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6 The Duality Lemma

In this section we discuss a simple feature of all Lévy processes which follows
as a direct consequence of stationary independent increments. That is, when
the path of a Lévy process over a finite time horizon is time reversed (in an
appropriate sense) the new path is equal in law to the process reflected about
the origin. This property will prove to be of crucial importance in a number of
fluctuation calculations later on.

Lemma 6.1 (Duality Lemma) For each fixed t > 0, define the reversed pro-

cess

{X(t−s)− −Xt : 0 ≤ s ≤ t}

and the dual process,

{−Xs : 0 ≤ s ≤ t}.

Then the two processes have the same law under P.

Proof. Define the time reversed process Ys = X(t−s)− −Xt for 0 ≤ s ≤ t
and note that under P we have Y0 = 0 almost surely as t is a jump time
with probability zero. (For the last statement recall that jumps appear as
the countable superposition of compensated Poisson point processes). As can
be seen from Fig. 7 (which is to be understood symbolically), the paths of Y
are obtained from those of X by a reflection about the vertical axis with an
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Figure 7: Duality of the processes X = {Xs : s ≤ t} and Y = {X(t−s)− −Xt :
s ≤ t}. The path of Y is a reflection of the path of X with an adjustment of
continuity at jump times.

adjustment of the continuity at the jump times so that its paths are almost
surely right continuous with left limits. Further, the stationary independent
increments of X imply directly the same as is true of Y. Further, for each
0 ≤ s ≤ t, the distribution of X(t−s)− − Xt is identical to that of −Xs and
hence, since the finite time distributions of Y determine its law, the proof is
complete.

The Duality Lemma is also well known for (and in fact originates from)
random walks, the discrete time analogue of Lévy processes, and is justified
using an identical proof. See for example [1].

One interesting feature that follows as a consequence of the Duality Lemma
is the relationship between the running supremum, the running infimum, the
process reflected in its supremum and the process reflected in its infimum. The
last four objects are, respectively,

Xt = sup
0≤s≤t

Xs, Xt = inf
0≤s≤t

Xs

{Xt −Xt : t ≥ 0} and {Xt −Xt : t ≥ 0}.

Lemma 6.2 For each fixed t > 0, the pairs (Xt, Xt−Xt) and (Xt−Xt,−Xt)
have the same distribution under P.

Proof. Define X̃s = Xt−X(t−s) for 0 ≤ s ≤ t and write X̃t = inf0≤s≤t X̃s.
Using right continuity and left limits of paths we may deduce that

(Xt, Xt −Xt) = (X̃t − X̃t,−X̃t)

almost surely. One may visualise this in Fig. 8. By rotating the picture about
by 180◦ one sees the almost sure equality of the pairs (Xt, Xt −Xt) and (X̃t −

2



= −Xt
−

Xt
−

˜Xt
˜

=−Xt
−

−Xt
−

˜Xt

t

Figure 8: Duality of the pairs (Xt, Xt −Xt) and (Xt −Xt,−Xt).

X̃t,−X̃). Now appealing to the Duality Lemma we have that {X̃s : 0 ≤ s ≤ t}
is equal in law to {Xs : 0 ≤ s ≤ t} under P. The result now follows.

7 Laplace exponents of processes with one sided

jumps

In this section we are interested in looking at all Lévy processes which experience
jumps in only one direction. It will be convenient in the forthcoming analysis to
work with a Laplace exponent instead of the characteristic exponent described
in the Lévy-Itô decomposition. We begin by addressing the issue of when such
exponents exist. In the next theorem, we still assume that X is a general Lévy
process.

Theorem 7.1 Let β ∈ R, then

E
(
eβXt

)
<∞ for all t ≥ 0 if and only if

∫

|x|≥1

eβxΠ(dx) <∞.

