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C-M-J processes are short for Crump-Mode-Jagers processes and are also
referred to as general, or age-dependent branching processes (particularly by
Jagers himself). The main reference for background reading and this is the
classic book of Jagers (1975).

1 Informal definition of a C-M-J process

• A C-M-J process is an elaboration on the classical GW process in which
birth times and death times are introduced for individuals.

• I will use the usual Ulam-Harris labelling notation for GW trees. Namely
the initial ancestor is labelled ∅. An individual u = (u1, ..., un) is under-
stood to be the un-th descendend of .... of u1-th descendent of ∅. Such an
individual has the property that |u| = n meaning that it belongs to the
n-th generation. We say that u < v if individual v is a descendent of u and
one may concatenate labels so that if u = (u1, ..., un) and v = (v1, ..., vm)
then uv = (u1, ..., un, v1, ..., vm) so that the individual uv may be identified
as individual v in the tree rooted at u.

• Definition of a C-M-J process. Each individual u in the GW is labelled
with the pair (λu, ξu) which is an iid copy of the generic pair (λ, ξ) such
that

– λ is a random variable whose distribution is concentrated on (0,∞),
– ξ is a point process on (0,∞) (specifically ξ({0}) = 0) such that

ξ(0,∞) is equal in distribution card{u : |u| = 1}such that ξu(0,∞) =
card{uv : |v| = 1}. Further we shall assume that Eξ(0,∞) < ∞
which implies that inf{t > 0 : ξ(t,∞) = 0} < ∞ almost surely.
Henceforth we shall denote by µ the intenstity of ξ so that E(ξ(A)) =:
µ(A) for Borel A.

• If the points of ξ are 0 ≤ σ1 ≤ ... ≤ σξ(0,∞) < ∞ then we may think
of them as the birth times of the offspring of a typical individual relative
to her own birth time. (Note that multiple births at the same time are
allowed). With a slight abuse of notation, we shall henceforth refer to the
birth time of individual u as σu. Using obvious (and well used) notation
we can say for example that σuv = σu + σu

v where σu
v is the birth time of

uv relative to the tree rooted at u.
1But less rough than the first version.2

2And less rough than the second version
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Figure 1: Part of a sample path of a C-M-J process.

2 Counting with characteristics

What is a natural way to monitor the evolution of the C-M-J process. There
are a number of obvious candidates. One may simply look at the numbers in
the n generation (ie the embedded GW process), but then this would make
the introduction of birth and death times redundant. One may look at the
population alive at time t, which can be written as

zt =
∑
σu≤t

1{σu≤t<σu+λu}.

Another possibility is the population alive at time t but not older than a > 0.
This is written

za
t =

∑
σu≤t

1{σu≤t<(σu+λu)∧(σu+a)}.

Jagers’ work on C-M-J processes advocated a general point of view, namely
‘counting with characteristics’ as we shall now explain. In addition to the marks
(λu, ξu) to each u in the Galton-Watson tree, Jagers proposed a third mark
φu : R → [0,∞) such that the triple (λu, ξu, φu) are again iid across individuals
u. Moreover, φu(t) = 0 for t ≤ 0 and (typically) one may think of φu is
a measurable function of (λu, ξu). We shall always denote by φ the typical
representative of the φu-s. In that case we may talk about the φ-counted process
or the process counted with characteristic φ as the process

zφ
t :=

∑
u

φu(t− σu).
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Note that it would do no harm to sum instead over {u : σu ≤ t} on account of
the fact that φ(t) = 0 for all t ≤ 0. Here are some examples of characterisitcs.

1. φ(t) = 1{0≤t<λ} in which case zφ
t = zt, the total population alive at time

t.

2. φ(t) = 1{0≤t<λ∧a} in which case zφ
t = za

t , the total population alive at
time t which is no older than a.

3. φ(t) = 1{t≥0} in which case zφ
t = total progeny up to time t.

4. φ(t) = (t ∧ λ)1{t≥0} in which case zφ
t =

∫ t

0
zsds.

5. φ(t) = ξ(t,∞)1{t≥0} in which case

zφ
t =

∑
σu≤t

ξu(t−σu,∞) = card{those born after t whose parents were born before t}.

We call the the process of the collected individuals in the curly brackets
above the coming generation and henceforth we shall denote it by C(t).

6. A more elaborate version of the last example is to take φ(t) = ξ(t, t +
a)1{t≥0} in which cae one can check that zφ

t counts those in the coming
generation who are born before t + a. We denote this set by C(t, a).

7. A yet more elaborate version of the last example is to choose a constant
α > 0 and define

φ(t) = 1{t≥0}e
αt

∫
(t,t+a)

e−αuξ(du) = 1{t≥0}e
αt

ξ(0,∞)∑
i=1

e−ασi1{σi∈(t,t+a)}.

