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Continuous state, discrete time branching processes

James Burridge, a physicist, approached me and told me about some of
his remarkable results:

Consider the following continuous-state, discrete-time branching
process:

Z0 = x > 0 and for n ≥ 1, Zn ∼ Γ(kZn−1, θ),

where Γ(k , θ) is a Gamma distribution with density
xk−1e−x/θ/Γ(k)θk . [Note Γ(nk, θ) =d Γ(k , θ)∗n.]

Define the total progeny Z∗ =
∑∞

i=0 Zi . Remarkably, in a rather
clever way, James had computed by hand the probability density of
Z :

P(Z∗ ∈ dz) =
xθ−kz(z − x)kz−1e(x−z)/θ

zΓ(kz)
dz , z ≥ 0.

Classical theory predicts that E[e−λZ
∗
] is a reasonably explicit

identity, but the inversion to obtain the distribution of Z∗ was
simply an unknown computation.



Hint of a new family of subordinators

James’ result is strongly suggestive of the existence of a new class of
subordinator with explicit semi-group - which is not that common.

Suppose that {Zt : t ≥ 0} is a continuous-state continuous-time
branching processes. Then it is well known that Lt = Zθ(t), t < ζ, is
a spectrally positive Lévy process

ζ = inf{t > 0 : Zt = 0} and

∫ θ(t)

0

Zudu = t.

Inspection of this representation tells us that

inf{t > 0 : Lt < 0} =

∫ ζ

0

Ztdt

The law of τ−0 when Z0 = x is also that of

τ+
x := inf{t > 0 : −Lt > x},

and the process {τ+
x : x ≥ 0} is a subordinator.



Infact.....

Example

There exists a subordinator Y with Laplace exponent is given by

ΦY (z) = −cW−1

(
−

1

θc
exp

(
−

1 + θz

θc

))
+cW−1

(
−

1

θc
exp

(
−

1

θc

))
−z, z ≥ 0,

with no drift and no killing, where W−1 is the branch of the Lambert W -function (a
solution to wew = z) that is a decreasing and maps [−1/e, 0) onto (−∞,−1] and
c, θ > 0 are parametric constants.
The transition probability density of Y is

pY (t, y) =
cθ−1t

Γ(1 + c(t + y))

( y
θ

)c(t+y)−1
e−

y
θ

+at , y , t > 0,

where a := 0 if θc ≤ 1 and a := −1/θ − cW−1

(
− 1

θc
e−

1
θc

)
if θc > 1. The density of

the Lévy measure is given by

πY (y) =
cθ−1

Γ(1 + cy)

( y
θ

)cy−1
e−

y
θ , y > 0.



A note on Lambert functions

Figure : The two real branches of the Lambert W-function: W0(z) is an
increasing function which maps [−1/e,∞) onto [−1,∞), and W−1(z) is a
decreasing function which maps [−1/e, 0) onto (−∞,−1].



In the end it’s trivially Kendall’s identity!

Suppose that ξ is a spectrally negative Lévy process and suppose
further that it has a transition density: P(ξt ∈ dx) = pξ(x , t)dx .

Then Kendall’s identity states that

P(τ+
x ∈ dt) =

x

t
pξ(t, x)dt, x , t > 0,



How to produce this example (and others)

Start with a subordinator X with no drift and no killing and Laplace
exponent

ΦX (q) = − logE[e−qX1 ] =

∫
(0,∞)

(1− e−qx)ΠX (dx), q ≥ 0.

Define ξt = t − Xt , t ≥ 0 and let Yx = inf{t > 0 : ξt > x}.
It is well know that τ+

x = inf{t > 0 : ξt > x} has Laplace exponent,
say φ(q), which is the root of the equation

ψξ(z) = z − ΦX (z) = q.

and which necessarily takes the form

φ(q) = κ+ q +

∫
(0,∞)

(1− e−qx)ΠY (dx), q ≥ 0.

Define the subordinator Y to have Laplace exponent
ΦY (q) := φ(q)− q − κ (strip off killing and drift).

Use Kendall’s identity to tell you more about φ.



How to produce this example (and others)

Lemma

If the transition semi-group of X is absolutely continuous with respect to Lebesgue
measure (written pX (t, x)), then the transition semi-group of Y is given by

pY (t, y) =
t

t + y
eκtpX (t + y , y) , y > 0.

and the Levy measure of Y is given by

ΠY (dy) =
1

y
pX (y , y)dy , y > 0.

The first part is from Kendall’s identity, the second part is a consequence
of the fact that (weakly)

ΠY (dx) = lim
t↓0

1

t
P(Yt ∈ dx).

The previous example is the result of taking ξt = t − Gt , where G is a
Gamma subordinator with exponent ΦX (q) = c ln(1 + θq), q ≥ 0.



Example 2

Example (X is a Poisson process)

For c > 0 there exists a subordinator Y with Laplace exponent

ΦY (z) = W0

(
−ce−c−z

)
−W0

(
−ce−c

)
, z ≥ 0,

where W0 is the principle branch of the Lambert-W function. The process Y is a
compound Poisson process. The distribution of Yt is supported on {0, 1, 2, · · · } and is
given by

P(Yt = n) = ct
(c(n + t))n−1

n!
e−c(n+t)+at , n ≥ 0,

where a := 0 if c ≤ 1 and a := c + W0

(
−ce−c

)
if c > 1. The Lévy measure is given

by

ΠY ({n}) =
nn−1

n!
cne−cn, n ≥ 1.

