Conservative \[\Rightarrow \int_0^\infty \frac{1}{U(3)} \, d3 = \infty \]

\[\forall \theta \quad U_t(\theta) \xrightarrow{\theta \to 0} 0 \]

Assume henceforth that \(\star \) in force.

Extinction Probabilities

Recall that \(S = \inf \{ t > 0 : Y_t = 0 \} \) and if \(\{ Y_t = 0 \} \)

Then \(\{ Y_{t+s} = 0 \} \) \(\forall s > 0 \)

Want to study \(P_x(S < \infty) \)
\[E_x(e^{-\Theta Y_t}) = e^{-x \mu_t(\Theta)} \]

Differentiating in Θ we see

\[E_x(e^{-\Theta Y_t} Y_t) = e^{-x \mu_t(\Theta)} \mu_t(\Theta) \]

Take limit as $\Theta \to 0$

MCT: \[E_x(Y_t) = \left(\frac{\mu_t(0^+)}{\mu_t(0)} \right) = \lim_{\Theta \to 0^+} \frac{\mu_t(\Theta)}{\Theta} \]

Both sides are understood to be ∞ simultaneously.

\[\frac{\mu_t(\Theta)}{\Theta} + \psi(\mu_t(\Theta)) = 0 \quad \text{diff in } \Theta \]

\[\frac{d}{dt} \left(\frac{\mu_t(\Theta)}{\Theta} \right) + \psi'(\mu_t(\Theta)) \left(\frac{\mu_t(\Theta)}{\Theta} \right) = 0 \]

Solving using standard techniques from 1st order ODEs:

\[\frac{\mu_t(\Theta)}{\Theta} = ce^{-\int \theta \psi'(u_s(\Theta)) \, ds} \]

c is an unknown constant.

Taking $\Theta = 0$ in \Box, we have $\mu_0(\Theta) = 0$ tells us

\[\frac{\mu_t(\Theta)}{\Theta} \xrightarrow{\Theta \to 0} 1 \]

By inspection in \Box implies $c = 1$.
\[
E_x(Y_t) = x \frac{\partial u_t(0^+)}{\partial x}
\]
and taking \(\theta \downarrow 0 \)

\[
\frac{\partial u_t(0^+)}{\partial x} = \int_0^{\theta} f'(u_s(0)) \, ds
\]

\[
\frac{\partial u_t(0^+)}{\partial x} = e^{-\theta} - \theta f(0)
\]

If \(|f'(0^+)| < \infty \) then DCT and tend \(u_s(0) \theta \to 0 \)

to deduce that

\[
\frac{\partial u_t(0^+)}{\partial x} = e^{-\theta} - \theta f(0)
\]

and hence

\[
E_x(Y_t) = x e^{-\theta}
\]

(1)

If \(|f'(0^+)| = \infty \) by monotonicity and tend \(u_s(0) \theta \to 0 \)

\[
\frac{\partial u_t(0^+)}{\partial x} = e^{-\theta} - \theta f(0) = \infty
\]

and (1) will hold but RHBS (and hence LTV)

\[
= \infty
\]
Induces the following def:

A CSBP with branching rate γ is called

1. Subcritical if $\gamma'(0^+) > 0$
2. Critical if $\gamma'(0^+) = 0$
3. Supercritical if $\gamma'(0^+) < 0$

Theorem Suppose that X is a CSBP with br. mech. γ. Let $P(x) = P_x(\tau < \infty)$. [subordinator case]

1. If $\gamma(\infty) < 0$ then $\forall x > 0 \quad P(x) = 0$
2. $\gamma(\infty) = \infty$ then $P(x) > 0$ for some (and then all) $x > 0$

[SPP case]

\[\int_{\gamma(0)}^{\infty} \frac{1}{\lambda^3} d\lambda < \infty \]

which case $P(x) = e^{-\Phi(0)x}$ where

$\Phi(0) = \sup \{ \lambda \geq 0 : \gamma(\lambda) = 0 \}$.

