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Abstract. Experiments on elastomers have shown that sufficiently-large triaxial tensions

induce the material to exhibit holes that were not previously evident. In this paper conditions

are presented that allow one to use the direct method of the calculus of variations to deduce the

existence of hole creating deformations that are global minimizers of a nonlinear, purely-elastic

energy. The crucial physical assumption used is that there are a finite (possibly large) number of

material points in the undeformed body that constitute the only points at which cavities can form.

Each such point can be viewed as a preexisting flaw or an infinitesimal microvoid in the material.

1. Introduction

Experiments on elastomers have shown that holes, which were not previously evident to
optical observation, appear in portions of the elastomer that experience a sufficiently-large

triaxial tension. A reasonable expectation, especially in view of the analysis of Gent and
Lindley [13] (see [18] for a brief description), is that such a cavitating deformation, i.e., an

injective mapping that exhibits holes, should be a global minimizer of the elastic energy

E(u) :=

∫

Ω
W (x,∇u(x)) dx,
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although it is possible that such a deformation is only a relative minimizer or that nonelastic
effects, such as surface energy or plasticity, are needed to explain cavitation.

In this paper we present conditions on the stored energy density W that allow us to

deduce the existence of a cavitating deformation that is a global minimizer of E among those
deformations that are injective (almost everywhere) and satisfy sufficiently-large displace-
ment boundary conditions on the boundary of a bounded region Ω ⊂ IR3.

The main physical assumption that we use to obtain our existence result is that there are

a finite (possibly large) number of material points in the undeformed body that constitute
the only points at which cavities can form. We view each such point as a preexisting flaw or
weakness in the material (see [12]), however, one could just as well view it as an infinitesimal

precursor microvoid (see [25] and Horgan and Abeyaratne [16]). Our theory assumes that
such points are not detectable when the material is subjected to small (finite) deformations

or purely compressive stresses. However, when any such point is subjected to a sufficiently-
large, triaxial tension, a hole, which was not previously in the material, will be created at

that point.

Our purely-elastic model may not explain the refined experiments of Cho and Gent [7].

These experiments indicate that a triaxial tension that induces a hole to appear in a large
sample may not be sufficient to open a cavity when the same triaxial tension is only expe-

rienced in a small portion of the sample. In Section 4 we therefore also briefly consider a
model that might better explain such results. In addition to the elastic energy E this model

includes the energy of creation of each new hole. This creation energy may be different at
each cavitation point and therefore model differing flaw strengths or preexisting microvoid

sizes.

The main mathematical tools we use to prove our results are contained in [23]. These

tools are based, in large part, on results on fine properties of deformations previously obtained
by Šverák [27] and results on the distributional Jacobian previously obtained by Müller [22].

Our proof makes use of the notion of polyconvexity and the direct method of the calculus of
variations, as first presented by John Ball [2] in the context of nonlinear elasticity, to deduce

the existence of minimizers. Our approach to cavitation follows that of Ball [3] (see also [17]
and the reference therein) who views cavitation as the creation of a new hole in the body
rather than the growth of a preexisting finite hole, as had previously been analyzed in [13].

In addition to the above mentioned existence results we show, in Section 5, that energy

minimizers satisfy various weak forms of the equilibrium equations. Therefore, since the
cavitation points can be prescribed arbitrarily, our results imply that, for the stored-energy
functions considered in this paper, there exist infinitely many singular weak solutions to

the equations of nonlinear elastostatics. The proof of the results in this section follows the
suggestion of Ball [4] that has been carried out in detail by Bauman, Owen, and Phillips [6]

(see also Giaquinta, Modica, and Souček [14]). We also show that if the minimizer is smooth
away from the finite number of prescribed cavitation points then, in the absence of body

forces, the divergence of the Cauchy stress is zero in the deformed configuration and the
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divergence of the both the Piola-Kirchhoff stress and the the energy-momentum tensor are
zero in the reference configuration.

An existence theorem that allows for cavitation has previously been obtained by Müller
and Spector [23]. However, their model is not a purely-elastic one since it includes an

additional energy that is proportional to the area of newly created cavity surface. Our
model needs no such additional energy to obtain existence, but must instead predetermine

the finite set of points at which cavitation may occur. The model in [23] makes no such
prespecification. It also allows for a countable number of new holes to be created.

Finally, we mention that our paper has a second purpose. Suppose that the body, in its
reference configuration, is a ball centered at the origin that is composed of a homogeneous,

isotropic, nonlinearly elastic material. Then our intuition leads us to believe that, for many
stored energy densities W , a global minimizer of the energy should be a radial deformation

of the form

u(x) =
r(|x|)
|x| x,

that minimizes the energy among radial, injective mappings and creates a single hole at
the center of the ball. Unfortunately, except for an elastic fluid it has not been determined
whether this conjecture is correct.1 Thus an interesting, possibly simpler, open problem is to

determine whether the radial minimizer is a global minimizer among injective deformations
that open a single hole at the center. This paper establishes that the latter class contains a

function that minimizes the energy within that class.

2. Preliminaries

In the following, Ω will denote a nonempty, bounded, open subset of IRn, n ≥ 2, whose

boundary, ∂Ω, is (strongly) Lipschitz (see Evans and Gariepy [10] or Morrey [21]). By Lp(Ω)

and W 1,p(Ω) we denote the usual spaces of p-summable and Sobolev functions, respectively.

We use the notation Lp(Ω; IRm), etc., for vector-valued maps. A function is in Lploc(Ω) if

ϕ ∈ Lp(U) for all open sets U ⊂⊂ Ω, i.e., U ⊂ KU ⊂ Ω for some compact set KU . We point

out that we do not identify functions that agree almost everywhere. We use the short-hand

notation ϕ ∈ W 1,1(Ω), etc., to indicate that ϕ is a representative of an equivalence class

that is contained in W 1,1(Ω). Weak convergence in these spaces will be indicated by the half

arrow ⇀. Weak∗ (weak-star) convergence in L∞(Ω) will be denoted by
∗
⇀ and the norm on

this space will be denoted by || · ||∞. Composition of functions will be denoted by ◦.
The n-dimensional Lebesgue measure will be denoted by Ln and the k-dimensional

Hausdorff measure by Hk . We write

B(b, r) := {x ∈ IRn : |x− b| < r}
1Counterexamples have been obtained in [18]. However, these examples require W to grow so slowly at

infinity that they are incompatible with the theory in this paper. See also [26] for a model problem in which
the conjecture is true.
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for the ball of radius r centered at b ∈ IRn with volume ωnr
n = Ln(B(b, r)). For b ∈ Ω we

let

rb := dist(b, ∂Ω),

i.e., the distance from b to the boundary of Ω.

We write Lin for the set of all linear maps from IRn into IRn with inner product and

norm

K ·L = tr(KTL), |L| = (L · L)1/2

respectively, where tr(M) denotes the trace of M ∈ Lin. We denote by Lin> those L ∈ Lin

with positive determinant. The mapping adj : Lin → Lin will be the unique continuous

function that satisfies

L(adj L) = (det L)Id

for all L ∈ Lin, where det L is the determinant of L and Id ∈ Lin is the identity mapping.

Thus, with respect to any orthonormal basis, the matrix corresponding to adj L is the trans-

pose of the cofactor matrix corresponding to L. We denote by id : IRn → IRn the identity

mapping on IRn, i.e., id(x) ≡ x. We write div for the divergence operator in IRn: for a

vector field u, div u = tr∇u; for a tensor field S, div S is the vector field with components

Σj∂Sij/∂xj .

We briefly recall some facts about the Brouwer degree (see, e.g., Fonseca and Gangbo [11]

or Schwartz [24] for more details). Let u : Ω→ IRn be a C1 map. If y0 ∈ IRn\u(∂Ω) is such

that det∇u(x) 6= 0 for all x ∈ u−1(y0), one defines

deg(u,Ω,y0) :=
∑

x∈u−1(y0)

sgn [det∇u(x)] . (2.1)

Thus, in particular, if g : Ω → IRn is a diffeomorphism with det∇g > 0 on Ω, then from

(2.1) we conclude that

deg(g,Ω,y0) =

{
1, if y0 ∈ Ω
0, if y0 ∈ IRn\Ω. (2.2)

If ϕ is a C∞ function supported in the connected component of IRn\u(∂Ω) that contains

y0, one can show that
∫

Ω
ϕ(u(x)) det∇u(x) dx = deg(u,Ω,y0)

∫

IRn
ϕ(y) dy.