Proof. First suppose that E
(
eβXt

)
< ∞ for some t > 0. Recall X(1), X(2)

and X(3) given in the Lévy–Itô decomposition. Note in particular that X(2)

is a compound Poisson process with arrival rate λ := Π(R\(−1, 1)) and jump
distribution F (dx) := 1(|x|≥1)Π(dx)/Π(R\(−1, 1)) and X(1) + X(3) is a Lévy
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process with Lévy measure 1(|x|≤1)Π(dx). Since

E
(
eβXt

)
= E

(
eβX

(2)
t

)
E

(
eβ(X

(1)
t +X

(3)
t )
)
,

it follows that
E

(
eβX

(2)
t

)
<∞, (7.1)

and hence as X(2) is a compound Poisson process,

E(eβX
(2)
t ) = e−λt

∑

k≥0

(λt)k

k!

∫

R

eβxF ∗k (dx)

= e−Π(R\(−1,1))t
∑

k≥0

tk

k!

∫

R

eβx(Π|R\(−1,1))
∗k (dx) <∞, (7.2)

where F ∗n and (Π|R\(−1,1))
∗n are the n-fold convolution of F and Π|R\(−1,1),

the restriction of Π to R\(−1, 1), respectively. In particular the summand cor-
responding to k = 1 must be finite; that is

∫

|x|≥1

eβxΠ(dx) <∞.

Now suppose that
∫

R
eβx1(|x|≥1)Π(dx) <∞ for some β ∈ R. Since (Π|R\(−1,1))

∗n (dx)
is a finite measure, we have

∫

R

eβx(Π|R\(−1,1))
∗n (dx) =

(∫

|x|≥1

eβxΠ(dx)

)n
,

and hence (7.2) and (7.1) hold for all t > 0. The proof is thus complete once we
show that for all t > 0,

E

(
eβ(X

(1)
t +X

(3)
t )
)
<∞. (7.3)

However, since X(1)+X(3) has a Lévy measure with bounded support, it follows
that its characteristic exponent,

−
1

t
log E

(
eiθ(X

(1)
t +X

(3)
t )
)

= iaθ +
1

2
σ2θ2 +

∫

(−1,1)

(1 − eiθx + iθx)Π (dx) , θ ∈ R, (7.4)

can be extended to an entire function (analytic on the whole of C). To see this,
note that

∫

(−1,1)

(1 − eiθx + iθx)Π (dx) = −

∫

(−1,1)

∑

k≥0

(iθx)k+2

(k + 2)!
Π (dx) .
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The sum and the integral may be exchanged in the latter using Fubini’s Theorem
and the estimate

∑

k≥0

∫

(−1,1)

(|θx|)k+2

(k + 2)!
Π (dx) ≤

∑

k≥0

(|θ|)k+2

(k + 2)!

∫

(−1,1)

x2Π(dx) <∞.

Hence the right–hand side of (7.4) can be written as a power series for all θ ∈ C

and is thus entire. By writing the exponential function as a power series, note

that, with the help of Fubini’s Theorem we can write E(eβ(X
(1)
t +X

(3)
t )) as a

power series in β which converges on account of the fact that, as a power series
it is equal to the one corresponding to the analytical function exp{−Ψ(1)(θ) −
Ψ(3)(θ)} with θ = −iβ.

There are two particular families of Lévy processes that we would like to
apply the above theorem to.

7.1 Subordinators

Note that if X is a subordinator then, by the above Theorem, since −X has
no positive jumps, E(e−λXt) is finite for all t ≥ 0 and λ ≥ 0. It thus follows
that E(eiθXt) is an analytic function on {θ ∈ C : ℑθ ≥ 0}. Reconsidering the
characteristic exponent in Lemma 5.2 and noting that it may be analytically
extended to {θ ∈ C : ℑθ ≥ 0}, it follows by the Identity Theorem of complex
analysis that

E(e−λXt) = exp

{
−

(
δλ+

∫

(0,∞)

(1 − e−λx)Π(dx)

)
t

}

for all λ ≥ 0 where Π is the jump measure of X (which necessarily satisfies∫
(0,∞)(1 ∧ x)Π(dx) <∞) and δ is its drift.

