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Introduction 

In  this paper  we prove  the uniqueness  o f  cer ta in  regular  and  s ingular  rad ia l  
so lu t ions  to the  equi l ibr ium equat ions  o f  non l inear  elast ici ty for  an i so t rop ic  
mater ia l .  

Cons ide r  a homogeneous  i so t ropic  elastic b o d y  which in its reference s tate  
occupies  the open  subset  O Q R 3. We s tudy the two cases when -(2 is a ball  

n = ( x ~ r t 3 ;  IXl < 1} 
o r  a spherical  shell 

B ' =  ( x c R 3 ; ~  < Ix l  < 1} 

o f  any inner  rad ius  e E (0, 1). A deformation o f  the body  is a funct ion  x : ~ -~- R 3. 
In this p a p e r  we are concerned  with radial deformat ions ,  for  which x has the  fo rm 

r(R) 
x(X) = --h-- x ,  (1) 
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where R = [ X[. We specify the displacements on the outer surface of the ball 
and shell by requiring that 

r(1) = 2 > 0. (2) 

BALL (1982) showed that for an isotropic material the study of weak solutions of 
the form (1) to the equilibrium equations of nonlinear elasticity under zero body 
force is equivalent to the study of solutions to the radial equilibrium equation 

( (  r(.)r (, r(.)r ) 
R 2 ~ ,  r ' (R),  K ) ----2Rq)2 r (R), -~ , K )- (3) 

d R  R ' ' ' 

where q),i denotes differentiation of q~ with respect to its ith argument, ~b being 

the stored energy function of the material. BALL exhibited a class of solutions to 
(3) for B that satisfy 

r(0) > 0. (4) 

Such solutions describe the formation of a hole at the centre of the deformed 
ball B. BALL called this phenomenon cavitation. We follow his terminology and 
say that a solution of  r of (3) for B is a eavitating equilibrium solution if it satis- 
fies (4) together with the natural boundary condition that the cavity surface is 
stress free. 

Our main results are proofs of uniqueness of regular and cavitating equilibria 
of  the form (1) that satisfy (2) (Theorems 2.4, 2.5 and 3.8). The regular deforma- 
tions correspond to equilibrium configurations for shells B ~ of any cavity size 
under either the displacement or mixed displacement-traction boundary value 
problems. To our knowledge these are the first such results for shells. Our proof 
of uniqueness of cavitating equilibria is a natural one under mild hypotheses on 
the stored energy function; it generalises a result of BALL (1982), who used an 
ad  hoe Gronwall inequality together with very restrictive conditions. Under some- 
what less restrictive hypotheses than BALL'S, STUART (1984) used an elegant 
shooting argument showing that the stress on the cavity surface is a monotone 
function of the derivative on the boundary. Thus in STtrART'S approach uniqueness 
is an immediate consequence of his proof of existence. 

As an application of our uniqueness results in section 5 we study the asympto- 
tic behaviour of solutions to the mixed problem for B" in the limit e ~ 0 and we 
determine the sense in which equilibrium solutions for B ~ approximate those for B 
when e is small. A necessary prerequisite in this analysis is to prove the existence 
of the relevant equilibria as is done in section 4. 

Equilibrium solutions to the mixed displacement-traction boundary value 
problem for a shell B E correspond to solutions r~ of (3) that satisfy r~(1)= ;t 
and generate zero traction on the inner surface. A change of variables gives (3) 
an autonomous form. Thus any such solution r, generates an orbit in phase space 
with the property that it intersects two given curves. The idea of our proof is 
to parametrise the set of all orbits with this property and to show that an appro- 
priate 'time map' is a strictly monotone function of the parameter. This enables 
us to prove uniqueness of r, in Theorem 2.4. A different choice of time map yields 
a proof of uniqueness of solutions to the pure displacement boundary value prob- 
lem for B" (see Theorem 2.5). 
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It is readily observed that the uniqueness proofs of  Section 2 for shells rely 
on the fact that two distinct orbits in phase space cannot cross and thus one 
solution curve either lies wholly below or above any other. Motivated by this 
consideration we make a change of  variables in the energy functional to an integral 
over phase plane variables of  a c o n v e x  integrand. This procedure leads to a simple 
proof  of  uniqueness of  cavitating equilibria in Theorem 3.8. 

In Section 4 we examine the existence of  equilibria for B and B" by using the 
direct method of  the calculus of  variations to show that an absolute minimiser 
of  the energy exists in the class of  radial deformations. This method of  p roof  
enables us to show that the deformed cavity size of  a shell B ~ is a monotone 
function of  the boundary displacement (Proposition 4.10). 

In Proposition 4.7 we demonstrate the existence of  cavitating minimisers 
of  the energy for B under assumptions on the growth of  ;t-3~(;t, ;t, ;t) for large ;t. 
Theorem 1.11 gives a characterisation of  the phenomenon of  cavitation. The 
combination of  Theorem 1.11 with Proposition 4.7 yields the existence of  a critical 
boundary displacement ;tr with the property that if the boundary displacement 
;t ~ ;t c, then a homogeneous deformation is the unique minimiser of  the energy, 
and if ;t > ;to, then a deformation with a cavity is the unique energy minimiser. 
These results extend and generalise work of  BALL (1982) and enable us in Section 5 
to examine the asymptotic behaviour of  the (r,) as e--~ 0. 

Intuitively we should expect {r~} to approximate equilibrium solutions to the 
displacement boundary value problem for the solid ball B as e ~ 0. In Propo- 
sition 5.3 we show that r, is a solution to the mixed problem for B e if and only if 
it is the global minimiser of  the energy. We combine this proposition with energy 
arguments to prove the following convergence results: 

I f  ;t ~ ;t~, then Sup I r , ( R )  - -  ;tR[ ~ 0 as e--~ 0. (5) 
RE[~,I] 

I f  ;t > ;to, then Sup Ire(R) --  rc(R) l ~ 0 as e ~ 0, (6) 
R~[,,I] 

where r e ( R )  is a cavitating equilibrium solution for B. 
We remark finally that exactly analogous results hold for two-dimensional 

problems in elasticity. However for ease of  presentation we only consider the case 
of  dimension three. 

Constitutive Assumptions 

Throughout  this paper unless otherwise stated we assume that r is in C 3 
on its domain of  definition and that ~,i(1, 1, I,) = 0 so that the undeformed con- 
figuration is a natural state. (For results relating differentiability properties of  
r to those of  W (where W is the corresponding stored energy function that satis- 
fies (0.6)) see BALL (1984)). In the course of  this paper we refer to a number of  
constitutive hypotheses on the stored energy function ~ ;  for ease of  reference these 
are listed together below. 

(HI)  ~,11(Vl, v2, v3) > 0. 
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This is known as  the tension-extension inequality. For an interpretation Of (H1) 
see TRIJESDELL & NOLL (1965): 

(H2) \, ~ -  vy / -  

We say that q~ satisfies H2 + if strict inequality holds. The set of inequalities H2 + 
are known as the Baker-Ericksen inequalities (see TRUESDELL 8~; NOLL for an 
interpretation). 

(H3) Either 

o r  

(H4) Either 

o r  

Lira [~"(V~Vz' v2)) 

Ot < P 2  

Lim (tb(vl, v2, v2) -- vl~.l(vl, v2, v2)) = -- 00. 
Vl <~ V2 

Lira ( q~'I(pE -v2, v2)~ 
. . . . . .  0 \ v~ / = - o 0  
PI>O2 

Lim (~(vl, v2, v2) - -  Ul~i~ 1 ( u p  v2 , / 32 )  ) : Av cx3 .  
vi ~v2 --:,-0 
Vl ~ 2  

/ to/ (H5) ~b,1(v, a, a) -+ as v -+ for fixed a E (0, cx 0. 

(H6) det (Hess ~)l~i=l ~rdet  (q~,0( 1, 1, 1)) > 0. 

(/),i - -  ~ , j  
(H7) ~ + ~,0 ~ 0 for vi =t = vj. 

P i - -  1)j 

( H 8 )  q~,i(v, v, v) = 0 for all i if and only if v = 1. 

This is the assumption that ~b has only one natural state. 

V 2 

(H9) (v 3 _ 1) 2 ~(v) E La(6, cx~) for 6 E (1, ~ )  

(H10) There exist constants k, M > 0 such that 

~(Z, 2, 2) 
M ~  2-------5~ for 2 ~ k.  

(H1 I) ~(vl,  v2, Va) > ~(1, 1, I) if v/:4= 1 for some /. 

where 
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(El )  

(i) ~0 c c( (o ,  ~ ) ) ,  

r(v) 

3 

qb(vl, v2, v3) ~ ~ ~p(vi) where 
i = l  

~ : (0, e~) -+  (0, cx~) satisfies 

(ii) -+  oo as v --~ cx~, 
V 

(iii) ~0(v) ~ o0 as v ~ 0. 

(E2) There  exist constants  M, e0 E (0, oo) such tha t  

v,I < M(~(va, v2, v3)-- 1) if Io~, - 11-< to, i =  2 , 3 .  

Notation. We write M 3 • for the space of  all 3 • 3 matr ices over  R.  We set 

M~_ • ----- {FE M3• det F~> 0} 

and  denote  by SO(3) the special o r thogona l  group on R 3. 
I f  E Q R 3 is measurable ,  n > 1, 1 ~ p ~ q- oo, then we denote  by LP(E; 1%") 

the Banach space of  equivalence classes o f  Lebesgue measurable  funct ions 
u : E---~ 1%" with n o r m  II.llp defined by 

u(x) I p dx -y 1 <= p < -k 
II u lip = 

EssSuplu(x ) l  p =  
x~E 

(see ADAMS (1975)). We write LP(E)----LP(E; R). 
The  Sobolev space WJ'P(E; It") is the space of  equivalence classes o f  Lebesgue 

measurable  functions u satisfying u, 7u E LP(E; It") where 7 u  is the dis tr ibut ional  
derivative of  u. WI"P(E; R") then becomes a Banach  space under  the no rm 

llulh,p = [lulp + ilVu',lp. 

(see ADAMS (1975)). We write W I ' P ( E ) :  WI'P(E; 1%). 

O. The Stored Energy Function and Weak Equilibrium Solutions 

Consider  a homogeneous  hyperelast ic  body  which in a reference configurat ion 
occupies the bounded,  open,  connected set .(-2 Q R 3. In  a typical  de fo rmat ion  
x �9 -(2 --~ 1~, 3 a particle with posi t ion vector  X in .Q moves to a poin t  having posi-  
t ion vector  x(X). 