In this case we have

zφ
t =

∑
σu≤t

eα(t−σu)
∑

ui:|i|=1

e−ασu
i 1{σu

i ∈(t−σu,t−σu+a)}

= eαt
∑

u∈C(t,a)

e−ασu .

3 Malthusian growth

In this section we shall address the point alluded to earlier that all processes
counted within an appropriate class of characteristics grow at the same rate.
We need an assumption first which remains active throughout the remainder of
this text.

Assumption 1 There exists an α > 0 such that

E
∫

(0,∞)

e−αuξ(du) =
∫

(0,∞)

e−αuµ(du) = 1.

3



Note that this assumption implies supercriticality (ie E(ξ(0,∞)) > 1). The
parameter α is called the Malthusian parameter (as it will characterise the rate
of growth) and note also for future reference that

µα(du) := e−αuµ(du)

is a probability measure concentrated on (0,∞).
In order to reach some classical results on Malthusian growth of C-M-J

processes counted with characteristics, we shall temporarily recall some classical
renewal theory. (Note this is also covered in Jagers’ book but another good
reference is the book of Feller (1972)).

3.1 Renewal equations

Suppose that F is a probability measure concentrated on (0,∞) and f : [0,∞) →
[0,∞) is a given measurable function. We are interested in positive solutions to
the renewal equation.

x(t) = f(t) +
∫

(0,t)

x(t− u)F (du) = f(t) + x ∗ F (t), t ≥ 0

For convenience we shall assume that F does not have a lattice support.
Classical theory tells us how to solve the renewal equation uniquely in terms of
the so-called renewal measure

U(dy) =
∞∑

n=0

F ∗n(dy)

for y ≥ 0, where F ∗n(dy) is the n-fold convolution2 of F and we undertand in
particular F ∗0(dy) = δ0(dy).

Theorem 2 If f is uniformly bounded then the renewal equation has a unique
soluion in the class of positive functions which are bounded on bounded intervals
and the latter solution is given by

x(t) = f ∗ U(t) =
∫

[0,t)

f(t− y)U(dy).

We do not prove this result here, but naively, the following string of manip-
ulations make it easy enough to see why f ∗ U is a solution to the renewal
equation;

f ∗ U(t) = f ∗
∞∑

n=0

F ∗n(t)

= f ∗ δ0(t) + f ∗
∞∑

n=1

F ∗n(t)

= f(t) + (f ∗ U) ∗ F (t)
2For example F ∗n(0, x) =

R
(0,x) F (x− y)F ∗(n−1)(dy).
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The classical Renewal theorem tells us for bounded intervals A

lim
x↑∞

U(A + x) =
|A|∫

(0,∞)
uF (du)

where |A| is the Lebesgue measure of A and we interpret ther right hand side
to be zero if F has infinite mean. A variant of the following theorem will
be important in understanding Malthusian growth of C-M-J processes. It is
sometimes called the Key Renewal Theorem although Feller advocates that
it should be called the Alternative Renewal Theorem. It says that since the
solution to the renewal equation, x(t), is a convolution of f and U and since the
latter behaves, up to a constant, asymptotically like Lebesgue measure, then the
asymptotic behaviour of x(t) should behave like an integral of f with respect to
Lebesgue measure normalised by the mean of F .

Theorem 3 Suppose that
∫
(0,∞)

uF (du) < ∞ and

∞∑
k=0

sup
0≤t<1

|f(k + t)| < ∞ (1)

then

lim
t↑∞

x(t) =

∫∞
0

f(u)du∫
(0,∞)

uF (du)

Note that this theorem is stated in a slighly different way to its usual for-
mulation. The condition (1) implies that f is directly Riemann integrable and
the latter condition is what is usually stated in place of (1). The reason for the
above formulation is that it allows one to state more convenient conditions in
later results.

3.2 Malthusian growth

Returning to the C-M-J process, we can now make the connection between
renewal theory and growth rates of the process counted with appropriate char-
acteristics.

First note that for a given characteristic φ,

e−αtzφ
t = e−αtφ∅(t) +

∑
|u|=1

1{σu≤t}e
−α(t−σu)zφ

t−σu
(u)e−ασu

where zφ
· (u) is the copy of zφ

· relative to the tree rooted at u. Defining f(t) =
e−αtEφ(t) and xφ(t) = e−αtE(zφ

t ) and assuming that the latter two expectations
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are finite for all t ≥ 0, we have

xφ(t) = f(t) + E
∑
|u|=1

e−ασu1{σu≤t}E
(
zφ
t−σu

(u)e−α(t−σu)|ξ∅
)

= f(t) + E
∑
|u|=1

e−ασu1{σu≤t}x
φ(t− σu)

= f(t) + E
∫

(0,t)

e−αuxφ(t− u)ξ(du)

= f(t) +
∫

(0,t)

e−αuxφ(t− u)µ(du)

= f(t) +
∫

(0,t)

xφ(t− u)µα(du).