We would like to introduce a slightly more general definition of a subordi-
nator for future use at this point. It will be convenient to talk of killed subor-
dinators. A process X = {Xt : t ≥ 0} is a killed subordinator if

Xt =

{
Yt if t < eq
∂ otherwise

where {Yt : t ≥ 0} is a subordinator, for q > 0, eq is an independent and
exponentially distributed random variable and ∂ is some ‘cemetery’ state. In
the case that q = 0 we understand eq = ∞, that is to say there is no killing at
all. We may also talk of the Laplace exponent of such a killed subordinator as
for all λ ≥ 0 we have1

E(e−λXt) = E(e−λYt1(t<eq)) = e−qtE(e−λYt)

1We are making an abuse of notation in the use of the measure P. Strictly speaking we

should work with the measure P×P where P is the probability measure on the space in which

the random variable eq is defined. This abuse of notation will be repeated for the sake of

convenience at various points throughout this text.
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and hence
E(e−λXt) = e−Φ(λ)t

where

Φ(λ) = q + δλ+

∫

(0,∞)

(1 − e−λx)Π(dx)

where δ ≥ 0 and Π is a measure on (0,∞) satisfying
∫
(0,∞)

(1 ∧ x)Π(dx) <∞.

7.2 Spectrally negative Lévy processes

A spectrally negative Lévy process is any Lévy process whose jump measure Π
satisfies Π(0,∞) = 0 and whose paths are not monotone. The latter proviso
excludes the process Xt = δt, t ≥ 0, for some δ ≥ 0 and Xt = −Yt, t ≥ 0,
where {Yt : t ≥ 0} is a subordinator. We may make a similar observation to the
discussion above concerning subordinators and note that it is immediate from
Theorem 7.1 that E(eλXt) is finite for all t ≥ 0 and λ ≥ 0 and hence E(eiθXt) is
an analytic function on {θ ∈ C : ℑθ ≥ 0}. Inspecting its characteristic exponent

Ψ (θ) = iaθ +
1

2
σ2θ2 +

∫

(−∞,0)

(1 − eiθx + iθx1(|x|<1))Π(dx)

one sees that the above function can be analytically extended to {θ ∈ C : ℑθ ≥
0}. Hence, once again, thanks to the Identity Theorem, we may deduce that for
all λ ≥ 0,

E(eλXt) = eψ(λ)t

where

ψ(λ) = −aλ+
1

2
σ2λ2 +

∫

(−∞,0)

(eλx − 1 − λx1(|x|<1))Π(dx).

The reader may feel that there is a pedantic change of notation at this point
as we have chosen to work with a negatively signed Laplace exponent in the
case of a subordinator and positively signed Laplace exponent in the spectrally
negative Lévy process. However, a little thought shows that in fact it is a
consistent choice of notation. Indeed if we look back to the representation (5.2)
of any bounded variation Lévy process, then it follows that a spectrally negative
Lévy process of bounded variation necessarily takes the form

Xt = ct−
∑

s≤t

(−∆Xs) t ≥ 0

where c > 0. That is to say, it is the difference of a linear drift and a pure jump
subordinator and hence

ψ(λ) = cλ−

∫

(−∞,0)

(1 − eλx)Π(dx) = cλ−

∫

(0,∞)

(1 − e−λx)ν(dx)

where ν(x,∞) = Π(−∞,−x) and so ν should be thought of as the jump measure
of the subordinator

∑
s≤t(−∆Xs), t ≥ 0. Given the form of X we see then that
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ψ does indeed respect the notational conventions for the Laplace exponent of a
subordinator.

Before concluding this section let us make some notes about the analytical
properties of the Laplace exponent ψ(λ) and its right inverse function

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}.

Exercise 14 shows that on [0,∞), ψ is infinitely differentiable, strictly convex
and that ψ(0) = 0 whilst ψ(∞) = ∞. As a particular consequence of these
facts, it follows that E(X1) = ψ′(0+) ∈ [−∞,∞). In the case that E(X1) ≥ 0,
Φ(q) is the unique solution to ψ(θ) = q in [0,∞). When E(X1) < 0 the latter
statement is true only when q > 0 and when q = 0 there are two roots to the
equation ψ(θ) = 0, one of them being θ = 0 and the other being Φ(0) > 0. See
Fig. 9 for further clarification.

ψ′(0+) ∈ [−∞, 0) ψ′(0+) ∈ [0, ∞)ψ ψ

q q

F(q) F(q)

F(0)

Figure 9: Two examples of ψ, the Laplace exponent of a spectrally negative
Lévy process, and the relation to Φ.