~r3 • 3 _> 1%+ is the stored energy funct ion of  the material ,  then the total  I f  W: . . .+  
s tored energy E associated with the de format ion  x is given by 

E(x)  = f W(Vx(X) dX. (0.1) 
s 

We say tha t  x is an admissible deformation if it satisfies the local invertibility con-  
di t ion 

det  (7x(X))  > 0 for  all X E 12. (0.2) 
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To account for the idea that large energies must accompany large extensions or 
compressions we require that 

W(F)-+ oo as det F--> oo or 0. (0.3) 

We assume that W is frame indifferent, i.e., that 

W(QF) = W(F) for all FE  M~_ • Q E SO(3), (0.4) 

and we assume that W is isotropic i.e., that W in addition satisfies 

W(FQ) = W(F) for all FE M~_ • Q E SO(3). (0.5) 

It can be shown that (0.4) and (0.5) hold if and only if there exists a symmetric 
�9 R 3 ---> R satisfying function r ++ 

W(F) : ~(vl, v2, vs) for all FE M~_ • (0.6) 

where 
R~_+ = {(cl, c2, c3)ER3; el > 0, i ----- 1, 2, 3} (0.7) 

and where the vi, known as the principal stretches, are the eigenvalues of  (FrF) �89 
(for a proof  see TRU~SDELL & NOLL (1965)). 

By the definition of  hyperelasticity the Piola-Kirchhoff stress tensor TR : M3+ • 3 
_+ M 3 • 3 is given by 

T , ( F ) = - ~ f f - ( F ) =  \ eVj / "  (0.8) 

I f  W is isotropic and F = diag (vl, v2, v3) with v i > 0 for all i, then 

TR(F) = diag (~bl, q~,2, ~b,3) (0.9) 

where q~,t = ~,i(Vl, V2, V3). 
The Cauchy stress tensor T(F) is related to Ts(F) through the formula 

T(F) = (det F) -~ Tn(F) F r. (0.10) 

The tensors TR and T measure the force on the body per unit area in the un- 
deformed and deformed configurations respectively. 

For  an elastic body with stored energy function W the equilibrium equations 
under zero body force are given by 

OX ~ (Vx(X)) ---- 0 for i = 1, 2, 3, (0.11) 

for  all X = (J~, X 2, X 3) E s These are the Euler-Lagrange equations for the 
functional E (as given by (0.1)). 

The displacement boundary value problem in elasticity consists in finding a 
solution x to (0.1 I) taking prescribed values on the boundary 8s We now restrict 
attention to the case where 

s : B d ~ { X 6 R 3 ;  IX I < 1} (0.12) 
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is the open unit ball. We consider only radial deformations; i.e., deformations 
x of  the form 

r ( R )  _ 
x(X) = T x ,  (0.13) 

(0.14) 
satisfying 

x(X) = 2X for X E 8 0  and for some 2 E (0, co), 

where R = IX I. 
The following proposition, taken from BALL (1982, Lemma 4.1), relates the 

properties of  x and r as defined by (0.13). 

Proposition 0.1. Let 1 ~ p < + oo and let x be given by (0.13). Then x E WI"P(B; R 3) 
i f  and only i f  r(.) is absolutely continuous on compact subintervals o f  (0, 1) and 

0 

The weak derivatives of  x are then given by 

Vx(X) = ~ 1 + R---- T -  r'(R) -- , (0.16) 

where 1 denotes the identity tensor. 

Following BALL (1982) we say that xE WI'I(B;B 3) is a weak equilibrium 
solution of the displacement boundary value problem if 

OW V det ( V x ( X ) ) > 0  for a.e. XE B,-~--ff(x(')) E L I ( B ; R  9) 

/ a w ( v x )  
~Pi~ dX = 0 for all ~p E C~~ R3).  (0.17) 

and 

BALL reduced the analysis of weak equilibrium solutions of the form (0.13) 
to the study of solutions of a particular ordinary differential equation by means 
of  the following result. (Cf. BALL (1982, Theorem 4.2 and Proposition 6.1).) 

Theorem0.2. Let # E  cm(R3+), m => 1. Then x defined by (0.13) is a weak 
equilibrium solution i f  and only i f  

r'(R) > 0 for a.e. R E (0, 1), 

r(R) r ) , R2#, 2 r'(R) , ELl(0,  1), R2tj~i r ' ( R ) ,  R ' R ' 

R2~l(r,(R),r(_~) r ( ~ ) ) =  2 / ~ . 2 ( r , ( q ) , r ~ )  r(~)\ , �9 , , ~ ) ao  + const. 

for  a.e. 
RE (0, 1). (0.18) 
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The vi are given almost everywhere by 

v ,  - -  r ' ( R ) ,  v ~  = v~  - 
r(R) 

R 
(0.19) 

Moreover, i f  q~ satisfies (HI) and (H5), then rE cm((o, 1]), r'(R) > 0 for every 
R E (0, 1 ] and r satisfies the radial equilibrium equation 

for every R E (0, 1]. 

Notice that the homogeneous deformation 

r(R) = ~R (0.21) 

is always a solution of (0.20) and (0.14). 
Equations (0.6), (0.1) and (0.19) reduce the energy corresponding to the radial 

deformation (0.13) to the form 

i ( E(x) = 4:H(r) def4~ R2~ b r'(R), dR. 
o R ' 

Notice that (0.20) is the Euler-Lagrange equation for (0.22). 
To demonstrate the existence of non-trivial solutions of (0.20) corresponding 

to cavitation, BALL used a variational technique, showing that the functional I 
attains its infimum on a set of admissible functions Az where 

Aa : {rE W'"(0, 1 ) ; r ( 1 ) : A , r ' ( R ) > O  a.e RE(0,  l),r(0) ~ 0}. (0.23) 

Our next proposition is a modified version of Theorem 7.1 of BALL (1982); 
for convenience a proof is given in the Appendix. 

Proposition 0.3. Let q~E cm(R3++) for m ~ 1 and let q~ satisfy (H1), (HS) and 
(El). I f  r is an absolute minimiser of  I on Az then 

(i) r'(R) > 0 for R E (0, 1], (0.24) 

(ii) rE cm((o, 1]) and satisfies (0.20) for every RE (0, 1]. (0.25) 

Moreover i f  r(O) : Lim r(R) > 0 then 
R-+O 

Lim T(r(R)) : 0 (0.26) 
R - + O  

where 

T(r(R)) = k r ~ ]  q~,, r'(R), R ' 

is the radial component of  the Cauchy stress. 

From (0.13) we see that there is a cavity at the centre of the deformed ball 
if and only if r(0) ~ 0, and that (0.26) is the natural boundary condition that the 
cavity surface be stress-free. 
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BALL showed that for sufficiently large values of  the boundary displacement )l 
the minimiser r of  I on Ax satisfies r(0) > 0. By Proposition 0.3 r is a solution of  
the radial equilibrium equation (0.20) and by theorem 0.2 x defined by (0.13) 
corresponds to a weak solution of  the three dimensional equilibrium equations. 

In the remainder of  this paper when referring to a cavitating equilibrium solu- 
tion r we mean a function rE C2((0, 1]) with r(0) > 0 that satisfies (0.20) on (0, 1] 
and satisfies 

(i) r'(R) > 0 for R E (0, 1], (0.28) 

(ii) Lim ~ T(r(R)) -- O. (0.29) 

1. Properties of Radial Equilibrium Solutions 

In this section we gather properties of  solutions r(R) to the radial equilibrium 
equation (0.20). These results will be central to the arguments in the rest of  this 
paper. 

Proposition 1.1. Let q~ satisfy (HI)  and let rE C2((0, 1]) be a solution of  (0.20) 
satisfying (0.28). I f  there is an Ro E (0, 1] and a 2o E (0, ~ )  such that 

r(Ro) __ r'(Ro) ~f2o, 
Ro 

then r(R) -~ 2oR for R E (0, 1 ]. 

Proof. Equation (0.20) is of  the form r" ~ f (R ,  r, r') where f is in C 1. Standard 
results for ordinary differential equations then imply that the solution r(R) to the 
initial value problem with data r (Ro)= 2oRo, r'(Ro) = ;to is unique. Hence 
r(R) ~- ;toR. 

Corollary 1.2. I f  rE C2((0, 1]) is a solution o f  (0.20) for which (0.28)holds and 
for which the function r(R)/R is not constant (on any nonempty open interval), 
then r(R)/R is a strictly monotone function on (0, 1 ]. In particular, i f  r(O) = Lim r(R) 

R--~O 

r(R) 
> 0 ,  then r ' ( R ) < - - ~  for RE(O,I] .  

Proof. The first part of  the corollary is an easy consequence of Proposition 1.1 and 
the formula 

The second part then follows immediately from the observation that if r(O) > O, 
then r ( R ) / R ~  as R ~ O .  

We now give conditions under which the radial Cauchy stress T(r(R)) is 
; r(R) 

monotone on any interval where r ' ( R ) ~  ~ for any solution rE C2((0, 1]) 
of  (0.20). 
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Proposition 1.3. I f~  satisfies (HI), (H2) and if rE C2((0, 1]) 
(0.28), then 

dT(r(R))(r'(R)--r(~RR))<O dR = for any RC (0, 1]. 

Proof. By (0.20) and (0.27), 

dT(r(R)) 
dR 

where 

2R2 r'(R) q~:(R)) ra(R) (r(~ (b,2(R) - 

satisfies (0.20) and 

(1.1) 

(1.2) 

For future reference we introduce the related notation 

n(x, dof Y) = ~(X, Y, Y) -k (Y -- X) ~,I(X, Y, Y). (1.7) 

It was noted by BALL (1982) that (1.6) is the radial version of the following three- 
dimensional conservation law 

~X ~,0( X~'W- '~;~,-s (X~:x: -- xJ)) = 3W, (1.8) 

( r(R) r(___~)) (1.3) �9 ,i(R) = ~,i r'(R), R '  

The result then follows by (H2) and (0.19). (We use the notation (1.3) and the 
analogously defined expression q~(R) when the arguments of q~ and its derivatives 
are clear.) 

We define the inverse Cauchy stress T(r(R)) by 

[ , _  r(R) r(~)) [ ,  ~ r(R)r(__~)) (1.4) 
~(r (R) )  = ~ i r (~), ~- ,  - r'(R) ~ , ,  I r ( m ,  ~ ,  

We refer to BALL (1982) for an interpretation of 7 ~ and the proof of the following 
analogue of proposition 1.3. 

Proposition 1.4. I f  q) satisfies (H1), (H2) and if r E Cz((0, 1]) is a solution of(0.20) 
satisfying (0.28), then 

dT(r(R)) ( r ' (R ) - -~ - )  = f o r a n y R E ( 0 , 1 ] .  

Notice that Propositions 1.1, 1.3 and 1.4 show that T and I" are Lyapunov func- 
tions for (0.20). A third related Lyapunov function is given by the following 
identity 

d [ ,  ~. r(R) ~__~ {R 3 [~ (r,(R),r(_~), r(~)) -k (~-~--r'(R)) qb,, tr (~), -~ , r~_).)] } 

[ ,  ~, r(R) = 3R2q~ tr (t~)' -R , r~)_) . (1.6) 
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(see GREEN (1973)). Equation (1.8) was recently used by KNOPS & STUART (1984) 
to prove the uniqueness of smooth equilibrium solutions to the displacement 
boundary value problem of elasticity for star-shaped domains under assump- 
tions of quasiconvexity. 

