a bounded
sequence and by the arguments of proposition 4.1 of Sivaloganathan (1986a) it now
follows that there exists 7 € A such that r, — 7 in WH1((§,1)) as n — oo for any
0 € (0,1). Thus, by standard lower semicontinuity arguments (see, for example, Ball
et al. 1981), it now follows that

Ep(7T) < lilrgngp(rn) = iﬁfEP

so that 7 is a minimizer.

The next theorem notes conditions under which cavitation does not occur when
P =0, but does occur for large boundary tractions 7" for any fixed P > 0.

Theorem 3.2. If® satisfies (H1)-(H7) and P > 0, then for all T sufficiently large
any minimizer of Ep on A satisfies r(0) > 0. If P = 0 and ® satisfies

&
(v,;),v) o
v

as v — 0o, then any minimizer r of Ep on A satisfies r(R) = AR for some X > 0.

Proof. By proposition 3.1 a minimizer r(R) of Ep exists. By propositions 0.3 and
4.5 of Sivaloganathan (1986a) it follows that if 7(0) = 0, then r(R) = uR for some
p > 0. The proof of the first part of theorem 3.2 follows the method of Ball (1982)
by showing that the homogeneous map rﬂom(R) = R is not a minimizer of E, for
any p > 0. To do this we use two sets of test functions, the first given by

ru(R) = [R® + Ns]l/s'
In this case the energy difference between r,(R) and rﬁ"m is given by
AE = Ep(r,) — Ep(rp°™)

00 2
— 8 L _éP 1P e
: /u wim1e? W dv— 58, ) = T = pr),

where ¢(F) = & + Pvjvpvg and $P)(v) = #P)(1/v2,v,v) and we have made the
change of variable v = r,/R and set i = r,,(1) = (1 + p*)'/3. Hence if T is positive,

© .2 P &P
AEgu?’[/ﬁ (1}—3——_1)_2¢(U)dv+ﬁ - ——E())—%;'u’—m .
Since
P (u, p, )
13
for all p, it follows from (H3) that AF is negative provided u is sufficiently large,
p > k say, where k € (0,00).

=>P>0
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Cavitation under internal hydrostatic pressure 3655

For p < k we use the test functions
ru(R) = [R® + 8°'/2,
where 63 = (2 + u)® — 1. The energy difference then takes the form
AE = Ep(r,) — Ep(rp°™)

o [T Y 3P ) dy — 1P _
Gt @ a3 e 2 (34)
By (H3), the integral term is clearly bounded for p < k and so the right-hand side
of (3.4) is negative for T' sufficiently large. Thus r}}"m cannot be a minimizer of Fp
for any p and the result follows.

The proof of the second part of theorem 3.2 follows from theorem 2.4: suppose
that P = 0 and let 7(R) be a minimizer of Ey. Then r minimizes I(®) = I on A,
with A = r(1) and hence, by theorem 2.4, r(R) = AR. n

4. Relationship of analysis and experiment

In this section we relate the analytical approaches to cavitation to the experimental
results of Gent & Tompkins (1969) outlined earlier. For reasons outlined in the intro-
duction, we model the situation in these experiments by introducing the modified
energy functional:

1
Itr) = /O R2® <r’(R), ’"(]f) : r(]f)) dR — H(r(0)), (4.1)
where
r(0)
H(r(0)) = P(t)t? dt, (4.2)
0

and the function P : [0,00) — (0,00) is continuous satisfying P(A) = P, for all
|A| < € and A3P(A) — ¢ as A — oo, where ¢, ¢ > 0 are constants.

The next lemma notes, in particular, that under the above hypotheses the function
H(t) cannot grow quicker than logarithmically in ¢.