8 Exponential martingales for spectrally nega-

tive Lévy processes and applications

In this section we assume that X is a spectrally negative Lévy process and
we loot at two exponential type martingales which lead to further information
about the paths of the process.
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8.1 The first exponential martingale

Following the reasoning in Exercise 5, it is easy to show that

Et(β) := eβXt−ψ(β)t, t ≥ 0

is a martingale with respect to {Ft : t ≥ 0} the natural filtration generated byX .
When X is a Brownian motion, this martingale is the same as the exponential
martingale that is used in the context of the Girsanov change of measure. Indeed
Exercise 15 shows that within the current context of spectrally neagtive Lévy
processes, the above martingale may still be used to perform an exponential
change of measure resulting in a new process which is still a spectrally negative
Lévy process.

Our first result here is to use the exponential martingale to characterise the
law of the first passage times

τ+
x := inf{t > 0 : Xt > x}

for x ≥ 0.

Theorem 8.1 For any spectrally negative Lévy process, with q ≥ 0,

E(e−qτ
+
x 1(τ+

x <∞)) = e−Φ(q)x,

where Φ(q) is the largest root of the equation ψ(θ) = q.

Proof. Fix q > 0. Using spectral negativity to write x = Xτ+
x

on {τ+
x <∞},

note with the help of the Strong Markov Property that

E(eΦ(q)Xt−qt|Fτ+
x

)

= 1(τ+
x ≥t)e

Φ(q)Xt−qt + 1(τ+
x <t)

eΦ(q)x−qτ+
x E(e

Φ(q)(Xt−X
τ
+
x

)−q(t−τ+
x )

|Fτ+
x

),

= e
Φ(q)X

t∧τ
+
x
−q(t∧τ+

x )

where in the final equality we have used the fact that E(Et(Φ(q))) = 1 for all
t ≥ 0. Taking expectations again we have

E(e
Φ(q)X

t∧τ
+
x

−q(t∧τ+
x )

) = 1.

Noting that the expression in the latter expectation is bounded above by eΦ(q)x,
an application of dominated convergence yields

E(eΦ(q)x−qτ+
x 1(τ+

x <∞)) = 1

which is equivalent to the statement of the theorem.

The following two corollaries are worth recording for later. The first one
hints at forthcoming remarks; that spectrally negative Lévy processes drift to
+∞ (resp. oscillate, resp. drift to −∞) accordingly as ψ′(0+) = E(X1) > 0
(resp. = 0, resp. < 0).
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Corollary 8.1 From the previous theorem we have that P(τ+
x < ∞) = e−Φ(0)x

which is one, if and only if Φ(0) = 0, if and only if ψ′(0+) ≥ 0, if and only if

E(X1) ≥ 0.

Corollary 8.2 If E(X1) ≥ 0 then the process {τ+
x : x ≥ 0} is a subordina-

tor and otherwise it is equal in law to a subordinator killed at an independent

exponential time with parameter Φ(0).

Proof. First we claim that Φ(q) − Φ(0) is the Laplace exponent of a non-
negative infinitely divisible random variable. To see this, note that for all x ≥ 0,

E(e−qτ
+
x |τ+

x <∞) = e−(Φ(q)−Φ(0))x = E(e−qτ
+
1 |τ+

1 <∞)x,

and hence in particular

E(e−qτ
+
1 |τ+

1 <∞) = E(e
−qτ+

1/n |τ+
1/n <∞)n

showing that P(τ+
1 ∈ dz|τ+

1 < ∞) for z ≥ 0 is the law of an infinitely divisible
random variable. Next, using the Strong Markov Property, spatial homogeneity
and again the special feature of spectral negativity that {Xτ+

x
= x} on the event

{τ+
x <∞}, we have for x, y ≥ 0 and q ≥ 0,

E(e−q(τ
+
x+y−τ

+
x )1(τ+

x+y<∞)|Fτ+
x

)1(τ+
x <∞)

= E(e−qτ
+
y 1(τ+

y <∞))1(τ+
x <∞)

= e−(Φ(q)−Φ(0))ye−Φ(0)y1(τ+
x <∞).