Propos i t ion  1.5. If~b satisfies (H1), (H7) and i f  r E C2((0, 1]) is a solution of(0.20) 
r(R) 

satisfying r'(R) 4:--~-- for  RE(0,  1], then 

r"(R) [r'(R) -- r(R)/R] <: 0 for R E (0, 1]. 

The proof is an immediate consequence of (H7) and (0.20). 

Propos i t ion  1.6. Let ~ satisfy (HI), (H2) and(H5). I f  rE C2((0,  1]) is a cavitating 
equilibrium solution, then r is extendable to r E C2((0, oo)) as a solution of  (0.20) 
and satisfies 

r(R) 
(a) --R-- > r'(R) > 0 (1 .9)  

for  R E (0, oo), 

(b) Lim r(R) R-~oo ~ = n-~ooLim r'(R) = 2r for some 2r E [1, oo). (I.10) 

Proof. By the continuation principle (see HARTMAN (1973), e.g.) r may be extended 
to a maximal interval of existence (0, 6), 6 > 1, as a solution of (0.20) satisfying 
(1.9) on (0, 6). We suppose for a contradiction that 6 is finite; then one of the fol- 
lowing cases must occur: 

~.  r(R) 
(i) • l m  ~ = o o ,  

R-~o R 

~. r(R) 
(ii) ~lm ~ = 0, 

(iii) Lim r'(R) = oo, 
R-+d 

(iv) Lim r'(R) = O. 

It follow from Corollary 1.2 that (i) cannot occur and that (iii) cannot occur be- 
r(Ro) 

cause (iii) implies (i). If(ii) holds, then there is an Ro E (0, 6) satisfying Ro = 1 

as Lim r(R) ........ oo. Since r satisfies (1.9) on (0, 6) we can apply Proposition 1.3 
R~O R 

(which is valid for R E (0, 6)) to conclude that T(r(R)) is non-decreasing and 
hence that 

0 = T(r(O)) = Lim T(r(R)) <-- T(r(Ro)) = #a(r'(Ro), 1, 1) < # ~(1, 1, 1) = 0, 
R--->O 

(1.11) 
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a contradiction. (Equality holds in the last term in (1.1 I) since the reference con- 
figuration is a natural state.) Now suppose that (iv) holds. Since (ii) is false it 
then follows that there is a b E (0, co) such that r(R)/R>'.~ b as R ~ & Assump- 
tion (H5) gives the existence of a E (0, oo) satisfying 

~,l(a, b, b) < 0. (1.12) 

Then (HI) implies that for R sufficiently close to 

R 2 R 2 
T(r(R)) = (r--~) q~'' (r'(R), r(R)R , r(~RR)) < (r--~) ~5., (a, r(R)R , r(~RR)') . (1.13) 

r(R) 
Since ---~----~ b as R--~ ~, (1.12) implies that T(r(R)) is negative for R suffi- 

ciently close t o  6, which contradicts proposition 1.3 as T(r(O)) = O. 
Hence (iv) cannot hold and 6 = co. 
We next prove that (b) of the proposition. 

. .  r(R) 
By (1.9) and Corollary l.z, ~ is decreasing, so there is a 2 c E [0, co) such 

that 

r ( R ) . .  (1.14) R "~ zc as R ~ oo. 

An argument analogous to that used in the negation of case (ii) then implies that 
2c E [1, co). Finally, the monotonicity of T(r(R)) together with the inequality 

(r) T(r(R)) < ~'~ ' R ' < const. 

(which is a consequence of (HI)  and (1.14)) implies that Lim r(r(R))= d for 

some dE [0, co). 
By (H5) there exists an a E (0, co) such that 

1 
~c 2 ~0.1(a, 2c, 2c) = a. 

We assert that 
Lim r'(R) = a. (1.15) 
R---~ oo 

Suppose this were not true. Then there would exist an eo > 0 and a sequence 
R , - +  oo as n --~ co with the property that [ r'(R,) -- a] >= eo for all n. We 
assume without loss of generality that r'(R,) >= a + eo for all n. (An exactly 
analogous argument holds in the case when r'(R,) <~ a -- eo for all n.) it  then 
follows from (HI) that 

[ R. ~2 (a r(R.) r(R.)~ 
T(r(R.)) = \ r(R.) ] R. ] > , ' �9 

Letting n ~ co and using (1.14) and (H1) we then obtain 

1 
d ~ ~ ~.l(a + e0, 2c, 2c) > d, 
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which is a contradiction, proving (1.15). We now suppose for a contradiction that 
(b) does not hold, so that I a - - 2 e l  = 2el > 0. Without loss o f  generality we 
assume that a = 2c -k 2e~. It follows from (1.15) that there exists an N such that 
I r ' ( R ) -  a l < e~ if R E (N, c~) and hence b y  the mean value theorem that 

R R = 1 - -  (O(R)) > 1 - -  ( a - - e ~ ) =  1 - -  (2e-be~) 

for R E ( N , c ~ )  where O(R)E(N,R). This contradicts (1.14)for  large R. 

Remark 1.7. If H2 + holds, then 2 c E (I, cx~) because T(r(R)) is then strictly in- 
creasing. 

Corollary 1.8. The results of  proposition 1.6 hoM i f  (H5) is replaced by (H7). 
Proof. The proof  follows from proposition 1.5, the continuation principle and 
arguments analogous to those used in proposition 1.6 on noting that 

r(S) r(R) 
O < r'(R) ~ r'(S) < --ff- < ~ for S ~ R. 

(See also BALL (1982), p. 601.) 

Proposition 1.9. Let q) satisfy (HI), (H2) and (H3). I f  r E C2((0, 1]) i sa  solution 
r(R) 

of (0.20) satisfying (0.28)with r ' ( R ) ~ - - ~ -  for RE (0, 1], then there is an 

M ~ 0 such that 

0 <  Ir'0 )l-" r'(R) g for RE(0 ,  1]. (1.16) 

Proof. We assume without loss of  generality that ~ satisfies the first condition 
of  (H3); otherwise exactly analogous arguments hold on using the inverse Cauchy 
stress 7 ~ and Proposition 1.4 instead of the radial Cauchy stress T. It follows from 
Proposition 1.3 that T(r(R)) is nowhere decreasing. 

Let o~ = T(r(1)). We assume for a contradiction that (1.16) does not hold 
for any M. This implies the existence of  a sequence {R,}E (0, 1], Rn--~ 0 as n--~ cx~, 

,- rfR,) 
satisfying n < r (R,) < ~ for alln. It then follows from (H3) that T(r(R,))---~oo 

as n--~ eo and so T(r(RN)) > or for some N, contradicting the fact that T is 
nowhere decreasing. 

Remark 1.10. If  ~ satisfies (HI) and (H7), then the above result follows trivially 
from Proposition 1.5. 

The following fundamental theorem embodies some of the central ideas asso- 
ciated with the  phenomenon of cavitation. 

Theorem 1.11. Suppose that ~ satisfies (El), (E2), (HI), (H2+), (H3), (H4), (H5) 
and that there is a cavitating equilibrium solution r c E C2((0, 1]) with re(l) = 2. 
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Then 

(i) r e is unique and extendable to r e E C2((0, c~)) as a solution of  (0.20), 
re(R) 

(ii) Lim = 2r for some 2r E (1, oo), 
R-+oo R 

(iii) /f /~ ~ 2r then ru(R ) ~ #R is the unique global minimiser of  I on A~, 
(where A~ is defined by (0.23)), 

(iv) i f  tz > 2e then the global minimiser ru of  I on A~ exists, is unique and satis- 
fies r~(O) > O. Moreover 

r~,(R)----~re (-~) for RE (0, 1], 

w ere un;q e roo, 

(2r = 2er was defined by BALL (1982) p. 601.) 

Corollary 1.12. The conclusion of  Theorem 1.11 holds with (H3) and (H4) replaced 
by (H7). 

The proof of this theorem and corollary is given at the end of Section 4. The 
theorem also holds with (H2) in place of (H2 +) with the exception that in this 
case 2e E [1, c~). (See Remark 1.7). 

We refer to Section 4 for results concerning the existence of cavitating equilibria. 
The next proposition uses the conservation law (1.6) and will play a central role 
in our analysis. 

Proposition 1.13. Suppose that 4 satisfies (H1) and that re E C2((0, 1]) is a eavitat- 
ing equilibrium solution. Then 

(i) LimR a / 4 [ '  rr ~ )  ( ~  ,) ( ,  rr ~ ) } = 0 ,  (1.17) R~0 t ~rr + - - r e  4,1 re, R ,  

(ii) I(rr = �89 {4(r~(1), re(l), to(l)) + (to(1) - r~(1)) 4~(rj(1), re(I), re(l))). 
(1.18) 

In particular, any eavitating equilibrium solution has finite energy. 

ProoL Equation (1.6) implies that for ~ E (0, I) 
1 

�9 34(T) + 3 f R24(R) dR 
l r  

+ (re(i) -- r~(1)) 4,1(1 ) + T 3 (r~(z) - - ~ )  4.t(T), (1.19) 4(1) 

where the expression 4,i(R) is given by (1.3) with re(R) in place of r(R), and 4(R) 
is analogously defined. The last term on the right-hand side of (1.19) may be written 
a s  

re(z)) r2(z) (.-7~_,/2 (~r3~) - -  4,1(~'). (1.20) 
\rr l 
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It follows from (0.29) that the limit as �9 ~ 0 of (1.20) is zero as rE(R) < 
R 

by Corollary 1.2. Hence the limit as ~ ~ 0 of the right-hand side of  (1.19) exists. 
But the left-hand side of(1.19) is the sum of two positive terms; so by the monotone 
convergence theorem applied to the sequence R2~(R)Z(lln,X) n E • we obtain 

t re 
"R2~  re '  R ' E L I ( O ,  1) .  ( 1 . 2 1 )  

Therefore Lim'r3~('r) exists and by (1.21) this limit is equal to zero. Thus (i) 
"r 0 

follows. Statement (ii) is then a consequence of  (i) and (1.19). 

2. Uniqueness of Solutions to Boundary Value Problems for Shells 

In this section we use phase plane techniques to prove the uniqueness of solu- 
tions to the displacement and mixed displacement/traction boundary value 
problems for shells of internal radius e. The proofs consist in showing that an ap- 
propriate 'time map' is monotone. They rely on the change of variables 

r 
v - -  R ' d =  R, (2.1) 

which gives (0.20) the autonomous form 

d 
~'s (#,l(b + v, v, v)) = 2(qs,2(b + v, v, v) -- q~,l(b + v, v, v, v)), (2.2) 

dv 
where b denotes ~s-s" 

The results of this section motivate a change of variables in the energy functio- 
nal, which is used in Section 3 to prove the uniqueness of cavitating equilibrium 
solutions. 