Using this formula and approximating by C∞ functions, one can define deg(u,Ω,y) for any

continuous function u : Ω→ IRn and any y ∈ IRn\u(∂Ω). Moreover, the degree only depends

on u|∂Ω. Accordingly we will henceforth write deg(u, ∂Ω,y) instead of deg(u,Ω,y). More

generally, since a continuous function on a compact set can be extended to a continuous

function on all of IRn one has the following result.
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Proposition 2.1 Let u ∈ C(∂B(b, r); IRn) for some b ∈ IRn and r > 0. Then deg(u, ∂B(b, r),y)

is well defined for every y ∈ IRn\u(∂B(b, r)). Moreover,

(i) if uj ∈ C(∂B(b, r); IRn) is such that uj → u uniformly then

lim
j→∞

deg(uj , ∂B(b, r),y) = deg(u, ∂B(b, r),y)

for every y ∈ IRn\u(∂B(b, r));

(ii) if g : IRn → IRn is a diffeomorphism that satisfies det∇g > 0 on IRn then

deg(g ◦ u, ∂B(b, r), g(y)) = deg(u, ∂B(b, r),y)

for every y ∈ IRn\u(∂B(b, r));

(iii) if g : Ω→ Ω is a diffeomorphism that satisfies det∇g > 0 on Ω then

deg(u ◦ g, ∂B(b, r),y) = deg(u, ∂B(b, r),y)

for every y ∈ IRn\u(∂B(b, r)).

Remarks. 1. In (i) one might have y ∈ uj(∂B(b, r)) and therefore deg(uj , ∂B(b, r),y)

would not be defined. However, the uniform convergence uj → u implies that the degree is

well defined for all sufficiently large j.

2. For a ball one can find an explicit formula for the degree by using the extension

u ∈ C2(B(b, r); IRn) ∩ C0(B(b, r); IRn) that solves the vector Laplacian in B(b, r) with

boundary values u. This function is defined by the Poisson integral formula (see, e.g., [15]).

3. Properties (ii) and (iii) are a consequence of (2.2) and the multiplicative property

of the degree under compositions (see, e.g., Theorem 2.10 in [11], Theorem 3.20 in [24] or

p. 578 in [29]).

Let u ∈ W 1,p(Ω; IRn), with 1 ≤ p < n. We will be interested in pointwise properties

of u as well as restrictions of u to lower dimensional sets. In these cases, it is useful to

consider an alternative representative in the same equivalence class. We define the precise

representative u∗ : Ω→ IRn by

u∗(x) =





lim
ρ→0+

−
∫

B(x,ρ)

u(z) dz, if the limit exists,

0, otherwise,

where −∫ A denotes the integral average over A, i.e., the integral of the function over A

divided by the n-dimensional Lebesgue measure of A.
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We shall make use of the fact that, if u ∈ W 1,p(Ω; IRn) with 1 ≤ p < n, the above limit

exists for every x ∈ Ω\P , where Hn−1(P ) = 0. Thus, in particular, one can use the precise

representative as a representative of the trace on (n− 1)-dimensional surfaces. Moreover, if

p > n − 1 then H1(P ) = 0 and consequently for each b ∈ Ω the above limit is defined at

every point on ∂B(b, r) for almost every r ∈ (0, rb). For a thorough discussion of precise

representatives we refer to [10].

The following observation will be useful in our later development in this paper.

Proposition 2.2 (see, e.g., Lemma 2.9 in [23]). Assume that

uj ⇀ u in W 1,p(Ω; IRm).

Let b ∈ Ω and rb := dist(b, ∂Ω). Then there is an Nb ⊂ IR with L1(Nb) = 0 such that

for any r ∈ (0, rb)\Nb there exists a subsequence uj (not relabeled), which will in general

depend on r, such that

u∗j ⇀ u∗ in W 1,p(∂B(b, r); IRm).

Furthermore, if p > n − 1, then u∗j |∂B(b,r) and u∗|∂B(b,r) are continuous and

u∗j → u∗ uniformly on ∂B(b, r). (2.3)

In nonlinear elasticity one is interested in globally invertible maps since, in general,

matter cannot interpenetrate itself. We say that u ∈ W 1,1(Ω; IRn) is invertible almost

everywhere (or equivalently, one-to-one almost everywhere) if there is a Lebesgue null

set N ⊂ Ω such that u|Ω\N is injective. We note that invertibility almost everywhere is a

property of the equivalence class and not merely of the representative. However, the notion

of invertibility almost everywhere is not sufficient for the analysis in function classes that

allow for the formation of cavities. In fact the topological properties of such maps can differ

drastically from everywhere invertible maps. The source of the difficulties is that a cavity

formed at one point may be filled by material from elsewhere. In order to exclude such

behavior the invertibility condition (INV) was introduced in [23].

Definition 2.3 Let B(b, r) ⊂ Ω and suppose that u : ∂B(b, r) → IRn is continuous. We

define the topological image of B(b, r) under u by

imT (u, B(b, r)) := {y ∈ IRn\u(∂B(b, r)) : deg(u, ∂B(b, r),y) 6= 0}.

Remark. If u : ∂B(b, r) → IRn happens to be the restriction of a homeomorphism

h : B(b, r)→ IRn to ∂B(b, r) then

imT (u, B(b, r)) = h(B(b, r)).
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Definition 2.4 We say that u : Ω → IRn satisfies condition (INV) provided that for every

b ∈ Ω there exists an L1 null set Nb such that, for all r ∈ (0, rb)\Nb, u|∂B(b,r) is continuous,

(i) u(x) ∈ imT (u, B(b, r))∪ u(∂B(b, r)) for Ln a.e. x ∈ B(b, r), and

(ii) u(x) ∈ IRn\imT (u, B(b, r)) for Ln a.e. x ∈ Ω\B(b, r).

Remarks. 1. Fix b ∈ Ω. Then one can think of (i) and (ii) as the requirement that

(almost) every spherical shell centered at b is a solid, impenetrable two-dimensional body

that is subjected to a continuous deformation. Thus, all matter that was originally inside

such a shell must remain inside and all matter that was originally outside such a shell must

remain outside.

2. Another way one might attempt to eliminate physically inappropriate maps is to

require that each deformation u lie in the same homotopy class as the identity map. For

example, one might require that there exists a mapping g ∈ C0([0, 1];W 1,p(Ω; IRn)) with

g(·, t) one-to-one a.e. for every t ∈ [0, 1], g(x, 0) = x, and g(x, 1) = u(x) for a.e. x ∈ Ω.

However, there are mathematical difficulties with such conditions. In particular, it is not

clear that the weak limit of an energy minimizing sequence of deformations that lies in such

a homotopy class also lies in the same homotopy class. In addition, one would need to show

that the weak limit of a sequence of deformations that are one-to-one a.e. is also one-to-one

a.e.

Deformations that satisfy condition (INV) and have nonzero Jacobian are more regular

than other elements of the Sobolev spaces W 1,p, n − 1 < p < n. In particular, in [23] it is

shown that such deformations have a representative that is continuous at every x ∈ Ω\P̂ ,

where Hn−p(P̂ ) = 0 (and hence Ln(P̂ ) = 0) and, more significantly in the context of this

work, are one-to-one a.e.

Proposition 2.5 (see Lemma 3.4 in [23]). Let u ∈ W 1,p(Ω; IRn) with p > n − 1. Suppose

that det∇u 6= 0 a.e. and that u∗ satisfies condition (INV). Then u is one-to-one almost

everywhere.

For a diffeomorphism with nonnegative Jacobian the degree can only assume the values

1 and 0. The following is a counterpart of this result for the situation at hand.

Proposition 2.6 (see Lemma 3.5 in [23]). Let u ∈ W 1,p(Ω; IRn) with p > n − 1. Suppose

that u∗ satisfies condition (INV) and that det∇u 6= 0 a.e. Fix b ∈ Ω.
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(i) Assume, in addition, that det∇u > 0 a.e. Then there exists an L1 null set Nb such

that for every r ∈ (0, rb)\Nb

deg(u, ∂B(b, r),y)∈ {0, 1}, for all y ∈ IRn\u(∂B(b, r)). (2.4)

(ii) Conversely, if there is an r0 ∈ (0, rb) such that (2.4) is satisfied for L1 a.e. r ∈ (0, r0)

then

det∇u > 0 a.e. in B(b, r0).

Another result we will make use of is the change of variables formula for Sobolev map-

pings. (For a proof see Proposition 2.6 in [23] and the references therein).

Proposition 2.7 Let u be (a representative of an equivalence class) in W 1,1(Ω; IRn). Then

there is a Lebesgue null set Nu ⊂ Ω such that for any measurable function ϕ : IRn → IR and

any measurable set A ⊂ Ω

∫

A
ϕ(u(x))| det∇u(x)| dx =

∫

u(A\Nu)
IN(u, A,y)ϕ(y) dy (2.5)

whenever either integral exists. Here

IN(u, A,y) := cardinality {x ∈ A : u(x) = y}.