In the first equality we have used standard notation for Markov processes,
Ex(·) = E(·|X0 = x). We see then that the increment τ+

x+y − τ+
x is inde-

pendent of Fτ+
x

on {τ+
x < ∞} and has the same law as the subordinator with

Laplace exponent Φ(q) − Φ(0) but killed at an independent exponential time
with parameter Φ(0).

When E(X1) ≥ 0 we have that Φ(0) = 0 and hence the concluding statement
of the previous paragraph indicates that {τ+

x : x ≥ 0} is a subordinator (without
killing). On the other hand, if E(X1) < 0, or equivalently Φ(0) > 0 then the
second statement of the corollary follows.

For the next corollary, recall that

Xt := sup
s≤t

Xs, t ≥ 0,

Corollary 8.3 Suppose that q > 0 and let eq be an exponentially distributed

random variable which is independent of the spectrally negative Lévy process X.

Then Xeq is exponentially distributed with parameter Φ(q).

Proof. The result is an easy consequence of the fact that

P(Xeq > x) = P(τ+
x < eq) = E(e−qτ

+
x 1(τ+

x <∞))

together with the conclusion of Theorem 8.1.
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8.2 The second exponential martingale

The second martingale of interest has finds its roots in queuing theory where
one typically thinks of the process {Xt ∨ x − Xt : t ≥ 0} as the workload of
a queue with initial workload x ≥ 0. In particular when X is the difference of
a linear drift and a compound Poisson process with negative jumps, then the
aforementioned process is precisely the workload process of an M/G/1 queue.
The martingale was introduced in Kella and Whitt (1992).

Theorem 8.2 For λ > 0 and x ≥ 0,

Mx
t := ψ(λ)

∫ t

0

e−λ(Xs∨x−Xs) ds+1−e−λ(Xt∨x−Xt)−λ(Xt∨x), t ≥ 0 (8.1)

is a martingale with respect to {Ft : t ≥ 0}.

Proof. We give a proof, which on the one hand can be understood as
rigorous for the student proficient in stochastic calculus of semi-martingales,
and otherwise may be understood heuristically. Firstly recall that Et(λ) =
exp{λXt − ψ(λ)t} is a martingale and hence loosely speaking, dEt(λ) is a mar-
tingale increment. Next, taking on face value the integration by parts formula

d[e−λ(Xt∨x)+ψ(λ)tEt(λ)] = e−λ(Xt∨x)+ψ(λ)tdEt(λ)

−e−λ(Xt∨x)+ψ(λ)tEt(λ)[λd(X t ∨ x) − ψ(λ)dt]

where the first integral on the right hand side is understood as a stochastic inte-
gral and the second integral on the right hand side is understood as a Lebesgue-
Stieltjes integral, we have

dMx
t = ψ(λ)e−λ(Xt∨x)+ψ(λ)tEt(λ)dt − d[e−λ(Xt∨x)+ψ(λ)tEt(λ)]

−λd(Xt ∨ x)

= ψ(λ)e−λ(Xt∨x)+ψ(λ)tEt(λ)dt − e−λ(Xt∨x)+ψ(λ)tdEt(λ)

+e−λ(Xt∨x)+ψ(λ)tEt(λ)[λd(X t ∨ x) − ψ(λ)dt]

−λd(Xt ∨ x).

Next note that the process Xt ∨ x does not increment until t > τ+
x in which

case it follows that Xt ∨ x − Xt = Xt − Xt. Moreover, the latter difference
is precisely equal to zero whenever t is in the support of the measure dXt. It
follows that

dMx
t = −e−λ(Xt∨x)+ψ(λ)tdEt(λ)

showing thatMx
t is a local martingale since dEt(λ) is a martingale increment. To

complete the proof rigorously one needs to show that M is a proper martingale
(as opposed to strictly a local martingale). It suffices to show that for each
t > 0,

E

(
sup
s≤t

|Mx
s |

)
<∞.
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To this end recall from Corollary 8.3 that Xeq is exponentially distributed with
parameter Φ(q) and hence

E
(
Xeq

)
=

∫ ∞

0

qe−qt E
(
Xt

)
dt =

1

Φ(q)
<∞.

