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Motivation

Lévy process. A (one dimensional) process with stationary and
independent increments which has paths which are right continuous with
left limits and therefore includes Brownian motion with drift, compound
Poisson processes, stable processes amongst many others).

A popular (and often criticised) model in mathematical finance for the
evolution of a risky asset is

St := eXt , t ≥ 0

where {Xt : t ≥ 0} is a Lévy process.

Barrier options: The value of up-and-out barrier option with expiry date T
and barrier b is typically priced as

Es(f (X1)1{X1≤b})

where X 1 = supu≤1 Xu , f is some nice function.

One is fundamentally interested in the joint distribution

P(X1 ∈ dx , X 1 ∈ dy)

for any Lévy process (X , P).
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Multil-level Weiner-Hopf Monte-Carlo simulation for Lévy processes

Original WHMC method: Kuznetsov et al. (2011)

Consider a Poisson process with arrival rate n. Denote by τ1, τ2, · · · the
arrival times.

1

Note that τn is the sum of n i.i.d exponential random variables, each with
mean 1/n. We could therefore write

τn =

nX
i=1

1

n
e(i),

where e(i) are i.i.d. exponential random variables with unit mean. Hence
by the SLLN

τn → 1 almost surely.

Hence for a suitably large n, we have in distribution

(Xτn ,X τn ) ' (X1,X 1).

Indeed since 1 is not a jump time with probability 1, we have that
(Xτn ,X τn ) → (X1,X 1) almost surely as n →∞.
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Original WHMC method: Kuznetsov et al. (2011)

A reformulation of the Wiener-Hopf factorization states that

Xeq

d
= Sq + Iq

where Sq is independent of Iq and they are respectively equal in
distribution to X eq and X eq

. Here X t = infs≤t Xs .

eq

-

eX

Xe X

q

q eq qe=  Xd



4/ 23

Multil-level Weiner-Hopf Monte-Carlo simulation for Lévy processes
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Original WHMC method: Kuznetsov et al. (2011)

A reformulation of the Wiener-Hopf factorization states that

Xeq

d
= Sq + Iq

where Sq is independent of Iq and they are respectively equal in
distribution to X eq and X eq

.

Taking advantage of the above, the fact that X has stationary and
independent increments and the fact that, as a time, τn can be seen as the
sum of independent exponential time periods we have the following:
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Original WHMC method: Kuznetsov et al. (2011)
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Original WHMC method: Kuznetsov et al. (2011)

For all n ∈ {1, 2, · · · } and n > 0,

(Xτn ,X τn )
d
= (Vn , Jn)

where

Vn =

nX
j=1

{S (j)
n + I (j)

n }

Jn :=

n−1_
i=0

“
Vi + S (i+1)

n

”
.

Here, V0 = S
(0)
n = I

(0)
n = 0, {S (j)

n : j ≥ 1} are an i.i.d. sequence of
random variables with common distribution equal to that of X en and

{I (j)
n : j ≥ 1} are another i.i.d. sequence of random variable with common

distribution equal to that of X en
.

(Vn , Jn)
n↑∞→ (X1,X 1) in distribution.
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Original WHMC method: Kuznetsov et al. (2011)

Sample repeatedly and independently from the distribution X en and X en

and then construct m independent versions of the variables Vn and Jn , say

{V (i)
n : i = 1, · · · ,m} and {J (i)

n : i = 1, · · · ,m}.

Then

E(F (X1,X 1)) ' E(F (Xτn ,X τn ) = E(F (Vn , Jn)) ' 1

m

mX
i=1

F (V (i)
n , J (i)

n )=: bFn,m
MC .

Sampling from X en and X en
is generally impossible for a given Lévy

process, but not for a 10 parameter family of processes known as
Kuznetsov’s β-class (ask me afterwards if interested in the details!).
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Numerical Analysis

Henceforth assume that

F : R× [0,∞) 7→ [0,∞) is Lipschitz continuous with coefficient 1.

Our underlying Lévy process satisfiesZ
|x |≥1

x2Π(dx) < ∞,

where Π is its associated jump measure (finite second moments).