Remark. Marcus and Mizel [19] showed that if p > n and if u is (the continuous

representative of an equivalence class) in W 1,p(Ω; IRn) then u maps null sets onto null sets

and one can replace A\Nu by A in (2.5).

We call a (nonnegative outer) measure µ on Ω a Radon measure provided that every

Borel subset of Ω is µ-measurable, every subset of Ω is contained in a Borel set of the same µ-

measure, and every compact subset of Ω has finite µ-measure. Thus Ln is a Radon measure

on Ω, but Hk is not when k < n. We say that a sequence of Radon measures µj on Ω

converges weak∗ in the sense of measures to a Radon measure µ, denoted µj
∗
⇀ µ, provided

∫

Ω
φ(x) dµj(x)→

∫

Ω
φ(x) dµ(x)

for every φ ∈ C0(Ω), i.e., every continuous function φ : Ω → IR that is supported in a

compact subset of Ω. We will make use of the following result concerning Radon measures.

For a proof, as well as a thorough discussion of Radon measures, see Evans and Gariepy [10].



Minimizers with Prescribed Singular Points in Elasticity 9

Proposition 2.8 (Weak∗ compactness of Radon measures). Let µj be a sequence of Radon

measures on Ω that satisfy

sup
j
µj(K) <∞ for each compact K ⊂ Ω.

Then there exists a subsequence (not relabeled) and a Radon measure µ such that

µj
∗
⇀ µ in the sense of measures.

If u ∈ W 1,p
loc (Ω; IRn), with p > n2/(n+1), then the linear functional (Det∇u) : C1

0(Ω)→
IR given by

(Det∇u)(φ) := − 1

n

∫

Ω
∇φ · (adj∇u)u dx (2.6)

is a well-defined distribution, which is called the distributional Jacobian. If u ∈ W 1,p
loc (Ω; IRn),

with p ≥ n then the identity div(adj∇u)T = 0 can be used to show that Det∇u is the dis-

tribution induced by the function det∇u. Indeed, for simplicity let u be C2 on Ω then, by

the product rule and the above identity,

div(φ(adj∇u)u) = ∇φ · (adj∇u)u + φ(adj∇u)T · ∇u + φu · div(adj∇u)T

= ∇φ · (adj∇u)u + nφ(det∇u)

and hence, since φ has compact support, we conclude with the aid of the divergence theorem

and (2.6) that

(Det∇u)(φ) =

∫

Ω
φ(x)det∇u(x) dx. (2.7)

In general this need not be the case and in fact (2.7) will not be satisfied when cavitation

occurs. For example, the deformation

w(x) =
r(|x|)
|x| x

with r ∈ C([0, 1]; IR) ∩ C1((0, 1); IR), r(0) > 0, and r′ > 0, which creates a spherical hole at

the center of the body B(0, 1), has

(Det∇w)(φ) =

∫

Ω
φ(x) det∇w(x) dx + ωnr(0)nφ(0) for all φ ∈ C1

0(Ω), (2.8)

where ωn is the volume of the n-dimensional unit ball B(0, 1).

The above paragraph shows that, for radial cavitation, the distributional Jacobian is a

Radon measure, that is, there exists a (nonnegative) Radon (outer) measure µJ on Ω such

that

(Det∇u)(φ) =

∫

Ω
φ(x) dµJ(x) for all φ ∈ C1

0(Ω). (2.9)
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In particular, if Det∇u ≥ 0, i.e., (Det∇u)(φ) ≥ 0 for all φ ∈ C1
0 (Ω) that are nonnegative,

then the Riesz representation theorem (see, e.g., pp. 49–54 in [10]) can be used to show that

there exists a Radon measure µ
J

that satisfies (2.9). To simplify notation, whenever such a

measure exists we will denote it by Det∇u and thus not distinguish between the distribution

Det∇u and the measure µJ . Thus, for any open set U ⊂ Ω,

(Det∇u)(U) := µ
J
(U) := sup{(Det∇u)(φ) : φ ∈ C1

0(U), ||φ||∞ ≤ 1},

while, for an arbitrary set A ⊂ Ω,

(Det∇u)(A) := µJ (A) := inf{(Det∇u)(U) : A ⊂ U ⊂ Ω, U open}.

For example, we will write

Det∇w = (det∇w)Ln + ωnr(0)nδ0

instead of (2.8). Here, and in what follows, δb denotes the Dirac measure centered at the

point b ∈ IRn.

Now suppose that u ∈ W 1,p
loc (Ω; IRn), with p > n− 1 (rather than p > n2/(n+ 1)). Then

the precise representative u∗ is continuous on the sphere ∂B(b, r) for almost every r and

hence u∗(∂B(b, r)) is compact for such r. If, in addition, u∗ satisfies condition (INV) then it

follows that u∗ ∈ L∞loc(Ω; IRn) and hence that (2.6) is once again a well-defined distribution

on Ω. The next result shows that in fact this distribution is a Radon measure.

Proposition 2.9 (see Müller [22] and Lemma 8.1 in [23]). Let u ∈ W 1,p
loc (Ω, IRn) with

p > n − 1. Suppose that det∇u > 0 a.e. and that u∗ satisfies condition (INV). Then

Det∇u ≥ 0 and hence Det∇u is a Radon measure. Furthermore,

Det∇u = (det∇u)Ln + m,

where m is singular with respect to Lebesgue measure, and for L1 a.e. r ∈ (0, rb) one has

(Det∇u)(B(b, r)) = Ln(imT (u, B(b, r))). (2.10)

3. Main Convergence Result

We now fix a finite set of points in the material and restrict our attention to deformations

that may only open new holes in the interior of the body at these points.

Definition 3.1 Let p > n − 1 and suppose that ai ∈ Ω, i = 1, 2, 3, ...,M are given. Define

Def p(Ω, a1, ..., aM) to be those maps u ∈ W 1,p(Ω; IRn) that satisfy:
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(i) u∗ satisfies condition (INV);

(ii) det∇u > 0 a.e.;

(iii) Det∇u = (det∇u)Ln +
∑M
i=1 α

iδai,

where αi are nonnegative real numbers that may depend on u.

Thus a deformation is a Sobolev mapping with positive Jacobian that can only open

holes at a finite number of specified points in the body and which satisfies condition (INV)

(and consequently is one-to-one a.e.).

Remarks. 1. Results in [23] imply that each deformation u ∈ Def p(Ω, a1, ..., aM) has a

representative that, in addition to being continuousHn−p a.e., maps sets of measure zero onto

such sets. This representative satisfies (i) and (ii) of condition (INV) for every x ∈ B(b, r)

and, when one uses this representative, A\Nu can be replaced by A in equation (2.5) of the

change of variables formula.

2. Note that deformations in Def p(Ω, a1, ..., aM) may not be smooth or even continuous

on the entire complement of (potential) cavitation points ai. See Tang [28] for an example

of a deformation that is not continuous yet opens no new holes.

3. Examples in [23] show that a deformation in Def p(Ω, a1, ..., aM) may open additional

holes at the boundary of the region.

We now state the main result of this section.

Lemma 3.2 Let p > n− 1 and suppose that uj ∈ Def p(Ω, a1, ..., aM) satisfy

uj ⇀ u in W 1,p(Ω; IRn) (3.1)

and

det∇uj ⇀ θ in L1(Ω) (3.2)

for some u ∈ W 1,p(Ω; IRn) and θ ∈ L1(Ω). Assume, further, that θ > 0 a.e. in Ω. Then

u ∈ Def p(Ω, a1, ..., aM) and θ = det∇u. (3.3)

In order to prove the above lemma we will need the following result. This result shows

that the set of maps whose precise representatives satisfy (INV) is sequentially weakly closed

in W 1,p. In addition, mappings that satisfy condition (INV) are in L∞loc(Ω) and consequently

sequences of such deformations that converge weakly satisfy an additional convergence prop-

erty.
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Lemma 3.3 Let p > n− 1 and suppose that u∗j is a sequence in W 1,p(Ω; IRn) that satisfies

condition (INV). Assume that

uj ⇀ u in W 1,p(Ω; IRn).

Then u∗ satisfies condition (INV). Moreover, there exists a subsequence (not relabeled) that

satisfies

uj → u in Lqloc(Ω; IRn) (3.4)

for every 1 ≤ q <∞.