Recall that the shell B* is defined by 

B e = {XER3; e < IX[ <5 1). (2.3) 

A. The Mixed Problem. We define a radial equilibrium solution to the mixed 
displacement/traction problem for B" to be any solution r~ E C2([e, 1]) of (0.20) 
satisfying 

(i) r',(R) > 0 for R E [e, 1], (2.4) 

(ii) r,(1) = 2, (2.5) 

(iii) r~(e) > 0 and (2.6) 

(iv) T(r,(e)) = O. (2.7) 

In condition (ii) 2 > 0 is the boundary displacement, and (iv) is the natural 
boundary condition that the cavity is stress free. 
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We first give conditions on the stored energy function that guarantee that the 
points of zero radial stress form a well defined curve in phase space crossing the 
v = 0 axis with negative slope. 

Proposition 2.1. I f  f~ satisfies (H1) and (H5), then there exists a unique function 
a E C1((0, oo)) satisfying 

q):(tr(v) + v, v, v) = 0 for all v C (0, oo). (2.8) 

If, in addition, ~ satisfies (H6), then 

q'(1) < 0 . .  (2.9) 

Proof. It follows from (H1) and (H5) that for each v0 E (0, oo) there exists a 
unique 0~(Vo)E (--Vo, oo) such that fib, l(c~(Vo) + Vo, vo, Vo) = 0. The existence 
of a C C~((0, oo)) satisfying (2.8) is then a consequence of (H1) and the implicit 
function theorem. Implicit differentiation of (2.8) wi th  respect to v gives 

(a'(v) + 1) (ib, ll(G(V ) -[- V, V, V) -~ 2#.12(a(V) + V, V, V) = 0 (2.10) 

and hence 
(r'(v) = --2(kb'12((5(v) -~- v, v,/3) 

qs,.(~(v) + v, v, v) 

Hypothesis (H6) is the condition that 

- -  I .  ( 2 . 1 1 )  

det (#,#(v~, v2, v3))l~/=l > 0. (2.12) 

~b,12(1, 1, 1) 
On setting X =  #,ll(1, 1, 1) ' we can write (2.12) as 

1 - - 3 X  2 + 2 x  3 = ( X -  1) 2 ( 2 X +  1 ) > 0  

--1 
and hence X > --~-.  Condition (2.9) then follows from (2.11) and the definition 
of X. 

1 
Corollary 2.2. The functions ~,1(2, 2, 2) and --ff #,1(2, 2, 2) are monotone in a 

neighbourhood of 2 = 1. 

Proof. It is easily seen that 

I : + (2.13) 

when we use the first that the undeformed configuration is a natural state. The 
result follows on noting that the right-hand side of (2.13) is strictly positive by 
(2.9) and (2.11). A similar argument applies in the case of ~,1(2, 2, 2). 

Remark 2.3. Notice that v ~ constant is always a solution of (2.2). Hence the 
v-axis is a line of rest points and consideration of the phase portrait then shows 
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that any non-constant C2-solution v(s) of (2.2) satisfies one of  the two following 
conditions 

(i) b(s) > 0 for all s in the interval of  existence or 

(ii) b(s) < 0 for all s in the interval of  existence. 

Hence 

1 

= 2  

dv (~,2(v + v, v, v ) -  #,t(b + v, v, v) ~,t2(b + v, v, v)) 
= ~ v  = 2 b ~ u ( b  + v, v, v) - -  q~,u(b + v, v, v) - 1 

(2.14) 

q~.u(b + v, v, v) ) --  1 

(2.15) 
def 
= G(v, iO (2.16) 

and 
GE Ca(H) where H = {(v, v)ER2;  v > 0, b + v > 0}. (2.17) 

It then follows that solutions v(s) of (2.2) generate solutions of  

db 
-~v = G(v, b) (2.18) 

and conversely solution curves of  (2.18) are invariant manifolds for the flow 
generated by (2.2). 

If  ~ satisfies (H1) and (H5), then the points of  zero radial stress lie on a curve 
b = a(v) in phase space by Proposition 2.1. Moreover if b -----3~(v) is a C 1 solu- 
tion of  (2.18) on an interval containing the points ;t > 0, O > 0 satisfying 

(i) f~(,J) = a(6) and 
(ii) 3~(v) ~= 0 for v ff [~, 2] (or v E [2, t~]) 

where 6 and 2 are positive constants, then we define the time map J by 
2 

,.r ( ~ ) = dr.  (2.19) 

Our next theorem concerns the uniqueness of  equilibrium solutions to the mixed 
problem for shells of  internal radius e and is one of  the main results of  this sec- 
tion. 

Theorem 2.4. Let  �9 satisfy (HI), (H2), (H5). Then for  each e E (0, 1) and 2 E (0, oo) 
there exists at most  one solution rsE C2([e, 1]) of  (0.20) satisfying (2.4)-(2.7). 

Proof .  The proof  proceeds in 3 stages; first we characterise the phase portraits 
corresponding to rs, secondly we prove a monotonicity property associated with the 
time map J and finally we show that this monotonicity implies the uniqueness 
of  r~. 
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Step 1. Fix eE (0, 1) and let rE C2([e, 1]), r(R) z~AR be a solution of (0.20) 
which satisfies (2.4)-(2.7). Then, under the change of variables given by (2.1), 
r(R) gives rise to a non constant solution v(s) of (2.2), where v E C2([log e, 0]) 
and satisfies 

(i) v(O) = 2, (2.20) 

(ii) b(s) + v(s) > 0 for s E [log e, 0], (2.21) 

(iii) ~.l(b + v, v, v)l,=log, = O. (2.22) 

We assert that v(s) satisfies one of the two following conditions: either 

(a) ~r(v(s)) <= b(s) < 0 for s E [log e, 0], or (2.23) 

(b) ct(v(s)) >: v(s) > 0 for s E [log e, 0]. (2.24) 

The arguments contained in Remark 2.3 imply that b(s) has only one sign for 
s E [log e, 0]. We suppose that b(s)< 0 for s E [log e, 0]; then Proposition 1.3 

1 
together with (2.1) and (0.27) implies that vZ--~-~a (v(s)+ v(s), v(s), v(s)) is 

nowhere decreasing on [log e, 0]. Consequently, by Proposition 2.1 and (2.22), 
we obtain 

1 1 
v2(s ) ~b,1 (b(s) § v(s), v(s), v(s)) >: 0 = v - ~  ~,l(a(v(s)) § v(s), v(s), v(s)) (2.25) 

for s E [log e, 0]. Hence (2.23) follows from (HI). A similar proof holds for (2.24) 
in the case b(s) > 0 for s E [log e, 0]. To justify our consideration of non constant 
solutions v(s) we make the following remark; if v(s) ~ 2 satisfies (2.22), then 
a(2) = 0. Condition (2.23) or (2.24) evaluated at s = 0 together with (H1) then 
imply that this constant solution is unique amongst all solutions of (2.2) satisfying 
(2.20)-(2.22) and the theorem holds. 

Step 2. Let f~i' i = 1, 2 be two distinct non-trivial C I solutions of (2.18) on 
[2, 8i] (or [8i, 2]) satisfying 

a(8/) = f~(8/), i = 1, 2. 

We claim that if 

(i) a(v)<: ~i(v) < 0 for v E [2, 8i], i = 1, 2, 

where 8; are positive constants with 2 < 8, < 82, 

(ii) 0 < f~i ~ a(v) for v E [8i, 2], i = 1, 2, 

where 8/ are positive constants with 82 < 8~ < 2, 

J(81) < ,~(82). 

or if 

then 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

We prove (i) (the proof of (ii) is identical in nature and will be omitted). Uniqueness 
of  solutions to the initial value problem for (2.18) implies that 

f~,(v) < f~(v) for vE [2, 8~]. (2.30) 
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Using the definition of  the time map (2.19) we obtain 

f ,  i ' •  J ( ~ ' )  = - ~ ~ do < - J A,(v)  do = J (~2)  

from (2.27) and (2.30) and hence (2.29)holds. 

(2.31) 

vT~ v~61 v. ~2 

I I I 
�9 I I 

i \xj  \ i 

Fig. 1. A possible phase portrait 

Step 3. Now let v E C2([log e, 0]) be a solution of  (2.2) that satisfies (2.20)-(2.22) 
and (2.23). (An exactly analogous argument that holds in the case of  (2.24)). The 
arguments contained in remark 2.3 imply that v(s) generates a solution f~6 Cl([;t, t~]) 
of  (2.18) satisfying 3~(~) = a(~), where ~ = v (log e). It then follows that 

1 do(s) 
- -  -- 1 for s E [log e, O] (2.32) 

f~(v(s)) ds 
and so 

2 0 0 

f 1 f 1 do(s) f 1 ~r = ~ do = f~(v(s)---~ T as = 1 as = Iog-- .e  (2.33) 
l o g s  l o g 8  

The proof  of the theorem is completed on noting that by (2.23) and (2.24) 
any two distinct solutions v~(s), i = 1, 2 of (2.2) that satisfy (2.20)-(2.22).will 
generate two distinct functions fai' i ---- 1, 2, satisfying the conditions (2.26) and 
(2.27) (or (2.28)) of  Step 2; (2.29) and (2.33) then yield a contradiction. 

B. The Displacement Boundary Value Problem. Our next result concerns the uni- 
queness of  solutions to the displacement boundary value problem for a shell of  
internal radius e E (0, 1); equilibrium configurations for this problem correspond 
to solutions rsE C2([e, 1]) of  (0.20) that satisfy 

(i) rs(l) ---- 2, (2.34) 

(ii) r~(R) > 0 for RE [e, 1] and (2.35) 

(iii) rs(e) =/~ ,  (2.36) 

where 2 and/z  are given constants with 0 < / z  < 2. 
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Theorem 2.5. Suppose that q~ satisfies (HI). Then for each eE (0, 1) there exists 
at most one solution r~ E C2([e, 1]) of (0.20) satisfying (2.34)-(2.36). 

Proof. We proceed in a manner analogous to that for the proof of  Theorem 2.4. 