Lemma 4.1. There exist constants « > 0, 3 such that
1Pymin{t®, €’} < H(t) < alogt+ 3 Vt>0. (4.3)

Proof. We first prove the upper bound on H(t). By the assumption A3P(A) — ¢
as A — oo there exists d such that

t2P(t) < # Vt>d
and hence
/dt s2P(s)ds < (¢ + 1) log(t/d),
from which it follows that

H(t) < alogt+p Vt=>0,
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where
d
a=c+1 and Bz/ s2P(s)ds — (¢ +1)logd.
0

The lower bound on H(t) follows easily from the non-negativity of P(t) and the
assumption that P(t) = Py for 0 <t < e. [ |
The next result shows that if the internal pressure Fp is sufficiently large, then any
minimizer must exhibit cavitation.
Theorem 4.2. If & satisfies (H1)—(H7), then I attains a minimum on A (given
by (3.2)) and any minimizer r exhibits cavitation for Py sufficiently large.

Proof. By lemma 4.1 it follows that for any r € A we have
1
i) > / R*$(r'(R)) dR — alog(r(0)) — 5.
0

By setting T' = 0 in the first steps the proof of proposition 3.1 that lead to expression
(3.3), we obtain

1
I0) > § [ R0 (R) AR+ hir(1) + s ~ alog(r(0)) — 5
0
and (since logt < t and r(1) > r(0) for r € A) we obtain, on choosing k; > 2a, that
1
I(r) > % / R2%(r'(R))dR + ar(1) — B + k3.
0

The remainder of the proof of the existence of a minimizer r(R) is exactly analogous

to that of proposition 3.1.

We next prove that a minimizer r(R) of I(r) must exhibit cavitation (i.e. 7(0) > 0)
if Py is sufficiently large. By the remarks in the proof of theorem 3.2 if r(0) = 0, then

r(R) = pR for some p > 0 (note that H(0) = 0). We show that r}°™ = pR is not a
minimizer for any u by using the test function

r(R) = (R® + 3)1/3
and observing that, by lemma 4.1,
AE = I(r) — T(rlo™) = I(r) = 30, p, ) — H(e) + H(0) < I(r) ~ 4 Poc®

uniformly in p (where we have used the non-negativity of @). The integral I(r) is
finite by assumption (H3) and hence AF is clearly negative if P is sufficiently large.
Hence 78°™ is not a minimizer for any p and thus any minimizer r must satisfy

“w
r(0) > 0 for large Py as claimed. [ ]

5. Degenerate cavitation

In this section we introduce the mathematical phenomenon of degenerate cavita-
tion. This phenomenon typically occurs when the stored-energy function W does
not satisfy the condition W (F) — oo as det ' — 0. To outline the main features of
degenerate cavitation we introduce the following alternative to hypothesis (H2).
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(H2') &(v1,v2,v3) = ¢(v1), where 1 : [0,00) — R is continuous and satisfies:
(i) ¥(t)/t = o0 as t — o0
(ii) @ can be extended to the closed octant R3 , as a C? function.

Under the above hypothesis we have the following analogue of theorem 2.2.

Theorem 5.1. If & satisfies (H1), (H2’), then I'F) (given by (2.5)) attains a
minimum on

x={re Whb((0,1)) : r(1) = X\, ' > 0 a.e.,7(0) >0} . (5.1)

Proof. This is a straightforward modification of theorem 2.2, where the condi-
tion (H2)(ii) is used to show that any minimizer r satisfies r'(R) > 0 a.e. (note that
it is a consequence of Mazur’s theorem that any weak limit r of a sequence in Ay
satisfies 7/ > 0 a.e.). Hence under the hypothesis (H2')(ii) we can only conclude
that a minimizer r(R) satisfies r ( ) > 0 almost everywhere. It is straightforward to
prove that all the results proved in §§2-4 hold if (H2) is replaced by (H2') and Ay
and A are replaced by Ay, A, respectively (where A i is similarly obtalned from the
definition (see (3.2)) of A on replacing the condition ’ > 0 a.e. by 7/ > 0 a.e.). For
simplicity, however, we restrict attention throughout this section to the displacement
boundary-value problem. ]

The remainder of this section studies the displacement problem and hypotheses
under which degenerate cavitation will occur: i.e. hypotheses under which a mini-
mizer (whose existence is guaranteed by theorem 5.1) satisfies r € A\ Ax.

The next proposition gives conditions under which the energy of a map r € A can
be approximated by the energy of a sequence of (invertible) maps Ern) C Ay which
converge to r as n — oo. This will enable us to prove that inf 4, I P) = inf 4, I(P).
In order to prove this result we introduce the following growth hypothesis on .

