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Motivation

Lévy process. A (one dimensional) process with stationary and
independent increments which has paths which are right continuous with
left limits and therefore includes Brownian motion with drift, compound
Poisson processes, stable processes amongst many others).

A popular model in mathematical finance for the evolution of a risky asset
is

St := eXt , t ≥ 0

where {Xt : t ≥ 0} is a Lévy process.

Barrier options: The value of up-and-out barrier option with expiry date T
and barrier bis typically priced as

Es(f (ST )1{ST≤b})

where ST = supu≤T Su = exp{supu≤T Xu}, f is some nice function.

Other motivations from queuing theory, population models etc.

One is fundamentally interested in the joint distribution

P(Xt ∈ dx , X t ∈ dy)

for any Lévy process (X ,P).
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Barrier options: The value of up-and-out barrier option with expiry date T
and barrier bis typically priced as

Es(f (ST )1{ST≤b})

where ST = supu≤T Su = exp{supu≤T Xu}, f is some nice function.

Other motivations from queuing theory, population models etc.

One is fundamentally interested in the joint distribution

P(Xt ∈ dx , X t ∈ dy)
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Barrier options: The value of up-and-out barrier option with expiry date T
and barrier bis typically priced as

Es(f (ST )1{ST≤b})

where ST = supu≤T Su = exp{supu≤T Xu}, f is some nice function.

Other motivations from queuing theory, population models etc.

One is fundamentally interested in the joint distribution

P(Xt ∈ dx , X t ∈ dy)
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Fourier methods

Theoretically, things are already difficult enough if considering P(X t ∈ dy)
or P(Xt ∈ dx), especially in the former case.

For the case of P(Xt ∈ dx) one is sometimes lucky and knows this in
explicit form. But usually one only knows something about

Ψ(θ) := −1

t
logE(eiθXt )

= aiθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθx1{|x |≤1})Π(dx)

where a ∈ R, σ ∈ R and Π is a measure concentrated on R\{0} satisfying∫
R(1 ∧ x2)Π(dx) <∞...

...in which case there are fast-Fourier methods for inverting exp{−Ψ(θ)t}
to give P(Xt ∈ dx).

For the case of P(X t ∈ dx), recent methods have concentrated on Fourier
inversion of the, so called, Wiener-Hopf factors.
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Wiener-Hopf-Fourier methods

Recall that it turns out that one may always uniquely decompose

q

q + Ψ(θ)
= E(eiθXeq )× E(e

iθXeq )

where eq is an independent and exponentially distributed random variable
with rate q > 0 and X t = infs≤t Xs .

If one is in possession of close analytical expressions for these factors,
Fourier inversion, first in θ and then in q would be an option for accessing
the law of X t and X t . However one is rarely in possession of the factors
(even after 60 years of research into this topic), and even then there is the
issue of the double Fourier inversion.

There are no convenient formulae which contain both Xt and X t which
could be Fourier inverted.
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Meromorphic Lévy Processes and a new Wiener-Hopf Monte-Carlo simulation method

Some new ideas

Suppose that e(1), e(2), · · · are a sequence of i.i.d unit mean exponentially
distributed random variables.

Note that

g(n, q) :=

n∑
i=1

1

q
e(i)

is a Gamma (Erlang) distribution with parameters n and q and by the
strong law of Large numbers, for t > 0,

g(n,n/t) =

n∑
i=1

t

n
e(i) → t

almost surely.

Hence for a suitably large n, we have in distribution

(Xg(n,n/t),X g(n,n/t)) ' (Xt ,X t).

Indeed since t is not a jump time with probability 1, we have that
(Xg(n,n/t),X g(n,n/t))→ (Xt ,X t) almost surely.
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Some new ideas

A reformulation of the Wiener-Hopf factorization states that

Xeq
d
= Sq + Iq

where Sq is independent of Iq and they are respectively equal in
distribution to X eq and X eq

.

eq

-

eX

Xe X

q

q eq qe=  Xd
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Some new ideas

A reformulation of the Wiener-Hopf factorization states that

Xeq
d
= Sq + Iq

where Sq is independent of Iq and they are respectively equal in
distribution to X eq and X eq

.