Step 1. Fix e E (0, 1); 
generates a solution v E C2([log e, 0]) of  (2.2) satisfying 

(i) v(O) = 2, 

(ii) b(s) + v(s) > 0 for s E [log e, 0], 

(iii) v( logs)  = / z .  
e 

We assume without loss of  generality that ~ < it. (An analogous argument holds 
e 

in the case /* > it; clearly if /z = it then by Corollary 1.2 r(R) ~ itR is the 
8 /3 

only solution of  (0.20) that satisfies (2.34)-(2.36)). 

then any solution rE C2([e, 1]) that satisfies (2.34)-(2.36) 

(2.37) 

(2.38) 

(2.39) 

Step2. If  f~E C1 ([eff--,it]) 

(i) 

is a solution of  (2.18) satisfying 

r u  ] 
3~(v) > 0 for vE [ ~ - , ~ ] ,  (2.40) 

I I 

where ~ > 0 is a constant, then we define the time map J *  by 

2 

J , (6)  = f f ~ d v .  (2.42) 
#t 
~s 

N o w l e t  f ~ i E C l ( k , i t ] ) i = 1 , 2  be any two distinct solutions of  (2.18) sa- 

tisfying (2.40) and (2.41) where ~ and d2 are constants with 0 < ~ < ~2. 
It then follows from (2.41) and the uniqueness of solutions to the initial value 

problem for (2.18) that 

Hence 

and so 

2 2 

S 1 f S ~  ~ * ( ~ )  = - - d r  < a~ = J * ( ~ l )  
, ,  ~:(v)  

~r > S*(62). (2.43) 
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Fig. 2 

Step 3. Now let Vo 6 C2([loge, 0]) be a non-constant solution of (2.2) that 
satisfies (2.37)-(2.39). The arguments contained in Remark 2.3 then imply that 

]) Vo(S) generates a solution feoEC 1 ,2  of (2.18) satisfying (2.40) and 

(2.41) with So = Vo (log e). It then follows that 

/f@,(V) o / l d v o ( S )  / 1 J*(do) ---= dv = feo(V-o(S)) ~ss ds 1 ds = log"~-. (2.44) 
~ 1 l o g 8  

The proof of the theorem is completed on noting that any two distinct solutions 
vi(s), i ---- 1, 2 of (2.2) that satisfy (2.37)-(2.39) generate two distinct functions J~i 
i = 1, 2 satisfying the conditions (2.40) and (2.41) of St~p 2; (2.43) and (2.44) then 
yield a contradiction. 

3. Uniqueness of Cavitating Solutions 

In this section we make a change of variables to construct a new energy func- 
tion that is convex. (see Proposition 3.7). This new function supports a proof of 
uniqueness of cayitating equilibrium solutions in Theorem 3.8. 

r(R) 
First we state a proposition concerning the invertibility of the relation v -- 

R 
when r is a cavitating equilibrium solution. 

Proposition3.1. Let rE C2((O, 1]) be a cavitating equilibrium solution with 
r(1) = 2 > O. Then there exists a function g : [2, ~ )  --~ (0, 1], g E C2([2, ~ ) )  
satisfying 

(i) g(r(R)) : R 3 for RE(O, 1], 
~ .tl,  ! 

(ii) g ( 2 ) :  1, 

(iii) Limg(v) = 0, 
v--s- oo 



118 J. SIVALOGANATHAN 

(iv) q- T = r'(R) for R E (0, 1]. 

Proof. The existence of g satisfying (i) is a consequence of corollary 1.2 and the 
inverse function theorem. Conditions (ii) and (iii) then follow from (i) as does 
(iv) on implicit differentiation. 

Proposit ion 3.2. Let q~ satisfy (H1). I f  rE C2((0, 1]) is a cavitating equilibrium 
solution with r(1) = 2 > 0, then 

(i) Lim ~ (q~ [3g!v) v) 3g (v )~ ,  {3g(v) ) )  
\ g  (v) 4- v, v, -- g'(v) " \g'(v) 4- v, v, v = O, 

(ii) I(r) = q~(r'(1), 2, 4) 4- (4 - -  r'(1)) q~,,(r'(1), 4, 4) = H(r'(1) ,  2) ,  

where g is defined as in Proposition 3.1 and H is given by (1.7). 

Proof. Condition (ii) is a direct consequence of Proposition 1.13. From the proof  
of Proposition 1.13 it also follows that Part (i) follows from Proposition 3.1 and 

r(R) 
(1.17) on setting v = --~---, since r(0) > O. 

Remark 3.3. If  rE C2((0, 1]) is a cavitating equilibrium solution with r(1) = 2 
and if g is defined as in Proposition 3.1, then 

and hence 

g(v) = r 3 (g�89 for vE [2, c~) (3.1) 

ra(O) 2 3 
va <= g(v) <= v-- ~ for v E [2, cx~). (3.2) 

Remark 3.4. The function H(X, Y) as defined by (1.7) satisfies 

-ff-fH(X, Y) > 0 for XE (0, Y) 

whenever ~b satisfies (HI). 

Proposit ion 3.5. Suppose that q~ satisfies (HI) and that rE C2((0, 1]) is a cavitating 
equilibrium solution with r(1) = 2 > 0. Then the energy of the deformation is 
finite and given by 

I(r) = i(g) f + v, v, dr, 
3 3 \ g ( v )  

(3.3) 

where g is defined as in Proposition 3.1. 
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Proof. The energy I(r) is finite by Proposition I. 13; (3.3) then follows immediately 
from Proposition 3.1 on noting that 

dv 
g'(v) ~ = 3R 2. 

We next show that the correspoilding function g of Proposition 3.1 satisfies 
the Euler-Lagrange equations corresponding to the functional T as defined by 
(3.3). 

Proposition3.6. Let r6  C2((0, 1]) be a cavitating equilibrium solution with 
r ( 1 ) = 2 > O .  Then 

d ( ~ 3 1 ~ [ 3 g ( v )  v) " g(v) ~ (3g!v,) v])  
dv + v , v ,  + v , v , /  - -  kg'(v) -I- g---~ ~~ kg (v) 

[3g(v) \ 
= -r + I �9 \g ' (v)  v, v, v / 

for rE [2,00), 

(3.4) 

where g is defined as in Proposition 3.1. 

Proof. As g E C2([2, cx~)), (3.4) is equivalent to 

- - 1 (  3gg" ) ( gg"]  g d  
3 3 (g,)2 + 1 ~ , 1 - - ~ - ~ , 2 +  1 - -  ( - - ~ / ~ , x  + g ' - 7 ~ , 1 =  --~,1 (3.5) 

v E [2, oo), where ~ =  ~b i (3g}v) ) for ' ' \ g (v )  +v 'v 'v_"  Equation (3.5) may be 

rewritten as 

g d (q~,l (-3gg7 -k v, v, v ) ) = ~  (~,2 (~ ,  -k v, v, v) - - ~ 1  (~ ,  + v, v, v)) (3.6, 
g' dv ' " 

The function r is a solution of (0.20) and hence 

R--d- ~ ci),1 r ' , R ,  �9 = 2  ~,2 r', R , " --~,1 r',--~, 

for R ~ (O, 1]. 
We set v = f i r  and use Proposition 3.1 to convert (3.7) into (3.6), thereby 

completing the proof. 
The last proposition is an example of the general invariant nature of the Euler- 

Lagrange equations (see CESARI (1983) p. 48). We next examine a property of the 
integrand of i as defined by (3.3). 

Proposition 3.7. Ifq~ satisfies (H1), then for each v E (0, c~) the function G : S---~ R 
defined by 

G ~ \ X 2  + v , v , v  (3.8) 
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is a convex function on 

{ C I S =  X=  X2 ER2;XIE(0'(x~)'X'zE(--~176 ~-X2~<0 " v  (3.9) 

Proof. Since S is a convex subset o f R  2 for each v E (0, oo) it is sufficient to show 
that the hessian of G is positive semidefinite on S. An easy calculation gives 

Hessa(X). r 13x, t +v' v. (3.10) 

It follows from (HI), (3.10) and (3.9) that the trace of Hess G(X) and the deter- 
minant of Hess G(X) satisfy. 

det (Hess G(X)) ~ 0 and tr (Hess G(X)) > 0 for X E S, 

for each v E (0, ~ ) .  Hence Hess G(X) is positive semidefinite, completing the 
proof. 

The main result of this section is the following theorem: 

Theorem 3.8. I f  ~ satisfies (HI), then for each 2 E [1, c~) there exists at most 
one cavitating equilibrium rE C2((0, 1]) satisfying r(1) = 2. 

ProoL We suppose for a contradiction that there is a 2E [1, oo) for which there 
are two distinct cavitating equilibrium solutions ri(R ) E Cz((0, 1]) with rt(1) = 2 
for i = 1, 2. Let gi, i = 1, 2 be the corresponding functions as defined in Pro- 
position 3.1. Then by Proposition 3.5 

g,( ) ~ [3gi(v) 
I(ri) ~- i(gi) ~ -- --3---~ \g~(v) q- v, v, v dr, i ~- 1, 2. (3.11) 

a 

It follows from Proposition 3.7 that 

M [g1(v)~ I'M [gE(V)~ ~ f 8G [gi(v)~ 
[ G ~g;(v)] dv ~ --] G \g;(v)] dv + "~] ,---,i-~-~" ~g~(v)] ( g , ( v ) -  g2(v)) 

8G ~gl(v)'~ } 
+ ~ kg~(v)] (g;(v) -- g~(v)) dv for each ME (2, o~), (3.12) 

where G is defined by (3.8). (This is an elementary consequence of the convexity 
of G.) We integrate the second integral on the right hand side of (3.12) by parts 
to convert it to the form 

~[OG (g,,] d (SG [g,]' I ( 8G (g,,]]IM (3.13) 
[-ff-ff[~ \gl l  -- -d-fly \SX2 \g~] ] ] j (el -- g2) dv -~ (gl -- g2) ~ \ g i l l  I~. " 
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Proposition 3.6 and (3.8) then imply that the integrand in (3.13) is identically 
equal to zero. We thus conclude from (3.12), (3.13) that 

(gl -- g2) Jr- ~ z  (gl -- g2) dv = [g2(M) -- gl(M)] Z ~g~(M)l[gl(M)~ 

(3.14) 

for each ME (2, oo), where we have used the fact that g , ( 2 ) =  g2(2)= 1. 
Remark 3.3, Proposition 3.2(i) and (3.8) then imply that the right-hand side of  
(3.14) tends to zero as M tends to infinity. Thus (3.14) and (3.12) imply that 

I(rx) = I(gl) ~ Rgz) = I(r2). 

Interchanging the roles of rl and r2 in the above arguments we obtain 

�9 t 

H(r,(1), 2) = I(r,) = I(r2) = H(r2(1), 2), 

where we have used Proposition 3.2(ii). Corollary 1.2 implies that r~(1)< 2, 
i = 1, 2 ,  and thus it follows from Remark 3.4 that r~(1) = r~(1). Hence r~(R) 

r~(R), a contradiction. 

4. Existence of Radial Equilibria 

In subsection A we prove the existence of energy minimisers for the displace- 
ment boundary value problem for a ball and in subsection B the existence of 
cavitating minimisers for sufficiently large boundary data. Proposition 0.3 then 
gives conditions under which these minimisers are solutions of the radial equi- 
librium equation (0.20). Finally in subsection C we show existence of radial 
equilibria for shells. 

A. Existence of minimisers for a ball. Our first proposition concerns the existence 
of energy minimisers to the displacement boundary value problem for a ball. 

Proposition 4.1. Let ~ satisfy (El) and (H1) and let I be defined by 

I(r) = f R2r r'(R), dR. 

Then I attains its infimum on A~ (where Aa is defined by (0.23). 