Notation.

Write a . b for two positive quantities a and b, if a/b is uniformly bounded
(independent of n, M , or any other parameters).

Write Fn,(i) := F (V
(i)
n , J

(i)
n ) for the i-th sample of Fn := F (Vn , Jn )

(using the Wiener-Hopf random walk).

Define the mean square error as

e(bFn,m
MC )2 := E[(bFn,m

MC −E[F (X1,X 1)])2] = m−1V(Fn )+(E[Fn−F (X1,X 1)])2

Then we have the following convergence/complexity theorem . . .
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Numerical Analysis WHMC

Theorem (Single-level WHMC)

Assume that ∃α > 0 s.t.

(i) E[|Fn − F (Xt ,X t)|] . n−α and

(ii) E[C(Fn)] . n (where C(Fn) is the cost to compute a single sample from Fn )

Then, ∀ν ∈ N ∃n,M ∈ N s.t.

E
h
C(bFn,M

MC )
i

. ν and L2 error e(bFn,m
MC ) . ν

− 1
2+1/α .

For Kuznetsov’s β-class of Lévy processes also Assumption (ii) holds.

Using the forthcoming analysis we shall shortly present, it will turn out that:

when X has paths of unbounded variation, α = 1
4
⇒ O(ν−

1
6 )

convergence!

when X has paths of bounded variation, α = 1
2
⇒ O(ν−

1
4 ) convergence!

The best one can hope for with such Monte-Carlo schemes is an O(ν−
1
2 )

converegence.
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Multi-level Wiener-Hopf Monte-Carlo [Heinrich, 2001], [Giles, 2007], . . .

Computational gains from exploiting the telescopic sum

E[FnL ] = E[Fn0 ] +
XL

`=1
E[Fn` − Fn`−1 ],

where n` = 2`n0, ` = 1, . . . ,L, for some small n0 ∈ N.

Suggesting the multilevel estimator

bFn0,L,{M`}
ML :=

1

M0

M0X
i=1

Fn0,(i) +

LX
`=1

1

M`

MX̀
i=1

(Fn`,(i) − Fn`−1,(i)).

Here it is very important that Fn`−1 can be obtained from Fn` by a
“deterministic” transformation of the random variables used to obtain Fn` .

A little algebra again reveals that the means square error satisfies

e(bFn0,L,{M`}
ML )2 =

1

M0
V(Fn0) +

LX
`=1

1

M`
V(Fn` − Fn`−1) +

`
E[Fn − F (X1,X 1)]

´2
.

See also [Dereich, Heidenreich, 2011], [Dereich, 2011], [Giles, Xia, 2012].
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Multil-level Weiner-Hopf Monte-Carlo simulation for Lévy processes

Poisson thinning and multilevel WHMC

In the WHMC method how do we introduce ”levels”?
Recall also that it is crucial to have a Poisson process for the time
randomisations on all levels! How do we sample on two consecutive levels?

Suppose the ”level `”grid is based on a Poisson process of rate n`. Then
by tossing a coin and rejecting arrivals with probability 1/2 we end up with
a Poisson process of rate n`−1: our new coarser ”level `− 1”Poisson grid.
(Not a new idea! Also used by [Glasserman, Merener, 2003], [Giles, Xia, 2012], . . . )

1

1
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Numerical Analysis (multilevel case)
Theorem (Multilevel WHMC)

Assume ∃α, β > 0 with α ≥ 1
2

max{β, 1} such that

(i) |E[Fn` − F (Xt ,X t)]| . n−α
`

(ii) V[Fn` − Fn`−1 ] . n−β
`

(iii) E[Cn` ] . n`.

Then, ∀ν ∈ N ∃L and {M`}L`=0 s.t. E
h
C

“bFn0,L,{M`}
ML

”i
. ν and L2 error

e
“bFn0,L,{M`}

ML

”
.

8>><>>:
ν−

1
2 if β > 1 ,

ν−
1
2 log2 ν if β = 1 ,

ν
− 1

2+(1−β)/α if β < 1 .