Taking advantage of the above, the fact that X has stationary and
independent increments and the fact that, as a time, g(n,n/t) can be
seen as n subsequent independent exponential time periods we have the
following:
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Some new ideas

Theorem. For all n ∈ {1, 2, · · · } and q > 0,

(Xg(n,q),X g(n,q))
d
= (V (n, q), J (n, q))

where

V (n, q) =
n∑

j=1

{S (j)
q +I (j)

q } and J (n, q) :=

n−1∨
i=0

(
i∑

j=1

{S (j)
q + I (j)

q }+ S (i+1)
q

)
.

Here, S
(0)
q = I

(0)
q = 0, {S (j)

q : j ≥ 1} are an i.i.d. sequence of random
variables with common distribution equal to that of X eq and

{I (j)
q : j ≥ 1} are another i.i.d. sequence of random variable with common

distribution equal to that of X eq
.

Moreover, we have the following obvious:

Corollary. We have as n ↑ ∞

(V (n,n/t), J (n,n/t))→ (Xt ,X t)

where the convergence is understood in the distributional sense.
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Monte-Carlo simulation

The previous results suggest that to simulate, for example, E(g(Xt ,X t))
one should follow the following algorithm:

Sample independently from the distribution X en/t and X en/t
n ×m-times

and then construct m independent versions of the variables V (n,n/t) and
J (n,n/t), say

{V (i)(n,n/t) : i = 1, · · · ,m} and {J (i)(n,n/t) : i = 1, · · · ,m}.

Then approximate

E(g(Xt ,X t)) '
1

m

m∑
i=1

g(V (i)(n,n/t), J (i)(n,n/t)).

This numerical procedure has disposed of one (numerical) Fourier inverse
computation.

This still leaves the problem of simulating from the unknown distribution
X en/t and X en/t

i.e. we are still one (numerical) Fourier transform away

from (Xt ,X t)
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n ×m-times

and then construct m independent versions of the variables V (n,n/t) and
J (n,n/t), say

{V (i)(n,n/t) : i = 1, · · · ,m} and {J (i)(n,n/t) : i = 1, · · · ,m}.

Then approximate

E(g(Xt ,X t)) '
1

m

m∑
i=1

g(V (i)(n,n/t), J (i)(n,n/t)).

This numerical procedure has disposed of one (numerical) Fourier inverse
computation.

This still leaves the problem of simulating from the unknown distribution
X en/t and X en/t

i.e. we are still one (numerical) Fourier transform away

from (Xt ,X t)
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Meromorphic Lévy processes (definition)

A Lévy process is said to belong to the Meromorphic class (M -class), if
and only if the Lévy measure Π(dx) has a density with respect to the
Lebesgue measure, given by

π(x) = I{x>0}
∑
n≥1

anρne−ρnx + I{x<0}
∑
n≥1

ân ρ̂neρ̂nx , (1)

where all the coefficients an , ân , ρn , ρ̂n are positive, the sequences
{ρn}n≥1 and {ρ̂n}n≥1 are stricly increasing, and ρn → +∞ and
ρ̂n → +∞ as n → +∞.

We allow the case of a finite number summands (on either or both sides of
the origin) with obvious modifications to the above.

To ensure that
∫
R x

2π(x)dx converges we need to impose the additional
constraint that ∑

n≥1

anρ
−2
n +

∑
n≥1

ân ρ̂
−2
n <∞
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Meromorphic Lévy Processes and a new Wiener-Hopf Monte-Carlo simulation method
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Meromorphic Lévy processes (equivalent definition)

(i) The characteristic exponent Ψ(z ) is a meromorphic function which has
poles at points {−iρn , iρ̂n}n≥1, where ρn and ρ̂n are positive real numbers.

(ii) For q ≥ 0 function q + Ψ(z ) has roots at points {−iζn , iζ̂n}n≥1 where ζn
and ζ̂n are nonnegative real numbers (strictly positive if q > 0). We will
write ζn(q), ζ̂n(q) if we need to stress the dependence on q .

(iii) The roots and poles of q + Ψ(iz ) satisfy the following interlacing condition

...− ρ2 < −ζ2 < −ρ1 < −ζ1 < 0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < ...