(4.1) 

Proof. Let {Yn} be a minimising sequence for I on Aa and let fl = I n f L  
-4  2 

Assumption (El) implies that for each positive integer m 

1 

in  

�9 ~(y'~) dR <= I(yn) ~ constant for all n. (4.2) 
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Using Theorem 10.3 from CESARI (1983), we choose the following sequences 
inductively: 

{Ym,n)~=l is a subsequence of (ym_l,n)~~ satisfying (4.3) 

L,(2-,0 
y'~,n----Zm as  n - ~ o o  (4 .4)  

for some ZmEL1 ( 1 ,  1) and we define {Yl,n} by Ylm = Y~ for all n. 

We define the function Z by 

Z(R)----  Zk(R) where k is so chosen that g E (-~-, 1) .  (4.5) 

The function Z is then well defined for a.e. R since if m~ > m 2 then 

Ym,,~--------Zm, 

so by the uniqueness of weak limits 

We now set 

and 

as n --~ 0% i = 1, 2, (4.6) 

Zml(R) = Zm,(R) for a.e. R E ,1 . 

1 

y(R) = 2 --  f Z(s) ds (4.7) 
R 

rm = Ym,m for all m. (4.8) 

The sequence {rm) defined by (4.8) then satisfies 

W 1,1(t~,l) 
r m - - - y  as m ---~ oo (4.9) 

for each O E (0, 1). 
We extend the definition of ~ by setting ~(vl, v2, v3) = oo if vi =< 0 for 

any i so that for each R E (0, 1), g(R, . ,  .) defined by 

(r 
g(R, r, r') ---- R2~b r ,  --~ , 

becomes a continuous function from R • R. Then using (El), (H1) and a 
standard lower semicontinuity theorem (c f  BALL, CURRIE 8~ OLVER 1980, Theo- 
rem 5.4) we conclude that 

/ ( .~.) / (r,,,(R)rm_~B))(4.10) 1 y(R) y ) dR < Lim R2t~ rm(R)' R R 2 ~  y'(R), g ' - - "  - -  . . . .  ' 

for each ~ E (0, 1). Since {rm) is a subsequence of a minimising sequence for I 
on A~ 

/ ( Y(R) Y ( - - R R ) ) d R ~ f l = I n f I  f o reach  ~E(O, 1 ). (4.11) R2t~ y'(R), R ' A~ 
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Using the fact that �9 is positive we obtain by the monotone convergence theorem 
that 

j ( Y(R) y(R)-)dR<fl .  (4.12, R 2 ~  y ' ( R ) ,  R ' - - "  = 

To complete the proof we show that yE  .4a so that equality holds in (4.12). 
It follows from (El), (4.7) and (4.12) that y'(R) ~ 0 for a.e. R E (0, I). Clearly 
y ( 1 ) = 2  and as 

1 1 

f ly'l ds = f y' ds __< 22 for each E (0, 1), 

the monotone convergence theorem implies that y'ELI(0, 1), whence yE W1'1(0, 1). 
Finally (4.9) implies that 

c([0,1)] 
r m - - y  as m --~ oo for each ~ E (0, 1); 

hence y(R) >~ 0 for R E (0, 1) and so y(0) => 0. This establishes that y E An. 

B. Existence of cavitating minimisers. With a view to proving the existence of 
cavitating minimisers we establish conditions under which any solution rE C2((0, 1 ]) 
of (0.20) satisfying (0.24), r(1) = 2 and r(0) ---- Lira r(R) = 0 must be identically 

R---~O 

equal to 2R. We first state a preparatory result, the proof of which is given by 
BALL (1982), Theorem 6.5. 

Proposition4.2. Let 0 satisfy (H1)-(H4) and let rE C2((0, 1]) be a solution 
of (0.20) satisfying (0.28) with Lim r(R) = r(O) -~ O. Then 

R-~O 

rE C1([0, 1]) A C2((0, 1]) (4.13) 

and there is an l E (0, oo) such that 

r(g) 
r'(0) = Lim r'(R) : Lim : l. (4.14) 

R-+0 R ~ 0  

Proposition 4.3. Let ~ satisfy (H1)-(H4) and/et r E C2((0, 1]), r(R) ~ 2R be 
a solution of (0.20) satisfying (0.28) with Lim r(R) = r(0) ---- 0, r(1) = 2. Then 

R--+O 

1(0 < I(2R). (4.15) 

Proof. The proof is analogous to that of Proposition 1.13. It follows from (1.6) 
that 

"~3~('K) "7!- 3 f R2~(R) dR = ~(1) -k (2 -- r'(1)) ~.1(1) -k ~3 r'(~) -- ~,1(0- 

(4.16) 

The last term on the right-hand side of (4.16) may be written as 

7 2 
r2('K) ('Krt(T) -- r(T)) ( r - ~  ~'1('~)) " (4.17) 
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Using Proposition 4.2 and the fact that r(0) = 0, we conclude that (4.17) tends 
to zero as �9 --> 0. Since the left-hand side of (4.16) is the sum of two positive terms 
one of which is monotone, the limit as z--* 0 of each of them exists. By the 
monotone convergence theorem 1(0 < q- oo and so Lim z3~(z) = 0. Equation 

~ - ~ 0  

(4.16) then takes the form 

I(r) -~ �89 (~(r'(1), 2, 2) q- (4 -- r'(1)) ~,1(r'(1), 4, 2)). (4.18) 

Using (H1), we obtain 
1 

4(2, 4, 4) _- f R2ftb(2, 4, 4) dR =- I(2R) (4.19) 
I(r) < 3 o 

as required (r'(1) # 2 by Proposition 1.1). 

Proposit ion 4.4. Let  qb satisfy (H1)-(H4) and let rE C2((0, 1]), r(R) ~ 2R be a 
solution o f  (0.20) satisfying (0.28) with r(1) : 2 and Lim r(R) : r(O) =-- O. Then 

R-~O 

I(2R) < I(r) .  (4.20) 

Proof .  It follows from (H1) and Proposition 1.1 that 

( r  r ) R 2  ( ( R r  R)  ( R )  ( R  r R')) R2~/~ r', ~ ,  R > qb . , ~ ,  q- r ' - -  ~b,] - , ~ ,  

(4.21) 

for RE (0, 1]. Then for TE (0, 1) 

] ( r R) (R_~ ( R  r r ) ) l  f R2q~ r', ~ ,  . d R >  q~ " ' R '  R " (4.22) 
T 

Letting ~--~ 0, we obtain from Proposition 4.2, part (4.14) that 

I(r) = 6f g2qb r', dR > �89 f~b(2, 4, 4) = I(2R), (4.23) 

as required. 
The observation that (H1) implies (4.22) was made by BALL (in a private 

communication). On combining the last two propositions we obtain the following 
result. 

Proposit ion 4.5. Let  qb satisfy (H1)-(H4) and let rE C2((0, 1]) be a solution o f  
(0.20) satisfying (0.28) with r(1) = 2 and Lim r(R) = r(O) = O. Then r(R) =~ hR. 

R--->O 

Proof. We suppose for a contradiction that r(R) ~ 2R; then applying Proposi: 
tions 4.3 and 4.4 we conclude that I(r) ~ I(2R) and I(r) ( I (2R) .  

R e m a r k  4.6. We refer to BALL (1982) for an alternative proof of Proposition 4.5 
and for the analogous result when the hypotheses (H3) and (H4) are replaced by 
(H7). 
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Proposition 4.5 is in the spirit of  a recent result by KNOPS & STUART (1984) 
concerning the uniqueness of  smooth solutions to the equilibrium equations of  
elasticity. 

Our next result concerns the existence of  cavitating minimisers for the dis- 
placement boundary value problem. 

Proposition 4.7. Let ~ satisfy (H1)-(H5), (H9), (H10), (El) and (E2). Then any 
minimiser r of I on Aa satisfies r(O) > 0 for 2 sufficiently large. 

Proof. A minimiser r exists by Proposition 4.1 and is a smooth solution of the 
radial equilibrium equation by Proposition 0.3. It follows from Proposition 4.5 
that if r(0) = 0 then r(R) ~_ 2R. To prove the proposition it therefore suffices 
to exhibit a function ~ E Aa satisfying r(0) > 0 and having less energy than the 
homogeneous deformation for sufficiently large 2. To this end we choose the fol- 
lowing test function 

~(R) / [R3 --k e3] �89 if R E [0, ~], (4.24) 

t2R if R E [t~, 1] (4.25) 

where ~ : e/(23 -- 1) ] .  It is easily checked that ? E A~. The difference in energies 
AE is then given by 

- 2)) dR. (4.26) 

Setting v = -~- and using the definition of  6 we can write (4.26) the form 

v 2 e3~(2, 2, 2) 
A E =  e 3 ~(v) dv 

a (va--  1)2 3(23 -- 1) (4.27) 

/ ,,2 
__< (v 3 _ 1) 2 dv ] (4.28) 

Hence by (H9) and (H10), AE is negative for 2 sufficiently large, as the first 
term in (4.28) is decreasing and the second is bounded away from zero. 

Remark 4.8. The above proposition holds with (H3) and (H4) replaced by (1-I7) 
or by any conditions under which Proposition 4.5 holds (for a variety of  such 
results see BALL (1982) chapter 6). 

C. Existence of radial equilibria for shells. 

Proposition 4.9. Suppose that q) satisfies (HI), (El). For each 2 > 0, e E (0, 1) let 

I~(r) d~r / R2q~ (r'(R),r(--~), 7 ! )  dR (4.29) 
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whenever rE A] where 

A~~ wl'l(e,  1); r(1) : 2, r' > 0 a.e., r(e) >= 0}. (4.30) 

Then there exists an absolute minimiser r, o f  I~ on A]. Moreover, i f  ~ also satisfies 
(H5), (Hll) ,  (E2), then r~E C2((e, 1]) is a solution of  (0.20) and there exists a 
6(e) ~ 0 such that i f  2 E (1 -- 6(e), oo), then r~ E C2([e, 1]) and satisfies (2.4)- 
(2.7). 

Proof. Applying the techniques of Proposition 4.1 we obtain the existence of a 
minimiser r8 o f /8  on A~ for each e E (0, 1). Arguments identical to those con- 
tained in the appendix then imply that r, E ((e, 1]) and is a solution of (0.20) 
satisfying (2.4) and (2.5). It therefore suffices to show that r~ satisfies r,(e) > 0 
since this implies that r~ satisfies (2.7) (by arguments analogous to those in the 
appendix). We consider the two cases ;t > 1 and ;t ~ 1. 

Case (i). We suppose for a contradiction that r,o(e0) : 0 for some eo E (0, 1). 
Since 2 > 1 by assumption, r,o (Ro) = R0 for some R0 E (e0, 1). By the opti- 
mality of r,o it then follows that ~ defined by 

~(R) = [R if RE [R0, 11 
[rso(R) if R E [Co, Ro) 

satisfies 

I~(k(R)) ~ I,(R), 

in contradiction to (H11). 