Proof of Lemma 3.3. Without loss of generality we take uj = u∗j and u = u∗. For a

proof that u satisfies (INV) see Lemma 3.3 in [23]. To prove (3.4) we first note that, by

the Rellich compactness theorem, there is a subsequence that converges strongly to u in

Lploc(Ω; IRn) and hence a further subsequence (not relabeled) that satisfies uj → u a.e. Let

1 ≤ q < ∞, b ∈ Ω, and suppose that r ∈ (0, rb) is such that u satisfies (i) and (ii) of

condition (INV) on B(b, r) and (2.3) of Proposition 2.2. We will show that

uj → u in Lq(B(b, r); IRn).

This will imply the desired result since any compact subset of Ω can be covered by a finite

number of such balls.

Define

U := {y ∈ IRn : dist (y,u (∂B(b, r))) ≤ 1} .
Then by (2.3) of Proposition 2.2 one has that, for all z ∈ ∂B(b, r) and for all j sufficiently

large, |uj(z) − u(z)| < 1 and hence uj(z) ∈ U . Thus for all such j the boundaries of each

of the open sets imT (uj , B(b, r)) are contained in the bounded set U . Therefore, the sets

imT (uj , B(b, r)) are bounded, uniformly in j, and hence, in view of (i) of (INV), there is a

K > 0 such that

||uj||L∞(B(b,r)) ≤ K
for all j sufficiently large. Since uj → u a.e., the desired result now follows from the Lebesgue

dominated convergence theorem. 2

Proof of Lemma 3.2. Without loss of generality we take uj = u∗j and u = u∗. Let uj ∈
Def p(Ω, a1, ..., aM) satisfy (3.1) and (3.2) where θ > 0 a.e. Then, by (3.1) and Lemma 3.3,

u∗ satisfies condition (INV) and

uj → u in Lqloc(Ω; IRn) for every q ∈ (1,∞). (3.5)

Moreover, since p > n − 1 (see, e.g., Theorem 3.4 in [1] or Theorem 7.5-1 in [8])

adj∇uj ⇀ adj∇u in L
p

n−1 (Ω; IRn). (3.6)
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We now show that Det∇u is a Radon measure. By (3.5) and (3.6)

(adj∇uj)uj ⇀ (adj∇u)u in L1
loc(Ω; IRn) (3.7)

and hence

(Det∇uj)(ϕ)→ (Det∇u)(ϕ) for every ϕ ∈ C∞0 (Ω). (3.8)

Next, let K ⊂ Ω be compact. Then there exists ψK ∈ C1
0(Ω; [0, 1]) with ψK = 1 on K. Let

K ′ ⊂ Ω be the closure of the set where ψK is strictly positive. If we write µj for the measure

Det∇uj we find, with the aid of (2.9), that

(Det∇uj)(K) =

∫

K
1 dµj(x)

≤
∫

Ω
ψK(x) dµj(x) = (Det∇uj)(ψK)

and, by definition of the distributional Jacobian,

(Det∇uj)(ψK) := − 1

n

∫

Ω
∇ψ · (adj∇uj)uj dx

≤ n−1 sup{|∇ψ(x)| : x ∈ K ′}||(adj∇uj)uj ||L1(K′).

However, in view of (3.7), ||(adj∇uj)uj ||L1(K′) is bounded, uniformly in j, and hence

sup
j

(Det∇uj)(K) < +∞ for every compact K ⊂ Ω. (3.9)

Therefore, by the weak∗ compactness result for measures (Proposition 2.8), a subsequence of

these measures converges to a Radon measure. This, together with (3.8), shows that Det∇u

is a Radon measure and

Det∇uj
∗
⇀ Det∇u in the sense of measures. (3.10)

Next, since uj ∈ Def p(Ω, a1, ..., aM)

Det∇uj = (det∇uj)Ln +
M∑

i=1

αijδai

with det∇uj > 0 a.e. and αij ≥ 0. In particular

αij ≤ (Det∇uj)
(
B(ai, r)

)
.

Thus, by (3.9) with K := B(ai, r), for any k

0 ≤ αik ≤ sup
j
αij ≤ sup

j
(Det∇uj)(K) < +∞.
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Therefore there exist αi ∈ [0,∞) such that (for a subsequence) αij → αi and consequently,

as j →∞,

αijδai
∗
⇀ αiδai in the sense of measures.

In view of (3.2) we therefore conclude that

Det∇uj
∗
⇀ θLn +

M∑

i=1

αiδai in the sense of measures,

which together with (3.10) yields

Det∇u = θLn +
M∑

i=1

αiδai . (3.11)

If p > n2/(n+1) we are done since a result of Müller [22] then yields θ = det∇u, which

together with (3.11) and the hypothesis θ > 0 a.e. give (ii) and (iii) of Definition 3.1. In

general, the desired result will follow if we show that det∇u > 0 a.e. since we can then apply

Proposition 2.9 together with (3.11) to arrive at the same conclusion for all p > n− 1.

In order to get det∇u > 0 a.e. we first show that det∇u 6= 0 a.e. By the change

of variables formula for Sobolev mappings (Proposition 2.7) and the fact that each uj is

one-to-one a.e. (Proposition 2.5) one has that for all ϕ ∈ C0(IRn)

∫

Ω
ϕ(uj(x)) det∇uj(x) dx =

∫

IRn
ϕ(y)Xuj(Ω\Nj)(y) dy, (3.12)

for some Lebesgue null sets Nj.

In preparation to letting j →∞ in (3.12) we first note that, by the Rellich compactness

theorem, we may assume that uj → u a.e. by passing, if necessary, to a subsequence. Thus,

since ϕ is continuous,

ϕ(uj(x))→ ϕ(u(x)) for a.e. x ∈ Ω. (3.13)

Moreover, each of the compositions, ϕ◦uj , is contained in L∞(Ω) since ϕ is bounded. Next,

the sequence of characteristic functions satisfies ||Xuj(Ω\Nj)||∞ ≤ 1 and hence, since the

unit ball is compact in the weak∗ topology, there is a ζ ∈ L∞(IRn) with ||ζ||∞ ≤ 1 and a

subsequence (not relabeled) such that

Xuj(Ω\Nj)
∗
⇀ ζ in L∞(Ω). (3.14)

We now take the limit of (3.12) as j → ∞ to conclude, with the aid of (3.13), (3.14),

and Lemma A.1, that ∫

Ω
ϕ(u(x))θ(x) dx =

∫

IRn
ϕ(y)ζ(y) dy. (3.15)
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Equation (3.15) is satisfied for all continuous ϕ with compact support and hence, by approx-

imation (using the monotone convergence theorem) for ϕ the characteristic function of any

open set.

We now show that det∇u 6= 0 a.e. Let Nu be the Lebesgue null set from the change of

variables formula (Proposition 2.7) and define

M := {x ∈ Ω : det∇u(x) = 0}\Nu.

Then Proposition 2.7 (with A = M) yields

0 =

∫

u(M)
IN(u,M,y)ψ(y)dy

for all measurable functions ψ and consequently u(M) is a null set. Let ε > 0 and suppose

that U ⊃ u(M) is open with Ln(U) < ε. Then Xu(M) ≤ XU and hence

XM (x) ≤ Xu(M)(u(x)) ≤ XU (u(x)) (3.16)

for a.e. x ∈ Ω. We note that ||ζ||∞ ≤ 1 and θ > 0 a.e. and apply (3.15) with ϕ = XU to

obtain, with the aid of (3.16),

∫

M
θ(x) dx ≤

∫

Ω
XU (u(x))θ(x) dx =

∫

U
ζ(y) dy ≤ Ln(U) < ε.

Thus, since θ > 0 a.e. and since ε was arbitrary, we deduce that Ln(M) = 0. Therefore

det∇u 6= 0 a.e. since Nu is itself a Lebesgue null set.

Finally, we show that det∇u > 0 a.e. Let b ∈ Ω and let Nb be the L1 null set of

Proposition 2.2. Then by Proposition 2.6(i) there exist L1 null sets Nj such that for every

r ∈ (0, rb)\Nj

deg(uj , ∂B(b, r),y)∈ {0, 1}, for all y ∈ IRn\uj(∂B(b, r)). (3.17)

Define N := Nb ∪ (∪∞j=1Nj). Fix r ∈ (0, rb)\N . Then by Proposition 2.2 there is a subse-

quence (not relabeled) such that uj → u uniformly on ∂B(b, r). Therefore, in view of (3.17)

and Proposition 2.1, we conclude that

deg(u, ∂B(b, r),y)∈ {0, 1}, for all y ∈ IRn\u(∂B(b, r)). (3.18)

Since (3.18) is satisfied for all r ∈ (0, rb)\N and since det∇u 6= 0 a.e. we can apply Propo-

sition 2.6(ii) to conclude that det∇u > 0 a.e. in B(b, rb), for every b ∈ Ω. The desired

result, (3.3), now follows from Proposition 2.9 and Equation (3.11). 2
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4. Existence of Minimizers

We consider an elastic body that, for convenience, we identify with the bounded, open,

connected region B ⊂ IRn with (strongly) Lipschitz boundary that it occupies in a fixed

reference configuration.