(iv) There exists α > 1/2 such that ρn ∼ cnα and ρ̂n ∼ ĉnα as n → +∞.

(v) The Wiener-Hopf factors are expressed as convergent infinite products,

E
[
e−zXeq

]
=
∏
n≥1

1 + z
ρn

1 + z
ζn

E
[
e
zXeq

]
=
∏
n≥1

1 + z
ρ̂n

1 + z

ζ̂n

.
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Example: hyper-exponential jumps

The density of the Lévy measure is

π(x) = 1{x>0}

N∑
i=1

aiρie
−ρix + 1{x<0}

N̂∑
i=1

âi ρ̂ie
ρ̂ix ,

where ai , âi , ρi and ρ̂i are positive numbers.

Including Gaussian and linear drift, one can verify that the characteristic
exponent is a rational function and that hyper-exponential Lévy processes
have finite activity jumps and paths of bounded variation unless σ > 0.

Note that this class has been looked at by many other authors in the past
and historically is starts life as the Kou process.
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Example: Kuznetsov’s β-family

The characteristic exponent (Ψ(θ) = − logE(eiθX1), θ ∈ R) is given by

Ψ(θ) = iaz +
1

2
σ2z 2 +

c1

β1

{
B(α1, 1− λ1)− B(α1 −

iθ

β1
, 1− λ1)

}
+
c2

β2

{
B(α2, 1− λ2)− B(α2 +

iθ

β2
, 1− λ2)

}
where B(x , y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function, with parameter
range a ∈ R, σ, ci , αi , βi > 0 and λ1, λ2 ∈ (0, 3) \ {1, 2}.
The corresponding Lévy measure Π has density

π(x) = c1
e−α1β1x

(1− e−β1x )λ1
1{x>0} + c2

eα2β2x

(1− eβ2x )λ2
1{x<0}.

The β-class of Lévy processes includes another recently introduced family
of Lévy processes known as Lamperti-stable processes.
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The β-class of Lévy processes includes another recently introduced family
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Example: Hypergeometric Lévy processes

The characteristic exponent (Ψ(θ) = E(eiθX1), θ ∈ R) is given by

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β + iθ)

Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)

where (β, γ, β̂, γ̂) belong to the admissible range

{β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)}.

The Lévy density is given by

π(x) =
− Γ(η)

Γ(η−γ̂)Γ(−γ)
e−(1−β+γ)x

2F1(1 + γ, η; η − γ̂; e−x ) if x > 0

− Γ(η)
Γ(η−γ)Γ(−γ̂)

e(β̂+γ̂)x
2F1(1 + γ̂, η; η − γ; e−x ) if x < 0

where η = 1− β + γ + β̂ + γ̂.
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Distribution of extrema

For x ≥ 0

P(X eq ∈ dx) = ā(ρ, ζ)T × v̄(ζ, x)dx

P(−X eq
∈ dx) = ā(ρ̂, ζ̂)T × v̄(ζ̂, x)dx .

Here ā(ρ, ζ) = [a0(ρ, ζ), a1(ρ, ζ), a2(ρ, ζ), ...]T such that

a0(ρ, ζ) = lim
n→+∞

n∏
k=1

ζk
ρk
, an(ρ, ζ) =

(
1− ζn

ρn

)∏
k≥1
k 6=n

1− ζn
ρk

1− ζn
ζk

v̄(ζ, x) =
[
δ0(x), ζ1e−ζ1x , ζ2e−ζ2x , . . .

]T
,

where δ0(x) is the Dirac delta function at x = 0. A similar expression
holds for ā(ρ, ζ).
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Computing roots
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Figure: Computing the joint density of (X 1,X 1 −X1) for parameter Set 1. Here

X 1 ∈ [0, 1] and X 1 −X1 ∈ [0, 4]. Fourier method benchmark (left), N = 20, WH-MC
error (right).
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Figure: Computing the joint density of (X 1,X 1 −X1) for parameter Set 1. Here

X 1 ∈ [0, 1] and X 1 −X1 ∈ [0, 4]. N = 50, WH-MC error(left), N = 100, WH-MC
error (right).
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Figure: Computing the joint density of (X 1,X 1 −X1) for parameter Set 1. Here

X 1 ∈ [0, 1] and X 1 −X1 ∈ [0, 4]. N = 100, MC simulation (left), N = 100, MC error
(right).
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Advantages of the WH-MC method over RW approximation MC

Total computation time for WH-MC is at most half the computation time
for Fourier inversion of exp−Ψ(z ) followed by a random walk simulation.