Case (ii). We now suppose for a contradiction that for some k E (0, 1) there 
does not exist 6 with the stated properties. Then there exists a sequence 2 , / 7  1 

z with the property as n -+  oo with corresponding minimisers r (n) o ( I  z on Aan 
that 

r(n)(~) = 0 for all n. (4.31) 

This property of r (n) then implies the existence of a subsequence which we also 

denote by (r(n)}, and a function r E A] with the property that 

r(. ) wm~Z,1) r as n -+ o0. (4.32) 

(This follows by arguments analogous to those in Proposition 4.1). But 

1~ (r (")) <= IZ(2,R ) for all n, since 2,R E A~-. 

Hence by (4.32) and the weak lower semicontinuity of 1; we obtain 

Iz(r ) <= Lim I.~(r (n)) ~ Lim lZ(2,R ) = I(R). (4.33) 
n---> o o  n---~ o o  

Clearly (Hl l )  implies that r ( R ) ~ R  in contradiction (4.31) and (4.32). 
Our next proposition shows that the deformed cavity size is a monotone func- 

tion of the boundary displacement for shells. 
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Proposition 4.10. Suppose that ~ satisfies (H1), (H5), (El), (E2) and that e E (0, 1). 
I f  r~ is a minimiser o f  I~ on A~, then ~(e) is a nowhere decreasing function of  2. 

Proof. The existence of  r~ a is a consequence of  Proposition 4.9. We suppose for 
a contradiction that there exist an e E (0, 1), displacements 2~, 22 satisfying 
0 < 2~ < 22 < § oo and corresponding minimisers r~ of  I, on A~i such that 

r~'(e) > ra,'(e). 

Then there exists an R0 E (e, 1) such that 

~(Ro)  ---- r~ffRo). 
Consequently ~ defined by 

ff~(R) if R E [Ro, 11 
~(R) = [r~(R ) if R E [e, Ro) 

satisfies 
(i) 

(ii) I,(r) = I,(ra~9 = Inf I , .  
e 

A,~ t 

a~ belong to The arguments contained in Proposition 4.9 then imply that ~, r, 
C2((e, 1]) and satisfy (0.20) on (e, 1]. Hence by the definition of~ and the uniqueness 
of  solutions to the initial value problem for (0.20) it follows that r~'(R) ~ r2"(R) 
which is a contradiction. 

Finally we indicate the proof  of Theorem 1.11. 

Proof Theorem 1.11. The  uniqueness of  re follows from Theorem 3.8. Proposi- 
tion 1.6 then implies tha t  r c is uniquely extendable to re E C2((0, oo)) as a solu- 

re(R) 
tion of (0.20) with T ~ 2r as R - +  cx~, where 2r E (1, ~ )  by Remark 1.7. 

This proves (i) and (ii). 
It follows from Proposition 4.1 that for each /~ E (0, ~ )  there exists a global 

minimiser r~, of  I on A~,. Propositions 0.3 and 4.5 together imply that 

(a) r~ is a solution of  (0.20), 

(b) r~(0) : 0 if and only if rs,(R ) ~-ttR. 

We first treat the case in which /z > 2c. By the monotonicity of  r(R)/R ensured 

1.2 there is a unique solution t5 of  ~rc ( + /  : / z  if and only if by Corollary 
At > 2c. We now define \ o !  

~_ 6rr (-~), ~(R) 

As the equilibrium equation (0.20) is invariant under this rescaling, ~ is a cavitating 
equilibrium solution that satisfies ~(1)=/~.  We then obtain 

r ~, ~) 
1(~) = �89 [~b(~'(1), /t, /z) + (/z -- ~'(1)) ~b,,(;'(1), /z, /z)] < 3 -- I(,uR) 
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from Proposition 1.13 and (H1). Thus/~R is not the global minimiser of I on .41, 
and so ru(O) > 0 by (b). It then follows from Proposition 0.3 that r u is a cavitating 
equilibrium solution, which must be unique by Theorem 3.8. Hence r~(R) ~- ~(R) 
proving (iv). 

We now consider the case in which /~ < ;t~. Suppose for a contradiction that 
there exists/z ~ 2~ with r~,(R) ~ #R. It follows from (b) that r,(0) > 0 and so 
Proposition 0.3 implies that r~, is a cavitating equilibrium solution. Thus by 
Proposition 1.6 r t, is extendable to ru E C2((0, cx~)) as a solution of (0.20) with 

r,(R) ~ 2~ as R --~ ~ ,  where 2~ E [1, ~ ) .  

If  we then choose 2 > max (2 c, ;tg) we can find appropriate rescalings rl, r2 

of r~ and r~, satisfying r~(1) = r2(1) = ~., i.e., we can exhibit two distinct cavitating 
equilibria contradicting Theorem 3.8. Thus (iii) holds. 

Corollary 1.12 follows by an identical argument with the exception that we 
use Remark 4.6 (in place of Proposition 4.5) to conclude that (b) holds. 

5. Asymptotic Behaviour of Equilibria for Shells 

In this section we present results on the asymptotic behavior of solutions to 
the mixed problem for shells studied in Section 2. 

Proposition 5.1. Suppose tO satisfies (H1), (El). Let 2 > O. I f  {en} is a sequence 
o f  positive numbers with en-+ 0 as n-+ ~ and i f  r,~ is a minimiser of  I~n on A[,, 

then there exist r E Aa and a subsequence {en(j~} such that 

r % f j )  - - - - ~  

for each ~ E (0, 1). Moreover 

wl'l(o.l) r as j - + o o  (5.1) 

I(r) = Inf I .  (5.2) 
Aa 

Proof. The existence of r, n follows from Proposition 4.9. For fixed t~ E (0, 1) 
there exists N(t~) such that 0 < % < ~ whenever n > N(t~). It then follows from 
(El) that 

1 

= I n f L  n ~ I,n(~) ~ I(~) =< const. (5.3) 
0 

for n > N(6), where ~ is any global minimiser of I on Aa (by Proposition 4.1 
at least one exists). Theorem 10.3 of CESARI (1983) then implies the existence of 

r 0 a subsequence { ~,} of {r,n} which is weakly convergent in Wla(0, 1). Using 
the techniques of Proposition 4.1 and choosing inductive subsequences {r~k} 
of {r~k--l} for some positive sequence {0k} -+ 0 as k -+ 0% we can show that the 
diagonal sequence then satisfies (5.1) for some rE Aa. 
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Finally, to prove (5.2) we no te that for each (~ E (0, 1), r,,o) E A] for j suffi- 
ciently large. Hence (5.3) implies that lo(r~,o) ) ~ 1(~) for j sufficiently large. 
The weak lower semicontinuity of la then implies that 

I~(r) ~ I(~). 

But this inequality holds for each t~ E (0, I) and so by the monotone convergence 
theorem 

1(0 <= I(~). (5.4) 

Since r E An, equality holds in (5.4). 
The idea that minimisers of I ~ on A~ converge to minimisers of ! on Aa as 

8 - - *  0 was first noticed by BALL (1982). 

PropositionS.2. Suppose that ~ satisfies (H1)-(H5), (Hll) ,  (El), (E2) and that 
for  each e > O, r~ is a global minimiser o f  I, on A]. 

O) I f  2 < 2r then Sup I r,(R) -- 2R[ ~ 0 as e --> 0, (5.5) 
[,s,H 

(ii) I f  2 > Re, then Sup I r ~ ( R )  - rc(R) l ~ 0 as ~ - >  o ,  (5.6) 
[,sAl 

where rc is the cavitating equilibrium solution satisfying r~(1) = 2 (/f there is no 
cavitation we set 2~ = 00). 

Proof. It follows from Proposition 5.1 and Theorem 1.11 that for each (~ E (0, 1) 

rsWl'l(~'l~)-rt as e-->O if ~L~2c, (5.7) 

where 

and 

rt(R) ~- 2R 

r, wI.1(0,1~_ re as e ~ 0 if 2 > 2e. (5.8) 

We first treat the case in which ;t ~ 2c. We suppose for a contradiction that 
(5.5) does not hold. Then there are an eo > 0 and positive sequences (e,), {x,} 
such that 

(a )  8n ~ 0 a s  n ~ cx), 

(b) Xn E [e,, 1] for each n, 

(c) t r~,(x,,) -- ;tx, [ ~ eo for all n. 

Condition (5.7) implies that for each ~ E (0, 1) 

Sup [ r,(R) -- 2RI -+ 0 as e ~ 0. (5.9) 
[0,H 

We may therefore assume without loss of generality that x, ~ 0 as n--> co. 
On choosing ~ ---- eo/(2,1.) we obtain a contradiction of the fact that r'~(R) > 0 for 
R E (e, 1]. (r~ would necessarily have the form indicated in Figure 3). 
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i ~ 

f - r  
i / I  

. / / / / / /  
//  

/ / J / / /  

Fig. 3 

We next consider the case in which ;t > 2c. We again suppose for a contradic- 
tion that (5.6) does not hold. Then there exist an eo > 0 and positive sequences 
(en}, (x~) with the properties 

(a) e , - +O  as n - + o o ,  (5.10) 

(b) x ,E  [e,, 1] for each n, (5.11) 

(c)  [ r . , ( x , )  - rr >= eo for all n. (5.12) 

Again (5.8) implies that for each 6 C (0, 1) 

Sup [r,(R) -- re(R)[-+ 0 as e - + 0  (5.13) 
[~,11 

and we therefore assume that 

x, -+ 0 as n -+ o0. (5.14) 

for all n by (1.10) and Proposition 4.9. We assert Note that r,nE C2([Cn, 1]) 
that 

r~n(1) < rE(1 ) for all n, (5.15) 

since if for some N, rE(1 ) <~ r~#(1), it then follows from (HI) that 

o <= T(rc(1)) <= r(r~N(1)). 

As T(r~N(eN) ) = 0 (by Proposition 4.9) we conclude from Proposition 1.3 that 

r,N(R) 
r'~N(R) < R for R E [eN, 1]. Consideration of the phase portrait together 

with (HI) then implies that 

1 1 l 0 <= -~Tqg, l(r'~(g~(v)), v, v)) r,N(n) < T(r,N(R)) (5.16) 
V ~  R 

for R E [eU, 1], where g is defined in Proposition 3.1. Condition (5.16) evaluated 
at R = eN contradicts the fact that r~ N satisfies (2.7); thus (5.15) holds. The 
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continuity of  r e implies the existence of  a 6o such that 

Eo 
re(0) ~ re(R) ~ re(O) -k -~- for R E (0, ~o1. (5.17) 

Setting 6 = 6o in (5.13) we obtain 

EO 
Iron(R) - rc(R)l < "Y for RE [~o, 1], (5.18) 

for sufficiently large n. Hence (5.17) implies that 

r~(~o) < rc(~0) + ~o < re(0) + 28--2~ (5.19) 
= 3 =  3 

if n is sufficiently large. The arguments of  Theorem 2.5 imply that 

r~(R) + r,n(R) for R E [8~, 1), 

and so by (5.12) and (5.15) we conclude that 

r,n(x,) >= rc(x~) q- 8o ~= re(O) q- 8 o (5.20) 

for all n. The limit (5.14) shows that conditions (5.20) and (5.19) together contra- 
dict (2.4) for large n. 