4.1. The Displacement Problem

In order to address the displacement problem we let B ⊂⊂ Ω ⊂ IRn, where Ω is bounded,

open, and connected and has (strongly) Lipschitz boundary. We suppose that a diffeomor-

phism d : Ω → IRn with strictly positive Jacobian is given. If u ∈ W 1,p(B; IRn) satisfies

u− d ∈ W 1,p
0 (B; IRn) then we define its extension ue : Ω→ IRn by

ue(x) :=

{
u(x), x ∈ B,
d(x), x /∈ B,

and note that ue ∈ W 1,p(Ω; IRn).

We first ignore any possible energy due to hole formation (see the Introduction), fix

ak ∈ B, k = 1, 2, 3, ...,M , and seek a minimizer for the total elastic energy

E(u) :=

∫

B
W (x,u(x),∇u(x))dx (4.1)

in the class of admissible functions

Ap := {u ∈ W 1,p(B; IRn) : u− d ∈W 1,p
0 (B; IRn),ue ∈ Def p(Ω, a1, ..., aM)}.

Remarks. 1. The seemingly artificial requirement that admissible deformations possess

local extensions that satisfy condition (INV) is necessitated by the problem of cavitation at

the boundary (see [23]). In particular, given a ∈ ∂B and (sufficiently small) α > 0 one can

construct deformations that satisfy

Det∇u = (det∇u)Ln, Det∇ue = (det∇ue)Ln + αδa.

Thus the distributional Jacobian of a Sobolev mapping does not detect holes created at the

boundary of the domain on which the mapping is defined. In the next subsection we will

prove existence without such an extension requirement.

2. Note that an admissible mapping u ∈ Ap must lie in L∞(Ω; IRn) and satisfy ||u||∞ ≤
||d||∞.

Theorem 4.1 Let n = 3, p > 2, D := Lin3 × Lin3 × (0,∞), and suppose that the following

conditions are satisfied:
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(i) (polyconvexity) There is a function Φ : B × IR3 ×D → IR such that, for every u ∈ IR3

and a.e. x ∈ B,

W (x,u,F) = Φ(x,u, (F, adjF, det F)) whenever det F > 0,

where Φ(x,u, ·) : D → IR is convex for the same u and x.

(ii) (continuity) Φ(x, ·, ·) : IR3 ×D → IR is continuous for a.e. x ∈ B and Φ(·,u,N ) : B →
IR is measurable for every (u,N ) ∈ IR3 ×D.

(iii) (coercivity) For each compact set K ⊂ IR3

W (x,u,F) ≥ φK(x) + c|F|p + Γ(det F)

for a.e. x ∈ B and every (u,F) ∈ K × Lin3 with det F > 0, where c > 0, φK ∈ L1(B)

may depend on K, and Γ : (0,∞)→ IR is a convex function that satisfies Γ(t)/t→ +∞
as t→ +∞.

(iv) Γ(t)→ +∞ as t→ 0+.

Then E attains its infimum on Ap.

Remarks. 1. Body forces have been included in the function W . In particular, the

dead-load body force b0 ∈ L1(B; IR3) would contribute a term of the form β(x,u(x)) =

b0(x) · u(x) to W . Such a term is usually not included in W due to difficulties in satisfying

the coercivity hypothesis. However, in view of Remark 2 above, there is no such difficulty

for the displacement problem since

|β(x,u(x))| ≤ |b0(x)| ||d||∞.

2. Suppose that the boundary deformation is given by d(x) = λx. Then results of

Ball [3] and many others (see [17]) imply that, for a large class of stored-energy functions of

slow growth and for sufficiently large λ, any minimizer of E in the class Ap has strictly less

energy than those deformations in Ap that satisfy Det∇ue = (det∇ue)L3. In other words,

under these conditions the minimizer(s) of E will exhibit cavitation.

Proof. Since d ∈ Ap the set Ap is nonempty. Further, by (ii), E(d) is finite and hence

so is the infimum. We note that u ∈ Ap satisfies ||u||∞ ≤ ||d||∞ and therefore choose

K := B(0, ||d||∞). Thus, the coercivity of W implies that E is bounded below.

Let uj ∈ Ap be a minimizing sequence. Then by the coercivity of W and the Poincaré

inequality (see, e.g., [21]) the sequence is bounded in W 1,p(B; IR3) and hence we may assume
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(for a subsequence) that uj ⇀ u in W 1,p(B; IR3), uj → u in Lp(B; IR3), and uj → u a.e. As

usual we take uj = u∗j and u = u∗.

In order to show that u ∈ Ap we first note that that (uj − d) ∈ W 1,p
0 (B; IR3) and

consequently (u− d) ∈ W 1,p
0 (B; IR3). In particular, ue ∈ W 1,p(Ω; IR3) is well-defined. Next,

In view of the superlinear growth of Γ at +∞ we find, by the de la Vallée Poussin and

Dunford-Pettis criteria (see, e.g., [20]) that there is a θ ∈ L1(B) such that (for a subsequence)

det∇uj ⇀ θ in L1(B).

Define θe ∈ L1(Ω) by

θe(x) :=

{
θ(x), x ∈ B,
det∇d(x), x /∈ B,

and note that

det∇uej ⇀ θe in L1(Ω).

Clearly θ ≥ 0 a.e. If θ was equal to zero on a set A ⊂ B of positive (L3) measure then

we would have det∇uj → 0 in L1(A) and hence, by hypothesis (iv), (for a subsequence)

Γ(det∇uj(x)) → +∞ for a.e. x ∈ A. In this case we would have E(uj) → +∞, by the

coercivity of W and Fatou’s lemma. Therefore θ > 0 a.e. and hence θe > 0 a.e. Consequently,

we can apply Lemma 3.2 to conclude that

det∇uej ⇀ det∇ue in L1(Ω)

and ue ∈ Def p(Ω, a1, ..., aM). Therefore u ∈ Ap and

det∇uj ⇀ det∇u in L1(B). (4.2)

Finally, we show that u is a minimizer of E. We note that, since p > 2, adj∇uj ⇀

adj∇u in L1(B; Lin3) (see, e.g., Theorem 3.4 in [1] or Theorem 7.5-1 in [8]) and hence, in

view of (4.2) and hypotheses (i) – (iii), we can apply the lower-semicontinuity theorem of

Ball, Currie, and Olver (Theorem 5.4 in [5]) to conclude that

E(u) ≤ lim inf
j→∞

E(uj) = inf
Ap

E.

Therefore, u ∈ Ap is the desired minimizer. 2

As mentioned in the Introduction, our purely-elastic model may not explain the refined

experiments of [7]. We now examine the effect of including an energy associated with the

formation of a new hole in order to address this difficulty. Let ηi ≥ 0 for i = 1, ...,M and let

υ : [0,∞)M → [0,∞) be lower semicontinuous. Define

I(u) := E(u) + υ(α1, ..., αM) +
M∑

i=1

H(αi)ηi, (4.3)
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where

H(t) =

{
1, if t > 0

0, if t ≤ 0.

The term H(αi)ηi represents the energy associated with initiating a cavity at the point

ai. Its value may be different at each cavitation point due to differing strengths of the

preexisting flaws (sizes of the preexisting microvoids) in the material. The term υ(α1, ..., αM)

represents an energy associated with cavity growth. It might, for example, only be positive

when the holes are small so as to measure the relatively-large surface energy needed to

change a microvoid into a visible hole. Note that results on radial cavitation lead us to

expect that the cavitation load, i.e., the minimal value of the principal stretches required

to induce cavitation at a point, is an increasing function of the value of η at the point. A

sufficiently-small portion of the material might only have precurers with large η, which could

explain the results of [7].

We note that the proofs of Lemma 3.2 and Theorem 4.1 show that, for any (L3) mea-

surable set A ⊂ B, the mapping

u 7→ (Det∇u)(A)

is sequentially weakly continuous on (an appropriately chosen subsequence of) each minimiz-

ing sequence in Ap. In particular the choice A = {ai} yields the sequential weak continuity

of each of the the maps u 7→ αi. Since both υ and H are lower semicontinuous it follows

that each of the terms that constitute I is sequentially weakly lower semicontinuous on

minimizing sequences in Ap. The proof of Theorem 4.1 therefore yields the following result.

Theorem 4.2 Let n = 3, p > 2 and suppose that W satisfies the hypotheses of Theorem 4.1.

Assume further that I is given by (4.3), where ηi ≥ 0 for i = 1, ...,M and υ : [0,∞)M →
[0,∞) are lower semicontinuous. Then I attains its infimum on Ap.