The overwhelming majority of the WH-MC method is the simulation,
computing the roots takes 1% of the time. Roots can be stored once they
have been computed.

Considerably more accurate for the same number of steps in each cycle.

Does not artificially build in an atom at zero in the numerical distribution
of X t .



21/ 31
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More identities: One sided exit problem

Define a matrix A = {ai,j}i,j≥0 as

ai,j =


0 if i = 0, j ≥ 0

ai(ρ, ζ)b0(ζ, ρ) if i ≥ 1, j = 0
ai(ρ, ζ)bj (ζ, ρ)

ρj − ζi
if i ≥ 1, j ≥ 1

(2)

Then for c > 0 and y ≥ 0 we have

E
[
e−qτ+c I

(
X
τ+c
− c ∈ dy

)]
= v̄(ζ, c)T ×A× v̄(ρ, y)dy . (3)
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Meromorphic Lévy Processes and a new Wiener-Hopf Monte-Carlo simulation method

More identities: Two-sided exit problem

Let a > 0 and define a matrix B = B(ρ̂, ζ, a) = {bi,j}i,j≥0 with

bi,j =


ζj e
−aζj if i = 0, j ≥ 1

0 if i ≥ 0, j = 0
ρ̂iζj
ρ̂i + ζj

e−aζj if i ≥ 1, j ≥ 1

and similarly B̂ = B(ρ, ζ̂, a).There exist matrices C1, C2 such that for
x ∈ (0, a) we have

Ex

[
e−qτ+a I

(
X
τ+a
∈ dy ; τ+

a < τ−0

)]
=
[
v̄(ζ, a − x)T ×C1 + v̄(ζ̂, x)T ×C2

]
× v̄(ρ, y − a)dy

These matrices satisfy the following system of linear equations{
C1 = A− Ĉ2BA

Ĉ2 = −C1B̂Â

{
Ĉ1 = Â−C2B̂Â

C2 = −Ĉ1BA

This system of linear equations can be solved iteratively with exponential
convergence.
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More identities: Two-sided exit problem

Let a > 0 and define a matrix B = B(ρ̂, ζ, a) = {bi,j}i,j≥0 with

bi,j =


ζj e
−aζj if i = 0, j ≥ 1

0 if i ≥ 0, j = 0
ρ̂iζj
ρ̂i + ζj

e−aζj if i ≥ 1, j ≥ 1

and similarly B̂ = B(ρ, ζ̂, a).There exist matrices C1, C2 such that for
x ∈ (0, a) we have

Ex

[
e−qτ+a I

(
X
τ+a
∈ dy ; τ+

a < τ−0

)]
=
[
v̄(ζ, a − x)T ×C1 + v̄(ζ̂, x)T ×C2

]
× v̄(ρ, y − a)dy

These matrices satisfy the following system of linear equations{
C1 = A− Ĉ2BA

Ĉ2 = −C1B̂Â

{
Ĉ1 = Â−C2B̂Â

C2 = −Ĉ1BA

This system of linear equations can be solved iteratively with exponential
convergence.
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More identities: Half-line resolvent

For a > 0, y ≤ a we define R(q)(a, dy) :=
∫∞

0
e−qtP(Xt ∈ dy ; t < τ+

a )dt

Define a matrix D = {di,j}i,j≥0 as follows

di,j =


0 if i = 0 or j = 0

ai(ρ, ζ)
ζi ζ̂j

ζi + ζ̂j
aj (ρ̂, ζ̂) if i ≥ 1, j ≥ 1

Then if y ≤ a we have

qR(q)(a, dy) =
[
v̄(ζ, 0 ∨ y)×D× v̄(ζ̂, 0 ∨ (−y)))

−v̄(ζ, a)×D× v̄(ζ̂, a − y)
]
dy .
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Example of numerics

Choose an example from Kuznetsov’s β-class that has bounded variation
jump component and concentrate on four cases: With/without Gaussian
component, drift to ±∞.