Since Xt is a continuous (on account of no positive jumps) and increasing pro-
cess, we have E

(
Xt

)
<∞ for all t. Now note by the positivity of the process Z

and again since X increases,

E

(
sup
s≤t

|Mx
s |

)
≤ ψ(λ)t + 2 + λE

(
Xt ∨ x

)
<∞

for each finite t > 0.

Remark 8.1 For the remainder of this section we will use this martingale in
the case x = 0 in which case we shall refer to it as M instead of M0

With the first exponential martingale we were able to compute the law of
the running maximum sampled at an independent and exponentially distributed
time. With the second exponential martingale we are able to characterise the
law of the running minimum sampled at an independent and exponentially dis-
tributed time as follows.

Theorem 8.3 Let Xt = inf0≤u≤tXu and suppose that eq is an exponentially

distributed random variable with parameter q > 0 independent of the process X.

Then for α > 0,

E
(
e
αX

eq
)

=
q(α− Φ(q))

Φ(q)(ψ(α) − q)
, (8.2)

where the right hand side is understood in the asymptotic sense when α = Φ(q),
i.e. q/Φ(q)ψ′(Φ(q))

Proof. We begin by noting some facts which will be used in conjunction
with the martingale (8.1). Recall that eq is an exponentially distributed random
variable with parameter q > 0 independent of the process X .

Let Zt = Xt−Xt. Note that by an application of Fubini’s theorem together
with Lemma 6.2,

E

∫
eq

0

e−αZs ds =

∫ ∞

0

e−qs E
(
e−αZs

)
ds =

1

q
E
(
e−αZeq

)
=

1

q
E
(
e
αX

eq
)
.

From Theorem 8.2 we have that E
(
Meq

)
= E(M0) = 0 and hence using the last

observation we obtain

ψ(α) − q

q
E
(
e
αX

eq
)

= αE
(
Xeq

)
− 1.
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Recall from Corollary 8.3 that Xeq is exponentially distributed with parameter

Φ(q) and hence E
(
Xeq

)
= 1/Φ(q). It follows that

ψ(α) − q

q
E
(
e
αX

eq
)

=
α− Φ(q)

Φ(q)
(8.3)

and the theorem is now proved.

Remark 8.2 Another identity that we shall shortly use which follows from the

fact that Xeq is exponentially distributed with parameter Φ(q) is that for α > 0

E

(
e−αXeq

)
=

Φ(q)

Φ(q) + α
. (8.4)

The final result of this section uses the results we have obtained from our two
exponential martingales to prove what otherwise is intuitively obvious regarding
the long term behaviour of a spectrally negative Lévy process. In reading the
statement of the next Lemma it is important to recall that ψ′(0+) = E(X1).

Lemma 8.1 We have that

(i) X∞ and −X∞ are either infinite almost surely or finite almost surely,

(ii) X∞ = ∞ if and only if ψ′(0+) ≥ 0,

(iii) X∞ = −∞ if and only if ψ′(0+) ≤ 0.

Proof. On account of the strict convexity ψ it follows that Φ(0) > 0 if and
only if ψ′(0+) < 0 and hence

lim
q↓0

q

Φ(q)
=

{
0 if ψ′(0+) ≤ 0
ψ′(0+) if ψ′(0+) > 0.

By taking q to zero in the identity (8.2) we now have that

E
(
eαX∞

)
=

{
0 if ψ′(0+) ≤ 0
ψ′(0+)α/ψ(α) if ψ′(0+) > 0.

Next, recall from (8.4) that for α > 0

E

(
e−αXeq

)
=

Φ(q)

Φ(q) + α

and hence by taking the limit of both sides as q tends to zero,

E

(
e−αX∞

)
=

{
(α/Φ (0) + 1)−1 if ψ′(0+) < 0
0 if ψ′(0+) ≥ 0.