PropositionS.3. Let �9 satisfy (HI)-(H5),  (Hl l ) ,  (El), (E2). I f  eE(0,  1), 2E 
(I --  6(8),oo) with 6(e) defined as in Proposition4.9, then r~E C2([e, 1]) and is 
a solution of  (0.20) satisfying (2.4)-(2.7) i f  and only i f  it is the global minimiser o f  
I~ on At. Moreover, 

(i) if 1 --  6(e) < 2 ~ 2c, then sup [r~(R) -- 2R l --~ 0 as e--~ 0 
[e,1] 

and 

(ii) if 2 > ;to, then sup I r,(R) - re(R) I --~ 0 as e --~ 0. 
[~,1] 

Proof. It follows from the arguments of  Proposition 4.9 that a global minimiser 
r~ always exists and satisfies (0.20) and (2.4)-(2.7). Theorem 2.4 implies that r, 
is unique. Thus the first half of  the proposition is true. Statements (i) and (ii) 
follow from Proposition 5.2. 

Remark 5.4. As a consequence of Corollary 1.12, Proposition 5.3 holds with (H3) 
and (H4) replaced by (H7). 

Remark 5.5. It is clear from Theorem 1.1 l(iv) and Corollary 1.2 that for cavitating 
equilibria the deformed cavity size is a continuous monotone function of  the 
boundary displacement 2. Combining this observation with Propositions 4.2 and 
5.3 yields the following rigorous picture of  the bifurcation that has oecured. In 
Figure 4 we have plotted the deformed cavity size against the corresponding 
boundary displacement 2. The solid curve represents the values of  r~(0) where ra 
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is the minimiser of I on Ax and the broken curve represents the values of ra,(e) 
where ra~ is the minimiser of 16 on A]. e is fixed and chosen to be small, r~'(e) 
forms a continuous curve by Proposition 2.1 and by the continuous dependence 
of  solutions to (3.2) on initial data. It is at present unclear whether the broken 
curve rejoins the ;t axis for sufficiently small values of 2; i.e whether the opposite 
phenomenon to cavitation occurs with the cavity of a shell disappearing for suffi- 
ciently small boundary displacements. 

Deformed 
covily 
size 

/ /f / / / / /  

/ /  
[.- . . . . . . . . .  .1. 

1-6(e) 2: 

Fig. 4* 
((~(e) is defined as in Proposition 4.9) 

6. Concluding Remarks 

The solutions r~ exhibit boundary  layer behaviour with significant changes in 
strain in a neighbourhood of the cavity. If  suitable conditions on the stored energy 
function �9 are imposed and if ;t < 2 c it is possible to prove the following uniform 
first order expansion for re: 

r~(R) = ero ( f  ) + o(e), (6.1) 

where ro is the unique solution of (0.20) on the exterior domain [1, cx~) that satis- 
r(R) 

ties (i) Lira 2, (ii) r'o(R)> 0 for RE [1, oo), (iii) T ( ro (1 ) )=  0. Thus 
R---~ ~o - - R -  ~--- 

(6.1) provides a uniform approximation of strains within the boundary layer. 
Expansions of this type together with the other results presented are of interest 
in studying the interaction between voids in an elastic material. 

Work on metals (e.g. Cox & Low (1974), HANCOCK (~ COWLING (1977)) 
indicates that void nucleation and coalescence is a possible mechanism for the 
initiation of fracture. This type of ductile fracture is often considered to be a pheno- 
menon of  plasticity. However there is evidence that suggests that this type of pheno- 
menon may be treated within the framework of nonlinear elasticity provided 

�9 (In a recent paper HORGAN & ABEYARATNE (1985) obtain a similar picture using 
the two-dimensional stored energy function 

tp(/31 ' 132) ~ /31 2 .jr /3~-2 .~_ 2Vl/32). 
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unloading does not take place. I conjecture that in weak materials the presence 
holes leads to high stresses giving rise to cavitation. The cumulative effect of this 
state of  stress across a body could be a mechanism for the initiation of fracture, 
with the creation of a series of holes leading to the formation of a crack. 

7. Appendix 

Proof of Proposition 0.3. The proof uses a technique from BALL (1982) Theo- 
rem 7.3. Let k E (1, o0) and define sk by 

; T < ~'(e)  < �9 

Let v E L~176 1) satisfy 

Then setting 

f v de = 0. (7.2) 
Sk 

r~(0) ---- r(e) + e f v(z) x~(z) dv, (7.3) 
0 

where Xk is the characteristic function of sk, we find from (7.2) and (7.3) that r, 
satisfies 

(i) r,(1) ---- 2, 

(ii) re(O) ---- r(O), 

1 t l  ) (iii) r;(~) = r'(~) if 0 ~ ~ or if r'(~)E , k . 

Since r E C ( [  1 ,  1]) and r ' > 0  a.e., it follows that r ( 1 )  > 0  and SO 
\ 1 _  - ~  . . l l  

r,(~) > 0 for e E (0, 1) provided e is sufficiently small. It follows from (iii) that 
1 

r'8(~) > 0 for a.e. eE (0, 1) provided e < 2k Ilvl[---~ " Thus r~E A~ for suffi- 

ciently small e. The triangle inequality implies that 

I trr lllr r r tL { ,  r= ,'= r"-i' i--as '"-i-'-W 

+ e 
(7.4) 

for ~ E (0, 1). 
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(1) 
Notice thateachsideof(7.4)isidenticallyzerofor 9E 0,--~- . If 9 (  , 1 

and r'(9)E [1/k, k], then the two terms on the right hand side of (7.4) are bounded 

ore .  If 9E(;-k,,1 ) and r'(9)(~(-k-,k ) thenwe by aconstant  independent 
\ - -  / 

multiply the right-hand side of (7.4) by 9 2 and use (iii) and the mean value theorem 
to obtain 

1 0 
295 I ~,2(r'(9), g(9, 0(0, e), g(9, 0(9), e))t- 2" f v(r) xk('O dr (7.5) 

0 

where 

and 

Since 

g(9,  o(9) ,  e) = r(9__2) + eo(9) f 9 v(r) x~(r) dr 
9 9 0 

0(9) E (0, 1). We now write 

( s t r(9) + eO(O xkv & 
I" 

g(9, o, e) = T ;(g I" 

(7.6) 

(7.7) 

r(9) o 1 < + eO(e) f x~v dv 
0 

r(9) eo (7.8) 

for e sufficiently small, we conclude from (E2) that the right-hand side of (7.4) is 
bounded by 

292M ~ r', e ' "~ -I- 1 -~ / xkv dr . (7.9) 

Since r(9)>=r(1) f o r g E ( k , l  ) and since I(r)< q - ~  by assumption, it 

follows that (7.9)lies inL 1 ( k '  1).  As ris a global minimiser of I, on using the 

dominated convergence theorem we obtain 

0 ----- Lim f R 2 \r,, --~, -- qb r',-~, . dR 
e~O I~ e 

= i R2 qb'l(R) xk(R) v(R) + T ~ x~(r) v(r) dR. (7.10) 
-s 

I(r) < q-0% r > 0, it follows from (E2) that Rq~2 r , -~- ,  E Since 

( 1 ,  1). Integrating (7.10) by parts then gives L 1 

sf ( ( r R )  1 ( r  ~)d9 ) R2~,l r', -~ , + 2 f 9~,~ r', , v(n) d R  = O. 
R 9 

(7.11) 
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As (7.11) holds for all vEL~176 1) with f v d ~  = 0 it follows that 
sk 

1 

R2~.I(R) -k 2 f 9~,2Q) d9 = ck for a.e. 9 E sg, 
R 

where Ck is a constant. Finally since meas (0, 1) \ / , . J  s~ -= 0, the c k are all equal. 
l 

An application of Theorem 4.2 of  BALL (1982) implies r E cm((o, 1]) and satis- 
fies (0.20) and (0.28). 

I f  r ( 0 ) > 0  then let w E C ~ ( ( 0 , 1 ) )  satisfy w Q ) =  1 for ~C(0, �89 and 
wQ) = 0 for 9 E (~}, 1). I t  is a consequence of  (E2) that R~2(R)  E LI(0, 1). On 
setting 

we obtain 

d 1 

0 = ~ee [I(u,)][,=o = fR2~, I (R)  w'(R) § 2R~2(R) w (R) dR = --  Lim R2~,I(R), 
0 ' R---~0 

proving the proposition. 

Acknowledgements. The work contained in this paper was carried out at Heriot-Watt 
University under a Science and Engineering Research Council Studentship and grant. 
It is a pleasure to thank Professor J. M. BALL for many useful discussions during the 
course of this work. 

R e f e r e n c e s  

R. A. ADAMS (1975), Sobolev Spaces, New York, Academic Press. 
J. M. BALL (1982), Discontinuous equilibrium solutions and cavitation in nonlinear 

elasticity, Phil Trans. ROy. Soc. A 306, 557-611. 
J. M. BALL (1984), Differentiability properties of symmetric and isotropic functions, 

Duke Math. J. 50, 699-727. 
J. M. BALL, J. C. CURRIE & P. J. OLVER (1981), Null Lagrangians, weak continuity and 

variational problems of arbitrary order, J. Funct. Anal  41, 135-174. 
L. CESARI (1983), Optimization-theory and applications, Springer-Verlag, Berlin-Heidel- 

berg-New York. 
T. B. Cox & J. R. Low (1974), An investigation of the plastic fracture of AISI 4340 and 

18 Nickel-200 Grade maraging steels, Mat. Trans. 5, 1457-1470. 
A. E. GREEN (1973), On some general formulae in finite elastostatics, Arch. Rational 

Mech. Anal. 50, 73-80. 
J. W. HANCOCK & M. J. COWLING (1977), The initiation of cleavage by ductile tearing, 

Fracture 1977, 2, ICF 4, Waterloo, Canada. 
P. HARTMAN (1973), Ordinary differential equations, Wiley. 
C. O. HORGAN • R. ABEYARATNE (1985), A bifurcation problem for a compressible 

nonlinearly elastic medium: growth of a microvoid, (to appear in J. of Elasticity). 
R. J. KNOPS i~; C. A. STUART (1984), Quasiconvexity and uniqueness of equilibrium 

solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86, 233-249. 



136 J. SIVALOGANATHAN 

C. A. SXUART (1985), Radially symmetric cavitation for hyperelastic materials, Ann. Inst. 
H. Poincar6, Anal. Non. Lin6aire 2, 33-66. 

C. TROESDELL & W. NOEL (1965), The non-linear field theories of mechanics, Handbuch 
der Physik III/3, Berlin, Heidelberg, New York, Springer. 

School of Mathematics 
University of Bath 

Bath, England 

(Received January 7, 1986) 