For the above four cases, consider the following densities.
(i) density of the overshoot if the exit happens at the upper boundary

f1(x , y) =
d

dy
Ex

[
e−qτ+1 I

(
X
τ+1
≤ y ; τ+

1 < τ−0

)]
(ii) probability of exiting from the interval [0, 1] at the upper boundary

f2(x) = Ex

[
e−qτ+1 I

(
τ+
1 < τ−0

)]
(iii) probability of exiting the interval [0, 1] by creeping across the upper

boundary

f3(x) = Ex

[
e−qτ+1 I

(
X
τ+1

= 1 ; τ+
1 < τ−0

)]
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Double sided exit: σ > 0 and positive drift
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Figure: Unbounded variation case (σ = 0.5): computing the density of the overshoot
f1(x , y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and probability of
creeping f3(x) for parameter Set 1, positive drift µ = 1
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Double sided exit: σ > 0 and negative drift
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Figure: Unbounded variation case (σ = 0.5): computing the density of the overshoot
f1(x , y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and probability of
creeping f3(x) for parameter Set 2, negative drift µ = −1.
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Double sided exit: bounded variation and positive drift
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Figure: σ = 0, positive drift: computing the density of the overshoot f1(x , y)
(x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and probability of creeping
f3(x).
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Double sided exit: bounded variation and negative drift
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Figure: σ = 0, negative drift: computing the density of the overshoot f1(x , y)
(x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and probability of creeping
f3(x).
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Simulating processes with heavy tails

A little thought shows that a huge class of Lévy processes can be written
as the independent sum of a β-process plus and independent compound
Poisson process. Say,

Yt = Xt +

Nt∑
i=1

ξi

where {Nt : t ≥ 0} is a Poisson process of rate γ and {ξi : i ≥ 1} and
i.i.d. sequence.

Define iteratively for n ≥ 1

V (n, λ) = V (n − 1, λ) + S
(n)
λ+γ + I

(n)
λ+γ + ξn(1− βn)

J (n, λ) = max
(
V (n, λ) , J (n − 1, λ) ,V (n − 1, λ) + S

(n)
λ+γ

)
where V (0, λ) = J (0, λ) = 0 and {βn : n ≥ 1} are an i.i.d. sequence of
Bernoulli random variables such that P(βn = 1) = λ/(γ + λ). Then

(Yg(n,λ),Y g(n,λ))
d
= (V (Tn , λ), J (Tn , λ))

where Tn = min{j ≥ 1 :
j∑

i=1

βi = n}.
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Meromorphic Lévy Processes and a new Wiener-Hopf Monte-Carlo simulation method

Simulating processes with heavy tails

A little thought shows that a huge class of Lévy processes can be written
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Approximate simulation of the law of (Xt ,X t ,X t)

Define iteratively for n ≥ 1

V (n, λ) = V (n − 1, λ) + S
(n)
λ + I

(n)
λ

J (n, λ) = max
(
J (n − 1, λ),V (n − 1, λ) + S

(n)
λ

)
K (n, λ) = min (K (n − 1, λ),V (n, λ))

J̃ (n, λ) = max
(
J̃ (n − 1, λ),V (n, λ)

)
K̃ (n, λ) = min

(
K̃ (n − 1, λ),V (n − 1, λ) + I

(n)
λ

)
,

where V (0, λ) = J (0, λ) = K (0, λ) = J̃ (0, λ) = K̃ (0, λ) = 0. Then for any
bounded function f (x , y , z ) : R3 7→ R which is increasing in z -variable we have

E[f (V (n, λ), J (n, λ),K (n, λ))] ≥ E[f (Xg(n,λ),X g(n,λ),X g(n,λ)]

E[f (V (n, λ), K̃ (n, λ), J̃ (n, λ))] ≤ E[f (Xg(n,λ),X g(n,λ),X g(n,λ)].