(H8) There exist constants Cy,C3 > 0,Cs, Cy such that, for some o € (1, 3),

3
o Z Q)z +Cy < @(Ul, V2, 2)3) C3 Z ;4 + Cy (52)

i=1 i=1
for all v; > 0.
Notice that this assumption precludes singular behaviour of ¢ as v; — 0 and is

consistent with (H2')(ii) (but not with (H2)(ii)). Notice also that, in particular, (H8)
implies (H3).

Example 5.2. The hypothesis (HS8) is satisfied, for example, if we let

(Ulav27v3) = Z¢ 'Uz) + Z P vlv_j)
4,j=1
where ¢,v : [0,00) — [0,00) are in C?([0,00)) and for some a € (1,3), B € (0,2)
satisfying 20 < «a, we have

</>( ) P(t)

— const. 20 as t — oo, —t,é——>const as t — oo.
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Proposition 5.3. Let & satisfy (H8) then for any r € Ay, with I(r) < +oo,
there exists a sequence (r,) C Ay such that (r, —r) € WH>°((0,1)) for all n € N,
lrn, — 7]l1,00 = 0 as m — oo and

I(rp,) = I(r) asn — oo.
Proof. Let r € Ay and suppose that for some § > 0
T={Re[0,1]:7"(R) > 6}

has non-zero measure. (If not, then » = A and we choose r,,(R) = A+ (R —1)/n for
all n.) Now define

S={Re|0,1]:7(R) =0}

If measS = 0, then r € Ay and there is nothing to prove (choose r, = r for all
n € N).
Otherwise, define

1 Xs  XT
= 25[meas$’ measT} (53)

(where Xxa denotes the characteristic function of the set A). Then = € L° and
fo m = 0. Now, given ¢ € (0,2measT’), define

R
re(R) = A+ /1 ' (s) + en(s)ds. (5.4)

Then
re € Ay, 1e(0) =7(0), 7.—1rcWhH>((0,1)) (5.5)

and ||re — 7|[1,00 = 0 as e — 0.
Let (e,,) C (0,2measT’) be a sequence converging to zero and let (r,) denote the

corresponding sequence (7., ).

Since I(r) < oo, it follows from (HS8) that R?(r')*, R%(r/R)* € L*((0,1)). Thus
by (5.5), (5.2) and the dominated convergence theorem it follows that I(r,) — I(r)
as n — 0o. |

Corollary 5.4. For the sequence (ry) given in proposition 5.3, for any P > 0,
IP)(r,) — IP) (1) as n — oo.

Proof. This follows immediately from proposition 5.3, (5.5) and the definition of
IP) (see (2.5)). [ ]

Theorem 5.5. Let ¢ satisfy hypotheses (H1), (H2'), (H3), (H8) and let P > 0.
Then any minimizing sequence for I(") on Ay has a subsequence which converges
weakly in WH1((8,1)), any § € (0,1), to some # € Ay which satisfies

IP)(#) = inf IP) = inf (P,
Ax Ax
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Proof. By corollary 5.4,
infI(P) = infI?),
A>\ A,\
It now follows from theorem 5.1 that

1P (7) = inf I7(r) = inf 1P)(r)
reAx reAy
as required. |

Remark 5.6. By theorem 5.5, since (H2') holds, there is the possibility that the
minimizer 7 lies in Ay\.Ay. If, in addition, #(0) > 0, then this would be an example
of degenerate cavitation occurring. OQur next theorem gives sufficient conditions that
cavitation does not occur for P = 0 for any A > 0 and that (possibly degenerate)
cavitation occurs for any P > 0 for A sufficiently large (depending on P).

Theorem 5.7. Suppose that ¢ satisfies (H1), (H2'), (H8) (so that (H3) holds in
particular). If P = 0, then, for any A > 0, the minimizer of I on Ay (and hence on
Ay ) is the homogeneous map

Thom (R) = AR

Given any P,\ > 0 let (r,) C Ax be a minimizing sequence for I'F) on Ay. Then
there exists 7 € Ay and a subsequence of (r,,) converging weakly in W1((6,1)) to 7
for any 6 € (0,1) and satisfying

IPNF) = inf IP) = Tim 1P (r,).
Ax n—o0

For sufficiently large A (depending on P), 7 satisfies
7(0) > 0.