For Kuznetsov’s β-class of Lévy processes also Assumption (iii) holds.

Recall that α = (1/4)1/2 for (un)bounded variation paths & shortly we

shall see β = 1/2 ⇒ (O(ν−
1
4 )) O(ν−

1
3 ).

Compare with former (single-level) rates (O(ν−
1
6 )) O(ν−

1
4 ).
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Numerical analysis MLWH

Remains to verify the assumptions (i) |E[Fn` − F (Xt ,X t)]| . n−α
` and

(ii) V[Fn` − Fn`−1 ] . n−β
` .

Recalling that F is Lipschitz

V(Fn` − Fn`−1) = V(F (Xτn`
,X τn`

)− F (Xτn`−1 ,X τn`−1))

≤ E[(Xτn`
−Xτn`−1)

2] + E[(X τn`
−X τn`−1)

2]

[Unbounded variation case]:Working with our Lévy process as a Markovian
semi-martingale we get for s and t random times independent of X ,

(1) E[(Xt −Xs)2] = V(X1)E[|t− s|] + E[X1]2E[(t− s)2]

(2) E[(X t −X s)2] ≤ 16V(X1)E[|t− s|] + 2(max{E[X1], 0})2E[(t− s)2],

[Better estimates for bounded variation case!]

Finally, recalling that τn` is a (n`,n`)-gamma distribution with mean 1,

E[(τn` − 1)2] . n−1
` and E[|τn` − 1|] . n

− 1
2

` .

All together we get V(Fn` − Fn`−1) . n
− 1

2
` , and so β = 1

2
.

Via Jensen’s inequality we then easily also get α = 1
4

. . .
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Can we do better?

Let n ∈ N and define T(n) = τκ1 , where κ1 = inf{j ∈ N : τj > 1}. Then

(XT(n),XT(n))
d
= (Vκ1 , Jκ1)

where

Vk :=

kX
i=1

`
S i

n + I i
n

´
and Jk :=

k_
i=1

`
Vi−1 + S i

n

´
and {S j

n : j ≥ 1} and {I j
n : j ≥ 1} are i.i.d. sequences of random variables

with common distribution equal to X en and X en
, respectively.

1 T(n)

Note that by the lack of memory property T(n)− t is still exponentially
distributed with parameter n. Moreover

T(n)− t → 0 as n ↑ ∞ (significantly faster than τn − t)

(Vκt , Jκt ) → (Xt ,X t) in distribution as n ↑ ∞ (rates later . . . )
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Can we do better?

Now construct M independent versions of Vκt and Jκt by sampling
repeatedly and indep. from the distributions of X en and X en

and define

bFn,M
MC :=

1

M

MX
i=1

F
“
V (i)

κt
, J (i)

κt

”
≈ E(F (XT(n),XT(n))) (sampling error)

≈ E(F (Xt ,X t)) (approximation error)

Levels: Now note that T(n`−1) ≥ T(n`) and so

EITHER:

1

ETC . . .
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Multil-level Weiner-Hopf Monte-Carlo simulation for Lévy processes

Can we do better?

EITHER, with probability 1/2, T(n`) = T(n`−1). Hence, Fn` − Fn`−1 = 0
(due to the exactness of the Wiener-Hopf factorisation)

and we have to do no work at all (apart from one coin toss) for this sample.

1

In other words, we have halved the work!
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Can we do better?

OR, with probability 1/2, T(n`−1) > T(n`) in which case

XT(n`−1) = max(XT(n`),XT(n`) + Sn`−1/t)

XT(n`−1) = XT(n`−1) + Sn`−1/t + In`−1/t

and so the additional work for the path on level `− 1 is negligible.

1
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Can we do better?

Following the numerical analysis through, remembering that T(n)− 1 is
exponentially distributed, the key estimates boil down to

E(|T(n)− 1|) =
1

n
and E[(T(n)− 1)2] =

1

n2
.

which imply that β = 1.