Remark. The above result remains valid (see [23]) if one adds to I a surface energy that

is proportional to the deformed surface area of the new cavities created in the material.

4.2. The Mixed Problem

In order to address the mixed problem let Ω = B and ∂Bd ⊂ ∂B with strictly positive (n-

1)-dimensional measure (Hn−1(∂Bd) > 0). We suppose that the deformation d : ∂Bd → IRn

is given on ∂Bd, while dead-load tractions are prescribed on the remainder of the boundary,

∂Bt := ∂B\∂Bd. We seek a minimizer for each of the energies

Ê(u) := E(u)− Lu,

Î(u) := I(u)− Lu,
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where

Lu :=

∫

B
b0(x) · u(x) dx +

∫

∂Bt
s0(x) · u(x) dHn−1,

in the class of admissible functions

Apm := {u ∈ W 1,p(B; IRn) : u = d on ∂Bd, u ∈ Def p(B, a1, ..., aM)}.

Here the equality on ∂Bd is taken to be in the sense of trace.

Due to the lack of an apriori L∞-bound on such admissible deformations we must

strengthen hypothesis (iii) to

(iii)′ (coercivity)

W (x,u,F) ≥ φ(x) + c|F|p + Γ(det F)

for a.e. x ∈ B and every (u,F) ∈ IR3 × Lin3 with det F > 0, where c > 0, φ ∈ L1(B),

and Γ : (0,∞)→ IR is a convex function that satisfies Γ(t)/t→ +∞ as t→ +∞.

A slight modification of the proof of Theorem 4.1 then allows us to conclude

Theorem 4.3 Let n = 3, p > 2, d ∈ Lp(∂Bd; IR3), b0 ∈ Lr(B; IR3), and s0 ∈ Lq(∂Bt; IR3)

be given, where q and r are chosen so that the linear mapping L : W 1,p(B; IR3) → IR is

continuous. Suppose that W satisfies the hypotheses of Theorem 4.1 with (iii) replaced by

(iii) ′. Assume further that I is given by (4.3), where ηi ≥ 0 for i = 1, ...,M and υ :

[0,∞)M → [0,∞) are lower semicontinuous. Then, if Apm is nonempty, Ê and Î each attain

their infimum on Apm.

Remark. In particular, by the Sobolev imbedding and trace theorems, the linear map-

ping L : W 1,p(B; IR3) → IR will be continuous if r ≥ 3p/(4p− 3) and q ≥ 2p/3(p− 1). See

[2] or [8] for the appropriate modification to the proof when such dead-load body forces and

surface tractions are included.

5. The Equilibrium Equations

In this section we take B ⊂ IRn and consider equilibrium conditions that are satisfied

by minimizers of the energy

I(u) =

∫

B
W (∇u(x)) dx + υ(α1, ..., αM) +

M∑

i=1

H(αi)ηi.
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when W : Lin> → IR is a smooth function. For simplicity we have restricted our attention

to the case where W does not depend on x or u. If such a minimizer is C2 it must satisfy

the Euler-Lagrange equations

div S(∇u) ≡ 0, (5.1)

where

S(F) :=
dW

dF

is the Piola-Kirchhoff stress.

If u is only in W 1,p(B; IRn) then it is not known whether (5.1) holds (in the sense of

distributions), even if p > n. The difficulty is that to derive (5.1) one usually considers

variations u + sv, v ∈ C∞0 (B; IRn). However, when u is in such a Sobolev space it is not

clear that any such variation has finite energy since det(∇u+s∇v) may be negative on a set

of positive measure. Ball [4] observed, when υ = 0 and ηi = 0, that one can still derive other

equilibrium equations if one instead considers outer variations gs◦u or inner variations u◦gs
where gs is a one-parameter family of diffeomorphisms with g0 = id. The former variations

lead to conditions in the deformed configuration while the latter give the energy-momentum

equations. We begin with outer variations and first fix some notation.

Let u ∈ W 1,1(B; IRn) be one-to-one almost everywhere and satisfy det∇u > 0 a.e.

Suppose that Nu is the null set given by the change of variables formula (Proposition 2.7),

Mu is the null set where det∇u = 0, and Pu is a null set such that u|B\Pu
is one-to-one.

Define Qu := Mu ∪Nu ∪ Pu. Then we define the Cauchy stress T : u(B\Qu)→ Lin by

T(y) := S(∇u(x)) [∇u(x)]T /det∇u(x), (5.2)

or, in components,

T ij =
3∑

α=1

∂W

∂F iα

∂uj

∂xα
[det∇u]−1.

Here x is the unique point in B\Qu that satisfies u(x) = y.

Theorem 5.1 Let υ ≡ 0. Suppose that W is C1 on Lin> and that there are constants C > 0

and ε > 0 such that

|S(AF)FT | ≤ C(W (F) + 1) (5.3)

for all F ∈ Lin> and all A ∈ Lin> that satisfy |A− Id| < ε. If u ∈ Ap is any minimizer of

I with finite energy then T ∈ L1(u(B\Qu); Lin) and

∫

u(B\Qu)
T · ∇v dy = 0 (5.4)
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for all v ∈ C1(IRn; IRn) that satisfy v = 0 on IRn\d(B). Moreover, if u ∈ C2(B\{a1, ..., aM}; IRn)

satisfies det∇u > 0 on B\{a1, ..., aM} then

divx S(∇u) = 0 in B\{a1, ..., aM} (5.5)

and if, in addition, u is one-to-one on B\{a1, ..., aM} then

divy T = 0 in u(B\{a1, ..., aM}). (5.6)

Remarks. 1. When u ∈ Apm a slight modification of our proof will also yield (5.4)–(5.5).

2. If the energy term that depends on hole volume, υ, is not zero then the equilibrium

equations will contain an additional term, see, e.g., [23].

Proof. Let v ∈ C1(IRn; IRn) satisfy v = 0 on IRn\d(B). Then gs := id + sv is a

diffeomorphism of IRn for small s. Define us := gs ◦u so that, by Corollary 6.4, us ∈ Ap for

sufficiently small s. With the help of (5.3) one can use the Lebesgue dominated convergence

theorem to show that (see [4], [6], and [14]) T ∈ L1(u(B\Qu); Lin) and

d

ds

∣∣∣∣
s=0

∫

B
W (∇us) dx =

∫

B

d

ds

∣∣∣∣
s=0

W (∇us) dx

=

∫

B
S(∇u) · [((∇v) ◦ u)∇u] dx

=

∫

B
T(u(x)) · [(∇v)(u(x))] det∇u(x) dx

and hence, by the change of variables formula (Proposition 2.7),

d

ds

∣∣∣∣
s=0

∫

B
W (∇us) dx =

∫

u(B\Qu)
T(y) · ∇v(y) dy.

We note that gs is uniformly close to id and hence that gs cannot close (or open) any holes

when s is sufficiently small. It follows that the additional cavitation energy does not change.

Thus, since u minimizes I in Ap we conclude that (5.4) is satisfied.

Suppose now that u ∈ C2(B\{a1, ..., aM}; IRn) satisfies det∇u > 0 on B\{a1, ..., aM}
and let b ∈ B\{a1, ..., aM}. Then since det∇u(b) > 0 we can apply the inverse function

theorem to conclude that, for r sufficiently small, u|B(b,r) is a diffeomorphism and u(B(b, r))

is open. Therefore we can define the Cauchy stress T by (5.2) on the entire set u(B(b, r)).

Now let v ∈ C1(IRn; IRn) be supported in u(B(b, r)). Then by the previous argument

we find that

0 =

∫

u(B(b,r))
T · ∇vdy
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and hence, since v ∈ C1 is arbitrary and T is C1, a standard result yields

divy T = 0 in u(B(b, r)). (5.7)

Since u is a diffeomorphism on B(b, r) we can now apply the identity (see, e.g., Theorem

1.7-1 in [8])

divx S(∇u(x)) = [det∇u(x)] divy T(u(x))

to conclude

divx S(∇u) = 0 in B(b, r).

Therefore (5.5) is satisfied since b ∈ B\{a1, ..., aM} is arbitrary. Finally, if u is one-to-one

the Cauchy stress T can be defined uniquely on u(B\{a1, ..., aM}) by (5.2) and (5.6) follows

immediately from (5.7). 2

We next consider inner variations.