\[\Phi(0) \]
\[\text{Pf (ii) } \quad P_x (Y_t = 0) = P_x (3 \leq t) \]
\[P_x (Y_t = 0) \quad \frac{1}{t+1} P_x (3 < \infty) \]

\[E_x (e^{-\lambda Y_t}) = e^{-\lambda u_t(0)} \]
\[\Rightarrow \quad P_x (Y_t = 0) = e^{-\lambda u_t(\infty)} \quad \text{where } \quad u_t(\infty) = \ln \frac{u_t(0)}{t+1} \]

Recall that
\[\int_0^1 \frac{1}{u_t(0)} \, d\bar{t} = t \quad (\Delta) \]

If \(u_t(\infty) < \infty \) then since RHS of (\(\Delta \))

1. independent of \(\theta \) then (taking limit in (\(\Delta \)))
\[\int_0^\infty \frac{1}{t+1} \, d\bar{t} < \infty \]

Conversely, if the above holds \(u_t(\infty) < \infty \) \((\theta/1, \theta = t) \)
We now know that if \(\int_0^\infty \frac{1}{u(t)} \, dt < \infty \)

then \(\int_0^\infty \frac{1}{u(t)} \, dt = -\frac{1}{x} \log P(3 \leq t) \)

as \(t \to \infty \), \(u(t) \) must decrease to a root of \(u \) (because RHS blows up so LHS must blow up -- don't forget the shape of \(u ! \))

In fact the largest root should be \(\Phi(0) \)

In conclusion \(\lim_{t \to \infty} P_x(3 \leq t) = e^{-x \ln u(t)} \)

\[= e^{-\Phi(0)x} \]

\[= e^{-\Phi(0)x} \]

\[\int_0^\infty \frac{1}{u(t)} \, dt = \infty \text{ then } u(t) = \infty \]

\[\Rightarrow P_x(3 < \infty) = \lim_{t \to \infty} P_x(3 \leq t) = 0 \]
The conclusion of last form tells us

\[\end{array} \]

\[\begin{array}{ll}
\text{Condition} & \int_0^\infty \frac{f(x)}{x \Gamma(x)} dx = 0 \\
4(\infty) < 0, & \int_0^\infty \frac{4(x)}{x \Gamma(x)} dx = \infty \\
4'(0^+) < 0, & e^{-\int_0^\infty \frac{4(x)}{x \Gamma(x)} dx} < 1 - e^{-\int_0^\infty \frac{4(x)}{x \Gamma(x)} dx}
\end{array} \]
From the case \[f(\infty) = \infty \] \[\int_{\text{some interval}} \frac{1}{f(x)} \, dx = \infty \]

AND

\(f'(0^+) > 0 \) \(\Rightarrow \) subcritical

apparently

\[p(x) = 0 \quad \forall x > 0 \]

\[E_x(\gamma_t) = x e^{-\gamma/(\gamma^+)} t \]
\[J_S = \int_0^\infty Y_u \, du \]

Recall that when \(4(\omega) = \infty \) (i.e., \(\mathcal{P}L \) case)
\[\Phi(q) := \sup \left\{ \tau > 0 : 4(\tau) = q \right\} \]

Lemma

\(Y \) is a \(\mathcal{B}P \), \(\mathcal{B}F \), mean 4, s.t. \(4(r) = \infty \)

Then (\(x \geq 0 \))
\[\mathbb{E}_x (e^{-q \int_0^\infty Y_s \, ds}) = e^{-\overline{\Phi}(q)x} \]
From the Lamperti transformation

\[
T_0^- = \inf \{ t > 0 : X_t < 0 \}
\]

Then \(T_0^- = \int_0^\infty Y_u \, du \)

\[
E_{-X} \left(e^{-\int_0^{T_0^-} Y_u \, du} \right) = E_0 \left(e^{-\int_0^{T_0^+} X_u \, du} \right)
\]

\[
T_0^+(-X) = \inf \{ t > 0 : -X > x \}
\]

from previously