Parts (i)–(iii) follow immidiately from the previous two identities by considering
their limits as α ↓ 0.
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Remark 8.3 In fact an even stronger statement that of the the last Lemma
can be proved. Namely that

(i) if ψ′(0+) = 0 then lim supt↑∞Xt = − lim inft↑∞Xt = ∞ (i.e. the process
oscillates),

(ii) if ψ′(0+) > 0 then limt↑∞Xt = ∞ (i.e. the process drift to infinity) and

(iii) if ψ′(0+) > 0 then limt↑∞Xt = −∞ (i.e. the process drift to minus infin-
ity).

This is clear, at least when the limits are taken along lattice times, by the strong
law of large numbers and stationary independent increments of X .
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Exercises

Exercise 14 Suppose that ψ is the Laplace exponent of a spectrally negative
Lévy process. By considering explicitly the formula

ψ(β) = −aβ +
1

2
σ2β2 +

∫

(−∞,0)

(eβx − 1 − βx1(x>−1))Π(dx)

show that on [0,∞), ψ is infinitely differentiable, strictly convex and that ψ(0) =
0 whilst ψ(∞) = ∞.

Exercise 15 Suppose that X is a spectrally negative Lévy process with char-
acteristic triple (a, σ,Π) and characteristic exponent ψ. Fix β ≥ 0 and show
that under the change of measure

dPβ

dP

∣∣∣∣
Ft

= eβXt−ψ(β)t

the processX is still a spectrally negative Lévy process with characteristic triple
(a∗, σ∗,Π∗) where

a∗ = a− βσ2 +

∫

(−1,0)

(1 − eβx)xΠ(dx),

σ∗ = σ and Π∗(dx) = eβxΠ(dx) on (−∞, 0).

Exercise 16 Suppose that X is a spectrally negative Lévy process with Lévy–
Khintchine exponent Ψ. Here we give another proof of the existence of a finite
Laplace exponent for all spectrally negative Lévy processes.

(i) Use spectral negativity together with the lack of memory property to show
that for x, y > 0,

P(Xeq > x+ y) = P(Xeq > x)P(Xeq > y)

where eq is an exponentially distributed random variable independent of
X and Xt = sups≤tXs.

(ii) Deduce that Xeq is exponentially distributed and hence the Laplace expo-
nent ψ(β) = −Ψ(−iβ) exists and is finite for all β ≥ 0.

(iii) By considering the Laplace transform of the first passage time τ+
x , show

that one may also deduce via a different route that Xeq is exponentially

distributed with parameter Φ(q). In particular show that X∞ is either
infinite with probability one or is exponentially distributed accordingly as
E(X1) ≥ 0 or E(X1) < 0. [Hint: reconsider Exercise 14].

Exercise 17 For this exercise it will be useful to refer to Sect. 2.6. Suppose
that X is a Stable Lévy process with index β = 1; that is to say Π(−∞, 0) = 0.
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(i) Show that if α ∈ (0, 1) then X is a driftless subordinator with Laplace
exponent satisfying

− log E(e−θX1) = cθα, θ ≥ 0

for some c > 0.

(ii) Show that if α ∈ (1, 2), then X has a Laplace exponent satisfying

− log E(e−θX1) = −Cθα, θ ≥ 0

for some C > 0. Confirm that X has no integer moments of order 2 and
above as well as being a process of unbounded variation.

Exercise 18 Suppose that X is a spectrally negative Lévy process of bounded
variation with characteristic exponent Ψ.

(i) Show that for each α, β ∈ R,

Mt = −Ψ(α)

∫ t

0

eiα(Xs−Xs)+iβXsds+ 1 − eiα(Xt−Xt)+iβXt

−i(α− β)

∫ t

0

eiα(Xs−Xs)+iβXsdXs, t ≥ 0

is a martingale. Note, for the reader familiar with general stochastic cal-
culus for semi-martingales, one may equally prove that the latter is a
martingale for a general spectrally negative Lévy process.

(ii) Use the fact that E(Meq ) = 0, where eq is an independent exponentially
distributed random variable with parameter q, to show that

E(eiα(Xeq−Xeq )+iβXeq ) =
q(Φ(q) − iα)

(Ψ(α) + q)(iβ − Φ(q))
, (8.5)

where Φ is the right inverse of the Laplace exponent ψ(β) = −Ψ(−iβ).

(iii) Deduce that Xeq −Xeq and Xeq are independent.
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