Theorem 5.2 Let W be C1 on Lin> and suppose that there are constants C > 0 and ε > 0

such that

|FTS(FA)| ≤ C(W (F) + 1) (5.8)

for all F ∈ Lin> and all A ∈ Lin> that satisfy |A − Id| < ε. If u ∈ Ap (or Apm) is any

minimizer of I with finite energy then

∫

B
[W (∇u)Id− (∇u)TS(∇u)] · ∇vdx = 0 (5.9)

for every v ∈ C1(Ω; IRn) that satisfies v = 0 on {a1, ..., aM} ∪ (Ω \ B). Moreover, if u ∈
C2(B\{a1, ..., aM}; IRn) then

div[W (∇u)Id− (∇u)TS(∇u)] = 0 in B\{a1, ..., aM} (5.10)

or, in components,
∑

α,j

∂

∂xα
{W (∇u)δαβ −

∂W

∂F jα
(∇u)

∂uj
∂xβ
} = 0.

Remark. The above result is not valid when W depends on x.

Proof. Let v ∈ C1(Ω; IRn) satisfy v = 0 on {a1, ..., aM} ∪ (Ω \ B). Then hs := id + sv

is a diffeomorphism of B for small s. Let u ∈ Ap (u ∈ Apm) have finite energy and minimize

I . Define us := u ◦ gs, where gs := (hs)
−1. Then, by Corollary 6.6, us ∈ Ap (us ∈ Apm) for

sufficiently small s.
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Define F(x) := ∇u(x), Gs(z) := ∇gs(z), and Hs(x) := ∇hs(x). Then if one takes the

gradient, with respect to x, of the identity gs(hs(x)) = x one concludes that Gs(hs(x))Hs(x) =

Id and hence that

Gs(hs(x)) = Hs(x)−1. (5.11)

For future use we note that upon differentiating the identity Hs(x)−1Hs(x) = Id with

respect to s one deduces that

d

ds
Hs(x)−1 = −Hs(x)−1

[
d

ds
Hs(x)

]
Hs(x)−1,

and therefore, since hs = id + sv,

d

ds
Hs(x)−1

∣∣∣∣
s=0

= −∇v. (5.12)

Now, by (5.11) and the change of variables formula for diffeomorphisms,
∫

B
W (∇us(z)) dz =

∫

B
W (F(gs(z))Gs(z)) det Gs(z) det Hs(gs(z)) dz

=

∫

B
W (F(x)Hs(x)−1) det Hs(x) dx

and consequently, with the aid of (5.8), one can use the Lebesgue dominated convergence

theorem to show that (see [4], [6], and [14])

d

ds

∣∣∣∣
s=0

∫

B
W (∇us(z)) dz =

d

ds

∣∣∣∣
s=0

∫

B
W (F(x)Hs(x)−1) det Hs(x) dx

=

∫

B

d

ds

∣∣∣∣
s=0

[
W (F(x)Hs(x)−1) det Hs(x)

]
dx. (5.13)

We note that
d

ds
det Hs(x) = (adj Hs(x)) · d

ds
Hs(x)

and hence, since hs = id + sv,

d

ds

∣∣∣∣
s=0

det Hs(x) = Id · ∇v. (5.14)

Thus, by the product rule, (5.12), and (5.14),

d

ds

∣∣∣∣
s=0

[
W (F(x)Hs(x)−1) det Hs(x)

]
=

[
W (∇u)Id− (∇u)T

dW

dF
(∇u)

]
· ∇v,

which together with (5.13) yields

d

ds

∣∣∣∣
s=0

∫

B
W (∇us(z)) dz =

∫

B
[W (∇u)Id− (∇u)TS(∇u)] · ∇v dx.
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In view of Theorem 6.5 the additional energy due to cavitation is invariant under composition

on the right with a diffeomorphism. Thus, since u minimizes I in Ap (or Apm) we conclude

that (5.9) is satisfied. Finally, if u is C2 away from the cavitation points a standard argument

yields (5.10). 2

6. Invariance under Composition by Diffeomorphisms

Let B ⊂ IRn and suppose that g : B → IRn is an orientation preserving diffeomorphism

of B. Then one can view either B or g(B) as the reference configuration for the body.

Any restrictions that one imposes on deformations, such as u ∈ W 1,p, det∇u > 0, a.e.,

or condition (INV); or any restrictions that one imposes on the constitutive relation, such

as polyconvexity, should not depend on this arbitrary choice of reference configuration. In

this section we will show that our class of admissible deformations is invariant under such a

change in reference configuration. We will also show that if after deforming the body by an

admissible deformation u one further deforms the body by using a diffeomorphism g of IRn

then the composition g ◦ u is also admissible. We first consider the invariance of our class

of deformations under composition on the left by a diffeomorphism.

Lemma 6.1 Let g : IRn → IRn be a diffeomorphism that satisfies det∇g > 0 on IRn.

Suppose that u ∈ W 1,p(Ω; IRn), with p > n − 1, satisfies det∇u > 0 a.e. If u∗ satisfies

condition (INV) then so does g ◦ u∗. Moreover, for every b ∈ Ω,

g (imT (u∗, B(b, r))) = imT (g ◦ u∗, B(b, r)) (6.1)

for a.e. every r ∈ (0, rb).

Proof. As usual we will write u for u∗. Let b ∈ Ω and r ∈ (0, rb) be such that u|∂B(b,r)

is continuous and (i) and (ii) of condition (INV) are satisfied. We first consider (i) of (INV).

Let N ⊂ B(b, r) be a Lebesgue null set such that

u(x) ∈ imT (u, B(b, r))∪ u(∂B(b, r)) for every x ∈ B(b, r)\N.

Fix x ∈ B(b, r)\N . If u(x) ∈ u(∂B(b, r)) then

g(u(x)) ∈ g (u(∂B(b, r))) . (6.2)

Otherwise, u(x) ∈ imT (u, B(b, r)) and hence by the definition of the topological image

deg(u, ∂B(b, r),u(x)) 6= 0. Thus, by the multiplicative property of degree (Proposition 2.1(ii))

deg(u, ∂B(b, r), g(u(x))) 6= 0 and consequently, by the definition of the topological image,

g(u(x)) ∈ imT (g ◦ u, B(b, r)). (6.3)
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Therefore, by (6.2) and (6.3),

g(u(x)) ∈ imT (g ◦ u, B(b, r))∪ (g ◦ u)(∂B(b, r)) for every x ∈ B(b, r)\N,

which shows that g ◦ u satisfies (i) of (INV). The proof of (ii) of (INV) is similar.

We now consider (6.1). By the multiplicative property of degree, Proposition 2.1(ii),

deg(g ◦ u, ∂B(b, r), g(y)) = deg(u, ∂B(b, r),y)

for every y ∈ IRn\u(∂B(b, r)). Thus the definition of the topological image yields

g(y) ∈ imT (g ◦ u, B(b, r))⇐⇒ y ∈ imT (u, B(b, r)).

Equation (6.1) now follows. 2

Lemma 6.2 Let g and u satisfy the hypotheses of Lemma 6.1. Suppose, in addition, that

det∇g ∈ L∞(IRn). Then

(Det∇(g ◦ u))(A) ≤ || det∇g||∞(Det∇u)(A), (6.4)

for every A ⊂ Ω and hence the Radon measure Det∇(g ◦ u) is absolutely continuous with

respect to Det∇u.

Proof. As usual we will write u for u∗. Fix b ∈ Ω. Then by Lemma 6.1 and Proposi-

tion 2.9 we have that for L1 a.e. r ∈ (0, rb)

(Det∇u)(B(b, r)) = Ln(imT (u, B(b, r))) (6.5)

and

(Det∇(g ◦ u))(B(b, r)) = Ln(imT (g ◦ u, B(b, r))).

Thus, in view of (6.1),

(Det∇(g ◦ u))(B(b, r)) = Ln (g (imT (u, B(b, r)))) . (6.6)

However, by the change of variables formula for diffeomorphisms (see Proposition 2.7 and

the remark that follows it), for any Lebesgue measurable set A ⊂ Ω,

Ln(g(A)) =

∫

A
det∇g(x) dx≤ || det∇g||∞Ln(A). (6.7)

Therefore, if we take A = B(b, r) in (6.7) we find, with the aid of (6.5) and (6.6), that

(Det∇(g ◦ u))(B(b, r)) ≤ || det∇g||∞(Det∇u)(B(b, r)).

A standard result on Radon measures (see, e.g., Lemma 1(i) in section 1.6.1 in [10]) then

yields (6.4). 2
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Theorem 6.3 Let g : IRn → IRn be a diffeomorphism that satisfies det∇g ∈ L∞(IRn) and

det∇g > 0 on IRn. Suppose that

u ∈ Def p(Ω, a1, ..., aM).

Then

g ◦ u ∈ Def p(Ω, a1, ..., aM).