With some additional computations (omitted), it is now clear that one may
apply Theorem 3 to obtain the following intuitively appealing result.

Theorem 4 Suppose that Eφ(t) is Lebesgue almost everywhere continuous,∫
(0,∞)

uµα(du) < ∞ (2)

and
∞∑

k=0

sup
k≤t<k+1

e−αtEφ(t) < ∞, (3)

then

lim
t↑∞

xφ(t) = lim
t↑∞

E[e−αtzφ
t ] = xφ

∞ :=

∫∞
0

e−αuEφ(u)du∫
(0,∞)

uµα(du)
.

4 A martingale

There is a special case of the last renewal analysis for which things are much
nicer. Suppose that we take

φ(t) = 1{t≥0}e
αt

∫
(t,∞)

e−αuξ(du)

such that (2) is satisfied in which case the first condition of the last theorem
and (3) are also satisfied. (Note that ultimately these are conditions on the
underlying point process ξ). Then the renewal equation for xφ(t) becomes

xφ(t) = µα(t,∞) +
∫

(0,t)

xφ(t− u)µα(du)

in which case it is clear that the unique solution (bounded on bounded intervals)
is given by xφ(t) = 1 for all t ≥ 0. In particular this means that for all t ≥ 0 we
have

E
∑

u∈C(t)

e−ασu = 1.
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This leads us to the following result.

Lemma 5 Suppose that φ is given as above such that (2) holds. Then

Yt := e−αtzφ
t =

∑
u∈C(t)

e−ασu

is a martingale.

Proof. This is more of a sketch proof. Define

FC(t) = σ(ξu, λu : u < v for some v ∈ C(s) with s ≤ t).

This is the filtration with respect to which we have our martingale. Next note
that we have the non-intersecting, exhaustive partition of C(t + s)

C(t + s) = {C(t + s) ∩ C(t)} ∪ {C(t + s)\C(t)}.

This allows us to write (using obvious notation)

E

 ∑
u∈C(t+s)

e−ασu |FC(t)

 =
∑

u∈C(t+s)∩C(t)

e−ασu

+E

 ∑
u∈C(t)

∑
v∈Cu(t+s−σu)

e−ασuv |FC(t)


=

∑
u∈C(t+s)∩C(t)

e−ασu

+
∑

u∈C(t)

e−ασuE

 ∑
v∈Cu(t+s−σu)

e−ασu
v |FC(t)


=

∑
u∈C(t+s)∩C(t)

e−ασu +
∑

u∈C(t)

e−ασuxφ(t + s− σu)

=
∑

u∈C(t)

e−ασu

thus completing the (sketch) proof.

Since Yt is a positive martingale, it converges almost surely. In fact, sub-
ject to very familiar conditions, namely that E(X log X) < ∞ where X =∫
(0,∞)

e−αuξ(du), it is known that this martinagle converges in L1(P). Natu-
rally a spine proof is easily put together to demonstrate this fact, see Olofsson
(1998)3 for example.

However, the convergence of e−αtzφ
t for the particular choice of φ discussed

here, and the convergence of E(e−αtzφ
t ) for a general class of φ in Theorem 4,

3A student of P. Jagers.
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begs the question as to whether it is possible that, at least for a similar class of
characteristics, one may deduce that e−αtzφ

t converges almost surely in general.
Said, another way, under what conditions is it possible to deduce a strong law
of large numbers in the sense

lim
t↑∞

zφ1
t

zφ2
t

= c

almost surely where φ1 and φ2 are two different characteristics and c = c(φ1, φ2)
is a constant? An answer to this question is provided by the classical and
magnificent result established by Nerman (1981)4. (Note that there is no need
for an X log X condition!)

Theorem 6 Suppose that φ1 and φ2 are characteristics which are cadlag in
their argument. Suppose further that there exists a β < α such that

E
∫

(0,∞)

e−βuξ(du) < ∞ and E sup
t≥0

e−βtφi(t) < ∞ for i = 1, 2.

Then almost surely on the survival set of the embedded GW process,

lim
t↑∞

zφ1
t

zφ2
t

=

∫∞
0

e−αtEφ1(t)dt∫∞
0

e−αtEφ2(t)dt
.

In particular, note that under mild assumptions this implies that for a large
class of characteristics φ,

lim
t↑∞

e−αtzφ
t = xφ

∞Y∞,

almost surely where Y∞ is the martingale limit of Yt.
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