Proof. We first treat the case P = 0 and demonstrate that if » € Ay, then
I(r) = I(rpom). This proof is exactly analogous to that of theorem 2.4. Let r € Aj,
then by (HI)

2 o[pf(r T T r M\ (T T T 56
RQS( RR) R[ e r) " RO\ ®RRR (5:6)
for almost every R € [0, 1]. We consider separately the two possibilities that
hlr%n_%lf r(R)/R

is finite or infinite. If lim inf g_,o 7(R)/R = 1 > 0, then choose a sequence (&,,) C (0,1)
with €, — 0 as n — oo for which r(e,)/€, — 1 as n — oo. Then integrating (5 6)

gives
1R245 r, = dR > 1 LR3G( —, =
En "R’ - 3 R'R’

En

a0 - e (1) o) e

n En En

i=vl i
=vl i
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Passing to the limit n — oo and using (H2)(ii) gives
I(T) z %@()‘v )‘v )‘) = I('rhom)- (57)

Next suppose that liminfz 0 7(R)/R = oo. Then integrating (5.6) and proceeding
analogously to the above argument gives

/:stﬁ(r’ r 7“>dR> %QB(A’AaA)—§63¢<Z(Ei),%).,£ii)>

B R
 Lnom) ~ o2, 70,79 /(7O

Passing to the limit £ — 0 using (H8) again gives

I(T) P I(Thom)- (58)
Hence, by (5.7) and (5.8), cavitation does not occur for P = 0 since the homogeneous
map Thom 18 the global minimizer in this case for any A > 0.

Now let P > 0. By theorem 5.5 we have that there exists # € Ay for which
IP)(7) = inf 4, IP). We next demonstrate that # must satisfy

7(0) >0 (5.9)

for sufficiently large A. To see this first observe that a straightforward test-function
argument from the proof of proposition 4.7 in Sivaloganathan (1986a), using assump-
tion (H3), shows that

inf IP) < 1) (py o) (5.10)
Ax

for sufficiently large A. (The argument in proposition 4.7 of Sivaloganathan (1986a)
shows that, if A is large, then T(F) (7o) > IP)(7) for the test map # € Ay, #(R) =
(R34 (A% —1))'/3, which satisfies #(0) > 0, # being chosen so that the corresponding
deformation (1.15) is incompressible. The hypothesis (H3) guarantees that 7 has
finite energy.) Let (r,) C Ax be a minimizing sequence for I(¥) for a value of A
sufficiently large that (5.10) holds. Then define

g0 = IP) (ryom) — inf 1P >0, (5.11)
A
By the first part of this proof we have that

1
I(r :/ R%(ﬂ,i,f—)dR;um Vr € As.
() ; R (Thom)

Hence by definition of I¥) and (5.11) it follows that

1 1
/Prgr;dR+§ao</ R?PX3dR
0 0

for large n. Hence

PN —13(0)] + 320 < 2PA33 = 73(0) > —2—3—2 for large n. (5.12)

Proc. R. Soc. Lond. A (1999)



Cavitation under internal hydrostatic pressure 3661

Finally (passing to a subsequence if necessary), since the minimizing sequence ()
converges weakly to 7 € Ay in Wh1((4,1)) for any 6 > 0, it follows that (r,,) converges
to 7 in C([6,1]) for any & > 0, which together with (5.12) and the definition of Ay
implies 7#(0) > 0. [ ]

The next result gives sufficient conditions for degenerate cavitation to occur: i.e.
we prove that if the minimizer 7 of theorem 5.7 satisfies 7(0) > 0, then 7 € A\ Ax. To
state the result we require the following hypothesis on the stored energy function @.

(H9)

1
liminf — & y (v, w,w) >0 uniformly in v > 0. (5.13)

w—o0 W ’

(This hypothesis is satisfied, for example, if

3 3
@(’01,'02, ’Ug) = ZQS(’UZ) + Z w(vivj) + h(v1v2v3),

i=1 i,7=1

where ¢,1,h € C([0,00)) are all convex functions and h is increasing on [0, 00).
Again, this condition (H9) is often compatible with (H2") but not (H2).)