Proof. Let u ∈ Def p(Ω, a1, ..., aM) so that u∗ satisfies condition (INV), det∇u > 0 a.e.,

and

Det∇u = (det∇u)Ln +
M∑

i=1

αiδai . (6.8)

Let g : IRn → IRn be a diffeomorphism that satisfies det∇g ∈ L∞(IRn) and det∇g >

0 on IRn. Then, by Lemma 6.1, g ◦ u∗ satisfies condition (INV). Since det∇(g ◦ u) =

(det∇g)(det∇u) it is clear that det∇(g ◦ u) > 0 a.e. Thus the desired result will follow

once we show that there exist βi ≥ 0 such that

Det∇(g ◦ u) = (det∇(g ◦ u))Ln +
M∑

i=1

βiδai . (6.9)

By Proposition 2.9 there is a Radon measure m, which is singular with respect to

Lebesgue measure, such that

Det∇(g ◦ u) = (det∇(g ◦ u))Ln + m. (6.10)

Let N ⊂ Ω be a Lebesgue null set. Define N− := N\{a1, ..., aM}. Then, by (6.8), N−

is a Det∇u null set and hence, by Lemma 6.2, N− is a Det∇(g ◦ u) null set. Therefore,

m(N\{a1, ..., aM}) = 0 for every Lebesgue null set N . Since m is singular with respect to

Lebesgue measure it follows that there exist βi ≥ 0 such that

m =
M∑

i=1

βiδai ,

which together with (6.10) yields (6.9). 2

Corollary 6.4 Let u ∈ Ap. Suppose that v ∈ C1(IRn; IRn) satisfies v = 0 on IRn\d(B).

Define

gs := id + sv and us := gs ◦ u.

Then, for all sufficiently small s,

us ∈ Ap.
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Remark. A similar result is valid for u ∈ Apm.

Proof. Let v ∈ C1(IRn; IRn) satisfy v = 0 on IRn\d(B). Then it follows that (see, e.g.,

Section 5.5 in [8]), for sufficiently small s, the mapping gs := id + sv is a diffeomorphism of

IRn, det∇gs ∈ L∞(IRn), and det∇gs > 0 on IRn.

Let u ∈ Ap and define us := gs◦u. Then ue ∈ Def p(Ω, a1, ..., aM) and we may therefore

apply Theorem 6.3 to conclude

(ue)s := gs ◦ ue ∈ Def p(Ω, a1, ..., aM).

Next, we note that v = 0 on d(Ω\B) = d(Ω)\d(B) and consequently (ue)s(x) = id(ue(x)) =

d(x) for x ∈ Ω\B. Therefore, (us)
e = (ue)s ∈ Def p(Ω, a1, ..., aM) and u− d ∈ W 1,p

0 (B; IRn),

which completes the proof. 2

We now consider the invariance of the class of deformations under composition on the

right by a diffeomorphism.

Theorem 6.5 Let g : Ω→ Ω be a diffeomorphism that satisfies det∇g > 0 on Ω. Suppose

that

u ∈ Def p(Ω, a1, ..., aM)

with

Det∇u = (det∇u)Ln +
M∑

i=1

αiδai . (6.11)

Then

u ◦ g ∈ Def p(Ω, g−1(a1), ..., g−1(aM ))

and

Det∇(u ◦ g) = (det∇(u ◦ g))Ln +
M∑

i=1

αiδg−1(ai). (6.12)

Proof. Let u ∈ Def p(Ω, a1, ..., aM) so that u∗ satisfies condition (INV), det∇u > 0

a.e., and (6.11) is satisfied. Let g : Ω → Ω be a diffeomorphism that satisfies det∇g > 0

on Ω. Then, by Theorem 9.1 in [23], u∗ ◦ g satisfies condition (INV). Since det∇(u ◦ g) =

(det∇u)(det∇g) it is clear that det∇(u ◦ g) > 0 a.e. Thus the desired result will follow

once we show that (6.12) is satisfied.
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Let φ ∈ C1
0(Ω). Then, by the definition of the distributional Jacobian, the change of

variables formula for diffeomorphisms (see Proposition 2.7 and the remark that follows it),

and the fact that g(Ω) = Ω,

(Det∇(u ◦ g))(φ) = − 1

n

∫

Ω
∇zφ · [adj∇z(u ◦ g)](u ◦ g) dz

= − 1

n

∫

Ω
GT∇x(φ ◦ g−1)(g(z)) · [adj G][adj∇xu(g(z))]u(g(z)) dz

= − 1

n

∫

Ω
∇x(φ ◦ g−1)(g(z)) · [adj∇xu(g(z))]u(g(z)) detG dz

= − 1

n

∫

Ω
∇(φ ◦ g−1)(x) · [adj∇u(x)]u(x) dx

= (Det∇u)(φ ◦ g−1),

where G := ∇g(z) and we have made use of the identity G[adj G] = (det G)Id. Conse-

quently,

(Det∇(u ◦ g))(A) = (Det∇u)(g−1(A)),

for every measurable set A, which together with (6.11) yields

(Det∇(u ◦ g))(A) =

∫

g−1(A)
det∇u dx + (

M∑

i=1

αiδg−1(ai))(A).

Equation (6.12) then follows from the change of variables formula. 2

Corollary 6.6 Let u ∈ Ap (u ∈ Apm). Suppose that v ∈ C1(Ω; IRn) satisfies v = 0 on

{a1, ..., aM} ∪ (Ω \ B). Define

hs := id + sv and us := u ◦ (hs)
−1.

Then, for all sufficiently small s,

us ∈ Ap (us ∈ Apm).

Proof. Let v ∈ C1(Ω; IRn) satisfy v = 0 on {a1, ..., aM} ∪ (Ω \ B). Then it follows

that (see, e.g., Section 5.5 in [8]), for sufficiently small s, the mapping hs := id + sv is

a diffeomorphism, det∇hs > 0 on Ω, hs(Ω) = Ω, and hs(x) = x for x ∈ Ω\B. Clearly,

hs(ai) = ai.

Let u ∈ Ap and define us := u ◦ (hs)
−1. Then ue ∈ Def p(Ω, a1, ..., aM) and we may

therefore apply Theorem 6.5 to conclude

(ue)s := ue ◦ (hs)
−1 ∈ Def p(Ω, a1, ..., aM).

Next, we note that v = 0 on Ω\B and hence (ue)s(x) = ue(id(x)) = d(x) for x ∈ Ω\B.

Therefore, (us)
e = (ue)s ∈ Def p(Ω, a1, ..., aM) and u − d ∈ W 1,p

0 (B; IRn), which completes

the proof when u ∈ Ap. The proof for u ∈ Apm is similar. 2



30 J. Sivaloganathan and S. J. Spector

A. Appendix

The following result concerns the weak convergence of a sequence of products. Since

we could not find it in a standard reference, we include a proof for the convenience of the

reader.

Lemma A.1 Let ψj ∈ L∞(Ω) and θj ∈ L1(Ω) satisfy

ψj → ψ pointwise a.e.,

θj ⇀ θ in L1(Ω),

where ||ψj||∞ ≤ K for some K > 0, θ ∈ L1(Ω), and ψ ∈ L∞(Ω). Then

θjψj ⇀ θψ in L1(Ω).

Proof. Fix ϕ ∈ L∞(Ω). Without loss of generality let K = ||ψ||∞ = ||ϕ||∞. With a view

toward applying Egoroff’s theorem let E ⊂ Ω be any measurable set that satisfies ψj → ψ

uniformly on Ω\E. Then
∫

Ω
ϕ(θjψj − θψ) dx =

∫

Ω
ϕ(θj − θ)ψ dx +

∫

Ω\E
ϕ(ψj − ψ)θj dx +

∫

E
ϕ(ψj − ψ)θj dx. (A.1)

The first integral in the right-hand side of (A.1) goes to zero, as j → ∞, by the weak

convergence hypothesis. The absolute value of the second integral in the right-hand side of

(A.1) is bounded above by

K sup
x∈Ω\E

|ψj(x)− ψ(x)|
∫

Ω
|θj | dx.

We note that the sequence θj converges weakly in L1(Ω) and hence the L1 norm of θj is

bounded uniformly in j. Thus, this term goes to zero, as j → ∞, since ψj → ψ uniformly

on Ω\E.

The absolute value of the last integral in the right-hand side of (A.1) is bounded above

by

(||ψj||∞ + ||ψ||∞)||ϕ||∞
∫

E
|θj | dx ≤ 2K2

∫

E
|θj | dx. (A.2)

We note that the Dunford-Pettis compactness criterion (see, e.g., Corollary 4.8.11 in [9])

implies that the sequence θj is uniformly integrable, that is, the integrals in the right-hand

side of (A.2) will go to zero, uniformly in j, as the measure of E is made arbitrarily small.

Finally, Egoroff’s theorem yields E with arbitrarily small measure. 2
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