This is a subordinator whose distribution at time t is that of a
generalised Poisson distribution (a.k.a. Borel distribution). This example
is generated by taking ξt = t − Nct , where N is a Poisson process.



Example 3

Example (X is a stable subordinator)

Assume that α ∈ (0, 1) and c > 0. For q ≥ 0 define φ(q), q ≥ 0, as the unique
positive solution to the equation z − czα = q. Then the function

ΦY (z) = φ(z)− c
1

1−α − z

is the Laplace exponent of a subordinator. The transition probability density of the
subordinator Y is given by

pY (t, y) = t exp
(
c

1
1−α t

) (c(t + y))−
1
α

t + y
g
(
y(c(t + y))−

1
α ;α

)
x , t > 0,

where g(x ;α) is the density of an R+-valued stable random variable with index α.
The density of the Lévy measure is given by

πY (y) = c−
1
α y− 1

α
−1g

(
c−

1
α y1− 1

α ;α
)
, y > 0.

Another example is possible here by taking

ψξ(z) = z + zα, z ≥ 0

for α ∈ (1, 2).



Example 4

Example (X is a Bessel subordinator)

For q > 0 define φ(q) as the unique solution to the equation

z − c ln

(
1 + θz +

√
(1 + θz)2 − 1

)
= q.

Then the function ΦY (z) = φ(z)− φ(0)− z is the Laplace exponent of a finite mean
subordinator. The transition probability density of the subordinator Y is given by

pY (t, y) = cty−1eφ(0)t− y
θ Ic(t+y)

( y
θ

)
,

where Iν(x) denotes the modified Bessel function of the first kind. The density of the
Lévy measure is given by

πY (y) = cy−1e−
y
θ Icy

( y
θ

)
.



Example 5

Example (X is a Geometric stable subordinator)

Assume that c > 0, θ > 0 and α ∈ (0, 1). For q > 0 define φ(q) as the unique
solution to the equation

z − c ln (1 + (θz)α) = q.

Then the function ΦY (z) = φ(z)− φ(0)− z is the Laplace exponent of a finite mean
subordinator. The transition probability density of the subordinator Y is given by

pY (t, y) = eφ(0)t αct

y

∑
k≥0

(−1)k (1 + c(t + y))k

Γ(1 + α(c(t + y) + k))k!

( y
θ

)α(c(t+y)+k)
, y , t > 0,

where (a)k := a(a + 1) · · · (a + k − 1) denotes the Pocchammer symbol. The density
of the Lévy measure is given by

πY (y) =
αc

y

∑
k≥0

(−1)k (1 + cy)k

Γ(1 + α(cy + k))k!

( y
θ

)α(cy+k)
, y > 0.



Quiz time

Q: What happens if we feed in ξt = t − (inverse Gaussian)t?

A: An inverse Gaussian comes out for Y .

Q: Apart from the inverse Guassian example above, what happens if
you build subordinator Yt from ξt := t − Xt , then build Y ∗t from
ξ∗t := t − Yt etc etc?

A: Nothing. Y ∗ will essentially be a version Y generated by taking
c1ξc2t for some constants c1, c2 > 0.
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Complete monotonicity I

A result that seems not to be known:

Theorem

If ξ has jump measure which has completely monotone density, then
{τ+

x : x ≥ 0} (and hence Y ) has jump measure which has completely
monotone density.

In general the Wiener-Hopf factorisation gives

ψξ(z) = (z − c)φH(z), z ≥ 0,

where φH(z) is the Laplace exponent of the subordinator characterising
the descending ladder height processes.
The assumption on π(−x) implies that φH has a Lévy density which is
completely monotone.
Esscher transform away the killing in the ascending ladder process:

ψξ(z + c) = zφH(z + c).

Note that φH(z + c) still has a completely monotone Lévy density. Look
in operator theory literature and discover that the inverse of z×(complete
Bernstein) is again a complete Bernsein. Relate back to φ = ψ−1

ξ .



Complete monotonicity II

Another result that seems not to be known:

Theorem

If ξt = t − Xt and X belongs to the Thorin class of subordinators
(xπX (x) is completely monotone) then so does {τ+

x : x ≥ 0} (and hence
so does Y ).

A variant of the previous proof but making more use of the
representation of complete Bernstein functions through Pick functions.



Strange analytical conclusions

Challenge: These facts imply that the following functions are completely
monotone

f1(y) =
y cye−y

Γ(1 + cy)
, c > 0, y > 0,

f2(y) = y−
1
α g(y1− 1

α ;α), α ∈ (0, 1), y > 0,

f3(y) = e−y Icy (y), c > 0, y > 0,

f4(y) =
∑
k≥0

(−1)k(1 + cy)k
Γ(1 + α(cy + k))k!

yα(cy+k), c > 0, α ∈ (0, 1), y > 0,

Can you prove it directly??



Kendall’s identity is doing something analytical

The Laplace transform of the found transition densities is gives the
Laplace exponent. This can also be reinterpreted as identifying some new
integral identities for special functions. For example:(

W−1(−t)

−t

)r

= e−rW−1(−t) = −
∞∫
−r

r
(w + r)w−1

Γ(1 + w)
twdw ,

and

g(x ; 3
2 ) = x−

5
2 g(x−

3
2 ; 2

3 ) =
1√
3πx

e−
2

27 x
3

W 1
2 ,

1
6

(
4

27
x3

)
,

where Wa,b is a Whittaker function.