Theorem 5.8. Suppose that ¢ satisfies (H1), (H7), (H9) and that P > 0. If 7 is
a minimizer of I'P) on Ay and #(0) > 0, then 7 € A\\Aj.

Suppose for a contradiction that 7 € Ay. Define

®(v1, v, v3) = D(v1,v2,v3) + Pvivavs (5.14)

and observe that & also satisfies (H7). By (H7),
~ ([, T T
R@,Q (T‘I, }—2, “R') S Ll(((), 1))

and, since 7 is a minimizer, it follows by the arguments in the appendix of Sivalo-
ganathan (1986a) that

R?$ (F'(R), 7:(}?), f(]]:)) +2 /Rl 5P o (f’(s), i(—SQ, iss)) ds = const.  (5.15)

for a.e. R € (0,1).

Hence
25 (o T T 1,1
-, = ’ 1)).
R Ql(“R’R) e W>((0,1))
Without loss of generality, there exist Ry,d > 0 such that
T={R>Ry:7(R) >4} (5.16)

satisfies meas(7T') # 0. (Otherwilse, 7(R) = X and so 7 ¢ Ay, a contradiction.)
Let m = xp and let v(R) = [p7(s)ds. Then ro(R) = 7#(R) +ev(R) satisfies r¢(1) =
A 7l > 0, a.e. R € (0,1) for all |e| sufficiently small and hence r. € Ay for [e]
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sufficiently small. Thus, as 7 is a minimizer, it follows using the arguments in the
appendix of Sivaloganathan (1986a) that

d _

0= [V +ev)]l—o
—/1—d Jr I v(R)| dR
- o dR ’1 ’R; R

Since v(R)7#2(R) — v(0)72(0) > 0 it follows that

chlinm T(R)=0 (5.17)

- (2 )

is the radial component of the Cauchy stress. However, by (5.13) and (5.14) it follows

that )
. R ., T
>
hmo[(f) 45,1(7“,R,R> +PJ > P >0,

which is a contradiction of (5.17). Hence 7 ¢ Ay and so 7 € A\ Ay as required.

as required, where

Example 5.9. Consider the radial-displacement boundary-value problem with

the stored-energy function
3

D(v1,v3,03) = Y sp(v; —1)%,

i=1
where p > 0.

In this case, by theorems 5.7 and 5.8, degenerate cavitation occurs for P > 0 and
large A (and if P = 0, then the homogeneous deformation is the energy minimizer).
We next give more detailed information on the minimizers of I¥) using the results
in Sivaloganathan (1992). Notice first that

1 r 2
dml(r) = %M/o 4R (r —1)% + 2(% - 1) } dR

N

1 r 2 1
,u/ 4rR*| (') + 2 2 e+ 47r%,u/ —2——d—[R2r] dR + const.
0 L R 0 dR

1 -
= %,u/ 4 R?
0 L

where u is given by (1.15).

r

2
(r)? +2 dR + const. = 2 [ |Vul|? + const.,
R A
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Hence if P > 0, then
47T[(P)(7«) = / %MIVUIZ + P det Vudz + const.
B

Now, by the results of theorem 1.3 of Sivaloganathan (1992), it follows that for P > 0:

(i) if A < Aesit, then # = AR is the global minimizer of I(X) on Aj;

(ii) if A > Aesit, then

A\ —
AR+ —‘}27, on [Ro,l],
#(R) = A (5.18)

ARO + 55 on [0, RO]

Ry
is the global minimizer of () on Ay, where

B B 4,U, A 1/3
)\crlt—A—ﬁ and Ro— [2(2—1)] s

i.e. for A > Aeis, 7 is constant on [0, Rg] and so degenerate cavitation occurs (since,
for the corresponding radial deformation (1.15), det Vu = #(7/R)? = 0 on [0, Ro)
by (1.15)—(1.17) and (ii) above).

I thank Scott Spector, Keith Walton and Valery Smyshlyaev for their interest and comments on
this work.
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