Back in the complexity theorem, this gives us α = 1
2

and β = 1 so that an
expected cost of order no greater than O(ν) can be delivered against an

L2 error of order O(ν−
1
2 log2 ν). QUASI-OPTIMAL!

BAD NEWS! Because this algorithm has ”awareness”of each of the
exponential ”Wiener-Hopf exponential periods” (i.e. we need to see
whether the cumulative exponential periods exceed the level 1), it means
that to implement the algorithm we need to be able to sample
simultaneously from the triple (X en ,Xen −X en , en).
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Comparison with other methods

Limited works: [Jacod et al, 2005] (less general – functionals of Xt only, smooth F );
[Dereich et al, 2011], [Dereich, 2011] (more general – Lévy driven SDEs).

Rates in these papers depend on Blumenthal-Getoor index (“jump activity”):

ρ := inf

(
β > 0 :

Z
(−1,1)

|x |βΠ(dx) < ∞

)
∈ [0, 2].

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

 

 

DH
D
JKMP
MLHW
HWMC

WHMC fully robust w.r.t ρ!
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Rates in these papers depend on Blumenthal-Getoor index (“jump activity”):

ρ := inf

(
β > 0 :

Z
(−1,1)

|x |βΠ(dx) < ∞

)
∈ [0, 2].

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

 

 

DH
D
JKMP
MLHW
HWMC

WHMC fully robust w.r.t ρ!



19/ 23

Multil-level Weiner-Hopf Monte-Carlo simulation for Lévy processes
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SDEs with Gaussian correction. Ann. Appl. Probab. 21(1), 283–311.

Dereich, S. and Heidenreich, F. (2011) A multilevel Monte Carlo algorithm
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Kuznetsov’s β-family

The characteristic exponent (Ψ(θ) = − log E(eiθX1), θ ∈ R) is given by

Ψ(θ) = iaz +
1

2
σ2z 2 +

c1

β1


B(α1, 1− λ1)− B(α1 −

iθ

β1
, 1− λ1)

ff
+

c2

β2


B(α2, 1− λ2)− B(α2 +

iθ

β2
, 1− λ2)

ff
where B(x , y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function, with parameter
range a ∈ R, σ, ci , αi , βi > 0 and λ1, λ2 ∈ (0, 3) \ {1, 2}.
The corresponding Lévy measure Π has density

π(x) = c1
e−α1β1x

(1− e−β1x )λ1
1{x>0} + c2

eα2β2x

(1− eβ2x )λ2
1{x<0}.

The β-class of Lévy processes includes another recently introduced family
of Lévy processes known as Lamperti-stable processes.
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Meromorphic Lévy processes (equivalent definition)

(i) The characteristic exponent Ψ(z ) is a meromorphic function which has
poles at points {−iρn , iρ̂n}n≥1, where ρn and ρ̂n are positive real numbers.

(ii) For q ≥ 0 function q + Ψ(z ) has roots at points {−iζn , iζ̂n}n≥1 where ζn

and ζ̂n are nonnegative real numbers (strictly positive if q > 0). We will
write ζn(q), ζ̂n(q) if we need to stress the dependence on q .

(iii) The roots and poles of q + Ψ(iz ) satisfy the following interlacing condition

...− ρ2 < −ζ2 < −ρ1 < −ζ1 < 0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < ...

(iv) The Wiener-Hopf factors are expressed as convergent infinite products,

E
h
e−zXeq

i
=

Y
n≥1

1 + z
ρn

1 + z
ζn

E
h
e
zXeq

i
=

Y
n≥1

1 + z
ρ̂n

1 + z

ζ̂n

.
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Distribution of extrema

For x ≥ 0

P(X eq ∈ dx) = a0(ρ, ζ)δ0(dx) +

∞X
n=1

an(ρ, ζ)ζne−ζnxdx

Here

a0(ρ, ζ) = lim
n→+∞

nY
k=1

ζk

ρk
, an(ρ, ζ) =

„
1− ζn

ρn

« Y
k≥1
k 6=n

1− ζn
ρk

1− ζn
ζk

A similar expression holds for P(−X eq
∈ dx).


